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Abstract. We consider a set of necessary conditions which are efficient heuris-

tics for deciding when a set of Wang tiles cannot tile a group.

Piantadosi [19] gave a necessary and sufficient condition for the existence
of a valid tiling of any free group. This condition is actually necessary for the

existence of a valid tiling for an arbitrary finitely generated group.

We consider two other conditions: the first, also given by Piantadosi [19],
is a necessary and sufficient condition to decide if a set of Wang tiles gives a

strongly periodic tiling of the free group; the second, given by Chazottes et.

al. [9], is a necessary condition to decide if a set of Wang tiles gives a tiling of
Z2.

We show that these last two conditions are equivalent. Joining and general-
ising approaches from both sides, we prove that they are necessary for having

a valid tiling of any finitely generated amenable group, confirming a remark of

Jeandel [14].

1. Introduction. Z2-subshifts of finite type (SFT) are a set of colourings of the
2-dimensional lattice Z2, or tilings, defined by a finite set of local restrictions. There
are various equivalent ways to express the restrictions, such as the Wang tiles for-
malism introduced by Hao Wang [21]. This formalism was introduced to study the
domino problem: given as input a set of restrictions (e.g. a set of Wang tiles), is
there an algorithm that decides whether there is a tiling of Z2 that respects those
restrictions?

R. Berger [7] showed that the domino problem is undecidable. The proof depends
heavily on notions of periodicity and aperiodicity, more precisely on the existence of
a set of Wang tiles that only tile Z2 in a strongly aperiodic manner. This is in stark
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contrast with the situation on Z where the domino problem is decidable thanks to
a graph representation [17].

There has been a recent interest in symbolic dynamics on more general contexts,
such as where the lattice Z2 is replaced by the Cayley graph of an infinite, finitely
generated group. Using again the existence of strongly aperiodic SFTs, the domino
problem was shown to be undecidable, apart from Zd, on some semisimple Lie groups
[18], the Baumslag-Solitar groups [2], the discrete Heisenberg group (announced,
[20]), surface groups [10, 1], semidirect products on Z2 [6] or some direct products
[4], polycyclic groups [13], some hyperbolic groups [11]. . . It is decidable on free
groups [19] and on virtually free groups [3], and it is conjectured that these are the
only groups where the domino problem is decidable (Conjecture 1 below).

As a consequence, outside of free and virtually free groups, one can not expect to
find simple necessary and sufficient conditions for admitting a valid tiling. However,
heuristics can be very useful when making an exhaustive search for SFTs with
desired properties; necessary conditions in particular allow fast rejection of most
empty SFTs. For example, a transducer-based heuristic was used in the search for
the smallest set of Wang tiles that yield a strongly aperiodic Z2-SFT [15]. It is also
of theoretical interest to understand how the group properties impact necessary
conditions.

1.1. Statements of results. We first consider a necessary and sufficient condition
introduced by Piantadosi for an SFT on the free group to admit a valid tiling [19].
It is well-known that an SFT on a finitely generated group can only admit a tiling
if the “corresponding” SFT on the free group does, so this becomes a necessary
condition on an arbitrary f.g. group (Corollary 1).

The next two stronger conditions were introduced by Piantadosi (to decide if
an SFT admits a strongly periodic tiling of the free group) and by Chazottes-
Gambaudo-Gautero [9] in a more general context of tiling the euclidean plane by
polygons, but which is necessary for an SFT to admit a tiling of Z2 [16]. We
prove that the two conditions are equivalent (Theorem 3.7), and that they form
a necessary condition for an SFT to admit a valid tiling on any finitely generated
amenable group (Theorem 5.3), confirming a remark of Jeandel ([14], Section 3.1).

Finally, we provide for any non-free finitely generated group a counterexample
that satisfies all conditions but does not provide a valid tiling.

