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DIFFERENTIAL INCLUSIONS AND OPTIMIZATION ALGORITHMS OF
FORWARD-BACKWARD TYPE

This thesis has two main purposes: first, we shall compare continuous and discrete tra-
jectories associated to a differential inclusion governed by the sum of a maximally monotone
operator with a cocoercive operator and the discrete trajectories generated by means of for-
ward backward algorithm, in a finite and infinite horizon. As a consequence of the general
theory, we obtain new results on the strong convergence for the forward backward algorithm.
In the particular case of the explicit iterations governed by an operator deriving from a poten-
tial, we present important results concerning to the strong convergence of gradient algorithm.
The second purpose in this thesis is to show some results obtained about the acceleration
of certain primal-dual algorithms for image processing, by using the asymptotic properties
of the preconditioned forward backward algorithm. We deal specifically with the algorithms
presented by Loris–Verhoeven [53] and Condat–Vu [27, 69], when the cocoercive operator in
both algorithms is affine.

Esta tesis tiene dos propósitos principales: primero, vamos a comparar trayectorias contin-
uas asociadas a una inclusón diferencial gobernada por la suma de un operador maximálmente
monótono con un operador cocoercivo y las trayectorias discretas generadas a través del al-
goritmo forward backward, en un horizonte temporal finito e infinito. Como consecuencia de
la teoría general, obtenemos nuevos resultados sobre la convergencia fuerte para el algoritmo
forward backward. En el caso particular de iteraciones explícitas por un oerador derivado
de un potencial, presentamos inportantes resultados concernientes a la convergencia fuerte
del algoritmo del gradiente. El segundo propósito de esta tesis es mostrar algunos resultados
obtenidos sobre la aceleración de ciertos algoritmos primal–dual para procesamiento de imá-
genes. Tratamos específicamente con los algoritmos presentados por Loris–Verhoeven [53] y
Condat–Vu [27, 69], cuando el operador cocoercivo en ambos algoritmos es afín.
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Chapter 1

Introduction
This thesis has two main purposes: first, we shall compare continuous and discrete trajecto-
ries associated to a differential inclusion governed by a multivalued operator, looking at their
qualitative differences and similarities in terms of the convergence of these trajectories. If the
operator is maximally monotone and the discrete trajectories are obtained by the proximal
algorithm, there exists a theory which enables us, on the one hand, to quantify the aproxima-
tion of the solution of the differential inclusion by proximal iterations in a finite horizon and,
on the other hand, it allows to analyze the relationship between the long term behavior of
the continuous and discrete trajectories. This theory can be applied even when the operator
is the sum of a maximally monotone operator with a cocoercive operator, but in practice, the
computation of the proximal iterations governed by the sum of two operators is complicated.
It is more convenient to obtain the discrete trajectories by means of the forward backward
algorithm. However, the comparison theory in the latter case does not exist. One of our
main goals is to build this theory in this manuscript. The second purpose in this thesis is
to show some results obtained about the acceleration of certain primal-dual algorithms for
image processing, by using the asymptotic properties of the preconditioned forward backward
algorithm. We deal specifically with the algorithms presented by Loris–Verhoeven [53] and
Condat–Vu [27, 69], when the cocoercive operator in both algorithms is affine.

This chapter is organized as follows: In Section 1.1, we present the comparison theory
between the discrete trajectories generated by the forward backward algorithm and the con-
tinuous ones associated to the differential inclusion governed by sum of a maximally monotone
operator with a cocoercive operator in a finite and infinite horizon. As a consequence of the
general theory, we obtain new results on the strong convergence for the forward backward al-
gorithm. In the particular case of the explicit iterations governed by an operator deriving from
a potential, we present important results concerning to the strong convergence of gradient
algorithm. We finish this section by prensenting some comments about the work in progress.
In Section 1.2, we present the main results concerning to acceleration of some primal-dual
algorithm. We finish this section with some comments about the work in progress.

For simplicity, we restrict ourselves to the Hilbert spaces setting in this chapter.
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1.1 Forward-backward approximation of evolution equa-
tions in finite and infinite horizon

In this section we summarize the developed research into the papers [30] and [29], related
to the relationship of the asymptotic behavior between continuous and discrete dinamycal
systems governed by the sum of a maximally monotone operator with a cocoercive operator in
Hilbert space setting. The proof of the main results in this section can be found in Chapters
3 and 4.

Throughout this chapter, H will be a real Hilbert space with inner product 〈·, ·〉 and ‖·‖ its
norm, A : H → 2H will be a maximally monotone operator, B : H → H will be a cocoercive
operator with parameter θ > 0. Then A+B is maximally monotone, the operator

Eλ = I − λB (1.1)

is nonexpansive for all λ ∈ [0, 2θ] and the forward backward splitting operator Tλ : H → H
defined by

Tλ = JAλ ◦ Eλ, (1.2)

is single-valued, everywhere defined and nonexpansive.

Let us consider the following forward-backward iterations defined by

xk = Tλk(xk−1) = JAλk(Eλk(xk−1)), k ∈ N, (1.3)

where {λk}k∈N is a sequence of positive numbers, called step sizes and x0 ∈ H.

These forward-backward iterations are fundamental in the numerical analysis of optimiza-
tion problems, since they serve as building blocks for first order methods. The gradient
method, originally introduced by Cauchy in [15], and its variant, the projected gradient
method [38, 49], the proximal point algorithm introduced by Martinet [54] and further ex-
tended by Rockafellar [67] and Brézis-Lions [11], and the proximal-gradient algorithm [63, 51],
with applications in image and signal processing, such as the iterative shrinkage threshold-
ing algorithm [33, 24], are keynote particular cases. Moreover, some primal dual methods
[16, 27, 69] can be reduced to these types of iterations.

We will not study the convergence of the iterations (1.3) in this section. Instead, our
main purpose here is to analyze them as discrete approximations of an evolution equation
governed by the sum A+B. To this end, it is useful to rewrite (1.3) in a more general way:

− xk − xk−1

λk
+ εk ∈ Axk +Bxk−1, k ∈ N, (1.4)

where εk accounts for possible perturbations or computational errors. In the notation of
(1.3), this is

xk = JAλk (Eλk(xk−1) + λkεk) . k ∈ N (1.5)

When εk = 0 for all k ∈ N, the left-hand in (1.4) side can be interpreted as a discretization
of the velocity for a trajectory t 7→ u(t), so (1.4) can be related to the differential inclusion

− u̇(t) ∈ Au(t) +Bu(t), (1.6)
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for t > 0. In the following sections, we shall establish the nature of this relationship. On
the one hand, we shall prove that the iterations described in (1.4) can be used, in at least
two different ways, to construct a sequence of curves that approximate the solutions of (1.6)
uniformly on each compact time interval. The existence of such solutions is obtained as a
byproduct. On the other hand, we shall show that, given A and B, the trajectories satisfying
(1.6) will have the same convergence properties, when t → ∞, as the sequences satisfying
(1.4), when k →∞, provided the step sizes are sufficiently small.

The following inequality allows to estimate the distance between two arbitrary iterates of
two independent sequences generated by (1.5). It generalizes previous versions given by [44,
Lemma 2.1] for m-accretive in Banach space setting and B = 0 (see also [65, Proposition
17] for A maximally monotone Hilbert space setting) and [30, Lemma 2.4] for A = 0 in the
Hilbert space setting.

Theorem 1.1 Let {xk}k∈N, {x̂l}l∈N be two sequences generated by (1.5), with stepsizes
{λk}k∈N and {λ̂l}l∈N, respectively and 0 < λk, λ̂l ≤ 2θ for all k, l ∈ N. Then, for u ∈ D(A)

‖xk − x̂l‖ ≤ ‖x0 − u‖+ ‖x̂0 − u‖+ ‖|(A+B)u|‖
√

(σk − σ̂l)2 + τk + τ̂l + Sk + Ŝl, (1.7)

where Sk =
k∑

i=1

λi‖εi‖, ‖|Au|‖ = inf
v∈Au
‖v‖, σk =

k∑
i=1

λi and τk =
k∑

i=1

λ2
i (similarly for Ŝl, σ̂l

and τ̂l).

Approximation in finite horizon

Theorem 1.1 provides existence and regularity results for the evolution equation{
−u̇(t) ∈ (A+B)u(t), for almost every t > 0,

u(0) = u0 ∈ D(A),
(1.8)

by means of an approximation scheme. For each t ≥ 0 and m ≥ 1, set

um(t) =
[
T t
m

]m
u0. (1.9)

In other words, um(t) is the m-th term of the forward–backward sequence generated by (1.3)
from u0 using the constant step size λk ≡ t/m for all k ∈ N. We shall prove that {um}
converges uniformly on compact intervals to a Lipschitz-continuous function satisfying (1.8).

Proposition 1.2 The sequence {um}m∈N converges pointwise on [0,+∞) and uniformly on
[0, S] for each S > 0, to a function u : [0,+∞) → H which is globally Lipschitz-continuous
with constant ‖|(A+B)u0|‖ and satisfies (1.8).

As a consequence of Theorem 1.1 and Proposition 1.2, we have
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Corollary 1.3 . Let {xk}k∈N be a sequence generated by (1.3) for all k ∈ N and consider
u : [0, S]→ H a solution of (1.9). Then

(i) The function t 7→ ‖|(A+B)u(t)|‖ is nonincreasing.
(ii) ‖xk − u(t)‖ ≤ ‖x0 − u0‖+ min{‖|(A+B)x0|‖, ‖|(A+B)u0|‖}

√
(σk − t)2 + τk.

Approximation in infinite horizon

In this section, we show that forward backward sequences presented in (1.3) have the same
asymptotic behavior as the number of the iterations goes to infinity, as the solutions of the
evolution equation (1.8). The key argument is the idea of asymptotic equality introduced
by Passty [63], closely related to the notion of almost-orbit, introduced by Miyadera and
Kobayasi [46] as we shall explain.

Evolution systems, almost-orbit and asymptotic equivalence. Let C a convex subset
of H and let I be the identity operator on H. A nonexpansive evolution system on H is a
family

(
U(t, s)

)
0≤s≤t such that

(i) U(t, t)z = z for all z ∈ H and t ≥ 0.
(ii) U(t, s)U(s, r)z = U(t, r)z for all z ∈ H and all t ≥ s ≥ r ≥ 0.
(iii) ‖U(t, s)x− U(t, s)y‖≤‖x− y‖ for all x, y ∈ H and t ≥ s ≥ 0.

Example 1.4 Given x ∈ D(A) and t ≥ 0, we write

Stx = u(t), (1.10)

where u satisfies (1.8) with x0 = x. Also, for 0 ≤ s ≤ t, we write

US(t, s) = S(t− s). (1.11)

In a similar fashion, if n ∈ N and x ∈ H, we denote

Tnx = Tλn ◦ · · · ◦ Tλ1x, (1.12)

where Tλ is given by (1.2). In other words, Tnx is the n-th term of the forward-backward
sequence (1.3) starting from x ∈ D(A). Assume {λn}n∈N /∈ `1, and write ν(t) = max{n ∈
N : σn ≤ t}. For 0 ≤ s ≤ t, we set

UT (t, s) =

ν(t)∏
i=ν(s)+1

Tλi , (1.13)

where the product denotes composition of functions and the empty composition is the identity.

The families
(
US
)
and

(
UT
)
, defined in (1.11) and (1.13), respectively, are nonexpansive

evolution systems. Actually, the same is true if S is replaced by any other semigroup of
nonexpansive functions on X, and if each Tλi is replaced by any other nonexpansive function
on H.
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On the other hand, let U be a nonexpansive evolution system. An almost-orbit of U is a
function φ : [0,+∞)→ H which satisfies

lim
t→+∞

sup
h≥0
‖φ(t+ h)− U(t+ h, t)φ(t)‖ = 0. (1.14)

The notion of almost orbit was introduced by Miyadera-Kobayashi in [46]. This function
is a kind of approximate solution to the differential inclusion −ẋ ∈ Ax. The authors used
the Kobayashi’s inequality in order to prove that the continuous path constructed by linear
interpolations of some proximal iterations is an almost orbit of the semigroup generated by
A. A converse result can be found in [47].

The following result from [2, Theorem 3.3] reveals the usefulness of the concept of almost-
orbit.

Proposition 1.5 Let U be a nonexpansive evolution system and let φ be an almost-orbit of
U . If, for each x ∈ H and s ≥ 0, U(t, s)x converges weakly (resp. strongly) as t→∞, then
so does φ(t). The same holds if the word "converges" is replaced by "almost-converges" or
"converges in average".

We have the following result, which establishes a relationship between the trajectories
generated by US and UT and generalizes [63, Lemmas 4 & 6], [47, Proposition 2.3], [46,
Proposition 7.4],[65, Proposition 8.6 i) & 8.7], [30, Theorem 3.1].

Theorem 1.6 Let {λn}n∈N ∈ `2 \ `1, and fix x ∈ H. For each t > 0, define φS(t) = Stx and
φT (t) = Tν(t)x

1. Then, φS is an almost-orbit of UT , and φT is an almost-orbit of US .

Combining Theorem 1.6 with Proposition 1.5, and using [74, Lemma 5.3], we obtain:

Theorem 1.7 The following statements are equivalent:

i) For every z ∈ D(A), Stz converges strongly (weakly) as t→∞.
ii) For every initial point x0 ∈ H, every sequence of step sizes {λn}n∈N ∈ `2 \ `1 and every

sequence of errors {εn}n∈N such that
∑∞

n=1 ‖εn‖ < +∞, the sequence {xn}n∈N generated
by (1.5), converges strongly (weakly), as n→∞.

iii) There exist a sequence of step sizes {λn}n∈N ∈ `2 \ `1 such that, for every initial point
x0 ∈ H, the sequence {xn}n∈N generated by (1.3), converges strongly (weakly) as n→∞.

New convergence results for forward backward sequences on Hilbert spaces.

Recall A is maximally monotone and B is cocoercive. Let {εn}n∈N be a sequence repre-
senting computational errors and let {xn}n∈N satisfy (1.5). We assume that

∑∞
n=1 ‖εn‖ <∞.

Finally, set A = A+B and Σ = A−1(0), and assume that A 6= ∅. We know that Σ is closed
and convex, and the projection PΣ is well defined, single-valued and continuous.

1This is a piecewise constant interpolation of the sequence Tnx.
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Theorem 1.8 Let {λn}n∈N ∈ `2 \ `1. Assume one of the following conditions holds:

i) There is α > 0 such that for every x /∈ Σ and every y ∈ A(x),

〈y, x− PΣ(x)〉 ≥ α‖x− PΣ(x)‖2

.ii) JA1 is compact and, for every every y ∈ A(x), 〈y, x− PΣ(x)〉 ≥ 0; or
iii) The interior of Σ is not empty.

Then, {xn}n∈N converges strongly, as n→∞, to a point in Σ.

Asymptotic equivalence between continuous and discrete trajectories
governed by a cocoercive operator.

Throughout this section we shall consider X a real Hilbert space and the Euler sequence
{xn}n∈N described by (1.3) with A = 0. All the results from Theorem 1.1 to Theorem 1.6
remain valid in the particular case when A = 0. In what follows, we shall present some
important consequences of this particular case. Now, for n ∈ N and x ∈ H, we denote

Pnx = (I + λnB)−1 ◦ · · · ◦ (I + λ1B)−1x, (1.15)

so that Pnx is the n-th term of the proximal sequence starting from x (see [67, 11, 65]).

As a consequence of Theorem 1.6 and Proposition 1.5, we obtain the following result on
asymptotic equivalence between the continuous trajectories Stx associated to the evolution
equation governed by B (A = 0 in (1.8)), the corresponding Euler’s sequence {xn}n∈N and
the proximal sequence {Pnx}n∈N described in (1.15):

Theorem 1.9 The following are equivalent:

i) For every x ∈ H, Stx converges weakly (resp. strongly), as t→ +∞.
ii) For every {λn}n∈N ∈ `2 \ `1 and every x ∈ H, Pnx converges weakly (resp. strongly),

as n→ +∞.
iii) There is {λn}n∈N ∈ `2 \ `1 such that, for every x ∈ H, Pnx converges weakly (resp.

strongly), as n→ +∞.
iv) For every {λn}n∈N ∈ `2 \ `1 and every x ∈ H, the sequence {xn}n∈N described by (1.3)

converges weakly (resp. strongly), as n→ +∞.
v) There is {λn}n∈N ∈ `2 \ `1 such that, for every x ∈ H, the sequence {xn}n∈N described

by (1.3) converges weakly (resp. strongly), as n→ +∞.

The potential setting. Let f : X → R ∪ {+∞} be a convex and differentiable function,
with ∇f Lipschitz continuous with constant L > 0 and set B = ∇f . Consider the steepest
descent evolution equation {

−u̇(t) = ∇f(u(t)), t > 0
u(0) = x0,

(1.16)
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and its explicit discretization given by:

xn = xn−1 − λn∇f(xn−1), n ∈ N (1.17)

with initial point x0 ∈ H and step sizes {λn}n∈N satisfying sup
n∈N

λn < 2/L.

The step size assumption {λn}n∈N ∈ `2, considered in Theorem 1.6 and Theorem 1.9 is
removed later for operators deriving from a potential: Let Stx be the solution of the evolution
equation (1.16), with initial condition x ∈ H. The following result complements Theorem
1.9, establishing the equivalence between the convergence of trajectories/sequences generated
by the steepest descent dynamics, the proximal point algorithm and the gradient method:

Theorem 1.10 The following are equivalent:

i) For every x ∈ H, Stx converges weakly (resp. strongly), as t→ +∞.
ii) For every {λn}n∈N /∈ `1 and every x ∈ H, Pnx converges weakly (resp. strongly), as

n→ +∞.
iii) There is {λn}n∈N /∈ `1 such that, for every x ∈ H, Pnx converges weakly (resp.

strongly), as n→ +∞.
iv) For every {λn}n∈N /∈ `1 with supn∈N λn < 2/L, and every x ∈ H, the sequence {xn}n∈N

described by (1.17) with initial point x, converges weakly (resp. strongly), as n→ +∞.
v) There is {λn}n∈N /∈ `1 with supn∈N λn < 2/L such that, for every x ∈ H, the sequence
{xn}n∈N described by (1.17) with initial point x, converges weakly (resp. strongly), as
n→ +∞.

Strong convergence of the gradient algorithm

Baillon’s counterexample revisited

For f : H → R ∪ {+∞} proper, lower-semicontinuous and convex, Bruck [12] proved that if
f has minimizers and u : [0,+∞)→ H satisfies{

−u̇(t) ∈ ∂f(u(t)), a.e. t > 0,

u(0) ∈ ∂f
(1.18)

then u(t) converges weakly, as t → +∞, to a minimizer of f . A few years later, Baillon [6]
constructed a proper lower-semicontinuous convex function f : `2 → R ∪ {+∞} for which
(1.18) has solutions that do not converge strongly. Baillon’s function is not continuous, and
its domain is not all of `2.

In [54], Martinet introduced the proximal point algorithm, and showed, for a constant
sequence of step sizes λn ≡ λ, that {zn} converges weakly, as n → +∞, to a minimizer
of f . This result was extended later by Rockafellar in [67] to the case where {λn}n∈N is
bounded from below by a positive number and to the case where {λn}n∈N /∈ `1 [11]. In
[67], the author posed the question whether or not the convergence of proximal algorithm is
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always strong. Using Baillon’s counterexample and the relationship between the asymptotic
behavior of continuous and discretes trajectories presented by Passty in [63, Lemma 1], Güler
[39] answered the question posed by Rockafellar, showing that sequences generated by the
proximal point algorithm do not always converge strongly.

Using the theory of asymptotic equivalence, we present a family of smooth convex functions
for which the steepest descent dynamics, the proximal point algorithm and the gradient
method all produce trajectories/sequences that do not converge strongly. Related results
have been found in [4] by a different (constructive) argument.

Theorem 1.11 Let {Λn}n∈N /∈ `1 be a bounded sequence. There exist a convex function
f : H → R, with Lipschitz continuous gradient, such that

i) There is u : [0,+∞) → H satisfying (1.18), that converges weakly but not strongly as
t→ +∞ to a minimizer of f .

ii) There is a proximal sequence {zn}n∈N, generated using step sizes {Λn}n∈N, that con-
verges weakly but not strongly as n→ +∞ to a minimizer of f .

iii) There is an Euler sequence {xn}n∈N, generated using step sizes {Λn}n∈N, that converges
weakly but not strongly as n→ +∞ to a minimizer of f .

