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A B S T R A C T

A molecular genetic protocol for distinguishing pure and hybrid South American camelids was developed to
provide strong, quantifiable, and unbiased species identification. We detail the application of the approach in the
context of a criminal case in the Andes Mountains of central Chile where the defendants were alleged to have
illegally hunted three wild guanacos (Lama guanicoe), as opposed to hybrid domestic llama (Lama glama)/wild
guanaco crosses, which are unregulated. We describe a workflow that differentiates among wild, domestic and
hybrid South American camelids (Lama versus Vicugna) based on mitochondrial cytochrome b genetic variation
(to distinguish between Lama and Vicugna), and MC1R and exon 4 variation of the ASIP gene (to differentiate
wild from domestic species). Additionally, we infer the population origin and sex of each of the three individuals
from a panel of 15 autosomal microsatellite loci and the presence or absence of the SRY gene. Our analyses
strongly supported the inference that the confiscated carcasses corresponded with 2 male and 1 female guanacos
that were hunted illegally. Statistical power analyses suggested that there was an extremely low probability of
misidentifying domestic camelids as wild camelids (an estimated 0 % Type I error rate), or using more con-
servative approached a 1.17 % chance of misidentification of wild species as domestic camelids (Type II error).
Our case report and methodological and analytical protocols demonstrate the power of genetic variation in coat
color genes to identify hybrids between wild and domestic camelid species and highlight the utility of the
approach to help combat illegal wildlife hunting and trafficking.

1. Introduction

Poaching and illegal trade of wildlife is recognized to be a major
threat to biodiversity, affecting efforts to protect and recover popula-
tions of animals from overexploitation. During the last decade, a re-
surgence of illegal hunting on a global scale is endangering emblematic
species in all terrestrial and marine ecosystems [1,2]. To counter these
threats, the application of forensic genetic approaches has become an
increasingly common tool for monitoring and investigating incidents of
poaching and illegal trade [3–5], providing more precise and replicable
tools to identify the species, population of origin, individual identity
and relatedness of a variety of sample types [6–9]. South American
camelids (SAC), both wild and domestic, often coexist temporally and

spatially [10,11]. Wild and domestic species readily interbreed in the
wild and in captive and managed settings and produce fertile hybrids
[12]. This has complicated the use of traditional methods of molecular
analyses for differentiating taxa beyond genus (e.g. using mitochondrial
DNA and microsatellite markers) since at the phylogenetic level two
reciprocal groups are obtained: the vicuña, Vicugna vicugna, - alpaca, V.
pacos haplogroup and the guanaco, Lama guanicoe - llama, L. glama
haplogroup [13].

The guanaco, classified as a Least Concern by the IUCN Red List
[14], is protected nationally throughout its distribution. Permits are
required for local use and for the international trade of derived pro-
ducts (since it is classified in the Appendix II of CITES). It is illegal to
hunt guanacos without authorization in Chile and Argentina [15] and
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commercialization (sale) of meat products within these countries and
the European Union, the main international destination of legal meat
products of non-domestic species, is regulated by resolutions and norms
that are more stringent than those covering the production and sale of
beef from domestic cattle (i.e. CITES permits and certificates Conf. 12.3
Rev. CoP17, Non-detrimental Findings report [16]). However, some-
what ironically, the sanctions for illegal wildlife poaching in Chile (Law
N° 19.473) are less punitive than those for cattle rustling (Article N°
448, Chilean Penal Code). Complicating matters, the legal framework
for protecting hybrid individuals in Chile is unclear, and there are no
explicit protections beyond the interpretation of local norms and/or an
extrapolation or interpretation of CITES regulations (Conf. 10.17 Rev.
CoP14). This lack of a clear legal framework covering the exploitation
and commerce of South American camelids has likely contributed to the
perception and expectation that the harvest (hunting) of “hybrid spe-
cies” might be significantly different than if they were pure wild, and
would be treated less harshly by governing authorities.