2. Preliminaries.

2.1. Symbolic dynamics on groups. In the whole article G is an infinite, finitely
generated group with unit element 1G. We write G = 〈S | R〉 where S =
{g1, . . . , gd} is a finite set of generators and R = {r1, . . . , rm, . . . } ⊂ (S ∪ S−1)∗

is a (possibly infinite) set of relations. By convention r ∈ R means that r = 1G.
For instance:

• the free group Fd is the group on d generators with no relations;
• Z2 = 〈{g1, g2} | g1g2g

−1
1 g−1

2 〉.
Let A be a finite set endowed with the discrete topology; denote its cardinality

#A. Let AG = {(xg)g∈G | ∀g ∈ G : xg ∈ A} be the set of all functions from G to
A endowed with the product topology. Given a finite subset F ⊂ G, an element
P ∈ AF is called a pattern and F = supp(P ) its support ; the set of all patterns is
denoted A∗.
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AG is a compact space called the G-full shift. It is a symbolic dynamical system
under the following G-action, called the G-shift :

∀x ∈ AG,∀h ∈ G, (σh(xg))g∈G = (xh−1g)g∈G

We call G-subshift any closed shift-invariant subset Y ⊂ AG.
A pattern P ∈ AF is said to appear in a configuration x ∈ AG (and we write

P @ x) if there exists g ∈ G such that σg(x)|F = P .
Given a set of forbidden patterns F ⊂ A∗, we can define the corresponding

G-subshift:

Y = YF = {x ∈ AG | ∀P @ x : P /∈ F}.
Every G-subshift can be defined in this way using a set of forbidden patterns.

When a subshift can be defined by a finite set of forbidden patterns, we say it is a
G-subshift of finite type (G-SFT). If furthermore the set of forbidden patterns can
be chosen so that every pattern in F has support of the form {1G, gi} where gi ∈ S
for some set of generators S, we say it is a G-nearest-neighbour subshift of finite
type (G-NNSFT). Notice that this definition depends on the choice of S which is
usually clear in the context.

For example, If we consider G = Z with generator +1, A = {0, 1} and F = {11}
we obtain a Z-NNSFT, the golden mean shift, a classical example in symbolic
dynamics.

Definition 2.1 (Weakly & strongly aperiodic). For a configuration x ∈ AG, we
define the orbit of the element x under the shift action as orbσ(x) = {σg(x)|g ∈ G}
and the set of elements on G that fix the configuration x by stabσ(x) = {g ∈
G|σg(x) = x}. A configuration x ∈ AG is

strongly periodic: if stabσ(x) has finite index or, equivalently, if orbσ(x) is
finite;

strongly aperiodic: if stabσ(x) = {1G}.
weakly periodic: if it is not strongly aperiodic;
weakly aperiodic: if it is not strongly periodic.

More generally, a subshift X ⊂ AG is weakly/strongly aperiodic if every configura-
tion on X is weakly/strongly aperiodic.

Example 1. In G = Z2,

• the configuration x such that xg = 0 for all g is strongly periodic;
• the configuration x such that xgn1 = 0 for all n, and xg = 1 otherwise, is

weakly periodic and weakly aperiodic;
• the configuration x such that x(0,0) = 0, and xg = 1 otherwise, is strongly

aperiodic.

2.2. Wang tiles, NNSFT and graphs.

Definition 2.2 (Wang tiles, Wang subshifts). Let G = 〈S | R〉 be a finitely gen-
erated group and C a finite set of colours. A Wang tile on C and S is a map
S ∪ S−1 → C.

Given a set T of Wang tiles, the corresponding G-Wang subshift is defined as:

XT = {(xg) ∈ TG | ∀g ∈ G, s ∈ S ∪ S−1, xg(s) = xgs(s
−1)}.

We call the elements in XT G-Wang tilings.
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Z

a b
g1 7→ b

g−1
1 7→ a

Z2 or F2

a b

c

d

g1 7→ b
g−1

1 7→ a
g2 7→ c

g−1
1 7→ d

Figure 1. Examples of Wang tiles with colours C = {a, b, c, d} on
one and two generators, respectively, with their corresponding
maps.

Notice that the definition of a Wang tile depends only on the chosen set of
generators, so that the same Wang tile can be used for F2 and Z2, for example.

Take any G-NNSFT X on the alphabet A, where G = 〈{g1, . . . , gd} | R〉 is an
arbitrary finitely generated group. Let F be a set of forbidden patterns with each
support of the form {1G, gi}.

We associate to X a set of d graphs Γ1, . . . ,Γd, where the set of vertices is A for
all Γi, and

∀a, b ∈ A, a→ b in Γi ⇐⇒
{

1G → a
gi → b

/∈ F .