Work in progress 1: Motivated by the information obtained for the autonomous case in
the section above and using the techniques presented in [1] related to asymptotic equivalence
between non-autonomous systems governed by m-accretive operators, we are interested in
extending the asymptotic equivalence results between the continuous and discrete evolution
systems governed by the sum of a non-autonomous m-accretve operator with a cocoercive
operator. Sor far, we have obtained a nonautonomous version of (1.7), which allows to
estimate the distance between two iterates corresponding to independent sequences governed
by two families of nonautonomous operators {A(t) + B}t≥0 and {Â(t) + B}t≥0, where A(t)

and Â(t) are m-accretive operators for all t ≥ 0 and B a cocoercive operator. This inequality
could reveal us the relationship between the corresponding continuous and discrete systems
in a finite and infinite horizon. However, the inequality has some terms expressed implicitly,
which makes its implementation difficult. We plan to use combinatorial techniques to obtain
estimates of the implicit terms in (1.7). More details can be found in Chapter 5.
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1.2 Relaxed Forward–Backward Splitting and Primal–Dual
Algorithms

The forward–backward iteration: Let H be a real Hilbert space and 〈·, ·〉 its inner
product, A : H → 2H a maximally monotone operator and B : H → H a θ–cocoercive
operator, for some real θ > 0. The forward–backward algorithm, proposed by Mercier [55]
and further developed by many authors [51, 37, 68, 18, 23, 25], allows to approach the
solutions of the monotone inclusion

0 ∈ Az +Bz. (1.19)

The relaxed forward–backward algorithm, which is described as follows: for {ρn}n∈N a positive
sequence of relaxation parameters, the iterations are given by:

Relaxed Forward–Backward iteration for (1.19): for n = 0, 1, . . .⌊
zn+ 1

2
= JAγ (zn − γBzn)

zn+1 = zn + ρn(zn+ 1
2
− zn)

. (1.20)

While there is little interest in doing underrelaxation with ρn less than 1, it is expected that
convergence is faster if doing overrelaxation with ρn larger than 1; this is what is most often
observed in practice. The standard convergence for the forward–backward iteration is given
by the following result from [27, Lemma 4.4] (see also [8, Theorem 26.14]).

Theorem 1.12 (Forward–Backward algorithm (1.20)) Suppose that 0 < γ < 2θ. Let
z0 ∈ H and set δ = 2 − γ/(2θ). Suppose that {ρn}n∈N is a sequence in [0, δ] such that∑

n∈N ρn(δ−ρn) = +∞. Then the sequence {zn}n∈N defined by the iteration (1.20) converges
weakly to a solution of (1.19).

Preconditioned Forward–Backward Algorithm: let P be a bounded, self-adjoint, strongly
positive, linear operator on H. Clearly, solving (1.19) is equivalent to solving

0 ∈ P−1Az + P−1Bz. (1.21)

Let HP be the Hilbert space obtained by endowing H with the inner product 〈x, x′〉P =
〈x, Px′〉, (x, x′ ∈ H). According with [8, Proposition 20.24], P−1A is maximally monotone
in HP . However, the cocoercivity of P−1B in HP has to be checked on a case-by-case basis.

The preconditioned forward–backward iteration to solve (1.21) is

Preconditioned Forward–Backward iteration for (1.21) for n = 0, 1, . . .⌊
zn+ 1

2
= JP

−1A
1 (zn − P−1Bzn)

zn+1 = zn + ρn(zn+ 1
2
− zn)

. (1.22)

In the case when P−1B is a cocoercive operator, the corresponding convergence result follows:

Theorem 1.13 (Preconditioned Forward–Backward algorithm) Suppose that P−1B
is χ-cocoercive in HP , with χ > 1

2
. Set δ = 2− 1/(2χ) and let z0 ∈ H. Suppose that {ρn}n∈N

is a sequence in [0, δ] such that
∑

n∈N ρn(δ − ρn) = +∞. Then the sequence {zn}n∈N defined
by the iteration (1.22) converges weakly to a solution of (1.21).
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If B = 0, the forward–backward iteration reduces to the proximal point algorithm [67, 8].
In that case, weak convergence to a zero of A is obtained with any γ > 0 and δ = 2, in the
notations of Theorem 1.13. Now, let P be a bounded, self-adjoint, strongly positive, linear
operator on H. Let z0 ∈ H and let {ρn}n∈N be a sequence of relaxation parameters. The
relaxed and preconditioned proximal point algorithm is the iteration:

Preconditioned proximal point iteration for (1.21) with B=0: for n = 0, 1, . . .⌊
zn+ 1

2
= JP

−1A
1 zn

zn+1 = zn + ρn(zn+ 1
2
− zn)

. (1.23)

The convergence of the preconditioned proximal point algorithm can be stated from Theorem
1.13 as follow:

Theorem 1.14 (Preconditioned proximal point algorithm (1.23)) Suppose that {ρn}n∈N
is a sequence in [0, 2] such that

∑
n∈N ρn(2 − ρn) = +∞. Let z0 ∈ H. Then the sequence

{zn}n∈N defined by the iteration (1.23), converges weakly to a solution of (1.21) with B = 0.

The case where B is affine

Let us suppose that, in addition to being θ–cocoercive, B is an affine operator. That means,
B : z ∈ H 7→ Qz + c, for some bounded, self-adjoint, positive, nonzero, linear operator Q
on H and some element c ∈ H. In that case, the forward–backward iteration (1.20) can be
interpreted as a preconditioned proximal point iteration (1.23) when P = 1

γ
I −Q, applied to

find a zero of A+B. Since P must be strongly positive, we must have 0 < γ < θ, so that the
admissible range for γ is halved. But in return, we get the larger range [0, 2] for relaxation.
As a concequence of Theorem 1.14, we obtain:

Theorem 1.15 (Forward–Backward algorithm, affine case). Suppose that 0 < γ < θ
and that {ρn}n∈N is a sequence in [0, 2] such that

∑
n∈N ρn(2−ρn) = +∞. Then the sequence

{zn}n∈N defined by the iteration (1.20) converges weakly to a solution of (1.19).

Remark 1.16 The affine case is considerably important because it will enable us to study
the convergence of some important primal–dual algorithms in order to solve problems in
image recovery, where the corresponding objective function has an additive estructure with
the smooth term, which is generally a quadratic function. Moreover, Theorem 1.15 will
enable us to obtain a wider range of relaxation parameters and, therefore, an accelerated
version of these primal–dual algorithms. These algorithms will be presented as follow. More
details can be found in the Chapter 5.

Applications to convex optimization

In what follow, we denote by Γ0(H) the set of convex, proper, lower semicontinuous functions
from H to R ∪ {+∞} [8]. Let f, h ∈ Γ0(H) and suppose that h is differentiable function
with β–Lipschitz continuous gradient ∇h, for some real β > 0. Let us consider the convex
optimization problem

minimize
x∈H

f(x) + h(x), (1.24)

whose solution set is supposed nonempty. The well known Fermat’s rule [8, Theorem 27.2]
states that the problem (1.24) is equivalent to (1.19) with A = ∂f , which is maximally
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monotone, and B = ∇h, which is θ-cocoercive, with θ = 1/β [8, Corollary 18.17]. Hence, it
is natural to use the forward–backward iteration (1.20) to solve (1.24). Now, we shall focus
on the case where h is quadratic:

h : x 7→ 1
2
〈x,Qx〉+ 〈x, c〉, (1.25)

for some bounded, self-adjoint, positive, nonzero, linear operator Q on H and some element
c ∈ H. A very common example is a least-squares penalty, in particular to solve inverse
problems, that is,

h : x 7→ 1
2
‖Kx− y‖2, (1.26)

for some bounded linear operator K from H to a real Hilbert space Y and some element
y ∈ Y . Clearly, (1.26) is an instance of (1.25) with Q = K∗K, where K∗ is the adjoint of K,
and c = K∗y. In this case, for every x ∈ H, we have

∇h(x) = Qx+ c, (1.27)

with β = ‖Q‖. Setting P = 1
γ
I −Q, we can remark that the update in (1.22) can be written

as
xn+ 1

2
= arg min

x∈H
f(x) + h(x) + 1

2
‖x− xn‖2

P ,

where we introduce the norm ‖ · ‖P : x 7→
√
〈x, Px〉. So, xn+ 1

2
can be viewed as being

obtained by applying the proximity operator of f + h with the preconditioned norm ‖ · ‖P .
Hence, as a direct consequence of Theorem 1.15, we have:

Theorem 1.17 (Proximal–gradient algorithm, quadratic case) Let x0 ∈ H and sup-
pose 0 < γ < 1/β. Suppose that {ρn}n∈N ⊂ [0, 2] satisfying

∑
n∈N ρn(2 − ρn) = +∞. Then

the sequence {xn}n∈N defined by the iteration (1.20) converges weakly to a solution of (1.24).

The Loris–Verhoeven iteration

For H and U be two real Hilbert spaces, let g ∈ Γ0(U), h : H → R be a convex and
differentiable function with β–Lipschitz continuous gradient ∇h, for some real β > 0 and let
L : H → U be a bounded linear operator. Often, the template problem (1.24) of minimizing
the sum of two functions is too simple and we would like, instead, to

minimize
x∈H

g(Lx) + h(x), (1.28)

where the solution set is supposed nonempty.

The dual convex optimization problem associated to the primal problem (1.28):

minimize
u∈U

g∗(u) + h∗(−L∗u). (1.29)

Let τ > 0 and σ > 0, let x0 ∈ H and u0 ∈ U , and let {ρn}n∈N be a sequence of relaxation
parameters. The primal–dual forward–backward iteration, which we call the Loris–Verhoeven
iteration is:
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Loris–Verhoeven iteration for (1.28) and (1.29): for n = 0, 1, . . . un+ 1
2

= proxσg∗
(
un + σL

(
xn − τ∇h(xn)− τL∗un

))
xn+1 = xn − ρnτ

(
∇h(xn) + L∗un+ 1

2

)
un+1 = un + ρn(un+ 1

2
− un)

. (1.30)

This algorithm was first proposed by Loris and Verhoeven, in the case where h is a least-
squares term [53]. It was then rediscovered several times and named Primal–Dual Fixed-
Point algorithm based on the Proximity Operator (PDFP2O) [19] or Proximal Alternating
Predictor–Corrector (PAPC) algorithm [34]. The above interpretation of the algorithm as
a primal–dual forward–backward iteration has been presented in [22]. As an application of
Theorem 1.13, we obtain the following convergence result for (1.30):

Theorem 1.18 (Loris–Verhoeven iteration for (1.30)) Suppose 0 < τ < 2/β and
στ‖L‖2 < 1. Set δ = 2 − τβ/2. Suppose that {ρn}n∈N is a sequence in [0, δ] such that∑

n∈N ρn(δ − ρn) = +∞. Then the sequences {xn}n∈N and {un}n∈N defined by the iteration
(1.30) converge weakly to a solution of (1.28) and to a solution of (1.29), respectively.

The following result has been shown, which makes it possible to have στ‖L‖2 = 1 [19,
Theorem 3.4 and Theorem 3.5]:

Theorem 1.19 (Loris–Verhoeven iteration for (1.30)) Suppose that H and U are of
finite dimension. Suppose that 0 < τ < 2/β, στ‖L‖2 ≤ 1, and ρn = 1, ∀n ∈ N. Then
the sequences {xn}n∈N and {un}n∈N defined by the iteration (1.30) converge to a solution of
(1.28) and to a solution of (1.29), respectively.

Again, let us focus on the case where h is quadratic; that is, h : x 7→ 1
2
〈x,Qx〉+ 〈x, c〉, for

some bounded, self-adjoint, positive, nonzero, linear operator Q on H and c ∈ H. We have
β = ‖Q‖. As an application of Theorem 1.15, we have:

Theorem 1.20 (Loris-Verhoeven algorithm (1.30), quadratic case) Suppose that 0 <
τ < 1

β
, στ‖L‖2 < 1 and {ρn}n∈N is a sequence in [0, 2] such that

∑
n∈N ρn(2 − ρn) = +∞.

Then the sequences {xn}n∈N and {un}n∈N defined by the iteration (1.30) converge weakly to
a solution of (1.28) and to a solution of (1.29), respectively.

The Condat–Vũ iteration
Let us consider the primal optimization problem:

minimize
x∈H

f(x) + g(Lx) + h(x), (1.31)

and its correspondig dual problem

minimize
u∈U

(f + h)∗(−L∗u) + g∗(u). (1.32)

Thus, let τ > 0 and σ > 0, let x0 ∈ H and u0 ∈ U , and let {ρn}n∈N be a sequence
of relaxation parameters. The primal–dual forward–backward iteration, which we call the
Condat–Vũ iteration is:
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Condat–Vũ iteration form I for (1.31) and (1.32): for n = 0, 1, . . .
xn+ 1

2
= proxτf

(
xn − τ∇h(xn)− τL∗un

)
un+ 1

2
= proxσg∗

(
un + σL(2xn+ 1

2
− xn)

)
xn+1 = xn + ρn(xn+ 1

2
− xn)

un+1 = un + ρn(un+ 1
2
− un)

. (1.33)

This algorithm was proposed independently by the first author [27] and by B. C. Vũ [69].
An alternative is to update u before x, instead of the converse. The corresponding primal–
dual forward–backward iteration in this case is given by:

Condat–Vũ iteration form II for (1.31) and (1.32): for n = 0, 1, . . .
un+ 1

2
= proxσg∗

(
un + σLxn

)
xn+ 1

2
= proxτf

(
xn − τ∇h(xn)− τL∗(2un+ 1

2
− un)

)
un+1 = un + ρn(un+ 1

2
− un)

xn+1 = xn + ρn(xn+ 1
2
− xn)

. (1.34)

As an application of Theorem 1.13, we obtain the following result [27, Theorem 3.1]:

Theorem 1.21 (Condat–Vũ algorithm (1.33) and (1.34)) Suppose that τ > 0 and σ > 0

satisfy τ
(
σ‖L‖2 + β/2

)
< 1 and consider δ = 2 − (β/2)

(
1
τ
− σ‖L‖2

)−1
> 1. Suppose that

{ρn}n∈N is a sequence in [0, δ] such that
∑

n∈N ρn(δ−ρn) = +∞. Then the sequences {xn}n∈N
and {un}n∈N defined by either the iteration (1.33) or the iteration (1.34) converge weakly to
a solution of (1.31) and to a solution of (1.32), respectively.

For the Condat–Vũ algorithm, let us focus on the case where h is a quadratic function;
that is, h : x 7→ 1

2
〈x,Qx〉 + 〈x, c〉, for some bounded, self-adjoint, positive, nonzero, linear

operator Q on H and some element c ∈ H. We have β = ‖Q‖. The convergence result for
quadratic case can be obtained by Theorem 1.20:

Theorem 1.22 (Condat–Vũ algorithm (1.33) and (1.34), quadratic case) Suppose
that τ‖Q+σL∗L‖ < 1. Let {ρn}n∈N be a sequence in [0, 2] such that

∑
n∈N ρn(2−ρn) = +∞.

Then the sequences {xn}n∈N and {un}n∈N defined by either the iteration (1.33) or the iteration
(1.34) converge weakly to a solution of (1.31) and to a solution of (1.32), respectively.

Numerical experiment. Finally, some numerical experiments related to the implementa-
tion of these algorithms in image recovery will be presented. We make a comparisson between
the obtained result from the numerical experiment of Loris–Verhoeven and Condat–Vũ algo-
rithms.

Work in progress 2:

In this work, we are studying whether it is possible to transfer the convergence properties
obtained for the Frank-Wolfe algorithm in [72] to the gradient algorithm, under the same
hypothesis on the objetive function assumed in [72], instead of the usual Lipschitz condi-
tion. So far, we have obtained some estimations that could reveals information about the
convergence rate of the gradient algorithm. More details can be found in Chapter 7.
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Part I

Asymptotic equivalence between
continuous and discrete dynamical

systems
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Foreword

The main goal of this part is to obtain a relationship of the asymptotic behavior between
continuous and discrete dinamycal systems, with special emphasis on differential inclusions
governed by the sum of am-accretive operator with cocoercive operator and its corresponding
discretization obtained by the forward backward algorithm. The strategy is to use the idea of
asymptotic equality introduced by Passty [63], closely related to the notion of almost-orbit,
introduced by Miyadera and Kobayasi [46]. However, developing this new theory is a complex
task, so we have divided it into the following chapters:

Chapter 2, where we introduce the notation and preliminaires in the study of the asymp-
totic behavior of continuous and discretes dynamical governed by a m-accretive operator in
Banach spaces.

Chapter 3, where we study discrete approximations of evolution equations governed by co-
coercive operators by means of Euler iterations, both in a finite and an infinite time horizon.
On the one hand, we give precise estimations for the distance between iterates of indepen-
dently generated Euler sequences, and use them to obtain bounds for the distance between
the state, given by the continuous-time trajectory, and the discrete approximation obtained
by the Euler iterations. On the other hand, we establish the asymptotic equivalence between
the continuous- and discrete-time systems, under a sharp hypothesis on the step sizes, which
can be removed for operators deriving from a potential. As a consequence, we are able to
construct a family of smooth functions for which the trajectories/sequences generated by
basic first order methods converge weakly but not strongly, extending the counterexample of
Baillon [6]. Finally, we include a few guidelines to address the problem in smooth Banach
spaces.

Using the information obtained for the explicit case, the Chapter 4 will be dedicated
to study the relationship of the asymptotic behavior between continuous and discrete tra-
jectories governed by a sum of a m-accretive operator with a cocoercive operator, when the
discrete trajectory is generated by means of forward backward iterations. Following the same
estructure as the explicit case, we first give a precise estimations for the distance between
two iterates corresponding to sequences independently generated by the forward backward
algorithm, and use them to obtain bounds for the distance between the continuous–time
trajectory and the discrete approximation in the Banach space. Thus, we establish the
asymptotic equivalence between the continuous- and discrete-time systems, under summabil-
ity condition on the step sizes. The asymptotic equivalence result will enable us to obtain new
result on strong convergence of the forward backward algorithm in Banach spaces setting.
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We finish this part by presenting the Chapter 5 with current work on the study of nonau-
tonomous case, where our main goal is to extend the results provided in [1] to the sum of a
nonautonomous maximally monotone operator with a coercive operator.
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Chapter 2

Preliminaires

This chapter is dedicated to present the basic tools in the study of the asymptotic behavior
of continuous and discretes dinamycal systems governed by a m-accretive operator in Banach
and Hilbert spaces setting, which will be useful throughout this thesis. We start this chapter
fixing notation and basic geometric properties in Banach space setting, which will be used
to obtain basic properties for accretives and m-accretive operators in Banach spaces. On the
other hand, we comment on existence results, uniqueness and qualitative properties of the
solution for first order differential inclusion governed by an operator m-accretive in Banach
spaces setting, with special emphasis on those results in the Hilbert spaces setting. We also
present some results on the asymptotic behavior of the continuous and discrete trajectories
(the last ones generated by implicit or explicit discretization of the continuous system) and
finally, we present some results about the asymptotic equivalence between continuous and
discretes trajectories associated to a first order evolution equation and how use it to get
asymptotic properties of some optimization algorithms.

2.1 Basic results and notation

Let us fix some notation which will be used throughout the thesis. Let (X, ‖ · ‖) a real
Banach space and X∗ its topological dual space. The duality product 〈·, ·〉X∗,X : X∗×X → R
is defined by 〈f, x〉X∗,X = f(x) for all x ∈ X and f ∈ X∗. Let us consider the dual space
X∗ endowed with the norm ‖f‖∗ = sup

‖x‖≤1

〈f, x〉X∗,X and the duality mapping J : X → 2X
∗

defined by
J (x) = {f ∈ X∗ : ‖f‖∗ = ‖x‖ and 〈f, x〉X∗,X = ‖x‖2}.

The following result shows an important geometric property in Banach space from [43, Lemma
1.1], which will be useful in order to get some properties of accretive operators in Banach
spaces:
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Proposition 2.1 Let x, y ∈ X. ‖x‖ ≤ ‖x + λy‖ for all λ > 0 if, and only if, there is
g ∈ J (x) such that 〈g, y〉X∗,X ≥ 0.

Proof. We may assume that x 6= 0, because in the case x = 0 the result holds inmediatly.
Suppose that 〈g, y〉X∗,X ≥ 0 for some g ∈ X∗. Then for every λ > 0, we obtain that
‖x‖2 = 〈g, x〉X∗,X ≤ 〈g, x+ λy〉X∗,X ≤ ‖x+ λy‖ ‖x‖. Conversely, let us take hλ ∈ J (x+ λy)
and set fλ = hλ/‖hλ‖. Then

‖x‖ ≤ ‖x+ λy‖ = 〈fλ, x+ λy〉X∗,X = 〈fλ, x〉X∗,X + λ〈fλ, y〉X∗,X ≤ ‖x‖+ λ〈fλ, y〉X∗,X .

Thus lim inf
λ→0

〈fλ, x〉X∗,X ≥ ‖x‖ and 〈fλ, y〉X∗,X ≥ 0. Since the closed unit ball BX∗(0, 1)

in X∗ is compact for the weak* topology, there is a sequence {rn} of positive numbers
such that lim

n→∞
rn = 0 and {frn} converges to some f ∈ BX∗(0, 1) in the weak* toplogy as

n → ∞. Notice that f satisfies 〈f, x〉X∗,X ≥ ‖x‖ and 〈f, y〉X∗,X ≥ 0. Then ‖f‖ = 1 and
〈f, x〉X∗,X = ‖x‖. Finally, taking g = ‖x‖f we obtain g ∈ J (x) and 〈g, y〉X∗,X ≥ 0.

For the purpose of this work, some Banach space will be interesting for its geometric
and topological properties, namely strictly convex, uniformly smooth and uniformly convex
Banach spaces [50, 7].