Here we describe a workflow that applies a number of novel ap-
proaches and a logical hierarchical testing regime to accurately identify
SAC. Additionally, we describe the successful resolution of a forensic
case involving guanaco poaching, where the accused claimed to have
hunted and slaughtered guanaco-llama hybrids (which would have
been legal under current laws). We describe molecular genetic analyses
that were used to identify with a high degree of certainty whether the
three South American camelids were pure wild species (guanaco or
vicuña) or domestic species (llama or alpaca) using genetic variants of
the gene that codifies fur color in mammals and that was under strong
selection during the domestication process [17]. Importantly, it was
also possible to identify the population of origin (location) and the
number of individuals involved (hunted) based on microsatellite gen-
otyping. The sex of each individual was ascertained using specific Y-
chromosome markers. Here, our analyses demonstrate that sequence
variation in coat color genes in South American camelids is sufficient to
distinguish pure wild species from hybrid and / or domestic species. We
then provide an example of how our approach /case study, demon-
strating the utility of our approach in helping resolve a complex case of
illegal hunting.

2. Materials and methods

2.1. SAC identification method

To collect baseline data, we analyzed data from 79 guanacos and 89
vicuñas from throughout their distribution in Peru, Argentina and
Chile, representing the subspecies of wild guanaco and wild vicuña, L.
g. cacsilencis/L. g. guanicoe and V. v. mensalis/V. v. vicugna respectively.
Similarly, we analysed 89 samples of domestic llamas, and 84 alpacas
from Andean countries (Supplementary Table 1, Supplementary
Information). Total genomic DNA was extracted using the most ap-
propriate methods for each type of tissue. PCR amplification of the 5’
end of the mitochondrial control region [18] was used to distinguish
South American Camelids from other Artiodactyls (Fig. 1, step 1). Se-
quences were aligned using Geneious v.9.1.5 (Biomatters, Auckland,
New Zealand) and were compared to sequences available on the NCBI
database. Statistical confidence of sequence similarity within and
among species was further assessed using BLAST [19]. Next, the genus
of individuals was confirmed as either, Lama or Vicugna based on di-
agnostic melanocortin 1 receptor (MC1R) sequence variation (Fig. 1,
step 2). Then, to determine if the confiscated samples corresponded to a
wild or a domestic camelid, two biparental genes responsible for coat
color in mammals were assessed (Fig. 1, step 3) using PCR primers
designed to amplify the MC1R coding region [20] and portions of the
ASIP coding and intronic regions [21]. In this region a specific set of 14
substitutions unequivocally differentiate wild from domestic South
American camelids [17] (Figure 1, step 3, Supplementary Table 2A, 2B,
2C, 2D, Supplementary Information). These Single Nucleotide

Polymorphisms (SNPs) were identified by sequence alignment (www.
geneious.com) and were confirmed by resequencing the whole frag-
ment in the opposite direction. Aligned sequence data for each gene
were imported individually into DNASP 5.0 software [22] to analyze
haplotype diversity and nucleotide diversity. The gametic phase of each
haplotype was determined with the software BEAGLE Version 3.3.1
[23].

Samples were linked to specific individuals based on patterns of
variation in a panel of 15 highly polymorphic microsatellites, also
known as STRs or simple-tandem repeats, designed specifically for
South American camelids [6] (Fig. 1, step 4). Fifteen autosomal dinu-
cleotide microsatellite loci, designated YWLL08, YWLL29, YWLL36,
YWLL38, YWLL40, YWLL43, YWLL44, YWLL46 [24], LCA5, LCA19,
LCA22, LCA23 [25], LCA65 [26]) and LGU49, LGU68 [27] were am-
plified. The amplification was carried out as described in Marín et al.
2013 [18] and fragments analyzed on an ABI-3100 sequencer (Perkin
Elmer Applied Biosystems). Data collection, sizing of bands and ana-
lyses were carried out using Genemarker v. 1.70 (SoftGenetics). Match
probabilities between samples were estimated using Microsat ToolKit
[28] without adjusting for sample size (given the size of the sample
sets). Sex-specific amplification of the SRY gene was performed using
the camel-specific primers SryB5 and B3 [6] to determine the sex of
each sample (Fig. 1, step 5). The SRY gene (≈175 bp) was amplified as
in Marín et al. [6].