By definition of a G-NNSFT, it follows that a configuration x belongs to X if,
and only if, xh → xhgi is an edge in Γi for all h ∈ G and all 1 ≤ i ≤ d.

Definition 2.3 (Cycles). A cycle on a graph Γ is a path - with possible edge and
vertex repetitions - that starts and ends on the same vertex. A cycle through the
vertices a1 . . . ana1, with ai ∈ A, is denoted a1 . . . an.

A cycle is simple if it does not contain any vertex repetition. Denote SC(Γ) the
set of simple cycles on Γ, which is a finite set.

Remark 1. In graph theory, cycles are sometimes called closed walks, in which
case cycle means simple cycle. We decided to follow Piantadosi’s conventions [19]
for convenience.

Let w be a cycle and a ∈ A. We define:

|w|a = #{i | wi = a, 1 ≤ i ≤ |w|}.
In any cycle, the path between the closest repetitions is a simple cycle. By

removing this simple cycle and iterating the argument, we can see that any cycle
w can be decomposed into simple cycles, in the sense that there are integers λω for
ω ∈ SC(Γ) such that:

∀a ∈ A, |w|a =
∑

ω∈SC(Γ)

λω|ω|a.

We say that two G-subshifts X,Y ⊂ AG are (topologically) conjugate if there is
a shift-commuting homeomorphism Φ (that is, Φ ◦ σg = σg ◦ Φ for all g ∈ G) such
that Φ(X) = Y . A shift-commuting homeomorphism (or conjugacy) corresponds
to a reversible cellular automaton: there is a finite subset H ⊂ G and a local rule
ϕ : AH → A such that

∀x ∈ X,∀g ∈ G, Φ(x)g = ϕ(σg−1(x)|H),

and Φ−1 is itself a cellular automaton.
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Proposition 1. For any set of generators, each G-SFT is conjugate to a G-NNSFT
and each G-NNSFT is conjugate to a G-Wang subshift.

This is folklore. A detailed proof for the SFT - NNSFT part can be found in [5]
(Propositions 1.6 and 1.7), and a proof of the NNSFT - Wang subshift part in [12].

Since the conjugacy from a G-Wang subshift to a G-NNSFT can be chosen letter-
to-letter (i.e. H = {1G} in the definition), it is easy to see that the conjugacy does
not depend on G, so we could say that a set of graphs and a set of Wang tiles are
conjugate.

Proposition 2. Let X and Y be two conjugate G-subshifts. X admits a valid
tiling if and only if Y admits a valid tiling. The same is true for weakly/strongly
(a)periodic tilings.

3. Piantadosi’s and Chazottes-Gambaudo-Gautero’s conditions.

3.1. State of the art on the free group and Z2. The first two conditions were
introduced by Piantadosi in the context of symbolic dynamics on the free group Fd.

Definition 3.1 (Condition (?) [19]). A family of graphs Γ = {Γi}1≤i≤d whose ver-
tices are an alphabet A satisfies condition (?) if and only if there is some nonempty
A′ ⊂ A with a colouring function Ψ : A′×S → A′ such that, for any colour a ∈ A′
and any generator gi ∈ S, a→ Ψ(a, gi) is an edge in Γi.

Theorem 3.2 ([19]). Let X be a Fd-NNSFT on the alphabet A. X is nonempty if
and only if the corresponding set of graphs satisfies condition (?).

This theorem provides a decision procedure for the domino problem in free groups
of any rank: find a subalphabet such that every letter admits a valid neighbour in
the subalphabet for every generator.

Definition 3.3 (Condition (??) [19]). Consider a family of graphs Γ = {Γi}1≤i≤d
and SC(Γi) = {ωji }1≤j≤#SC(Γi) the set of simple cycles for each graph Γi.

We denote by (??) the following equation on real numbers xi,j :

∀a ∈ A,
#SC(Γ1)∑
j=1

x1,j |ωj1|a =

#SC(Γ2)∑
j=1

x2,j |ωj2|a = · · · =
#SC(Γd)∑
j=1

xd,j |ωjd|a.

We say that the graph family satisfies condition (??) if equation (??) is not empty
(e.g. all graphs contain at least a cycle) and admits a nontrivial positive solution.

Remark 2. We formulated the previous condition in terms of simple cycles (using
the formalism from Theorem 3.6 instead of Theorem 3.4 in [19]) because they form
a finite set, making it easier to prove formally when the condition is not satisfied.