A Banach space X is strictly convex if the unit ball B(0, 1) ⊂ X is a strictly convex
set. It means that for all x, y ∈ X such that ‖x‖ = ‖y‖ = 1, x 6= y and λ ∈ (0, 1), then
‖λx+ (1−λ)y‖ < 1. According with [7, Theorem 1.2], if the dual X∗ of X is strictly convex,
the duality mapping J is single–valued and if X is also reflexive, then J is continuous
(strong-weak). On the other hand, the Banach space X is uniformly convex if for each ε > 0,
there exist δ > 0 such that for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x+ y‖ ≥ 2− δ, then
‖x−y‖ < ε. Every uniformly convex Banach space is strictly convex and by [50, Proposition
1.e.3], every uniformly convex (and thus also every uniformly smooth) Banach space X is
reflexive.

Monotone and accretive operators in Banach spaces

Consider a set valued mapping A : X → 2X and let us denote its domain and graph by
D(A) = {x ∈ X : Ax 6= ∅} and G(A) = {[u, v] : v ∈ Au} respectively. In order to simplify
the notation, we shall identify the operator A with its graph by writing [u, v] ∈ A for v ∈ Au.
A mapping A : X → 2X is said monotone operator if for all [u1, v1], [u2, v2] ∈ A, there exist
f ∈ J (u1 − u2) such that

〈f, v1 − v2〉X∗,X ≥ 0.

A monotone operator is said to be maximal if its graph is not properly contained in the
graph of the any other monotone operator. Let I the identity mapping on X. For λ > 0, the
resolvent of A is defined as the mapping JAλ = (I + λA)−1.

An operator A is accretive if for all λ > 0, and [u1, v1], [u2, v2] ∈ A one has

‖u1 − u2‖ ≤ ‖u1 − u2 + λ(v1 − v2)‖ (2.1)
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This implies that JAλ is a single-valued nonexpansive mapping. If, in addition, the range of
I + λA is equals to X for all λ > 0, the operator A is said to be m-accretive. Notice that if
the duality mapping J is single valued and A is m-accretive, then for each x ∈ D(A), the
set Ax is closed and convex. The following theorem summarizes some result in [56] and [43]:

Theorem 2.2 Let A : X → 2X . Then:

1. A is monotone if, and only if, it is accretive;
2. If A is m-accretive, then it is maximal monotone.
3. If X is a Hilbert space and A is a maximally monotone operator, then it is m-accretive.

Proof. 1. This result holds from Proposition 2.1.
2. Let us consider [x, x∗] ∈ X ×X such that 〈f, x∗ − y∗〉X∗,X ≥ 0 for all [y, y∗] ∈ A and

some f ∈ J (x − y). Since I + A is surjective, then there exist [v, v∗] ∈ A such that
v+v∗ = x+x∗. Thus ‖x−v‖2 ≤ 0 and then x = v. Finally we have x∗ = v+v∗−x = v∗
and [x, x∗] ∈ A.

3. Suppose that X is a Hilbert space with inner product 〈·, ·〉. For this result will be
suffices to prove that I + A is surjective. Given z0 ∈ X, we shall find x0 ∈ X such
that 〈y − (z0 − x0), x − x0〉 ≥ 0 for [x, y] ∈ G(A) and then, the maximality of A
will imply that z0 − x0 ∈ Ax0. In fact, consider the family of weakly compact sets
{Cx,y : [x, y] ∈ A} defined by Cx,y = {x0 ∈ X : 〈y + x0 − z0, x − x0〉 ≥ 0}. It suffices
to show that this family has the finite intersection property. Take [xi, yi] ∈ G(A) for
i = 1, 2, · · · , n. Let ∆ = {(λ1, λ2, · · · , λn) : λi ≥ 0;

∑n
i=1 λi = 1} be the n-dimensional

simplex and consider the function f : ∆×∆→ R given by

f(λ, µ) =
n∑

i=1

µi〈yi + x(λ)− z0, x(λ)− xi〉,

with x(λ) =
∑n

i=1 λixi. Notice that f(·, µ) is a convex and continuous function while
f(λ, ·) is a linear function. The minimax theorem implies the existence of λ0 ∈ ∆ such
that

max
µ∈∆

f(λ0, µ) = max
µ∈∆

min
λ∈∆

f(λ, µ) ≤ max
µ∈∆

f(µ, µ).

Now, from monotonicity of A, we have

f(µ, µ) =
n∑

i=1

µiµj〈yi, xj − xi〉 =
1

2

n∑
i=1

〈yi − yj, xi − xj〉 ≤ 0

and thus f(λ0, µ) ≤ 0 for all µ ∈ ∆. Now, for µ the canonical vectors we obtain that
〈yi+x(λ0)−z0, x(λ0)−xi〉 ≤ 0 for all i = 1, · · · , n, that is to say x(λ0) ∈ Cx1,y1∩· · ·∩Cxn,yn .

In general Banach spaces, the converse of second point of Theorem 2.2 does not hold.
See [40] for a counterexample. From now on, Γ0(X) will denote the set of convex, lower-
semicontinuous and proper functions on X.

Example 2.3 In Banach space setting, for example, if A = I − T , with T is a nonexpansive
operator on X, then A is a maximally monotone operator and the solution set S is the set
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of fixed points of T . In Hilbert space, for f ∈ Γ0(X), ∂f is a maximal monotone operator
and S is the set of minimizers of f .

For each x ∈ D(A), we define ‖|Ax‖| = inf {‖y‖ : y ∈ Ax}. The minimal section of A is the
operator A0 defined on D(A) by A0x = {y ∈ Ax : ‖y‖ = ‖|Ax‖|}. Notice that A0 accretive
but not necessarily m-accretive. If both X and X∗ are strictly convex and reflexive, then
A0x = ProjAx0 is a single–valued operator.

Remark 2.4 The operator A0 is not always well-defined. This occurs when X is reflexive
(see [7, Proposition 1.4]).

The The Yosida approximation of a m-accretive operator A is the single valued maximal
montonone Aλ = I−JAλ /λ. Let us denote the solution set of A by S = A−1(0). The following
results summarize the main properties of Aλ and JAλ . The proof can be found in [7] (see [10]
for Hilbert space setting):

Proposition 2.5 Let A be m-accretive on X and λ > 0. We have

1.
∥∥JAλ x− JAλ y∥∥ ≤ ‖x− y‖.

2. Aλ is monotone and 2
λ
-Lipschitz.

3. Aλx ∈ AJAλ x.
4. ‖Aλx‖ ≤ ‖|Ax‖|.
5. lim

λ→0
JAλ x = x.

6. A is closed: xn → x,yn → y and [xn, yn] ∈ A together imply that y ∈ Ax.

Special classes of monotone operators

Definition 2.6 A mapping B : X → X is a cocoercive operator with parameter θ > 0 if for
all [x, u], [y, v] ∈ B, there exist f ∈ J (x− y) such that

〈f, u− v〉X∗,X ≥ θ‖u− v‖2.

These kind of operators are usually called inverse strongly accretive in Banach space
setting. If X is a Hilbert space, the cocoercivity es given by

〈Bx−By, x− y〉 ≥ θ‖Bx−By‖2.

Example 2.7 . Suppose thatX is a Hilbert space, D ⊂ X and T : D → X is a nonexpansive
operator. Then I − T is (1/2)-cocoercive operator [8, Corollary 4.11]. On the other hand,
when fΓ0(X) is Gateaux differentiable, with ∇f Lipschitz continuous with constant L > 0,
from Baillon-Haddad theorem [5] (see also [64, Theorem 3.13]) we have ∇f is cocoercive with
constant 1/L.
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Definition 2.8 Let α > 0. A mapping A : X → 2X is a α-strongly monotone operator if
for all [x, x∗], [y, y∗] ∈ A there is f ∈ J (x− y) such that

〈f, x∗ − y∗〉X∗,X ≥ α‖x− y‖2.

It is easy to get from the definition that A is single-valued. In particular, the solution set S
is, at most, a singleton. Observe that if A is α-strongly monotone, from Proposition 1.1, the
mapping JA1/α is a strict contraction. Therefore it has a fixed point x̂ and only one, moreover
F ix(JA1/α) = S. A classical example of α-strongly monotone operator is the subdifferential of
proper, lower-semicontinuous α-strongly convex function (see [63, Proposition 3.23]).

2.2 Continuous and discrete dynamical systems governed
by m-accretive operator

This section is dedicated to study some first order dynamical systems governed by a m-
accretive operator. These systems have been studied extensively because they offer useful
tools to solve and have several different applications, namely in optimization and fixed-point
problems. We start with some existence and uniqueness result for the first order differential
inclusion in Hilbert and Banach space setting. Later, we consider some discretizations of the
differential inclusion that allows to get, on one part, solutions of the differential inclusion and,
on the other part, some useful global estimations of the distance between two independent
discretizations. We finish this section by showing some results concerning to the asymptotic
behavior of the corresponding continuous and discrete dynamical systems. In what follow, A
is an m-accretive operator in Banach space X.

2.2.1 The differential inclusion ẋ ∈ −Ax

Let A : X → 2X be am-accretive operator and x0 ∈ D(A). Consider the following differential
inclusion: {

ẋ(t) ∈ −Ax(t) a.e on (0,∞),
x(0) = x0.

(2.2)

In what follow, we shall present some the existences and uniqueness results for the inclusion
(2.2) in Hilbert and Banach space setting.

Classical existence result in Hilbert space setting: The problem of finding a trajectory
satisfying (2.2) was first posed and studied in [48] and [31]. The classical proof can be found
in [10].

Theorem 2.9 There exist a unique absolutely continuous function x : [0,∞)→ H satisfying
(2.2). Moreover, the solution satisfy:

1. ‖ẋ(t)‖ ≤ ‖A0x0‖ almost everywhere on (0,∞).
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2. x(t) ∈ D(A) for all t ≥ 0 and ‖A0x(t)‖ decreases.
3. A0x(t) is contiuous from the right and x(t) admits a right derivative for all t ≥ 0;

namely ẋ(t) = −A0x(t) (lazy behavior).

The idea is to consider the differential inclusion (2.2) with A = Aλ and using its properties
described in Lemma 2.5 in order to prove the existence of solution xλ. Then, one verifies
that xλ converges to some x ∈ H satisfying (2.2) for the orignal A.

Semigroup of contractions: Let S(t)x0 = x(t) be the solution of (2.2), starting from x0

and t ≥ 0. S forms a strongly continuous semigroup of contractions on D(A), namely:

1. S(0) = I;
2. S(s)S(t) = S(s+ t),
3. ‖S(t)x− S(t)y‖ ≤ ‖x− y‖;
4. lim

t→0
‖S(t)x− x‖ = 0.

Notice that the set of the fixed points of the semigroup coincides with the solution set S and
that S 6= ∅ if and only if, {S(t)x : t ≥ 0} is bounded for each x ∈ D(A).

Let C be a closed and convex subset of X and S a semigroup of nonlinear contractions
on C. Then S has a generator, which means that there exist a m-accretive operator A with
domain D(A) dense in C, such that for every x ∈ D(A), x(t) = S(t)x is the unique absolutely
continuous solution of (2.2). Moreover (see [7]), one has

lim
t→0

x− S(t)x

t
= A0x. (2.3)

Conversely, every strongly continuous semigroup of contractions defines a maximal monotone
operator via the limit formula (2.3).

Existence result in Banach spaces setting: The method developed in Hilbert space in
order to get solution for (2.2) can be extended to Banach spaces X, when X and X∗ are
uniformly convex (see [43]). In general Banach spaces, existence and uniqueness can be also
derived by the method in [32], via approximation of the trajectory by the discretization, as
will be explained below.

2.2.2 Proximal point algorithm (PROX)

Let {λn} be the sequence of positive numbers, which we call step sizes and A : X → 2X a
m-accretive operator. We shall say {xn}n∈N is a proximal sequence if it satisfies −

xn − xn−1

λn
∈ Axn, n ≥ 1

x0 ∈ D(A).
(2.4)
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Notice that xn = JAλn(xn−1) for all n ∈ N. Since A is m-accretive, then I + λnA is surjective,
therefore the sequence {xn}n∈N given by (2.4) is well defined. The notion of proximal se-
quences and the term "proximal" were introduced in [57] for A = ∂f in Hilbert space, where
finding xn corresponds to minimizing the Moreau-Yosida approximation of f :

f(λn,xn−1)(x) := f(x) +
1

λn
‖x− xn−1‖2.

Therefore, from the Fermat’s rule we have that each iteration in this case can be expressed
by xn = J∂fλn (xn−1).

2.2.3 A global estimation.

The following inequality was proposed by Kobayashi in [44], provides an estimation for the
distance between two independent proximal sequences generated by (2.4). Original inequality
was proposed by the author also accounts possible errors in the determination of the proximal
sequence. Before to present the main result, let us consider the following technical result from
[44, Lemma 1.1] for Banach space setting and [65, Lemma 18] for Hilbert space setting. From
now on, A : X → 2X is m-accretive, σn =

∑n
k=1 λk and τn =

∑n
k=1 λ

2
k.

Lemma 2.10 Given [u1, v1], [u2, v2] ∈ A and λ, λ̂ > 0, we have

(λ+ λ̂)‖u1 − u2‖ ≤ λ‖u2 + λ̂v2 − u1‖+ λ̂‖u1 + λ1v1 − u2‖.

The main result of this section comes from [44, Lemma 2.1], which was presented in
Banach space setting and [65, Proposition 17] for Hilbert space setting:

Proposition 2.11 Consider the sequences {xn} and {x̂m} generated by (2.4) with stepsizes
{λn} and {λ̂m} respectively. Then, for u ∈ D(A), we have:

‖xn − x̂m‖ ≤ ‖x0 − u‖+ ‖x̂0 − u‖+ ‖|Au‖|
√

(σn − σ̂m)2 + τn + τ̂m, (2.5)

Proof. Let shall simplify the notation setting cn,m =
√

(σn − σ̂m)2 + τn + τ̂m. The proof will
use induction on the pair (n,m). First, we shall establish inequality (2.5) for the pair (n, 0)
with n ≥ 0. Since A is an accretive operator and from (2.1), for each u ∈ D(A) we have

‖xn − u‖ ≤ ‖x0 − u‖+ ‖|Au‖|σn.

Thus,

‖xn−x̂0‖ ≤ ‖xn−u‖+‖x̂0−u‖ ≤ ‖x0−u‖+‖x̂0−u‖+‖|Au‖|σn ≤ ‖x0−u‖+‖x̂0−u‖+‖|Au‖|cn,0,

because σn ≤
√
σ2
n + τn = cn,0. In a similar fashion we obtain the inequality for (0,m).

Suppose that (2.5) holds for the pairs (n− 1,m) and (n,m− 1). From Lemma 2.10, we have

(λn + λ̂m)‖xn − x̂m‖ ≤ λn‖x̂m + λ̂mŷm − xn‖+ λ̂m‖xn + λnyn − x̂m‖.
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Let us setting αn,m = λ̂m
λn+λ̂m

and βn,m = 1− αn,m = λn
λn+λ̂m

. Then:

‖xn − x̂m‖ ≤ αn,m‖xn−1 − x̂m‖+ βn,m‖x̂m−1 − xn‖
≤ (αn,m + βn,m) [‖x0 − u‖+ ‖x̂0 − u‖] + [αn,mcn−1,m + βn,mcn,m−1] ‖|Au‖|
= ‖x0 − u‖+ ‖x̂0 − u‖+ [αn,mcn−1,m + βn,mcn,m−1] ‖|Au‖|. (2.6)

On the other hand, from Cauchy–Shwartz inequality, we have

αn,mcn−1,m + βn,mcn,m−1 = α1/2
n,m(α1/2

n,mcn−1,m) + β1/2
n,m(β

1/2
n,m−1cn,m−1)

≤ (αn,m + βn,m)1/2(αn,mc
2
n−1,m + βn,mc

2
n,m−1)1/2

= (αn,mc
2
n−1,m + βn,mc

2
n,m−1)1/2.

Notice that c2
n−1,m = c2

n,m − 2λn(σn − σ̂m) and c2
n,m−1 = c2

n,m + 2λ̂m(σn − σ̂m). Hence

(αn,mcn−1,m + βn,mcn,m−1)2 ≤ αn,mc
2
n−1,m + βn,mc

2
n,m−1

= c2
n,m(αn,m + βn,m)− 2(αn,mλn − βn,mλ̂m)(σn − σ̂m)

= c2
n,m. (2.7)

From (2.6) and (2.7) we obtain (2.5).

Existence and uniqueness of solutions: Set t ∈ [0, T ], m ∈ N and run the proximal
algorithm (2.4) with constant stepsizes λn ≡ t/m. Let us denote the m-th iteration by
xm(t) =

[
JAt
m

]m
(x0). The following result comes from [32, Theorem 2.1 and Theorem 2.2]:

Proposition 2.12 The sequence {xm(t)} defined above converges uniformly on every com-
pact interval [0, T ] for each T > 0 to a function x(t), which is Lipschitz continuous and
satisfies ẋ(t) ∈ −Ax(t) almost everywhere on [0,∞].

Proof. In this case we provide an easier proof using the Kobayashi (2.5). Fix N,M ∈ N and
s, t ∈ [0, T ] with T > 0. Set λn ≡ t/N for all n and λ̂m ≡ s/M for all m. Initialize x0(t) and
x̂0(s) both at u = x0. For n = N and m = M we have

‖xN(t)− xM(s)‖ ≤ ‖|Ax0‖|
√

(t− s)2 +
T

N
+
T

M
,

where we conclude that the sequence {xn} converges uniformly on [0, T ] to some function x,
which is uniformly Lipschitz–continuous with constant ‖|Ax0‖|.

In order to prove that the function x satisfy (2.2), it suffices to verify that it is an integral
solution in the Benilan’s sense [9, Proposition 2.5], it means that for all [u, v] ∈ A and
t > s ≥ 0, we have

‖x(t)− u‖2 − ‖x(s)− u‖2 ≤ 2

∫ t

s

〈J (u− x(τ)), v〉X∗,Xdτ. (2.8)
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Notice that if {xn} is a sequence generated by (2.4) with step sizes {λn}, [u, v] ∈ A.

2〈J (xn − u), xn − xn−1〉X∗,X = 2〈J (xn − u), xn − u〉X∗,X − 2〈J (xn − u), xn−1 − u〉X∗,X
≥ 2‖xn − u‖2 − ‖xn−1 − u‖2 − ‖xn − u‖2

≥ ‖xn − u‖2 − ‖xn−1 − u‖2.

Thus
‖xn − u‖2 − ‖xn−1 − u‖2 ≤ 2λn〈J (xn − u),−v〉X∗,X . (2.9)

Now, summing up for n = 1, · · · , N in (2.9), we obtain

‖xN − u‖2 − ‖x0 − u‖2 ≤ 2
N∑
n=1

λn〈J (xn − u),−v〉X∗,X . (2.10)

Setting x0 = x(s) and passing to the limit appropiately we obtain (2.8). Finally, x(t) ∈ D(A)
by maximality.

Remark 2.13 Propositions 2.11 and 2.12 allow to get the proximal sequence approaches the
continuous–time trajectory in a bounded temporal horizon. It means that for each T > 0
and s, t ∈ [0, T ] we have:

(i) ‖xn − x(t)‖ ≤ ‖x0 − u‖+ ‖x(0)− u‖+ ‖|Au‖|
√

(σn − t)2 + Tσn.

(ii) For trajectories x and z we have

‖z(s)− x(t)‖ ≤ ‖z(0)− u‖+ ‖x(0)− u‖+ ‖|Au‖| |s− t|.

(iii) In particular, the solution x of (2.2) is unique and

‖x(s)− x(t)‖ ≤ ‖|Ax(0)‖| |s− t|.

2.2.4 Euler’s discretization

Now, assume that A maps D(A) into itself. Let {λn} be a sequence of numbers in (0, 1].
Define an Euler sequence {zn} recursively by{

−zn − zn−1

λn
∈ Azn−1, n ≥ 1

x0 ∈ D(A).
(2.11)

Notice that the terms of the sequence can be computed explicitely, which take advantage for
the implementation. Let us denote wn+1 = zn − zn+1/λn+1 the velocity of the system (2.11).

When A = I − T , for T a nonexpansive operator and λn ≡ 1, then zn = T nz0. This
particular case has been studied extensively by several authors in the search for fixed points
of T . Notice also that in this framework, there is a Kobayashi-type inequality proposed by
Vigeral [70], namely:

‖zn − ẑm‖ ≤ ‖z0 − u‖+ ‖ẑ0 − u‖+ ‖u− Tu‖
√

(σn − σ̂m)2 + τn + τ̂m,

where u is any point in X.

The following result comes from [70] and establish a relationship between continuous
trajectories of (2.2) and continuous generated by (2.11) in Banach space setting (see also [65]
for Hilbert space setting):
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Proposition 2.14 (Chernoff’s Estimate). If T is nonexpansive and v is a trajectorie
such that

z′(t) = (−1/λ)(I − T )z(t)

with z(0) = z0, then
‖z(t)− T nz0‖ ≤ ‖z′(0)‖

√
λt+ (nλ− t)2.

Since A = (−1/λ)(I − T ) is a monotone operator, one can use Kobayashi’s inequality to
get (see [65])

‖z(t)− T n(z0)‖ ≤ ‖Az0‖
t√
n
.

This inequality is knowed as Chernoff’s estimate with λ =
t

n
.