2.2. Assignment power

K-fold cross-validation and a Bayesian model were used to calculate
Type I and II error in sample assignation. To validate our method and
assess the impact of subsampling, we performed a K-fold cross-valida-
tion [29] using the sample function of the R program [30] to generate
random numbers. For this exercise we divided the sample data into two
50 % groups [31]: one as a training set and the other as the test group
(K= 2), without differentiating if they corresponded to guanacos,
llamas, vicuñas or alpacas, and keeping half of samples as a ‘hold-out’
set, which did not contribute to the allele frequency estimates of the
reference groups. This hold-out set served as the test control sample
which was used to estimate assignment error. We repeated the proce-
dure four times over 341 samples of camelids with known phenotypic
and genetic information (Supplementary Table 2, Supplementary In-
formation) and calculated average percent Type I and Type II error
rates. Additionally, a commonly recommended Bayesian approach
[3,32] was also generated using the same database. Samples of our case
study were excluded for both statistical procedures.

2.3. Case history

Two people were arrested for transporting finely-butchered car-
casses (for human consumption) of three unidentified South American
camelids. These carcasses were discovered hidden in a 4×4 truck
during a search of the vehicle as it was leaving a private ranch
(∼33°55′S, ∼70°11′W). Carabineros de Chile (the Chile police force)
and the Agricultural and Livestock Service administrative authorities
were informed. These authorities confiscated the material and took
tissue samples of the meat for genetic analyses. Due to the proximity of
a well-monitored population of guanacos (Lama guanicoe) from the
Laguna del Diamante Provincial Reserve in Argentina [33], it was im-
mediately suspected that the confiscated specimens might be from these
federally protected guanacos (Lama guanicoe). The suspects were
charged with infringing the Hunting Law 19,473 for illegal possession
of the products of a protected species (Case RUC 1500012957-4 in
Prosecutor of Puente Alto, Santiago). During the hearing, the accused
did not deny that the carcasses were “camelids”. However, they alleged
that the specimens they were carrying corresponded to guanaco/llama
hybrids, or “llamanacos” (which are not protected by law) and they
pointed out that approximately 20 km from where they were arrested
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there are numerous llama that could have interbred with wild gua-
nacos.

From the evidence collected during the arrest, three muscle samples
that were suspected to be from three different animals labeled as 1B2,
2B2 and 3B2, were sent to the Laboratorio de Genómica y
Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bío-
Bío. Genomic DNA was extracted using standard proteinase K digestion
and phenol/chloroform extraction procedures [34]. The hierarchical
workflow described above was followed to resolve questions about the
origins of the confiscated samples (Fig. 1).

3. Results and discussion

3.1. Estimation of assignment error

Our estimate of the error rate for distinguishing wild species from
domestic species using our methodology was extremely low (calculated

as 0 %). Similarly, the average estimated rate for misclassifying a do-
mestic/hybrid as a wild individual was 0.58 % (using the K-fold cross-
validation method), the second approach error estimates are considered
1.17 (Bayesian analysis) that is conservative with respect to the pro-
secution K-fold cross-validation method, but both error estimates are
considered relevant, then in casework; indicating that the probability
that an innocent person would be mistakenly determined to be guilty
was only very marginally more likely (Supplementary Table 3,
Supplementary Information). These analyses suggest that our approach
has a probability (confidence rate) of over ∼99 % of being able to
correctly distinguish domestic South American camelids from their wild
progenitors. The Bayesian approach had a slightly higher estimated
level Type II error (Supplementary Table 4, Supplementary
Information) than the K-fold cross-validation method. These very low
estimated error rates likely reflect historic low levels of admixture
among species in this group [35]. Here, as is generally the case with
most tests, the estimated frequency or probability of false positive was

Fig. 1. Diagram of the five-step workflow through which individuals were classified by: (1) South American Camelid origin, (2) genus, (3) wild or domestic, (4)
number of individuals, and (5) by sex (male or female). Classification of MC1R and ASIP haplotypes required exact matches. The haplotypes indicated are always
homozygous except for Vicugna sp.’s MC1R haplotype.
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of highest concern, especially since in prosecuting criminal cases a false
positive would incorrectly determine that the sample was from a do-
mestic animal and not a wild one (and in this case would be evidence of
innocence). Although our methods are very robust, they also reinforce
the general dictum that criminal cases should be resolved using a
variety of independent types of evidence.