Theorem 3.4 ([19], Theorem 3.6). A Fd-NNSFT contains a strongly periodic con-
figuration if and only the associated family of graphs satisfies condition (??).

Example 2. We illustrate Piantadosi’s conditions on the following example:
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0 1

2

0

1 2

Γ1 : Γ2 :

The corresponding F2-NNSFT admits a tiling, because it satisfies condition (?)
on the alphabet A′ = A. However, it does not admit a periodic tiling: the simple
cycles of Γ1 are (up to shifting) {012} and the simple cycles of Γ2 are {1, 2}, so
Equation (??) is:

x1,1 = 0 (a = 0)

x1,1 = x2,1 (a = 1)

x1,1 = x2,2 (a = 2)

which obviously doesn’t admit a nontrivial solution. As we will see later, the cor-
responding Z2-NNSFT doesn’t admit any tiling.

Remark 3. For example, if all graphs Γi share a common cycle w (say ω1
i = w

for all graphs Γi), then condition (??) admits a solution: for all i, xi,1 = 1 and
xi,j = 0 when j 6= 1. Therefore the corresponding Fd-NNSFT contains a periodic
configuration.

Definition 3.5 (Condition (??)′ [9]). Let T be a set of Wang tiles on colours C
and set of generators S. For each g ∈ S ∪ S−1 and each colour c ∈ C, define cg
the subset of Wang tiles τi ∈ T such that τi(g) = c. We call (??)′ the following
equation:

∀g ∈ S,∀c ∈ C,
∑
τi∈cg

xi =
∑

τj∈cg−1

xj .

We say that T satisfies condition (??)′ if Equation (??)′ admits a positive nontrivial
solution.

Theorem 3.6 ([9]). If a set T of Wang tiles admits a valid tiling of Z2, then it
satisfies condition (??)′.

This condition and result were introduced in [9], but a much easier presentation
in our context is given in [16].

Example 3. Example 2 is conjugate to the following set of Wang tiles.

0 7→ τ0
1 7→ τ1
2 7→ τ2

τ0

a

b

b

a

τ1

b

a

c

a

τ2

c

b

a

b
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Equation (??)′ becomes the following, where next to each equation is the corre-
sponding generator and colour.

(g1, a) x2 = x0 (g2, a) x1 = x0 + x1

(g1, b) x0 = x1 (g2, b) x0 + x2 = x2

(g1, c) x1 = x2 (g2, c) 0 = 0

This equation does not admit a positive nontrivial solution, so the corresponding
Z2-Wang subshift is empty.

3.2. Conditions (??) and (??)′ are equivalent. Although conditions (??) and
(??)′ were introduced in very different contexts (periodic tilings of the free group and
tilings of the Euclidean plane, respectively), it turns out that they are equivalent.
The fact that (??) is a condition on graphs (NNSFTs) and (??)′ is a condition on
sets of Wang tiles (Wang subshifts) is only cosmetic since Proposition 1 lets us go
from one model to the other.

Theorem 3.7. Let T be a set of Wang tiles over the set of colours C and the set
of generators S.
T satisfies condition (??)′ if, and only if, the associated graphs satisfy condition

(??).

Proof. (⇐) Let (xi,j) be a nonnegative solution to equation (??). For every tile τi,

put xi =
∑#SC(Γ1)
j=1 x1,j |ωj1|τi .

Because each simple cycle of Γ1 is a cycle, it contains as many tiles in cg1 as in

cg−1
1

; that is,
∑
τi∈cg1

|ωj1|τi =
∑
τj∈cg−1

1

|ωj1|τi . Summing over all simple cycles ωj1,

we get
∑
τi∈cg1

xi =
∑
τi∈cg−1

1

xj .

Since (xi,j) is a solution to Equation (??), we also have xi =
∑#SC(Γn)
j=1 xn,j |ωjn|τi

for every n, so the same argument shows that (xi) is a nonnegative solution of
equation (??)′.

(⇒) Because equation (??)′ admits a solution, it admits a rational solution,
and therefore an integer solution. Let (xi) be an integer, nonnegative solution of
equation (??)′.