2.3 Asymptotic behavior

In this section we shall comment some results concerning to the asymptotic behavior of
the system described in (2.2), (2.4) and (2.11). We start with the study of the asymptotic
behavior of some discretes dynamical sytems in Hilbert space setting, namely Proximal and
Euler scheme described in (2.4) and (2.11) respectively. Later, we continue with the study
of the asymptotic behavior of the continuous trajectories of (2.2) and finish this sections
with the study of longterm relationship between continuous trajectory of (2.2) and discrete
trajectory given in (2.4).

The following result of [61] (see also [64, Lemma 5.2]) is a very useful tool for proving
weak convergence of a sequence without any information about the limit. Here, It will be
presented in Hilbert space:

Lemma 2.15 (Opial’s Lemma). Let {xn} be a sequence in a Hilbert space X and le F ⊂ X.
Assume ‖xn − f‖ has a limit as n→∞ for each f ∈ F and that every weak cluster point of
{xn} lies in F . Then {xn} converges weakly to some x∗ ∈ F .

2.3.1 Continuous dynamical systems

In this section we shall study the main results concerning to the asymptotic behavior of
continuous trajectories associated to the differential inclusion:{

ẋ(t) ∈ −Ax(t) a.e on (0,∞),
x(0) = x0.

(2.12)

In general case, maximally monotone operators not always generates continuous trajectories
weakly convergent. For example, consider the clockwise π/2-rotation operator Tπ

2
: R2 → R2

given by Tπ
2
(x, y) = (−y, x). Tπ

2
is a maximally monotone operator but the trajectories

associated to the first order differential inclusion governed by this operator are not weakly
convergent (see [65, Section 6]). However we have the following result from [12] (see also
[65]):
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Theorem 2.16 Let A = ∂f , with f ∈ Γ0(X) such that S = argmin(f) 6= ∅ and let x :
[0,∞) → X be the function given by Theorem 1.10. Then x(t) converges weakly as t → ∞
to some x ∈ argmin(f).

Proof. From [65, Proposition 25], the function t 7−→ f(x(t)) is nonincreasing and from
subgradient inequality we have f(u) ≥ f(x(t)) + 〈ẋ(t), x(t)− u〉 for all u ∈ X. In particular,
for u ∈ argmin(f) we get

1

2

d

dt
‖x(t)− u‖2 = 〈ẋ(t), x(t)− u〉 ≤ f(x(t))− f ∗ ≤ 0.

Thus t 7−→ ‖x(t) − u‖ is decreasing. On the other hand, let us consider {tn} a sequence of
positive numbers such that tn →∞ as n→∞ and suppose that {x(tn)} conveges weakly to
some x ∈ X. Since f is weak lower-semicontinuous, we have

f(x) ≤ lim inf
n→∞

f(x(tn)) = inf{f(u) : u ∈ X},

and then x ∈ argmin(f). From Lemma 2.15 we have that {x(t)} converges weakly to
x ∈ argmin(f).
Some comments about strong convergence: Let us consider A = ∂f with f ∈ Γ0(X)
having a minimizers andX a Hilbert space. The continuous trajectorie x(t) need not converge
strongly as t→∞. This is shown by Baillon’s celebrated counterexample in [6, Proposition
1], where the author defines a function ϕ ∈ Γ0(`2) having minimizers and proves that the
continuous trajectories converge weakly but not strongly. However, it is possible to get strong
convergen when the operator A is α-strongly monotone ([65, Proposition 59]) and S̊ 6= ∅ ([65,
Proposition 60]). These results on strong convergence hold in Banach space setting, when X
and X∗ are uniformly convex (see [59]).

2.3.2 The proximal point algorithm (PROX)

In what follow, {xn}n∈N will be considered proximal sequence defined by (2.4) and X will be
a Hilbert space.

Weak convergence

The study of the asymptotic behavior of the (2.4) was proposed by Rockafellar in [67], when
the stepsizes are bounded away from zero. Later, Brezis and Lion in [11] obtained convergence
results on (2.4) under more general hypothesis, as we will show below (see also [65]):

Theorem 2.17 Let A be a maximally monotone operator, S 6= ∅ and {xn} generated by
(2.4) with step sizes {λn}. If {λn} /∈ `2 then {xn} converges weakly to some x∗ ∈ S.

Strong convergence

This subsection will be dedicated to study the strong convergence of (2.4). The original
results comes from [11], and a simplified version can be found in [65] for maximally monotone
operators in Hilbert space. The first assert can be found in [64, Proposition 6.7]:
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Proposition 2.18 . Let A a maximally monotone operator, S 6= ∅ and {xn} the sequence
generated by (2.4), with step size {λn}.

1. If A is the subdifferential of an even, convex and lower-semicontinuous function f , then
{xn} converges strongly as n→∞.

2. If A is α–strongly monotone for some α > 0, the {xn} converges strongly to the unique
x∗ ∈ S as n→∞.

3. If S̊ 6= ∅, then {xn} converges strongly as n→∞.

Remark 2.19 In the case when X and X∗ are uniformly convex, A is α-strongly monotone
operator and {λn} /∈ `1, then {xn} converges strongly as n→∞ (see [59]).

Euler’s discretization

The Euler’s sequence {zn}n∈N defined by (2.11) can be computed explicitely, which take
advantage for the implementation. However, the convergence of this algorithm depends of
an adequate selection of the stepsizes, as shown in the following example:

Example 2.20 Let f : R → R given by f(x) = x2. In this case ∇f(x) = 2x and straigt-
forward computation show that each iteration for the gradient algorithm with constant step
sizes λ > 0 is given by zn+1 = zn − λ∇f(zn) = zn − 2λzn = (1 − 2λ)nz0, for z0 ∈ R fixed.
Let us set z0 = 1. If λ = 1, we have {zn} diverges. Now, for λ > 1, the sequence {zn} is
divergent but, when we set λ < 1, we obtain lim

n→∞
zn = 0.

The weak convergence result of Euler’s sequence {zn} given by (2.11) was presented [13]
in Banach space, but its version in Hilbert space can be found in [65]. In both cases, we need
strong aditional conditions on the velocity sequence {wn} associated to the system and the
stepsizes {λn}. The next following result from [65] in Hilbert space setting:

Proposition 2.21 Let A a maximally montone operator with S 6= ∅, {λn} ∈ `2 \ `1 and
{zn} defined by (2.11). If the velocity wn+1 = zn−zn+1/λn+1 is bounded, then {zn} converges
weakly to a zero of A.

On the strong convergence for Euler’s sequences in Hilbert space, we have the following
result from [65]:

Proposition 2.22 Let A be a α-strongly operator, S 6= ∅, {λn} ∈ `2 \ `1. If the velocity
sequence {wn} is bounded, then the Euler’s sequences {zn} given by (2.11) converges strongly.

A remarkable particular case is the particular case when A = ∇f . If f is strongly convex,
even or S̊ 6= ∅, it is possible to get strong convergence, as shown in [64, Proposition 6.21].
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2.4 Asymptotic equivalence between continuous and dis-
crete dynamical systems

Definition 2.23 Let C a convex subset of a Banach space X and let I the identity operator
on X. A nonexpansive evolution system on X is a family

(
U(t, s)

)
0≤s≤t such that

(i) U(t, t)z = z for all z ∈ X and t ≥ 0.
(ii) U(t, s)U(s, r)z = U(t, r)z for all z ∈ X and all t ≥ s ≥ r ≥ 0.
(iii) ‖U(t, s)x− U(t, s)y‖≤‖x− y‖ for all x, y ∈ X and t ≥ s ≥ 0.

Example 2.24 Consider A a maximally monotone operator on the Hilbert space X. Ac-
cording with Proposition 2.5, JAλ is nonexpansive for all λ > 0. For 0 ≤ s ≤ t, set

U(t, s) =

ν(t)∏
i=ν(s)+1

JAλi , (2.13)

where ν(t) = max{n ∈ N : σn ≤ t} and the products denotes composition of functions (in re-
verse order) and the empty composition is the identity. Then

(
U(t, s)

)
0≤s≤t is a nonexpansive

evolution system on X.

Asymptotic equivalence. The notion of asymptotic equivalence between continuous tra-
jectories associated to (2.12) and its discrete trajectories given by (2.4) was introduced by
Passty in [63] for m-accretive operators in Banach spaces setting. It means that the contin-
uous trajectories (2.12) and the discrete ones (2.4) describe the same asymptotic behavior.
In order to prove it, Passty first introduced the notion of asymptotically equality between a
nonexpansive evolution system (U(t, s))0≤s≤t and the semigroup {S(t)x : t ≥ 0} governed by
−A, which means:

lim
t→∞

sup
h≥0
‖U(t+ h, s)x− S(h)U(t, s)x‖ = 0 for all s ≥ 0, (2.14)

and
lim
t→∞

sup
h≥0
‖U(t+ h, t)S(t)x− S(t+ h)x‖ = 0. (2.15)

for all x ∈ D(A). The following result from [63, Lemma 1] reveals the importance of the
asymptotic equality:

Lemma 2.25 Let A be an m-accretive operator and let {S(t)x : t ≥ 0} be the semigroup
generated by −A on D(A). Let

(
U(t, s)

)
0≤s≤t be a nonexpansive evolution system which is

asymptotically equal to S(t) on D(A). Then S(t)x converges strongly (respectively diverges)
as t→ +∞ if and only if U(t, s)x converges strongly (respectively weakly) as t→ +∞ for all
x ∈ D(A).

Note that the proximal sequence {xn}n∈N can be described by mean the nonexpansive
evolution system (2.13) as xn = U(0, σn). Passty proved that {xn}n∈N is asymptotically
equals to {S(t)x : t ≥ 0}. Thus, using Lemma 2.25 for A m-accretive and Lipschitz and
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for each x ∈ D(A), the continuous trajectory {S(t)x : t ≥ 0} associated to the differential
inclusion (2.2) converges strongly (respectively weakly) when t → ∞ if and only if every
sequence {xn} given by (2.4) with stepsizes {λn}n∈N ∈ `2 \`1 converges strongly (respectively
weakly) when n→∞ (see [63, Theorem 2]). In other words, {S(t)x : t ≥ 0} and {xn}n∈N are
asymptotically. Later, Sugimoto-Koizumi in [47, Theorem] were able to get rid of Passty’s
condition on the operator A and obtained an analogue result on asymptotic equivalence
between continuous trajectory associated to (2.12) and discrete trajectories generated by
(2.4). The key that allows to get is is the Kobayashi’s inequality 2.11 (see also[44, Lemma
2.1] for the original reference).

Definition 2.26 Let U be a nonexpansive evolution system. A function φ : [0,+∞)→ X is
an almost-orbit of U if

lim
t→+∞

sup
h≥0
‖φ(t+ h)− U(t+ h, t)φ(t)‖ = 0. (2.16)

The notion of almost orbit was introduced by Miyadera-Kobayashi in [46]. This function
is a kind of approximate solution to the differential inclusion −ẋ ∈ Ax. The authors used
the Kobayashi’s inequality in order to prove that the continuous path constructed by linear
interpolations of some proximal iterations is an almost orbit of the semigroup generated by
A. A converse result can be found in [47].

The following result from [2, Theorem 3.3] reveals the usefulness of the concept of almost-
orbit. It keeps some essential ideas of [63, Theorem 2], but in a more general context.

Proposition 2.27 Let U be a nonexpansive evolution system and let φ be an almost-orbit
of U . If, for each x ∈ H and s ≥ 0, U(t, s)x converges weakly (resp. strongly) as t → +∞,
then so does φ(t).

Thus, from the notion of almost-orbit and Proposition 2.27 is easier to obtain the asymp-
totic equality described in (2.14) and (2.15). Therefore, the notion of asymptotic equivalence
can be reformulated in terms of almost-orbits.

The notion asymptotic equivalence is a useful tool that allows to exploit the information
of the continuous system represented for the continuous trajectory {S(t)x : t ≥ 0}, in order
to get information about the asymptotic behavior of the discrete trajectory given by (2.4),
such as is showed in the following examples:

Example 2.28 Suppose that X is a Hilbert space, f ∈ Γ0(X) and A = ∂f . If {xn} is given
by (2.4) with stepsizes {λn} /∈ `1 and bounded, then for each x ∈ D(A), {S(t)x : t ≥ 0}
converges weakly (resp. strongly) if and only if {xn} converges weakly (resp. strongly). This
result was proved in [39, Theorem 5.1]. As an important consequence of this result, the
author proved that {xn} not always converges strongly (see [39, Corollary 5.1]).

Example 2.29 Let us consider X a Banach, T : X → X a nonexpansive operator, A = I−T
and given z ∈ X, let {zn} be the sequence generated by (2.11). Then, the continuous
trajectories {S(t)z : t ≥ 0} associated to (2.2) converges weakly (resp. strongly) when
t→∞ if and only if {zn} converges weakly (resp. strongly) when n→∞. It was proved in
[47, Theorem 1.1].
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So far, only asymptotic equivalence between continuous trajectories associated to a dif-
ferential inclusion gorverned by maximally monotone operator and the sequences generated
by PROX is known. Our main goal in Chapters 3 and 4 is to extend this results to the case
when the monotone operator has an additive structure.
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Chapter 3

Asymptotic Equivalence of Evolution
Equations Governed by Cocoercive
Operators and their Forward
Discretizations

A joint work with Peypouquet, J. [30]

3.1 Euler sequences governed by cocoercive operators

Throughout this paper, H will denote a real Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖, and B will denote a cocoercive operator, which is a function B : H → H such that

〈Bx−By, x− y〉 ≥ θ ‖Bx−By‖2

for all x, y ∈ H and some θ > 0, known as the cocoercivity constant of B. It follows that B
is maximally monotone (see [65, 8]). Also, by the Cauchy-Schwarz inequality, B is Lipschitz
continuous with constant 1

θ
.

Given an initial point x0 ∈ H, along with a sequence {λn}n∈N of positive numbers, called
step sizes, we define the Euler sequence {xn} recursively by

xn = xn−1 − λnBxn−1, n ≥ 1. (3.1)

To simplify the notation, we denote Eλ = I − λB for λ > 0, so that the equality in (3.1)
becomes

xn = Eλnxn−1.

Lemma 3.1 If λ ≤ 2θ, then Eλ is nonexpansive.
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Proof. For all x, y ∈ H and λ > 0, we have

‖Eλx− Eλy‖2 = ‖x− y − λ(Bx−By)‖2

≤ ‖x− y‖2 + λ2‖Bx−By‖2 − 2λ〈Bx−By, x− y〉
= ‖x− y‖2 + (λ2 − 2λθ)‖Bx−By‖2

by cocoercivity. If λ ≤ 2θ, then ‖Eλx− Eλy‖ ≤ ‖x− y‖, as claimed.

The rule given by (3.1) defines a discrete-time dynamical system, which is dissipative in
the following sense:

Lemma 3.2 Let {xn}n∈N satisfy (3.1) with λn ≤ 2θ for all n ∈ N. The sequence {‖Bxn‖}
is nonincreasing.

Proof. Consider the velocity at stage n, namely

yn = −Bxn =
xn+1 − xn
λn+1

.

Since B is cocoercive, using (3.1), we obtain

〈yn − yn+1, λn+1yn〉 = 〈Bxn+1 −Bxn, xn+1 − xn〉 ≥ θ‖yn+1 − yn‖2.

Thus

θ‖yn+1‖2 + θ‖yn‖2 − λn+1‖yn‖2 ≤ (2θ − λn+1)〈yn+1, yn〉 ≤
(

2θ − λn+1

2

)(
‖yn+1‖2 + ‖yn‖2

)
.

Rearranging the terms, we obtain ‖yn+1‖ ≤ ‖yn‖.

The following result establishes the weak convergence of Euler sequences. Although it is
a well-known fact (see, for instance, [8]), we include it for the sake of completeness:

Proposition 3.3 Let
{xn}n∈N

satisfy (3.1) with {λn}n∈N /∈ `1 and λ := supn∈N λn < 2θ. If B−1(0) 6= ∅, then xn converges
weakly, as n→ +∞, to a point in B−1(0).

Proof. Let p ∈ B−1(0). Using the cocoercivity and rearranging the terms, we obtain(
2θ

λn+1

− 1

)
‖xn+1 − xn‖2 + ‖xn+1 − p‖2 ≤ ‖xn − p‖2. (3.2)

Since λn+1 ≤ λ < 2θ, this implies ‖xn+1 − p‖ ≤ ‖xn − p‖ and
∑∞

n=0 ‖xn+1 − xn‖2 < +∞.
Using (3.2) again, we deduce that

∞∑
n=0

λn+1‖Bxn‖2 =
∞∑
n=0

‖xn+1 − xn‖2

λn+1

< +∞.
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Since (λn) /∈ `1, Lemma 3.2 gives lim
n→+∞

‖Bxn‖ = 0. The maximal monotonicity implies that
every weak limit point of the sequence

{xn}n∈N
must belong to B−1(0), and the result follows from Opial’s Lemma (see, for instance, [65,
Lemma 4.1]).

3.1.1 Discrete approximation of the evolution equation

The following Kobayashi-type inequality provides an estimation of the distance between the
terms of two Euler sequences.

Lemma 3.4 Let {xn}k∈N, {x̂l}l∈N be two sequences generated by (3.1), with step sizes {λk}k∈N
and {λ̂l}l∈N, respectively. Assume λk, λ̂l ≤ 2θ for all k, l ∈ N, and fix z ∈ H. Then, for each
k, l ∈ N, we have

‖xk − x̂l‖ ≤ ‖x0 − z‖+ ‖x̂0 − z‖+ ‖Bz‖
√

(σk − σ̂l)2 + τk + τ̂l, (3.3)

where σk =
k∑

i=1

λi and τk =
k∑

i=1

λ2
i (similarly for σ̂l and τ̂l).

Proof. First, observe that

Eλ = I − λB = I −
[
λ

2θ

]
(2θB) = I −

[
λ

2θ

]
(I − E2θ),

and recall that E2θ is nonexpansive. Using [70, Proposition 3.11], we deduce that

‖xk − x̂l‖ ≤ ‖x0 − z‖+ ‖x̂0 − z‖+ ‖2θBz‖

√(
σk
2θ
− σ̂l

2θ

)2

+
τk
4θ2

+
τ̂l

4θ2
,

which is precisely (3.3).

3.2 Approximation in finite horizon

A curious fact about Lemma 3.4 is that it provides existence and regularity results for the
evolution equation {

−u̇(t) = B(u(t)), t > 0,
u(0) = x0,

(3.4)

by means of an approximation scheme, which is different from that of Picard. For each t ≥ 0
and m ≥ 1, set

um(t) =
[
E t

m

]m
x0. (3.5)

In other words, um(t) is the m-th term of the Euler sequence generated from x0 using the
constant step size λk ≡ t/m. We have the following:
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Proposition 3.5 The sequence {um}m∈N converges pointwise on [0,+∞) and uniformly on
[0, T ] for each T > 0, to a function u : [0,+∞) → H satisfying (3.4). Moreover, ‖u(t) −
u(s)‖ ≤ ‖Bx0‖ |t− s| for all t, s > 0.

Proof. Given t, s > 0 and n,m ∈ N, define um(t) and un(s) as above. By Lemma 3.4, we
have

‖um(t)− un(s)‖ ≤ ‖Bx0‖
√

(t− s)2 +
t2

m
+
s2

n
. (3.6)

For s = t, this gives

‖um(t)− un(t)‖ ≤ t ‖Bx0‖
√

1

m
+

1

n
.

It follows that (um) converges pointwise on [0,+∞), and uniformly on [0, T ] for each T > 0,
to a function u : [0,+∞) → H. Passing to the limit in (3.6), we obtain ‖u(t) − u(s)‖ ≤
‖Bx0‖ |t − s| for all t, s > 0. It remains to prove that u satisfies (3.4). First, take s, t > 0,
along with a sequence {nm}m∈N of positive integers such that limm→+∞

nm
m

= s
t
, and use

Lemma 3.4 to obtain

∥∥∥[E t
m

]nm
x0 −

[
E s

m

]m
x0

∥∥∥ ≤ ‖Bx0‖

√(
nmt

m
− s
)2

+
nmt2

m2
+

s2

m2
.

It follows that
lim

m→+∞

[
E t

m

]nm
x0 = u(s).

On the other hand, take m ∈ N, set λn ≡ t
m
, iterate (3.1) and sum for n = 0, . . . ,m− 1, to

obtain [
E t

m

]m
x0 − x0 = −

m−1∑
n=0

t

m
B
([
E t

m

]n
x0

)
.

The right-hand side is an approximate Riemann sum for Bu(·) on [0, t]. Passing to the limit,
we deduce that

u(t)− x0 = −
∫ t

0

Bu(s) ds,

and conclude that u satisfies (3.4).

The Lipschitz constant provided in Proposition 3.5 also implies

Corollary 3.6 The function t 7→ ‖Bu(t)‖ is nonincreasing.

Remark 3.7 From (3.6), we also obtain

‖um(t)− u(t)‖ ≤ t√
m
‖Bx0‖.

This estimation is linear on the length of the interval, which is consistent with the results
obtained for backward discretizations (see, for instance, [32, p. 272]). In turn, the bound
for forward discretizations, obtained following the standard argument (see, for instance, [14,
Chapter II.1]), is exponential on the length of the interval.
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From Lemma 3.4, we also obtain the following:

Proposition 3.8 Let (λ̂l) be bounded by 2θ. Then, for each l ∈ N, we have

‖x̂l − u(t)‖ ≤ ‖x0 − x̂0‖+ min{‖Bx0‖, ‖Bx̂0‖}
√

(σ̂l − t)2 + τ̂l.