3.2. Mitochondrial DNA haplogroups

We obtained 300 base pairs of the 5′ end domain of the mitochon-
drial control region from the three confiscated meat samples. The se-
quences were aligned, and genetic sequence matched with South
American Camelids haplotypes, rather than those of other Artiodactyls
(Supplementary Table 5A, Supplementary Information).

3.3. Wild origin of samples of case

MC1R and Exon 4 of ASIP sequences revealed that samples 1B2, 2B2
and 3B2 had none of the 5 diagnostic mutations that characterize
llamas and alpacas [17]. These mutations have never been observed in
guanacos and are always in llamas [17] (Supplementary Table 5B, 5C,
Supplementary Information). If these samples had been from a hybrid
individual of first-generation guanaco and llama, these mutations
would be detectable in at least one of the two chromosomal sets of the
animal (a situation not observed here). Genetic variation in the MC1R
sequences provided strong evidence the samples were either Lama
(guanaco and llama) or Vicugna (vicuña and alpaca).

3.4. Individualization and sex identification of case samples

Results of the analysis of the microsatellite markers confirmed that
the samples had to have come from three individual guanacos
(Supplementary Table 6, Supplementary Information). Samples 1B2
and 3B2 were identified as males and sample 2B2 as a female.

4. Conclusions

Our research workflow, starting from a broad species-level scale to
individual differentiation and sex determination, along with corre-
sponding estimates of error rate to provide a robust measure of con-
fidence in sample assignation, proved to be effective in determining the
providence of samples of unknown species, including evidence that is
useful for resolving cases in wildlife crimes. Our approach will be of
special utility when the genetic purity (potential hybridization) is in
question [36,37], as when domestic/hybrid products need to be dis-
tinguished from wild ones. The rigor and repeatability of the assays will
be especially important when utilized in a legal context, as when evi-
dence is introduced in the prosecution of criminal cases. These meth-
odologies will also be useful to address other questions of genetic
heritage, including the assessment of archaeological remains.

Here, we described a legal case where we used specific gene var-
iation associated with coat color to differentiate wild and domestic
animals in a case where traditional genetic analysis, i.e., mitochondrial
or microsatellite markers [13,18,35] would not have been able to
provide evidence of illegal hunting of a protected species. Patterns of
sequence variation in the MC1R gene and exon 4 of the ASIP gene
distinguished wild from domestic species with high confidence, helping
to clarify that the three carcasses were from guanacos and that they
were not hybrids, as was claimed. However, although our estimated
error rates were minimal, genetic evidence perhaps should not be the
only type of evidence to be used in a trial of these characteristics and
independent types of corroborating evidence would clearly be of value.

We suspect that the guanaco carcasses would have been sold on the
local black market where fresh or dried meat is in high demand during
certain times of the year [38]. Although this species is protected by the
Chilean Hunting Law, this legal instrument does not formally or

explicitly address the legality of transactions between hunters (the
sellers) and buyers. Therefore the maximum possible penalties are
rarely given for the charge of possession of illegal wildlife products.
More often, and as occurred in this case, an agreement is reached be-
tween the lawyers. Here, the culprits were released on their own re-
cognizance after they promised to donate US$ 200 to a non- govern-
mental organization dedicated to conservation. However, recent
changes in Chile laws are being implemented, which will likely address
some of the loopholes in current regulations (i.e. new CITES Law N°
20962).

Molecular genetic approaches are also improving rapidly. Next
Generation Sequencing approaches are being designed and im-
plemented that will more accurately identify and distinguish species,
populations, and individuals of wildlife species [39] and will become
powerful tools to authenticate the origin of products in markets
[40–42], using specific markers throughout the genome which includes
the functional genetic variation [43]. These approaches promise to
provide practical tools to combat wildlife crime more rapidly and lower
costs compared to traditional analyses [3,5,44]. In the future, the de-
velopment and implementation of SNP panels will facilitate more-re-
fined differentiation among wild, domestic and hybrid forms. For now,
coat color gene analyses provide useful, cost-effective and accessible
approaches for resolving these types of forensic/legal cases.
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