For the generator g1, consider the graph Γ1 obtained by the letter-to-letter con-
jugacy of Proposition 1: concretely, it is the graph on vertices {τi}1≤i≤n with
τi → τj ⇔ ∃c ∈ C, τi ∈ cg1 and τj ∈ cg−1

1
.

We define an auxiliary graph G1 on vertices {τki }1≤i≤n,1≤k≤xi
(that is, xi copies

for each tile τi) as follows.
Because

∀c ∈ C,
∑
τi∈cg1

xi =
∑

τj∈cg−1
1

xj ,

we can fix an arbitrary bijection

Ψc
1 : {τki : τi ∈ cg1 , 1 ≤ k ≤ xi} → {τk

′

i′ : τi′ ∈ cg−1
1
, 1 ≤ k′ ≤ xi′},

and put an edge τki → τk
′

i′ if and only if Ψc
1(τki ) = τk

′

i′ for some c ∈ C. Because each
vertex has indegree and outdegree 1, it is a (not necessarily connected) Eulerian
graph and admits a finite set of cycles covering every vertex exactly once.
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Notice that by construction, if G1 has an edge τki → τk
′

i′ , then Γ1 has an edge
τi → τi′ . Therefore each cycle of G1 can be sent on a cycle in Γ1 through the
projection τki 7→ τi. In this way, project the finite set of cycles obtained above and
decompose them into simple cycles of Γ1. Denote x1,j the total number of each

simple cycle ωj1 obtained in this way.
Because each tile τi was present in G1 as a vertex in xi copies, we have for every

i:
∑#SC(Γ1)
j=1 x1,j |ωj1|τi = xi.

Now apply the same argument for each generator g2, . . . , gn and the variables
(xi,j) thus obtained are a solution to equation (??).

4. Necessary conditions for tiling arbitrary groups. Since the above condi-
tions apply on sets of Wang tiles or set of graphs, they actually are conditions on
a family of G-SFT where G ranges over all groups with a fixed number of genera-
tors. The following proposition relates the properties of these SFT. It can be found
(under a different form) in [8] (Proposition 10 and remark below)

Proposition 3. Let G1 = 〈{g1, . . . , gd}|R〉, G2 = 〈{g1, . . . , gd}|R′〉 be finitely
generated groups, with R′ ⊂ R. Consider the canonical surjective morphism π :
G2 → G1 defined by π(gi) = gi, ∀1 ≤ i ≤ d. Let Φ : AG1 → AG2 be defined by
Φ(x)g = xπ(g). Let X1 and X2 be the corresponding G1-NNSFT and G2-NNSFT
respectively, such that X2 has the same local rules as X1.

We have:

1. If x is a valid tiling for X1 then Φ(x) is a valid tiling for X2.
2. If x is weakly periodic then Φ(x) is weakly periodic. In particular, if X1 admits

a weakly periodic tiling, then X2 admits a weakly periodic tiling.
3. If x is weakly aperiodic then Φ(x) is weakly aperiodic. In particular, if X1

admits a weakly aperiodic tiling, then X2 admits a weakly aperiodic tiling.

The strong properties are not preserved by Φ, but of course the image of a
strongly (a)periodic tiling remains weakly (a)periodic. Stronger versions with dif-
ferent hypotheses can be found in [8, 14].

Proof. 1. Since X2 is an NNSFT, it is enough to check that, for all h ∈ G2

and all 1 ≤ i ≤ d, Φ(x)h → Φ(x)hgi is an edge in Γi, that is to say, that
it is not a forbidden pattern for X2. By definition of Φ, Φ(x)h = xπ(h) and
Φ(x)hgi = xπ(h)π(gi) = xπ(h)gi . Because x is a valid tiling for X1, we have
that xπ(h) → xπ(h)gi is an edge in Γi, which proves the result.

2. If x is a weakly periodic tiling in X1, then stabσ(x) is nontrivial by definition.
We have:

stabσ(Φ(x)) = {g ∈ G2 : ∀h ∈ G2,Φ(x)hg = Φ(x)h}
= {g ∈ G2 : ∀h ∈ G2, xπ(h)π(g) = xπ(h)}.

Since π is surjective, this means that π(stabσ(Φ(x))) = stabσ(x). stabσ(x)
is nontrivial so stabσ(Φ(x)) = π−1(stabσ(x)) is nontrivial as well.