3.3 Approximation in infinite horizon I: general case

In this section, we show that Euler sequences have the same asymptotic behavior as the
solutions of the evolution equation (3.4). The key argument is the idea of asymptotic equal-
ity introduced by Passty [63], closely related to the notion of almost-orbit, introduced by
Miyadera and Kobayasi [46]. Further commentaries on this topic can be found in [1, 2, 3].

To simplify the notation, given x ∈ H and t ≥ 0, we write

Stx = u(t), (3.7)

where u satisfies (3.4) with x0 = x. Also, for 0 ≤ s ≤ t, we write

US(t, s) = S(t− s). (3.8)

In a similar fashion, if n ∈ N and x ∈ H, we denote

Enx = Eλn ◦ · · · ◦ Eλ1x. (3.9)

In other words, Enx is the n-th term of the Euler sequence starting from x. Assume (λn) /∈ `1,
and write ν(t) = max{n ∈ N : σn ≤ t}. For 0 ≤ s ≤ t, we set

UE(t, s) =

ν(t)∏
i=ν(s)+1

Eλi , (3.10)

where the product denotes composition of functions (in reverse order) and the empty com-
position is the identity.

Example 3.9 The families
(
US
)
and

(
UE
)
, defined in (3.8) and (3.10), respectively, are

nonexpansive evolution systems. Actually, the same is true if S is replaced by any other
semigroup of nonexpansive functions on H, and if each Eλi is replaced by any other nonex-
pansive function on H.

The following result is part of [2, Theorem 3.3]:

Proposition 3.10 Let U be a nonexpansive evolution system and let φ be an almost-orbit
of U . If, for each x ∈ H and s ≥ 0, U(t, s)x converges weakly (resp. strongly) as t → +∞,
then so does φ(t).

The following result establishes a relationship between the trajectories generated by US
and UE :
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Theorem 3.11 Let (λn) ∈ `2 \ `1, and fix x ∈ H. For each t > 0, define φS(t) = Stx and
φE(t) = Eν(t)x

1. Then, φS is an almost-orbit of UE and φE is an almost-orbit of US .

Proof. We first prove that φS is an almost-orbit of UE . By Lemma 3.4, we have∥∥∥∥∥∥
[
m∏
k=1

E h
m

]
Stx−

 ν(t+h)∏
i=ν(t)+1

Eλi

Stx
∥∥∥∥∥∥ ≤ ‖BStx‖

√(
σ
ν(t+h)
ν(t)+1 − h

)2

+ τ
ν(t+h)
ν(t)+1 +

h2

m

≤ ‖Bx‖
√

4ρ2(t) + τ∞ν(t)+1 +
h2

m
,

where ρ(t) := sup{λn : n ≥ ν(t)− 1} vanishes as t→ +∞. Passing to the limit as m→ +∞,
we obtain

‖ShStx− UE(t+ h, t)Stx‖ ≤ ‖Bx‖
√

4ρ2(t) + τ∞ν(t)+1,

which is uniform in h ≥ 0 (we can also arrive here directly using Proposition 3.8). It follows
that

lim
t→+∞

sup
h≥0
‖φS(t+ h)− UE(t+ h, t)φS(t)‖ = 0.

To prove that φE is an almost-orbit of US , we proceed in a similar fashion, using Lemma 3.4
to obtain ∥∥∥∥∥∥

ν(t+h)∏
i=ν(t)+1

EλiEν(t)x−
m∏
k=1

E h
m
Eν(t)x

∥∥∥∥∥∥ ≤ ‖Bx‖
√

4ρ2(t) + τ∞ν(t)+1 +
h2

m
,

then passing to the limit as m→ +∞ to deduce that

‖φE(t+ h)− ShφE(t)‖ ≤ ‖Bx‖
√

4ρ2(t) + τ∞ν(t)+1,

and conclude.

If n ∈ N and x ∈ H, we denote

Pnx = (I + λnB)−1 ◦ · · · ◦ (I + λ1B)−1x, (3.11)

so that Pnx is the n-th term of the proximal sequence starting from x (see [67, 11, 65]).

As a consequence of Theorem 3.11, we obtain the following result, which extends [63,
Theorem 2] and [47, Theorem], to include Euler sequences:

Theorem 3.12 The following are equivalent:

i) For every x ∈ H, Stx converges weakly (resp. strongly), as t→ +∞.
ii) For every {λn}n∈N ∈ `2 \ `1 and every x ∈ H, Pnx converges weakly (resp. strongly),

as n→ +∞.
1This is a piecewise constant interpolation of the sequence Enx.
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iii) There is {λn}n∈N ∈ `2 \ `1 such that, for every x ∈ H, Pnx converges weakly (resp.
strongly), as n→ +∞.

iv) For every {λn}n∈N ∈ `2 \ `1 and every x ∈ H, Enx converges weakly (resp. strongly), as
n→ +∞.

v) There is {λn}n∈N ∈ `2 \ `1 such that, for every x ∈ H, Enx converges weakly (resp.
strongly), as n→ +∞.

In the next section, we shall prove that the `2 condition on the step sizes can be dropped
if B is the gradient of a convex function. This fact will be crucial in finding a smooth version
of Baillon’s and Güler’s counterexamples for strong convergence (see [39, 6]).

3.4 Approximation in infinite horizon II: the potential
setting

Let f : H → R be convex and differentiable. According to the Baillon-Haddad Theorem (see,
for instance, [64, Theorem 3.13]), ∇f is Lipschitz continuous with constant L if, and only if, it
is cocoercive with constant θ = L−1. We shall see that, in this case, the asymptotic equality
between the semigroup and the evolution system can be obtained without the condition
(λn) ∈ `2. This will allow us to find a smooth convex function for which the gradient
method, the proximal point algorithm and the steepest descent dynamic fail to produce
strongly convergent trajectories.

3.4.1 Preliminary estimations

Given x0 ∈ H and a sequence {λn}n∈N of step sizes, consider the (Euler) sequence {xn}n∈N
generated by the gradient method:

xn+1 = xn − λn+1∇f(xn), n ≥ 1. (3.12)

Proposition 3.13 Let λ = supn∈N λn < 2/L, and set α = 1− Lλ
2
. For all n ∈ N and y ∈ H,

we have

f(xn+1)− f(y) ≤ ‖y − x0‖2

2σn+1

− ‖y − xn+1‖2

2σn+1

− ασn+1

2
‖∇f(xn)‖2 +

λLVn
4σn+1

(3.13)

‖∇f(xn)‖2 ≤ ‖xn+1 − x0‖2

ασ2
n+1

+
λLVn

2ασ2
n+1

(3.14)

‖∇f(xn)‖2 ≤ ‖y − x0‖2

ασ2
n+1

+
‖∇f(y)‖2

α
+

λLVn
2ασ2

n+1

, (3.15)

where Vn =
n∑
k=0

‖xk+1 − xk‖2. Moreover, if f is bounded from below, then supn∈N Vn ≤

2
αL

(
f(x0)− inf(f)

)
.
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Proof. Using the Descent Lemma (see, for instance [64, Lemma 1.30]), for each k ∈ N, we
have

f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

=

[
λk+1L− 2

2

]
λk+1‖∇f(xk)‖2

≤ −αλk+1‖∇f(xk)‖2. (3.16)

Multiplying by 2σk+1, we obtain

2σk+1f(xk+1)− 2σkf(xk)− 2λk+1f(xk) ≤ −2ασk+1λk+1‖∇f(xk)‖2.

Summing for k = 0, . . . , n, we deduce that

2σn+1f(xn+1)− 2
n∑
k=0

λk+1f(xk) ≤ −2α
n∑
k=0

σk+1λk+1‖∇f(xk)‖2. (3.17)

On the other hand, for each y ∈ H, we have

f(y) ≥ f(xk) + 〈∇f(xk), y − xk〉 = f(xk) +
1

λk+1

〈xk − xk+1, y − xk〉.

In other words,

2λk+1(f(y)− f(xk)) ≥ ‖y − xk+1‖2 − ‖xk − xk+1‖2 − ‖y − xk‖2.

Summing for k = 0, . . . , n, and reversing the inequality, we obtain

− 2σn+1f(y) + 2
n∑
k=0

λk+1f(xk) ≤ ‖y − x0‖2 − ‖y − xn+1‖2 + Vn. (3.18)

Adding (3.17) and (3.18), we have

2σn+1(f(xn+1)− f(y)) ≤ ‖y − x0‖2 − ‖y − xn+1‖2 + Vn − 2α
n∑
k=0

σk+1λk+1‖∇f(xk)‖2

= ‖y − x0‖2 − ‖y − xn+1‖2 + (1− α)Vn

− α

n∑
k=0

(2σk+1λk+1 − λ2
k+1)‖∇f(xk)‖2

= ‖y − x0‖2 − ‖y − xn+1‖2 + (1− α)Vn

− α
n∑
k=0

(σk+1λk+1 + σkλk+1)‖∇f(xk)‖2

≤ ‖y − x0‖2 − ‖y − xn+1‖2 + (1− α)Vn − ασ2
n+1‖∇f(xn)‖2,(3.19)

since {‖∇f(xk)‖} is nonincreasing, by Lemma 3.2, and

n∑
k=0

(σk+1λk+1 + σkλk+1) = σ2
n+1.
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Inequality (3.19) is exactly (3.13). Writing y = xn+1 in (3.13) gives (3.14). Finally, to obtain
(3.15), use the gradient inequality

f(xn+1)− f(y) ≥ 〈∇f(y), xn+1 − y〉

and the Cauchy-Schwarz inequality to deduce that

2σn+1(f(y)− f(xn+1)) ≤ σ2
n+1‖∇f(y)‖2 + ‖y − xn+1‖2.

Adding this inequality to (3.19), and rearranging the terms, we obtain (3.15). For the last
statement, notice that

Vn =
n∑
k=0

‖xk+1−xk‖2 =
n∑
k=0

λ2
k+1‖∇f(xk)‖2 ≤ 2

αL

n∑
k=0

(
f(xk)−f(xk+1)

)
≤ 2

αL

(
f(x0)−inf(f)

)
,

for all n ∈ N, in view of (3.16).

Now, consider the steepest descent evolution equation:{
−u̇(t) = ∇f(u(t)), t > 0
u(0) = x0,

(3.20)

which is a particular case of (3.4). Taking λk ≡ t
n
and passing to the limit in (3.14) and

(3.15), we obtain (see [39, Corollary 2.2] and [10, Théorème 2.3.2]) the following:

Proposition 3.14 Let u : [0,+∞)→ H satisfy (3.20). For each t > 0 and each y ∈ H, we
have

‖∇f(u(t))‖ ≤ ‖u(t)− x0‖
t

(3.21)

‖∇f(u(t))‖ ≤ ‖∇f(y)‖+
‖y − x0‖

t
. (3.22)

3.4.2 Preservation of the asymptotic behavior

Consider a strictly increasing function κ : N → N such that κ(0) = 0 (its relevance will
become apparent later on). Given a sequence {λj}j∈N of positive real numbers, set

σnm = σκ(n) − σκ(m) =

κ(n)∑
j=κ(m)+1

λj, whenever m < n. (3.23)

Analogously, given a sequence (Jj) of functions from H to itself, and a point x ∈ H, write

n∏
m

x =

κ(n)∏
j=κ(m)+1

Jjx, if m < n, (3.24)

where the last product denotes composition of functions in the appropriate order. If n ≤ m,
we define σnm = 0 and

∏n
m x = x. Although the following result is stated in a more general

context, the proof is exactly the same as that of [39, Lemma 5.2].
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Lemma 3.15 Let (R(t)) be a nonexpansive semigroup and let {Jj}j∈N be a sequence of
nonexpansive functions. With the notation introduced above, for every n, p ∈ N and every
x ∈ H, we have∥∥∥∥∥R(σn+p

n )x−
n+p∏
n

x

∥∥∥∥∥ ≤
n+p∑

m=n+1

∥∥∥∥∥R(σmm−1)
m−1∏
n

x−
m∏
m−1

m−1∏
n

x

∥∥∥∥∥ (3.25)∥∥∥∥∥R(σn+p
n )x−

n+p∏
n

x

∥∥∥∥∥ ≤
n+p∑

m=n+1

∥∥∥∥∥R(σmm−1)R(σm−1
n )x−

m∏
m−1

R(σm−1
n )x

∥∥∥∥∥ (3.26)

We are now in a position to prove the main result of this section. In what follows,
f : H → R is convex and differentiable. Its gradient ∇f is Lipschitz continuous with
constant L, and assume that the set S = argmin(f) is not empty. Finally, we write B = ∇f ,
and use the notation introduced at the beginning of Section 3.3 concerning the semigroup S,
the sequence of mappings {En}n∈N, the function ν, and the evolution systems US and UE .

Theorem 3.16 Fix x ∈ H, and let λ = supn∈N λn < 2/L, and (λn) /∈ `1. For each t > 0,
define φS(t) = Stx and φE(t) = Eν(t)x. Then, φE is an almost-orbit of US , and φS is an
almost-orbit of UE .
Proof. Let us prove that φE is an almost-orbit of US . Notice that

‖φE(t+ h)− US(t+ h, t)φE(t)‖ =

∥∥∥∥∥∥
ν(t+h)∏

i=ν(t)

Eλi

 Eν(t)x− Sh Eν(t)x

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
ν(t+h)∏

i=ν(t)

Eλi

 Eν(t)x− Sη Eν(t)x

∥∥∥∥∥∥
+

∥∥Sη Eν(t)x− Sh Eν(t)x
∥∥ , (3.27)

where η = σν(t+h) − σν(t). For the first term on the right-hand side, we partition the interval
[0, σν(t+h)] into subintervals of the form [σκ(i), σκ(i+1)], i = 0, . . . , n + p, where {κ(i)} is any
strictly increasing sequence satisfying k(0) = 0 and σκ(i)−1 < i2 ≤ σκ(i), for each i. In other
words, each subinterval contains exactly one perfect square. The numbers n and p are chosen
so that κ(n) = ν(t) and κ(n+ p) = ν(t+ h).

Using the notation in (3.23) and (3.24) with R(t) = St and Jj = Eλj , along with inequality
(3.25), we obtain∥∥∥∥∥∥

ν(t+h)∏
i=ν(t)

Eλi

 Eν(t)x− Sη Eν(t)x

∥∥∥∥∥∥ =

∥∥∥∥∥
(
n+p∏
n

)(
n∏
0

x

)
− Sσn+pn

(
n∏
0

x

)∥∥∥∥∥
≤

n+p∑
m=n+1

∥∥∥∥∥Sσmm−1

m−1∏
n

(
n∏
0

x

)
−

m∏
m−1

m−1∏
n

(
n∏
0

x

)∥∥∥∥∥
=

n+p∑
m=n+1

∥∥∥∥∥Sσmm−1

(
m−1∏

0

x

)
−

m∏
m−1

(
m−1∏

0

x

)∥∥∥∥∥
≤

n+p∑
m=n+1

√
2

L
σmm−1

∥∥∥∥∥∇f
(
m−1∏

0

x

)∥∥∥∥∥ ,
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where the last inequality follows from Lemma 3.4 and the fact that λj ≤ 2
L
for all j.

Next, we use (3.15) with y = ProjSx, to obtain∥∥∥∥∥∥
ν(t+h)∏

i=ν(t)

Eλi

 Eν(t)x− Sη Eν(t)x

∥∥∥∥∥∥ ≤
√

2αdist(x, S)2 + 2λ(f(x)−min(f))

α2L

n+p∑
m=n+1

√
σmm−1

σκ(m−1)

But (m − 1)2 ≤ σκ(m−1), while σmm−1 = σκ(m) − σκ(m−1) ≤ σκ(m+1)−1 − σκ(m−1) ≤ (m + 1)2 −
(m− 1)2 = 4m, by construction. Therefore,

n+p∑
m=n+1

√
σmm−1

σκ(m−1)

≤
n+p∑

m=n+1

2
√
m

(m− 1)2
≤ 2
√

2
∞∑
m=n

m−3/2 ≤ 2
√

2

∫ ∞
n−1

x−3/2 dx =
4
√

2√
n− 1

.

We conclude that∥∥∥∥∥∥
ν(t+h)∏

i=ν(t)

Eλi

 Eν(t)x− Sη Eν(t)x

∥∥∥∥∥∥ ≤
√

64αdist(x, S)2 + 64λ(f(x)−min(f))

α2Lκ−1(ν(t)− 1)
(3.28)

To estimate the second term on the right-hand side of (3.27), we first use the Lipschitz
continuity of the semigroup (see Proposition 3.5), and then (3.15) with y = ProjSx, to
obtain ∥∥Sη Eν(t)x− Sh Eν(t)x

∥∥ ≤ |η − h| ‖∇f
(
Eν(t)x

)
‖

≤
∣∣∣σν(t+h)
ν(t) − h

∣∣∣ √αdist(x, S)2 + λ(f(x)−min(f))

ασν(t)+1

≤
4
√
αdist(x, S)2 + λ(f(x)−min(f))

αLσν(t)+1

. (3.29)

Finally, (3.27), (3.28) and (3.29) together imply

lim
t→+∞

sup
h≥0
‖φE(t+ h)− US(t+ h, t)φE(t)‖ = 0.

Using essentially the same arguments, we show that φS is an almost-orbit of UE . We use
(3.26) instead of (3.25), alng with the bounds given in Proposition 3.14, in place of those
from Proposition 3.13. The details are left to the reader.

The following result complements Theorem 3.12, establishing the equivalence between
the convergence of trajectories/sequences generated by the steepest descent dynamics, the
proximal point algorithm and the gradient method:

Theorem 3.17 The following are equivalent:

i) For every x ∈ H, Stx converges weakly (resp. strongly), as t→ +∞.
ii) For every (λn) /∈ `1 and every x ∈ H, Pnx converges weakly (resp. strongly), as

n→ +∞.
iii) There is (λn) /∈ `1 such that, for every x ∈ H, Pnx converges weakly (resp. strongly),

as n→ +∞.
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iv) For every (λn) /∈ `1 with supn∈N λn < 2/L, and every x ∈ H, Enx converges weakly
(resp. strongly), as n→ +∞.

v) There is (λn) /∈ `1 with supn∈N λn < 2/L such that, for every x ∈ H, Enx converges
weakly (resp. strongly), as n→ +∞.

3.4.3 Baillon’s counterexample revisited

Let f : H → R∪{+∞} be proper, lower-semicontinuous and convex. Bruck [12] proved that
if f has minimizers, and u : [0,+∞)→ H satisfies

− u̇(t) ∈ ∂f(u(t)) (3.30)

for almost every t > 0, then u(t) converges weakly, as t → +∞, to a minimizer of f .
A few years later, Baillon [6] constructed a proper lower-semicontinuous convex function
f : `2 → R ∪ {+∞} for which (3.30) has solutions that do not converge strongly. Baillon’s
function is not continuous, and its domain is not all of `2.

In [54], Martinet introduced the proximal point algorithm, and showed, for a constant
sequence of step sizes λn ≡ λ, that zn converges weakly, as n → +∞, to a minimizer of f .
This result was extended to the case where {λn}n∈N is bounded from below by a positive
number [67], and to the case where {λn}n∈N /∈ `1 [11]. Using Baillon’s counterexample and
the concept of asymptotic semigroup from Passty [63] (see Theorem 3.17 above), Güler [39]
showed that sequences generated by the proximal point algorithm do not always converge
strongly.

We shall present a family of smooth convex functions for which the steepest descent dy-
namics, the proximal point algorithm and the gradient method all produce trajectories/se-
quences that do not converge strongly. Related results have been found in [4] by a different
(constructive) argument.

Theorem 3.18 Let {Λn}n∈N /∈ `1 be a bounded sequence. There is a convex function f :
H → R, with Lipschitz continuous gradient, such that

i) There is u : [0,+∞) → H satisfying (3.20), that converges weakly but not strongly as
t→ +∞ to a minimizer of f .

ii) There is a proximal sequence {zn}n∈N, generated using step sizes {Λn}n∈N, that con-
verges weakly but not strongly as n→ +∞ to a minimizer of f .

iii) There is an Euler sequence {xn}n∈N, generated using step sizes {Λn}n∈N, that converges
weakly but not strongly as n→ +∞ to a minimizer of f .

Proof. Let H = `2, and let ϕ : H → R ∪ {+∞} be the function in Baillon’s example. Fix
ω > 0, and let ϕω : H → R be the Moreau envelope of ϕ with index ω, defined by

ϕω(x) = inf
y∈H

{
ϕ(y) +

1

2ω
‖x− y‖2

}
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for x ∈ H (see, for instance, [64, Section 3.5.4]). The function ϕω is differentiable and ∇ϕω
is cocoercive with constant ω. According to [39, Corollary 5.1], for every bounded sequence
{Λn}n∈N /∈ `1, there exists x̃ ∈ H such that the proximal sequence defined by{

xn+1 = (I + λn+1∂ϕ)−1xn, n ≥ 0
x0 = x̃,

converges weakly, but not strongly, to 0, the only minimizer of ϕ. In particular, for the
constant sequence λ̃n ≡ ω, there is at least one such x̃. But

(I + ω∂ϕ)−1y = y − ω∇ϕω(y)

for all y ∈ H. It follows that (xn) is also an Euler (gradient) sequence, generated from x̃ with
step sizes identically ω. We have found a sequence {λ̃n}n∈N /∈ `1 and an initial point x̃ such
that the corresponding Euler sequence does not converge strongly. If {Λn}n∈N is bounded by
Λ, it suffices to pick f = ϕω with ω > Λ/2 to conclude, by virtue of Theorem 3.17.