3. If x is a weakly aperiodic tiling in X1, then stabσ(x) does not have finite index.
The canonical morphism π : G2 → G1 yields a morphism on the quotient:

π̃ : G2/π
−1(stabσ(x))→ G1/ stabσ(x),

and π̃ is surjective since π is surjective. Remember that stabσ(Φ(x)) =
π−1(stabσ(x)) by the previous point. Since stabσ(x) does not have finite
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index, G1/ stabσ(x) is infinite, so G2/π
−1(stabσ(x)) is infinite as well, and

stabσ(Φ(x)) = π−1(stabσ(x)) does not have finite index.

Remark 4. In the last proposition, the converse of the point (1) does not hold. For
instance, consider G = Z2 = 〈g1, g2 | g1g2g

−1
1 g−1

2 〉. Example 2 provided an example
of a set of graphs that satisfies condition (?) (so the corresponding F2-NNSFT
admits a valid tiling) but does not satisfy condition (??) (so the corresponding
Z2-NNSFT does not admit any valid tiling).

To understand why, notice that ker(π) contains g1g2g
−1
1 g−1

2 , so if a tiling x ∈ AF2

is such that x1F2
6= xg1g2g−1

1 g−1
2

, then Φ−1(x) = ∅. If this happens for all x ∈ X2

then X1 is empty.

Corollary 1. Let Γ1, . . . ,Γd be a set of graphs that does not satisfy condition (?).
Then the corresponding G-NNSFT is empty for an arbitrary group G with d gener-
ators.

Proof. If there was a valid tiling in G = 〈g1, . . . , gd | R〉 then, applying Proposi-
tion 3, we would obtain a tiling on Fd = 〈g1, . . . , gd | ∅〉, which is in contradiction
with Theorem 3.2.

5. Necessary conditions for tiling amenable groups.

Definition 5.1 (Følner sequence). Let G be a finitely generated group. A Følner
sequence for G is a sequence of finite subsets Sn ⊂ G such that:

G =
⋃
n

Sn and ∀g ∈ G, #(Sng4Sn)

#Sn
−−−−→
n→∞

0,

where Sng = {hg : h ∈ Sn} and A4B = (A\B) ∪ (B\A) is the symmetric
difference.

In the previous definition, it is easy to see that the second condition only has
to be checked for g in a finite generating set. The set Sng4Sn can be understood
as the border of Sn, so an element of a Følner sequence must have a small border
relative to its interior.

Definition 5.2 (Amenable group). A finitely generated group G is amenable if it
admits a Følner sequence.

This definition applies more generally for all countable groups. A few examples:

• Zd is amenable and a Følner sequence is given by Sn = [−n, n]d. Indeed,
if (gi)1≤i≤d is the canonical set of generators, then #Sn = (2n + 1)d and
#((Sn + gi)4Sn) = 2 · (2n+ 1)d−1.

• Fd for d ≥ 2 is not amenable. In particular, the balls Sn of radius n - that
is, reduced1 words of length ≤ n on the set of generators (gi)1≤i≤d - are
not a Følner sequence. Indeed, one can easily check that #Sn = Ω(dn) and
#(Sngi4Sn) = Ω(dn).

Theorem 5.3 (Heuristic for tiling an amenable group). Let G be a finitely generated
amenable group, S a finite set of generators, and T a set of Wang tiles.

If there is a tiling of G with the tiles T , then condition (??) (or equivalently (??)′)
is satisfied.

1with no g−1
i gi or gig

−1
i factors
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This results confirms a remark by Jeandel in [14], Section 3.1.

Proof. Let x ∈ TG be a tiling of G and Sn be a Følner sequence for G. Using
notations from Definition 3.3, for a colour c ∈ C and a generator g ∈ S, cg is the
set of tiles τ such that τ(g) = c.

For any h ∈ Sn ∩ Sng−1, we have xh ∈ cg ⇔ xhg ∈ cg−1 (and in this case,
hg ∈ Sn ∩ Sng). This means that, for all c ∈ C, g ∈ S and n ∈ N:

#{h ∈ Sn ∩ Sng−1 : xh ∈ cg} = #{h ∈ Sn ∩ Sng : xh ∈ cg−1},

so in particular

|#{h ∈ Sn : xh ∈ cg} −#{h ∈ Sn : xh ∈ cg−1}| ≤ #(Sng4Sn) + #(Sng
−14Sn).