3.5 The Banach space setting

Some of the results presented here can be extended to a class of Banach spaces in a rather
straightforward manner. Let X be a real Banach space with topological dual X∗. The duality
product is denoted 〈·, ·〉X∗,X .

From the proof of Lemma 3.4, which uses [70, Proposition 3.11], we observe that Kobayashi’s
inequality holds in arbitrary Banach spaces provided the sequences of step sizes are bounded
by some Λ > 0, and EΛ is nonexpansive. A simple sufficient condition for this can be given
in 2-uniformly smooth spaces2, reflexive spaces where J is single valued (see [50]), and where
there is a constant κ > 0 such that

‖u+ v‖2 ≤ ‖u‖2 + 2〈J (u), v〉X∗,X + κ‖v‖2

for all u, v ∈ X (see [71, Corollary 1’] ). Hilbert spaces are 2-uniformly smooth with κ = 1.
If p ≥ 2, the Lp spaces are 2-uniformly smooth with constant κ = p − 1 (see [71, Corollary
2]). For λ > 0, we have

‖Eλx− Eλy‖2 = ‖(x− y)− λ(Bx−By)‖2

≤ ‖x− y‖2 − 2λ〈J (x− y), Bx−By〉X∗,X + κλ2‖Bx−By‖2

≤ ‖x− y‖2 + λ(κλ− 2θ)‖Bx−By‖2.

Therefore, it suffices to take Λ ≤ 2θ
κ
. As a consequence, we have the following:

Remark 3.19 Let X be 2–uniformly smooth with constant κ, and let B : X → X be
cocoercive with constant θ. From Lemma 3.4 until Theorem 3.12, all results remain valid in
X, replacing 2θ by 2θ

κ
, when relevant.

2The arguments also hold for q-cocoercive operators in q-uniformly smooth spaces (see, for instance, [52]).
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Chapter 4

Forward-backward approximation of
evolution equations in finite and infinite
horizon

A joint work with J. Peypouquet [29]

4.1 Sequences governed by a sum of accretive operators

Throughout this chapter, X will be a Banach space with topological dual X∗. Their norms
and the duality product are denoted by ‖ · ‖, ‖ · ‖∗ and 〈·, ·〉, respectively. In what follows, we
assume that X∗ is 2-uniformly convex, which implies that X is reflexive, the duality mapping
is single valued, and there is a constant κ > 0 such that

‖u+ v‖2 ≤ ‖u‖2 + 2〈J (u), v〉+ κ‖v‖2, (4.1)

for all u, v ∈ X (see [50, 71]). For instance, Lp spaces have this property for p ≥ 2. Let
A : X → 2X be a m-accretive operator and B : X → X be a cocoercive with parameter θ > 0.
Then A+B is m-accretive, the operator

Eλ = I − λB (4.2)

is nonexpansive for all λ ∈ [0, 2θ
κ

] and the forward backward splitting operator Tλ : X → X
defined by

Tλ = JAλ ◦ Eλ,

is single-valued, everywhere defined and nonexpansive.

Let us consider the following forward-backward iterations defined by

xk = Tλk(xk−1) = JAλk(Eλk(xk−1)), k ∈ N, (4.3)

where {λk}k∈N is a sequence of positive number, called step sizes, x0 ∈ X.
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These forward-backward iterations are fundamental in the numerical analysis of optimiza-
tion problems, since they serve as building blocks for first order methods. The gradient
method, originally introduced by Cauchy in [15], and its variant, the projected gradient
method [38, 49], the proximal point algorithm introduced by Martinet [54] and further ex-
tended by Rockafellar [67] and Brézis-Lions [11], and the proximal-gradient algorithm [63, 51],
with applications in image and signal processing, such as the iterative shrinkage threshold-
ing algorithm [33, 24], are keynote particular cases. Moreover, some primal dual methods
[16, 27, 69] can be reduced to these types of iterations.

Although we will not study the convergence of the iterations (4.3) in this section (which
will be studied in detail in Chapter 5), our main purpose here is to analyze them as discrete
approximations of an evolution equation governed by the sum A+B. To this end, it is useful
to rewrite (4.3) in a more general way

− xn − xn−1

λn
+ εn ∈ Axn +Bxn−1, n ∈ N, (4.4)

where εn accounts for possible perturbations or computational errors. In the notation of
(4.3), this is

xk = JAλk(Eλk(xk−1) + λkεk). k ∈ N (4.5)
When εk = 0 for all k ∈ N, the left-hand in (4.4) side can be interpreted as a discretization
of the velocity for a trajectory t 7→ u(t), so (4.4) can be related to the differential inclusion

− u̇(t) ∈ Au(t) +Bu(t), (4.6)

for t > 0. In the following sections, we shall establish the nature of this relationship. On
the one hand, we shall prove that the iterations described in (4.4) can be used, in at least
two different ways, to construct a sequence of curves that approximate the solutions of (4.6)
uniformly on each compact time interval. The existence of such solutions is obtained as a
byproduct. On the other hand, we shall show that, given A and B, the trajectories satisfying
(4.6) will have the same convergence properties, when t → +∞, as the sequences satisfying
(4.4), when k → +∞, provided the step sizes are sufficiently small.

For λ, µ ∈
(
0, θ

κ

]
, let Ea

λ = Eλ(x) + λa, Eb
µ = Eµ(x) + µb and T aλ (x) = JAλ (Ea

λ(x)),
T bµ(y) = JAµ (Eb

µ(y)), with a, b, x, y ∈ X. We have the following auxiliary result:

Lemma 4.1 Write Θ = θ
κ
. For λ, µ ∈ (0,Θ] and a, b, x, y ∈ X, we have:

‖T aλ (x)− T bµ(y)‖ ≤ α‖y − T aλ (x)‖+ β‖x− T bµ(y)‖+ γ‖x− y‖+ γΘ‖a− b‖, (4.7)

where
α =

µ(Θ− λ)

Θ(λ+ µ)− λµ
, β =

λ(Θ− µ)

Θ(λ+ µ)− λµ
, γ =

λµ

Θ(λ+ µ)− λµ
. (4.8)

Proof. Setting

(λ+ µ)‖T aλ (x)− T bµ(x)‖2 = (λ+ µ)〈T aλ (x)− T bµ(y),∆〉X,X∗
= µ〈Ea

λ(x)− T bµ(y),∆〉 − λ〈Eb
µ(y)− T aλ (x),∆〉

+ λµ

〈
1

µ
(Eb

µ(y)− T bµ(y))− 1

λ
(Ea

λ(x)− T aλ (x)),∆

〉
≤ µ〈Ea

λ(x)− T bµ(y),∆〉 − λ〈Eb
µ(y)− T aλ (x),∆〉, (4.9)
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since A is accretive and

Eb
µ(y)− T bµ(y)

µ
∈ A(T bµ(y)) ;

Ea
λ(x)− T aλ (x)

λ
∈ A(T aλ (x))

for all λ, µ ∈ (0,Θ] and a, b, x, y ∈ X. On the other hand

−λµ‖T aλ (x)− T bµ(y)‖2 = −λµ〈x− T bµ(y),∆〉+ λµ〈y − T aλ (x),∆〉+ λµ〈x− y,∆〉. (4.10)

Combining (4.9) and (4.10), we obtain:

[Θ(λ+ µ)− λµ]‖T aλ (x)− T bµ(y)‖2 ≤ µ(Θ− λ)〈x− T bµ(y),∆〉 − λ(Θ− µ)〈y − T aλ (x),∆〉
+ λµ〈EΘ(x)− EΘ(y),∆〉+ Θλµ〈a− b,∆〉.

Since Θ(λ+ µ)− λµ > 0 and EΘ is nonexpansive, we obtain

‖T aλ (x)− T bµ(y)‖ ≤ α‖y − T aλ (x)‖+ β‖x− T bµ(y)‖+ γ‖x− y‖+ γΘ‖a− b‖.

There exist previous versions of Kobayashi’s inequiality–types related to m-accretive op-
erators (maximally monotone operators in Hilbert space setting). The first version was
proposed in [44, Lemma 2.1] (see also [65] for the version in Hilbert space setting) and allows
to estimate the distance between arbitrary iterates of two independent sequences generated
by (4.3) with B = 0. A new version of Kobayashi’s inequality was presented in Lemma 3.4
when the sequence are generated by (4.3) when A = 0 and εn = 0 for all n ∈ N. In the
following result, we provide a new version of Kobayashi’s inequality to forward–backward
iterations (4.5).

Theorem 4.2 Let {xk}k∈N, {x̂l}l∈N be two sequences generated by (4.5), with stepsizes
{λk}k∈N and {λ̂l}l∈N, respectively and 0 < λk, λ̂l ≤ Θ for all k, l ∈ N. Then, for u ∈ D(A)

‖xk − x̂l‖ ≤ ‖x0 − u‖+ ‖x̂0 − u‖+ ‖|(A+B)u|‖
√

(σk − σ̂l)2 + τk + τ̂l + Sk + Ŝl, (4.11)

where Sk =
k∑

i=1

λi‖εi‖, ‖|Au|‖ = inf
v∈Au
‖v‖, σk =

k∑
i=1

λi and τk =
k∑

i=1

λ2
i (similarly for Ŝl, σ̂l

and τ̂l).

Proof. To simplify notation, set

Ck,l =
√

(σk − σ̂l)2 + τk + τ̂l.

In view the characterization (4.4) of the sequence {xk}k∈N, we have

yk =
Eλk(xk−1) + λkεk − xk

λk
∈ Axk for each k ∈ N.

Thus, for v ∈ Au and the accretivity of A we obtain:

‖xk − u‖ ≤ ‖xk − u+ λk(yk − v)‖ = ‖Eλk(xk−1)− Eλk(u) + λkεk − λk(Bu+ v)‖
≤ ‖Eλk(xk−1)− Eλk(u)‖+ λk‖v +Bu‖+ λ‖εk‖.

47



Since Eλk is nonexpansive and v ∈ Au is arbitrary, we obtain

‖xk − u‖ ≤ ‖xk−1 − u‖+ λk‖|(A+B)u|‖+ λk‖εk‖.

Iterating this inequality we have

‖xk − u‖ ≤ ‖x0 − u‖+ σk‖|(A+B)u|‖+ Sk,

where we get

‖xk − x̂0‖ = ‖xk − u‖+ ‖x̂0 − u‖
≤ ‖x0 − u‖+ ‖x̂0 − u‖+ σk‖|(A+B)u|‖+ Sk

≤ ‖x0 − u‖+ ‖x̂0 − u‖+ Ck,0‖|(A+B)u|‖+ Sk

Thus, the inequality holds for (k, 0). In a similar fashion we prove the inequality for (0, l),
for l ≥ 0. The proof will continue using induction on the pair (k, l). For the inductive step,
we assume the inequality holds for the pairs (k− 1, l− 1), (k, l− 1) and (k− 1, l), and prove
that it also holds for the pair (k, l). To this end, we use the inequality (4.7) with x = xk−1,
y = x̂l−1, λ = λk, µ = λ̂l, a = λkεk and b = λ̂lε̂l:

‖xk − x̂l‖ ≤ αk,l‖xk − x̂l−1‖+ βk,l‖xk−1 − x̂l‖+ γk,l‖xk−1 − x̂l−1‖+ γk,lΘ‖εk − ε̂l‖. (4.12)

Now, using the induction hypothesis in (4.12) and αk,l + βk,l + γk,l = 1, we deduce that

‖xk − x̂l‖ ≤ ‖x0 − u‖+ ‖x̂0 − u‖+ ‖|(A+B)u|‖ (αk,lck,l−1 + βk,lck−1,l + γk,lck−1,l−1)

+ γk,lΘ(‖εk‖+ ‖ε̂l‖) + αk,l(Sk + Ŝl−1) + βk,l(Sk−1 + Ŝl) + γk,l(Sk−1 + Ŝl−1).

= ‖x0 − u‖+ ‖x̂0 − u‖+ ‖|(A+B)u|‖ (αk,lck,l−1 + βk,lck−1,l + γk,lck−1,l−1)

+ Sk−1 + Ŝl−1 + (αk,lλk + γk,lΘ)‖εk‖+ (βk,lλ̂a + γk,lΘ)‖ε̂l‖
= ‖x0 − u‖+ ‖x̂0 − u‖+ ‖|(A+B)u|‖ (αk,lck,l−1 + βk,lck−1,l + γk,lck−1,l−1) + Sk + Ŝl

(4.13)

since αk,lλk + γk,lΘ = λk and βk,lλ̂l + γk,lΘ = λ̂l. On the other hand, notice that

αk,lck,l−1 + βk,lck−1,l + γk,lck−1,l−1 ≤
√
αk,l + βk,l + γk,l

√
αk,lc2

k,l−1 + βk,lc2
k−1,l + γk−1,l−1c2

k,l

=
√
αk,lc2

k,l−1 + βk,lc2
k−1,l + γk−1,l−1c2

k,l, (4.14)

On the other hand

c2
k,l−1 = c2

k,l + 2λ̂l(σk − σ̂l)
c2
k−1,l = c2

k,l + 2λk(σk − σ̂l)
c2
k−1,l−1 = c2

k,l + 2(λ̂l − λk)(σk − σ̂l)− 2λkλ̂l.

Therefore,

αk,lc
2
k,l−1 + βk,lc

2
k−1,l + γk,lc

2
k−1,l−1 = c2

k,l − 2γk,lλkλ̂l ≤ c2
k,l. (4.15)

Combining (4.13), (4.14) and (4.15), we obtain (4.11).
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4.2 Approximation in finite horizon

Theorem 4.2 provides existence and regularity results for the evolution equation{
−u̇(t) ∈ (A+B)u(t), for almost every t > 0,

u(0) = u0 ∈ D(A),
(4.16)

by means of an approximation scheme. For each t ≥ 0 and m ≥ 1, set

um(t) =
[
T t
m

]m
u0. (4.17)

In other words, um(t) is the m-th term of the forward-backward sequence generated by
(4.3) from u0 using the constant step size λk ≡ t/m for all k ∈ N. We shall prove that
{um} converges uniformly on compact intervals to a Lipschitz-continuous function satisfying
(4.16).

Proposition 4.3 The sequence {um}m∈N converges pointwise on [0,+∞) and uniformly on
[0, S] for each S > 0, to a function u : [0,+∞) → X which is globally Lipschitz-continuous
with constant ‖|(A+B)u0|‖.

Proof. We may assume that u0 ∈ D(A). Extension to D(A) will then be possible in view of
the Lipschitz (thus uniform) continuity. Given t, s > 0 and n,m ∈ N, define um(t) and un(s)
as above. By Theorem 4.2, we have:

‖um(t)− un(s)‖ ≤ ‖|(A+B)u0|‖
√

(t− s)2 +
t2

m
+
s2

n
. (4.18)

For s = t, this gives

‖um(t)− un(t)‖ ≤ t ‖|(A+B)u0|‖
√

1

m
+

1

n
.

It follows that {um}m∈N converges pointwise on [0,+∞), and uniformly on [0, S] for each
S > 0, to a function u : [0,+∞)→ X. Passing to the limit in (4.18), we obtain

‖u(t)− u(s)‖ ≤ ‖|(A+B)u0|‖ · |t− s|

for all t, s > 0.

Remark 4.4 Given S > 0 and m ≥ 1, define vm : [0, S]→ X by

vm(t) =
[
T S
m

]µ(t)

u0, where µ(t) =

⌊
m
t

S

⌋
and t ∈ [0, S]. (4.19)

This is a piecewise constant interpolation of the forward-backward sequence generated with
S
m
as step sizes, and initial point u0 for k = 1, . . .m. In order to estimate the distance between

vm and um defined in (4.17) and (4.19) respectively, we use (4.11) to obtain

‖um(t)− vm(t)‖ ≤ ‖|(A+B)u0|‖
√
S2

m2
+
t2

m
+
tS

m
≤ 3S√

m
‖|(A+B)u0|‖.

Whence, as m → ∞, vm also converges uniformly on [0, S], for each S > 0, to the same
function u.
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Theorem 4.5 The function u, given by Proposition 4.3, satisfies (4.16).

Proof. In this case, it suffices to verify that it is an integral solution in the Benilan’s sense
[9, Proposition 2.5], which means that, whenever y ∈ (A+B)x and S ≥ t > s ≥ 0, we have

‖u(t)− x‖2 − ‖u(s)− x‖2 ≤ 2

∫ t

s

〈J (x− u(τ)), y〉dτ. (4.20)

If {xn}n∈N is any sequence generated by (4.3) with steps sizes {λn}n∈N, then

−(xn − xn−1)− λnBxn−1 + λnBxn ∈ λnAxn + λnBxn

for each n ∈ N. In view of the monotonicity of A+B, we have

〈J (x− xn), λny + xn − xn−1 + λnBxn−1 − λnBxn〉 ≥ 0,

whenever y ∈ Ax+Bx. Whence,

2λn〈J (x− xn), y〉 ≥ 2〈J (x− xn), xn−1 − xn〉+ 2λn〈J (x− xn), Bxn −Bxn−1〉
= 2‖xn − x‖2 + 2〈J (x− xn), xn−1 − x〉+ 2λn〈J (x− xn), Bxn −Bxn−1〉
≥ ‖xn − x‖2 − ‖xn−1 − x‖2 + 2λn〈J (x− xn), Bxn −Bxn−1〉
≥ ‖xn − x‖2 − ‖xn−1 − x‖2 − 2θ−1λn‖x− xn‖‖xn − xn−1‖.

Thus

‖xn − x‖2 − ‖xn−1 − x‖2 ≤ 2λn〈J (x− xn), y〉+ 2θ−1λn‖x− xn‖‖xn − xn−1‖. (4.21)

Now, let us choose x0 = u0, λn ≡ S
m
, where m is fixed but arbitrary. In view of Remark 4.4,

there is a constant K > 0 such that 2θ−1‖x − xn‖ ≤ K for n = 1, . . . ,m. Summing up for
n = µ(s), · · · , µ(t) in (4.21), we obtain

‖vm(t)− x‖2 − ‖u(s)− x‖2 ≤ 2

µ(t)∑
n=µ(s)

S

m
[〈J (x− xn), y〉+K‖xn − xn−1‖]

≤ 2

µ(t)∑
n=µ(s)

S

m
〈J (x− xn), y〉+

µ(t)∑
n=µ(s)

6S2K‖|(A+B)u0|‖
m
√
m

= 2

µ(t)∑
n=µ(s)

S

m
〈J (x− xn), y〉+ (µ(t)− µ(s))

6S2K‖|(A+B)u0|‖
m
√
m

≤ 2

µ(t)∑
n=µ(s)

S

m
〈J (x− xn), y〉+

6S2K‖|(A+B)u0|‖√
m

.

We obtain (4.20) by letting m→∞.

As a consequence of Theorem (4.2) and Theorem 4.5, we have

Corollary 4.6 . Let {xk}k∈N be a sequence generated by (4.3) with εk = 0 for all k ∈ N and
u : [0, T ]→ X a solution of (4.17). Then

(i) The function t 7→ ‖|(A+B)u(t)|‖ is nonincreasing.
(ii) ‖xk − u(t)‖ ≤ ‖x0 − u0‖+ min{‖|(A+B)x0|‖, ‖|(A+B)u0|‖}

√
(σk − t)2 + τk.
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4.3 Approximation in infinite horizon

In this section, we show that forward–backward sequence presented in (4.3) have the same
asymptotic behavior as the number of the iterations goes to infinity, as the solutions of the
evolution equation (4.16). The key argument is the idea of asymptotic equality introduced
by Passty [63], closely related to the notion of almost-orbit, introduced by Miyadera and
Kobayasi [46]. Further commentaries on this topic can be found in [1, 2, 3]. To simplify the
notation, given x ∈ D(A) and t ≥ 0, we write

Stx = u(t), (4.22)

where u satisfies (4.16) with x0 = x. Also, for 0 ≤ s ≤ t, we write

US(t, s) = S(t− s). (4.23)

In a similar fashion, if n ∈ N and x ∈ X, we denote

Tnx = Tλn ◦ · · · ◦ Tλ1x. (4.24)

In other words, Tnx is the n-th term of the forward-backward sequence (4.3) starting from
x ∈ D(A). Assume {λn}n∈N /∈ `1, and write ν(t) = max{n ∈ N : σn ≤ t}. For 0 ≤ s ≤ t, we
set

UT (t, s) =

ν(t)∏
i=ν(s)+1

Tλi , (4.25)

where the product denotes composition of functions and the empty composition is the identity.

Example 4.7 The families
(
US
)
and

(
UT
)
, defined in (4.23) and (4.25), respectively, are

nonexpansive evolution systems. Actually, the same is true if S is replaced by any other semi-
group of nonexpansive functions on X, and if each Tλi is replaced by any other nonexpansive
function on X.

The following result from [2, Theorem 3.3] reveals the usefulness of the concept of almost-
orbit.

Proposition 4.8 Let U be a nonexpansive evolution system and let φ be an almost-orbit of
U . If, for each x ∈ X and s ≥ 0, U(t, s)x converges weakly (resp. strongly) as t→∞, then
so does φ(t). The same holds if the word "converges" is replaced by "almost-converges" or
"converges in average".

The following result establishes a relationship between the trajectories generated by US
and UT :

Theorem 4.9 Let {λn}n∈N ∈ `2 \ `1, and fix x ∈ X. For each t > 0, define φS(t) = Stx and
φT (t) = Tν(t)x

1. Then, φS is an almost-orbit of UT , and φT is an almost-orbit of US .
1This is a piecewise constant interpolation of the sequence Tnx.
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Proof. We first prove that φS is an almost-orbit of UT . By Theorem 4.2, we have∥∥∥∥∥∥
[
m∏
k=1

T h
m

]
Stx−

 ν(t+h)∏
i=ν(t)+1

Tλi

Stx
∥∥∥∥∥∥ ≤ ‖|(A+B)Stx|‖

√(
σ
ν(t+h)
ν(t)+1 − h

)2

+ τ
ν(t+h)
ν(t)+1 +

h2

m

≤ ‖|(A+B)x|‖
√

4ρ2(t) + τ∞ν(t)+1 +
h2

m
,

where σnk = σn − σk, τnk = τn − τk and ρ(t) := sup{λn : n ≥ ν(t) − 1}, which vanishes as
t→∞. Passing to the limit as m→ +∞, we obtain

‖ShStx− UT (t+ h, t)Stx‖ ≤ ‖|(A+B)x|‖
√

4ρ2(t) + τ∞ν(t)+1,

which is uniform in h ≥ 0. It follows that

lim
t→+∞

sup
h≥0
‖φS(t+ h)− UT (t+ h, t)φS(t)‖ = 0.

To prove that φT is an almost-orbit of US , we proceed in a similar fashion, using Theorem
4.2 to obtain∥∥∥∥∥∥

ν(t+h)∏
i=ν(t)+1

TλiTν(t)x−
m∏
k=1

T h
m
Tν(t)x

∥∥∥∥∥∥ ≤ ‖|(A+B)x|‖
√

4ρ2(t) + τ∞ν(t)+1 +
h2

m
,

then passing to the limit as m→ +∞ to deduce that

‖φT (t+ h)− ShφT (t)‖ ≤ ‖|(A+B)x|‖
√

4ρ2(t) + τ∞ν(t)+1,

and conclude.

Theorem 4.9 implies [63, Lemmas 4 & 6], [47, Proposition 2.3], [46, Proposition 7.4],[65,
Proposition 8.6 i) & 8.7], [30, Theorem 3.1]. Combining Theorem 4.9 with Proposition 4.8,
and using [74, Lemma 5.3], we obtain:

Theorem 4.10 The following statements are equivalent:

i) For every z ∈ D(A), Stz converges strongly (weakly) as t→∞.
ii) For every initial point x0 ∈ X, every sequence of step sizes {λn}n∈N ∈ `2 \ `1 and every

sequence of errors {εn}n∈N such that
∑∞

n=1 ‖εn‖ < +∞, the sequence {xn}n∈N generated
by (4.5), converges strongly (weakly), as n→∞.

iii) There exist a sequence of step sizes {λn}n∈N ∈ `2 \ `1 such that, for every initial point
x0 ∈ X, the sequence {xn}n∈N generated by (4.4), converges strongly (weakly), as n→
∞.

Theorem 4.10 implies [63, Theorem 1 & Theorem 2], [47, Theorem], [46, Theorem 7.5], as
well as [30, 3.2].
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New convergence results for forward–backward sequences on Banach spaces.

Recall from Section 4.1 that X is a real Banach sace with 2-uniformly convex dual, A is
m-accretive, B is cocoercive. Let {εn}n∈N be a sequence representing computational errors
and let {xn}n∈N satisfy (4.5). We assume that

∑∞
n=1 ‖εn‖ <∞. Finally, set A = A+B and

Σ = A−1(0), and assume that A 6= ∅.. To simplify the statements and arguments, suppose
X is uniformly convex. We know that Σ is closed and convex, and the projection PΣ is well
defined, single-valued and continuous.

Theorem 4.11 Let {λn}n∈N ∈ `2 \ `1. Assume one of the following conditions holds:

i) There is α > 0 such that for every x /∈ Σ and every y ∈ A(x),

〈y,J (x− PΣ(x))〉 ≥ α‖x− PΣ(x)‖2

.
ii) JA1 is compact and, for every every y ∈ A(x), 〈y,J (x− PΣ(x))〉 ≥ 0; or
iii) The interior of Σ is not empty.

Then, {xn}n∈N converges strongly, as n→∞, to a point in Σ.

Proof. In all three cases, we first prove that for each z ∈ D(A), Stz converges strongly, as
t→ +∞, to a point in Σ.

i) The hypothesis of [59, Theorem 1] are easily verified.
ii) It suffices to combine [59, Proposition 1] and [59, Theorem 1].
iii) We use [59, Theorem 4].

We conclude by applying Theorem (4.10).
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Chapter 5

Work in progress 1: Analysis of the
nonautonomous case

Álvarez and Peypouquet in [1] provide a generalization to the nonautonomous case of the
Kobayashi’s inequality for the proximal iterates governed by nonautonomous maximally
monotone operator and the asymptotic equivalence between continuous trajectories asso-
ciated to the differential inclusion governed by a family of nonautonomous m-accretive op-
erators and the corresponding proximal iterates. Our main goal is to extend these results
to the case where the continuous and discretes trajectories are governed by the sum of a
maximally monotone operator with a cocoercive operator in the Hilbert space setting.

Advanced work

The advanced work is Kobayashi-type inequality which enable us to get an estimation of
the distance between two iterates of independent sequences governed by two families of
nonautonomous maximal monotones with a certain structure in Hilbert space setting, as we
explain below.

Throughout this chapter, X will be a real Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖. For D ⊂ X a nonempty set, let {A(t)}t≥0 and {Â(t)}t≥0 be two families of maximally
montone operators with common domain D and let B : X → X be a cocoercive operator of
parameter θ ≥ 0, defined on X.

Consider two forward–backward schemes governed by An, Âm and B and respectively:

− xn+1 − xn
λn+1

∈ An+1xn+1 +Bxn, −
x̂m+1 − x̂m
λ̂m+1

∈ Âm+1x̂m+1 +Bx̂m, n,m ≥ 1, (5.1)

with initial points x0, x̂0 ∈ D respectively, An = A(σn), Âm = Â(σ̂m), σn =
∑n

i=1 λi and
τn =

∑n
i=1 λ

2
i (similarly for σ̂m and τ̂m respectively), with λn, λ̂m ∈ (0, θ], for all n,m ∈ N.

According with Lemma 3.1, the function Eλ = I − λB is a nonexpansive function for all
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λ ∈ (0, θ], which allows us rewrite the iterations defined in (5.1) by

xn+1 = JAnλn (Eλn(xn)), x̂m+1 = JAm
λ̂m

(Eλ̂m(x̂m)). (5.2)

Such as in [1], we shall assume that the following condition holds:

∀m,n ∈ N,∃Θn,m ≥ 0,∀[x, v] ∈ An,∀[x̂, v̂] ∈ Âm,
〈x− x̂, v̂ − v〉
‖x− x̂‖

≤ Θn,m. (5.3)

The condition (5.3) was introduced by [45] to determinate the existance of weak solutions
for nonautonomous differential inclusions.

The main goal in this section is provide a global estimation of the distance between two
iterates of the independent sequences generated by (5.2). First, we shall need the following
technical result. For λ > 0, let Tλ : X → X be the mapping defined by Tλ = JAλ ◦ Eλ.

Lemma 5.1 For λ, µ ∈ (0, θ], we have

‖Tλ(u)− T̂µ(v)‖ ≤ α‖v − Tλ(u)‖+ β‖u− T̂µ(v)‖+ γ‖u− v‖+ γθ

〈
w − ŵ, ∆

‖∆‖

〉
,

where
α =

µ(θ − λ)

θ(λ+ µ)− λµ
, β =

λ(θ − µ)

θ(λ+ µ)− λµ
, γ =

λµ

θ(λ+ µ)− λµ
. (5.4)

Proof. For λ, µ ∈ (0, θ] and setting ∆ = Tλ(v)− T̂µ(u) we have

θ(λ+ µ)‖Tλ(u)− T̂µ(v)‖2 = θµ〈Eλ(u)− T̂µ(v),∆〉 − θλ〈Eµ(v)− Tλ(u),∆〉

+ θλµ

〈
1

µ
(Eµ(v)− T̂µ(v))− 1

λ
(Eλ(u)− Tλ(u)),∆

〉
= θµ

〈
u− T̂µ(v),∆

〉
− θλ 〈v − Tλ(u),∆〉

+ θλµ 〈Bv −Bu,∆〉+ θλµ〈ŵ − w,∆〉, (5.5)

where w =
1

λ
(Eλ(u)− Tλ(u)) and ŵ =

1

µ
(Eµ(v)− T̂µ(v)). On the other hand,

− λµ‖Tλ(u)− T̂µ(v)‖2 = −λµ〈u− T̂µ(v),∆〉+ λµ〈v − Tλ(u),∆〉+ λµ〈u− v,∆〉 (5.6)

From (5.5) and (5.6), we have

[θ(λ+ µ)− λµ]‖Tλ(u)− Tµ(v)‖2 ≤ µ(θ − λ)〈v − Tλ(u),∆〉 − λ(θ − µ)〈u− T̂µ(v),∆〉
+ λµ〈Eθ(v)− Eθ(u),∆〉+ θλµ〈ŵ − w,∆〉.

From Cauchy-Shwartz inequality and using that Eθ is a nonexpansive operator, we have

‖Tλ(u)− T̂µ(v)‖ ≤ α‖v − Tλ(u)‖+ β‖u− T̂µ(v)‖+ γ‖u− v‖+ γθ

〈
ŵ − w, ∆

‖∆‖

〉
.
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Theorem 5.2 Let {xn}n∈N and {x̂m}m∈N be two sequences generated (5.1) with stepsizes
{λn}n∈N and {λ̂m}m∈N respectively and 0 < λn, λ̂m ≤ θ. Then, for z ∈ D we have:

‖xn− x̂m‖ ≤ ‖x0− z‖+ ‖x̂0− z‖+ ξn,m +
√

(σn(z)− σ̂m(z))2 + τn(z) + τ̂m + ηn,m(z), (5.7)

where σn(z) =
n∑

i=1

λi‖(Ai +B)0z‖, τn(z) =
n∑

i=1

λ2
i ‖(Ai +B)0z‖2 (similarly σ̂m(z) and τ̂m(z)),

{
ξn,0 = ξ0,m = 0, and
ξn,m = αn,mξn,m−1 + βn,mξn−1,m + γn,mξn−1,m−1 + θγn,mΘn,m.

(5.8)


ηn,0(z) = η0,m(z) = 0, and
ηn,m(z) = αn,mηn,m−1(z) + βn,mηn−1,m(z) + γn,mηn−1,m−1(z)

+ 2θγn,m (σn(z)− σ̂m(z))
[
‖(Âm +B)0(z)‖ − ‖(An +B)0(z)‖

]
.

(5.9)

Here, Θn,m ≥ 0 is given by (5.3)

Proof. For z ∈ D, let

Cn,m(z) =
√

(σn(z)− σ̂m(z))2 + τn(z) + τ̂m(z) + ηn,m(z). (5.10)

For x1 the first iteration of (5.1), v1 = −x1 − Eλ1(x0)

λ1

, z ∈ D and using (2.1), we have:

‖x1 − z‖ ≤ ‖x1 − z + λ1(v1 − A0
1z)‖

≤ ‖x0 − z‖+ λ1‖(A1 +B)0z‖
= ‖x0 − z‖+ σ1(z),

where the second inequality holds because Eλ1 is nonexpansive. Inductively we have

‖xn − z‖ ≤ ‖x0 − z‖+ σn(z) ≤ ‖x0 − z‖+ Cn,0(z). (5.11)

for all z ∈ D and n ∈ N. Now, from (5.11), we have

‖xn − x̂0‖ ≤ ‖x0 − z‖+ ‖x̂0 − z‖+ Cn,0(z), (5.12)

for each z ∈ D and the inequality (5.7) holds for (n, 0). In a similar fashion we can prove
the inequality (5.7) holds for (0,m), for m ≥ 0.

For the inductive step, we assume the inequality (5.7) holds for the pairs (n− 1,m− 1),
(n,m− 1) and (n− 1,m− 1), and prove that it also holds for the pair (k, l). To this end, we
use the inequality (5.4) with u = xn−1, v = x̂m−1, λ = λn and µ = λ̂m:

‖xn − x̂m‖ ≤ αn,m‖xn − x̂m−1‖+ βn,m‖xn−1 − x̂m‖+ γn,m‖xn−1 − x̂m−1‖+ γn,m

+ γn,mθ

〈
wn − ŵm,

∆n,m

‖∆n,m‖

〉
,
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where αn,m, βn,m, γn,m are given by (5.4). Since
[
Tλn(xn−1),

Eλn(xn−1)− Tλn(xn−1)

λn

]
∈ An

and

[
T̂λ̂m(x̂m−1),

Êλm(x̂m−1)− T̂λ̂m(x̂m−1)

λ̂m

]
∈ Âm, then there exist Θn,m > 0 such that,〈

wn − ŵm, ∆n,m

‖∆n,m‖

〉
≤ Θn,m for all m,n ≥ 0 (see [1]). Using induction hypothesis, we have

‖xn − x̂m‖ ≤ αn,m‖xn − x̂m−1‖+ βn,m‖xn−1 − x̂m‖+ γn,m‖xn−1 − x̂m−1‖+ γn,mθΘn,m

≤ (αn,m + βn,m + γn,m)(‖x0 − z‖+ ‖x̂0 − z‖)
+ (αn,mξn,m−1 + βn,mξn−1,m + γn,mξn−1,m−1 + θγn,mΘn,m)

+ (αn,mCn,m−1(z) + βn,mCn−1,m(z) + γn,mCn−1,m−1(z))

= ‖x0 − z‖+ ‖x̂0 − z‖+ (αn,mξn,m−1 + βn,mξn−1,m + γn,mξn−1,m−1 + θγn,mΘn,m)

+ (αn,mCn,m−1(z) + βn,mCn−1,m(z) + γn,mCn−1,m−1(z)) (5.13)

On the other hand

αn,mCn,m−1(z) + βn,mCn−1,m(z) + γn,mCn−1,m−1(z) = α
1
2
n,m(α

1
2
n,mCn,m−1(z)) + β

1
2
n,m(β

1
2
n,mCn−1,m(z))

+ γ
1
2
n,m(γ

1
2
n,mCn−1,m−1(z))

≤ (αn,mC
2
n,m−1(z) + βn,mC

2
n−1,m(z)

+ γn,mC
2
n−1,m−1(z))

1
2 .

Let λn(z) = λn‖(An +B)0z‖ and λ̂m(z) = λ̂m‖(Âm +B)0z‖. Notice that

C2
n,m−1(z) = (σn(z)− σ̂m(z))2 + τn(z) + τ̂m(z) + ηn,m−1(z) + λ̂m(z)(σn(z)− σ̂m(z)), (5.14)

C2
n−1,m(z) = (σn(z)− σ̂m(z))2 + τn(z) + τ̂m(z) + ηn−1,m(z)− λn(z) (σn(z)− σ̂m(z)) , (5.15)

and

C2
n−1,m−1(z) = (σn(z)− σ̂m(z))2 + τn(z) + τ̂m(z) + ηn−1,m−1(z)

− 2
(
λn(z)− λ̂m(z)

)
(σn(z)− σ̂m(z))− 2λ̂m(z)λn(z)

≤ (σn(z)− σ̂m(z))2 + τn(z) + τ̂m(z) + ηn−1,m−1(z)

− 2
(
λn(z)− λ̂m(z)

)
(σn(z)− σ̂m(z)). (5.16)

Replacing (5.14), (5.15), (5.16) in (5.13) and setting

rn,m = (αn,mCn,m−1(z) + βn,mCn−1,m(z) + γn,mCn−1,m−1(z))2,
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we have:

rn,m ≤ (σn(z)− σ̂m(z))2 + τn(z) + τ̂m + αn,mηn,m−1(z) + βn,mηn,m−1(z) + γn,mηn−1,m−1(z)

+ 2(σn(z)− σ̂m(z))
[
λ̂m(z)(αn,m + γn,m)− λn(z)(γn,m + βn,m)

]
= (σn(z)− σ̂m(z))2 + τn(z) + τ̂m + αn,mηn,m−1(z) + βn,mηn,m−1(z)

+ γn,mηn−1,m−1(z) +
2θ

θ(λn + λ̂m)− λnλ̂m

[
λnλ̂(z)− λ̂mλn(z)

]
≤ (σn(z)− σ̂m(z))2 + τn(z) + τ̂m + αn,mηn,m−1(z) + βn,mηn,m−1(z)

+ γn,mηn−1,m−1(z) +
2θλnλ̂m

θ(λn + λ̂m)− λnλ̂m

[
‖(Âm +B)0(z)‖ − ‖(An +B)0(z)‖

]
= (σn(z)− σ̂m(z))2 + τn(z) + τ̂m + αn,mηn,m−1(z) + βn,mηn,m−1(z)

+ γn,mηn−1,m−1(z) + 2θγn,m

[
‖(Âm +B)0(z)‖ − ‖(An +B)0(z)‖

]
= C2

n,m(z).

Therefore
‖xn − x̂m‖ ≤ ‖x0 − z‖+ ‖x̂0 − z‖+ ξn,m + Cn,m(z), (5.17)

for all z ∈ D and n,m ∈ N.

Remark 5.3 When A = Â and no dependent of a temporal parameter t ≥ 0, (5.1) becomes
to forward–backward scheme (4.3). Then we recover the Kobayashi’s inequality (4.11) with
εn = ε̂m = 0 for all n,m ∈ N in Hilbert spaces setting: for z ∈ D(A) and n,m ∈ N

‖xn − x̂m‖ ≤ ‖x0 − z‖+ ‖x̂0 − z‖+ (‖(A+B)0z‖)
√

(σn − σ̂m)2 + τn + τ̂m. (5.18)

The inequality could reveal us the relationship between the corresponding continuous and
discrete systems in a finite and infinite horizon. However, the inequality (5.7) has some terms
expressed implicitly, which makes its implementation difficult. We plan to use combinatorial
techniques to obtain estimates of these implicit terms in (5.7). This work represents a first
interesting challenge, which could be developed in a post-doctoral project.
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Part II

Forward Backward and Primal Dual
algorithms
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Foreword

In this second part of the manuscript, we show some results obtained on the acceleration of
certain primal–dual algorithms for image processing by using the asymptotic properties of
the preconditioned forward–backward algorithm.

Using the information about the asymptotic behavior of overrelaxed forward–backward
algorithm, in Chapter 6 we deal specifically with the algorithms presented by Loris–Verhoeven
[53] and Condat–Vũ [27, 69], when the cocoercive operator in both algorithms is affine.
Finally, some numerical experiments related to the implementation of these algorithms in
image recovery will be presented. This work was developed during a visit research at GIPSA-
LAB of the Grenoble–Alpes University, under supervision of Professor Laurent Condat.

The Chapter 7 is dedicated to show a second current work on the convergence of the
gradient and proximal–gradient algorithms under assumptions in [72], instead of the usual
Lipschitz condition. This problem was proposed by proffesor Hong-Kun Xu during my visit
research to the Hangzhou-Dianzi University in Hangzhou, China.
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Chapter 6

Relaxed Forward–Backward Splitting
and some Primal–Dual Algorithms

A joint work with L. Condat, D. Kitahara and A. Hirabayashi [26]

6.1 The forward–backward iteration

Throughout this chapter, H will be a real Hilbert space endowed with the inner product
〈·, ·〉, A : H → 2H a maximally monotone operator and B : H → H a θ-cocoercive operator,
for some real θ > 0. The forward–backward algorithm, proposed by Mercier [55] and further
developed by many authors [51, 37, 68, 18, 23, 25], allows to approach the solutions of the
monotone inclusion

0 ∈ Az +Bz. (6.1)

For z0 ∈ H an initial estimate of a solution and γ > 0 a real parameter, the classical
forward–backward iteration [51, 62, 8] to find a solution to (6.1), is given by:

For n = 0, 1, . . .⌊
zn+1 = JAγ (zn − γBzn) , (6.2)

A not so well known iterative method to approximate solution of (6.1) is the overrelaxed
forward–backward algorithm. The geometric intuition is quite simple: since zn+1 is closer to
a solution than zn, it is natural, starting at zn, to move further in the direction zn+1 − zn,
which improves the estimate. This yields the relaxed forward–backward iteration. From now
on, we will omit the word "relaxed" for simplicity.