For each tile τi, let xni = #{h∈Sn : xh=τi}
#Sn

. The previous computation implies

that:

∀g ∈ S, ∀c ∈ C,

∣∣∣∣∣∣
∑
τi∈cg

xni −
∑

τj∈cg−1

xnj

∣∣∣∣∣∣ ≤ #(Sng4Sn)

#Sn
+

#(Sng
−14Sn)

#Sn
.

Notice that the right-hand side tends to 0 as n tends to infinity by definition of
a Følner sequence. Consider the sequence of vectors ((xni )i)n∈N and, by compacity,
let (xi) be any limit point of this sequence. Since

∑
i x

n
i = 1 for all n by definition,∑

i xi = 1 as well, and we have

∀g ∈ S, ∀c ∈ C,
∑
τi∈cg

xi =
∑

τj∈cg−1

xj ,

so (xi) is a nontrivial solution to Equation (??). Condition (??)′ follows by Theo-
rem 3.7.

6. Counterexamples. It is clear that none of the (?), (??) or (??)′ conditions can
be a sufficient condition to admit a Zd-tiling, since it would be a decision procedure
for the Domino problem; this argument applies to any group where the Domino
problem is undecidable. For completeness, we provide explicit counterexamples for
any non-free finitely generated group.

Theorem 6.1. Let G be an arbitrary finitely generated group. If G is not free, then
there exists a Wang tile set that satisfies the three conditions (?), (??) and (??)′ and
such that the corresponding G-Wang subshift is empty.

Proof. Write G = 〈g1, . . . , gd | R〉, and take r1 : w1 . . . wn ∈ R, with w1 . . . wn a
reduced word on generators g1 . . . gd (no generator is next to its inverse).

We build a family of graphs Γd on vertices {0, . . . , n} with the following edges:

∀i ≤ n,
{

if wi = gj , then Γj has an edge i− 1→ i;
if wi = g−1

j , then Γj has an edge i→ i− 1.

Notice that every vertex has indegree and outdegree at most 1 and we did not create
any cycle in the process, so we can complete every Γj to be isomorphic to a n-cycle
graph Cn.

Now we define a set of n + 1 Wang tiles on n + 1 colours {0, . . . , n} as follows.
Tile τi has the following colours: for all j, g−1

j → i and gj → k if there is an edge
τi → τk in Γj .
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Example 4. For Z2, we have r1 : g1g2g
−1
1 g−1

2 = 1. Therefore Γ1 contains 0 → 1
and 3→ 2, and Γ2 contains 1→ 2 and 4→ 3. One possible completion for Γ1 and
Γ2 is the following:

0

1

43

2

Γ1 : 0

1

24

3

Γ2 :

The corresponding G-NNSFT is conjugate to the G-Wang subshift defined by the
following tiles through the rewriting i↔ τi:

τ0

0 1

1

0

τ1

1 4

2

1

τ2

2 0

4

2

τ3

3 2

0

3

τ4

4 3

3

4

This tiling satisfies condition (??)′ since we can assign the same weight 1
n to each

tile.
It is clear that a tiling x ofG using tiles τ0, . . . , τn must contain every tile. Assume

w.l.o.g that x1 = τ0. By construction we must have xw1 = τ1, xw1w2 = τ2, and by
an easy induction xw = τn. But since w = 1 in G, we have τ0 = x1 = xw = τn, a
contradiction. Therefore there is no tiling of G using tiles τ0, . . . , τn.

7. Conclusion. We would like to mention the two following conjectures that relate
the fact of admitting a valid (periodic) tiling and the underlying group structure:

Conjecture 1 ([3]). A finitely generated group has a decidable domino problem if
and only if it is virtually free.

Conjecture 2 ([8]). A finitely generated group has an SFT with no strongly periodic
point if and only if it is not virtually cyclic.

In both cases, the “if” direction is proven and the “only if” direction is open.
If Conjecture 1 holds, every infinite amenable groupe has an undecidable domino

problem. We ask whether the domino problem could be decidable when consider-
ing all amenable groups “at the same time”, with a decision procedure given by
Conditions (??) and (??)′.

Problem. Is there a set of Wang tiles that satisfies condition (??)′ but that does
not tile any (infinite) amenable group?
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