For {ρn}n∈N a sequence of relaxation parameters, the iterations are described as follow:

Forward–Backward iteration for (6.1): for n=0,1,. . . zn+ 1
2

= JAγ

(
zn − γBzn

)
zn+1 = zn + ρn

(
zn+ 1

2
− zn

) . (6.3)
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While there is no interest in doing underrelaxation with ρn less than 1, it is expected that
convergence of (6.3) is faster if doing overrelaxation with ρn larger than 1; this is what is
most often observed in practice. On the other hand, the explicit mapping from zn to zn+ 1

2
in

(6.3) can be equivalently written under the implicit form:

0 ∈ Azn+ 1
2

+Bzn +
1

γ

(
zn+ 1

2
− zn

)
. (6.4)

The standard convergence for the forward–backward iteration is given by the following result
from [27, Lemma 4.4], see also [8, Theorem 26.14].

Theorem 6.1 (Forward–Backward algorithm (6.3))Suppose 0 < γ < 2θ and z0 ∈ H.
Set δ = 2−γ/(2θ). Suppose {ρn}n∈N is a sequence in [0, δ] such that

∑
n∈N ρn(δ−ρn) = +∞.

Then the sequence {zn}n∈N defined by the iteration (6.3) converges weakly to a solution of
(6.1).

The proof relies on the Krasnosel’skĭı–Mann theorem [8, Proposition 5.16 and Proposition
5.34], and the fact that the operator T = JAγ ◦ (I − γB), which maps zn to zn+ 1

2
, is (1/δ)-

averaged. Moreover, the fixed points of T are the solutions to (6.1), as is clearly visible in
(6.4).

Remark 6.2 If γ is close to 2θ, δ is close to 1, so that overrelaxation cannot be used. This
explains why the relaxed forward–backward iteration is not so well known.

Now, let P be a bounded, self-adjoint, strongly positive, linear operator on H. Clearly,
solving (6.1) is equivalent to solving

0 ∈ P−1Az + P−1Bz. (6.5)

Let HP be the Hilbert space obtained by endowing H with the inner product 〈x, x′〉P =
〈x, Px′〉, (x, x′ ∈ H). According with [8, Proposition 20.24], P−1A is maximally monotone
in HP . However, the cocoercivity of P−1B in HP has to be checked on a case-by-case basis.

The preconditioned forward–backward iteration to solve (6.5) is

Preconditioned Forward–Backward iteration for (6.5) for n = 0, 1, . . . zn+ 1
2

= JP
−1A

1

(
zn − P−1Bzn

)
zn+1 = zn + ρn

(
zn+ 1

2
− zn

) . (6.6)

In the case when P−1B is a cocoercive operator, the corresponding convergence result follows:

Theorem 6.3 (Preconditioned Forward–Backward algorithm (6.6)) Suppose that P−1B
is χ-cocoercive in HP , with χ > 1

2
. Set δ = 2−1/(2χ). Suppose that {ρn}n∈N is a sequence in

[0, δ] such that
∑

n∈N ρn(δ − ρn) = +∞. Then the sequence {zn}n∈N defined by the iteration
(6.6) converges weakly to a solution of (6.1).
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Proof. This is a straightforward application of Theorem 6.1 in HP instead of H, with γ = 1.
Weak convergence in HP is equivalent to weak convergence in H, and the solution sets of
(6.1) and (6.5) are the same.

Remark 6.4 The explicit mapping from zn to zn+ 1
2
in (6.6) can be equivalently written

under the implicit form:

0 ∈ Azn+ 1
2

+Bzn + P
(
zn+ 1

2
− zn

)
. (6.7)

If B = 0, the forward–backward iteration reduces to the proximal point algorithm [67, 8].
In that case, weak convergence to a zero of A is obtained with any γ > 0 and δ = 2, in the
notations of Theorem 6.3. Let us give a formal convergence statement for the more general
preconditioned proximal point algorithm. The problem is to solve

0 ∈ Az, (6.8)

when the solution set is supposed nonempty. Now, let P be a bounded, self-adjoint, strongly
positive, linear operator on H. Let z0 ∈ H and let {ρn}n∈N be a sequence of relaxation
parameters. The relaxed and preconditioned proximal point algorithm is the iteration:

Proximal point iteration for (6.8): for n = 0, 1, . . .⌊
zn+ 1

2
= JP

−1A
1 zn

zn+1 = zn + ρn

(
zn+ 1

2
− zn

) . (6.9)

The convergence of the preconditioned proximal point algorithm can be stated from Theorem
6.3 as follow:

Theorem 6.5 (Proximal point iteration (6.9)) Let z0 ∈ H and suppose that {ρn}n∈N is
a sequence in [0, 2] such that

∑
n∈N ρn(2− ρn) = +∞. Then the sequence {zn}n∈N defined by

the iteration (6.9), converges weakly to a solution of (6.8).

Proof. P−1A is maximally monotone operator in HP [8, Proposition 20.24]. Thus, its resol-
vent JP−1A

1 is firmly nonexpansive inHP and by virtue of the Krasnosel’skĭı–Mann theorem [8,
Proposition 5.16 and Proposition 5.34], the sequence {zn}n∈N converges weakly in HP to some
z∗ ∈ H with 0 ∈ P−1Az∗, so that 0 ∈ Az∗.

The case where B is affine

Let us suppose that, in addition to being θ–cocoercive, B is an affine operator. That means,
B : z ∈ H 7→ Qz + c, for some bounded, self-adjoint, positive, nonzero, linear operator Q on
H and some element c ∈ H. Then, we can write (6.4) as

0 ∈ (A+B)zn+ 1
2

+ P (zn+ 1
2
− zn), (6.10)

with
P =

1

γ
I−Q.
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Thus, the forward–backward iteration (6.6) can be interpreted as a preconditioned proximal
point iteration (6.9) when P = 1

γ
I − Q, applied to find a zero of A + B. Since P must be

strongly positive, we must have 0 < γ < θ, so that the admissible range for γ is halved. But
in return, we get the larger range [0, 2] for relaxation. Hence, we have the following new
convergence result:

Theorem 6.6 (Forward–Backward algorithm (6.3), affine case) Suppose 0 < γ < θ,
z0 ∈ H and {ρn}n∈N is a sequence in [0, 2] such that

∑
n∈N ρn(2 − ρn) = +∞. Then the

sequence {zn}n∈N defined by the iteration (6.9) converges weakly to a solution of (6.1).

Proof. In view of (6.10) and (6.9), this is Theorem 6.5 applied to the problem (6.8) with
A+B, which is maximally monotone.

Remark 6.7 If γ = 0.99θ, we can set ρn = 1.5 according with Theorem 6.1. Now, From
Theorem 5.6, we can do better and set ρn = 1.99. So, which value of γ should be used
in practice? If Q is badly conditioned and we do not use overrelaxation (ρn = 1), γ close
to 2θ is probably the best choice. Now, if Q is well conditioned and we still do not use
overrelaxation, γ = θ may be a better choice. Indeed, if Q = (1/θ)I and γ = θ, then
z1 = JAγ (z0 − γBz0) = JAγ (0) and z1 is a solution to (6.1), so that the algorithm converges in
one iteration. In any case, a value of γ less than θ is not interesting. The recommendation
for a given practical problem is to try the two settings: γ = (2− ε)θ, for a small ε > 0, and
ρn = 1 on one hand, γ = (1− ε)θ and ρn = 2− ε on the other hand.

Applications to convex optimization

In the following, we denote by Γ0(H) the set of convex, proper, lower semicontinuous functions
from H to R ∪ {+∞} [8]. Let f, h ∈ Γ0(H) and suppose that h is a differentiable function
with β–Lipschitz continuous gradient ∇h, for some real β > 0. We define the proximity
operator of f [58] as

proxf (x) = arg min
x′∈H

(
f(x′) +

1

2
‖x− x′‖2

)
.

It is well known that for every x ∈ H, proxf (x) = (I+∂f)−1(x), where ∂f is the subdifferential
of f [8]. There are fast and exact methods to compute the proximity operator of a large class
of functions [17, 20, 35]. Let us consider the convex optimization problem

minimize
x∈H

f(x) + h(x), (6.11)

whose solution set is supposed nonempty. The well known Fermat’s rule [8, Theorem 27.2]
states that the problem (6.11) is equivalent to (6.1) with A = ∂f , which is maximally
monotone, and B = ∇h, which is θ-cocoercive, with θ = 1/β [8, Corollary 18.17]. Hence,
it is natural to use the forward–backward iteration to approximate the solutions of (6.11):
for γ > 0, x0 ∈ H and {ρn}n∈N a sequence of relaxation parameters, the forward–backward
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iteration in this case is given by:

Proximal–gradient iteration for (6.11): for n = 0, 1, . . . xn+ 1
2

= proxγf
(
xn − γ∇h(xn)

)
xn+1 = xn + ρn

(
xn+ 1

2
− xn

) . (6.12)

As a direct consequence of Theorem 6.1, we have:

Theorem 6.8 (Proximal–gradient algorithm (6.12)) Let 0 < γ < 2 and x0 ∈ H. Set
δ = 2−γβ/2 and suppose that {ρn}n∈N is a sequence in [0, δ] such that

∑
n∈N ρn(δ−ρn) = +∞.

Then the sequence {xn}n∈N defined by the iteration (6.12) converges weakly to a solution of
(6.11).

Now, we shall focus on the case where h is quadratic:

h : x 7→ 1
2
〈x,Qx〉+ 〈x, c〉, (6.13)

for some bounded, self-adjoint, positive, nonzero, linear operator Q on H and some element
c ∈ H. A very common example is a least-squares penalty, in particular to solve inverse
problems, that is,

h : x 7→ 1
2
‖Kx− y‖2, (6.14)

for some bounded linear operator K from H to a real Hilbert space Y and some element
y ∈ Y . Clearly, (6.14) is an instance of (6.13) with Q = K∗K, where K∗ is the adjoint of K,
and c = K∗y. In this case, for every x ∈ H, we have

∇h(x) = Qx+ c, (6.15)

with β = ‖Q‖. Setting P = 1
γ
I−Q, we can remark that the update in (6.12) can be written

as
xn+ 1

2
= arg min

x∈H
f(x) + h(x) + 1

2
‖x− xn‖2

P ,

where we introduce the norm ‖ · ‖P : x 7→
√
〈x, Px〉. So, xn+ 1

2
can be viewed as being

obtained by applying the proximity operator of f + h with the preconditioned norm ‖ · ‖P .
Hence, as a direct consequence of Theorem 6.6, we have:

Theorem 6.9 (Proximal–gradient algorithm, quadratic case) Let 0 < γ < 1/β and
x0 ∈ H. Suppose that {ρn}n∈N is a sequence in [0, 2] such that

∑
n∈N ρn(2 − ρn) = +∞.

Then, the sequence {xn}n∈N defined by the iteration (6.12) converges weakly to a solution of
(6.11).

6.2 The Loris–Verhoeven iteration

For U a real Hilbert space, let g ∈ Γ0(U), h : H → R be a convex and differentiable function
with β–Lipschitz continuous gradient ∇h, for some real β > 0 and let L : H → U be a
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bounded and linear operator. Often, the template problem (6.11) of minimizing the sum of
two functions is too simple and we would like, instead, to sove the following optimization
problem

minimize
x∈H

g(Lx) + h(x), (6.16)

where the solution set is supposed nonempty. We assume that there is no simple way to
compute the proximity operator of g ◦ L. The problem (6.16) is equivalent to the monotone
inclusion

0 ∈ L∗∂g(Lx) +∇h(x).

To get rid of the annoying operator L, we can introduce an auxiliary variable u ∈ ∂g(Lx),
which shall be called the dual variable, so that the problem now consists in finding x ∈ H
and u ∈ U such that {

u ∈ ∂g(Lx)
0 ∈ L∗u+∇h(x)

.

The interest in increasing the dimension of the problem is that we obtain a system of two
monotone inclusions, which are decoupled: ∂g and∇h appear separately in the two inclusions.
Then, equivalently, the problem is to find a pair of objects z = (x, u) in Z = H × U such
that (

0
0

)
∈
(

L∗u
−Lx+ (∂g)−1u

)
︸ ︷︷ ︸

Az

+

(
∇h(x)

0

)
︸ ︷︷ ︸

Bz

. (6.17)

The operator A : Z → 2Z , (x, u) 7→ (L∗u,−Lx+ (∂g)−1u) is maximally monotone [8, Propo-
sition 26.32 (iii)] and B : Z → Z, (x, u) 7→ (∇h(x), 0) is θ-cocoercive, with θ = 1/β. Thus,
it is natural to think of the forward–backward iteration to solve the problem (6.17). How-
ever, to make the resolvent of A computable with the proximity operator of g, we need
preconditioning. The solution consists in the iteration, that we first write in implicit form:

(
0
0

)
∈

(
L∗un+ 1

2

−Lxn+ 1
2

+ (∂g)−1un+ 1
2

)
︸ ︷︷ ︸

A
n+1

2

+

(
∇h(xn)

0

)
︸ ︷︷ ︸

Bzn

+

(
1
τ
I 0

0 1
σ
I− τLL∗

)
︸ ︷︷ ︸

P

(
xn+ 1

2
− xn

un+ 1
2
− un

)
︸ ︷︷ ︸

z
n+1

2
−zn

,

(6.18)
where τ > 0 and σ > 0 are two real parameters, zn = (xn, un) and zn+ 1

2
= (xn+ 1

2
, un+ 1

2
). It

is not straightforward to see that this yields an explicit iteration. The key is to remark that
we have

xn+ 1
2

= xn − τ∇h(xn)− τL∗un+ 1
2

(6.19)

so that we can update the primal variable xn+ 1
2
, once the dual variable un+ 1

2
is available.

Thus, the first step of the algorithm is to construct un+ 1
2
. It depends on Lxn+ 1

2
, which is not

yet available, but using (6.19), we can express it using xn and LL∗un+ 1
2
. This last term is
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canceled in the preconditioner P to make the update explicit. That is,

0 ∈ −Lxn+ 1
2

+ (∂g)−1un+ 1
2

+ ( 1
σ
I− τLL∗)(un+ 1

2
− un)

⇔ 0 ∈ −Lxn + τL∇h(xn) + τLL∗un+ 1
2

+ (∂g)−1un+ 1
2

+ ( 1
σ
I− τLL∗)(un+ 1

2
− un)

⇔ 0 ∈ −Lxn + τL∇h(xn) + τLL∗un + (∂g)−1un+ 1
2

+ 1
σ
(un+ 1

2
− un)

⇔
(
σ(∂g)−1 + I

)
un+ 1

2
3 σLxn − τσL∇h(xn)− τσLL∗un + un

⇔ un+ 1
2

= proxσg∗
(
σL
(
xn − τ∇h(xn)

)
+ un − τσLL∗un

)
,

where we recall that the conjugate function g∗ ∈ Γ0(U) : u 7→ sup
u′∈U
〈u, u′〉 − g(u′) is such

that ∂g∗ = (∂g)−1 [8, Corollary 16.30]. We also recall the Moreau identity, which allows
computing the proximity operator of g∗ from the one of g, and conversely [20]:

proxσg∗(u) = u− σ proxg/σ(u/σ). (6.20)

Let us define the dual convex optimization problem associated to the primal problem (6.16):

minimize
u∈U

g∗(u) + h∗(−L∗u). (6.21)

If a pair (x, u) ∈ H × U is a solution to (6.17), then x is a solution to (6.16) and u is a
solution to (6.21).

Let τ > 0 and σ > 0, let x0 ∈ H and u0 ∈ U , and let {ρn}n∈N be a positive sequence
of relaxation parameters. The primal–dual forward–backward iteration, which we call the
Loris–Verhoeven iteration is:

Loris–Verhoeven iteration for (6.16) and (6.21): for n = 0, 1, . . .
un+ 1

2
= proxσg∗

(
un + σL

(
xn − τ∇h(xn)− τL∗un

))
xn+1 = xn − ρnτ

(
∇h(xn) + L∗un+ 1

2

)
un+1 = un + ρn

(
un+ 1

2
− un

) . (6.22)

This algorithm was first proposed by Loris and Verhoeven, in the case where h is a least-
squares term [53]. It was then rediscovered several times and named Primal–Dual Fixed-
Point algorithm based on the Proximity Operator (PDFP2O) [19] or Proximal Alternating
Predictor–Corrector (PAPC) algorithm [34]. The above interpretation of the algorithm as
a primal–dual forward–backward iteration has been presented in [22]. As an application of
Theorem 6.3, we obtain the following convergence result for (6.22):

Theorem 6.10 (Loris–Verhoeven algorithm (6.22)) Let x0 ∈ H and u0 ∈ U . Suppose
that 0 < τ < 2/β, στ‖L‖2 < 1 and set δ = 2 − τβ/2. Suppose that {ρn}n∈N is a sequence
in [0, δ] such that

∑
n∈N ρn(δ− ρn) = +∞. Then the sequences {xn}n∈N and {un}n∈N defined

by the iteration (6.22) converge weakly to a solution of (6.16) and to a solution of (6.21),
respectively.

Proof. In view of (6.18) and (6.7), this is the Theorem 6.3 applied to (6.17). For this, P
must be strongly positive, which is the case if and only if στ‖L‖2 < 1. Moreover, P−1B is
1/(τβ)–cocoercive in HP .
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The following result makes it possible to have στ‖L‖2 = 1, which is a consequence of the
analysis in [60] of the PD3O algorithm [73]. See also [19, Theorem 3.4 and Theorem 3.5] for
the same result, but without relaxation.

Theorem 6.11 (Loris–Verhoeven algorithm (6.22)) Suppose that H and U are of finite
dimension and let x0 ∈ H and u0 ∈ U . Suppose that 0 < τ < 2/β, στ‖L‖2 ≤ 1, and
ρn = 1, for all n ∈ N. Then the sequences {xn}n∈N and {un}n∈N defined by the iteration
(6.22) converge to a solution of (6.16) and to a solution of (6.21), respectively.

Remark 6.12 According to Theorem 6.11, if H = U has finite dimension, L = I, we can set
σ = 1/τ and the Loris–Verhoeven iteration becomes

un+ 1
2

= proxg∗/τ

(
xn/τ −∇h(xn)

)
xn+ 1

2
= xn − τ∇h(xn)− τun+1

= proxτg

(
xn − τ∇h(xn)

)
xn+1 = xn + ρn(xn+ 1

2
− xn)

un+1 = un + ρn(un+ 1
2
− un)

. (6.23)

Then, we can discard the dual variable and we recover the forward–backward iteration (6.12).
It is interesting that in this primal algorithm, there is an implicit dual variable un+1 =
−∇h(xn) + (xn − xn+1)/τ , which converges to a solution of the dual problem; that is, to a
minimizer of h∗(−u) + g∗(u).

Again, let us focus on the case where h is quadratic; that is, h : x 7→ 1
2
〈x,Qx〉 + 〈x, c〉,

for some bounded, self-adjoint, positive, nonzero, linear operator Q on H and c ∈ H. We
have β = ‖Q‖ and we can rewrite the primal–dual inclusion (6.18), which characterizes the
Loris–Verhoeven iteration 6.22, as(

0
0

)
∈

(
∇h(xn+ 1

2
) + L∗un+ 1

2

−Lxn+ 1
2

+ (∂g)−1un+ 1
2

)
︸ ︷︷ ︸

Az
n+1

2

+

(
1
τ
I−Q 0

0 1
σ
I− τLL∗

)
︸ ︷︷ ︸

P

(
xn+ 1

2
− xn

un+ 1
2
− un

)
︸ ︷︷ ︸

z
n+1

2
−zn

. (6.24)

As an application of Theorem 6.6, we have:

Theorem 6.13 (Loris–Verhoeven algorithm (6.22), quadratic case) Let x0 ∈ H and
u0 ∈ U . Suppose that 0 < τ < 1/β and that στ‖L‖2 < 1. Suppose that {ρn}n∈N is a sequence
in [0, 2] such that

∑
n∈N ρn(2− ρn) = +∞. Then the sequences {xn}n∈N and {un}n∈N defined

by the iteration (6.22) converge weakly to a solution of (6.16) and to a solution of (6.21),
respectively.
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6.3 The Condat–Vũ iteration

Let us consider the primal optimization problem:

minimize
x∈H

f(x) + g(Lx) + h(x), (6.25)

where f ∈ Γ0(H), g ∈ Γ0(U), h : H → R is convex and differentiable function with β-
Lipschitz continuous gradient ∇h, for some real β > 0 and L : H → U is a bounded linear
operator. Roughly speaking, the problem (6.25) is equivalent to solving

0 ∈ ∂f(x) + L∗∂g(Lx) +∇h(x), (6.26)

where the solution set is supposed nonempty. More precisely, a solution to (6.26) is a solution
to (6.25), but the converse may not be true. Under mild qualification constraints on f , g, h,
however, the solution sets of (6.25) and (6.26) are the same. For instance, this is the case if

0 ∈ sri (L(dom(f))− dom(g)) , (6.27)

where sri denotes the strong relative interior. See [8, Proposition 27.5, Corollary 27.6] for
other examples of qualification constraints. Like in the previous sections, let us introduce a
dual variable u, so that we can rewrite the problem (6.26) as the search of a pair of objects
z = (x, u) in Z = H × U such that such that(

0
0

)
∈
(

∂f(x) + L∗u
−Lx+ (∂g)−1u

)
︸ ︷︷ ︸

Az

+

(
∇h(x)

0

)
︸ ︷︷ ︸

Bz

. (6.28)

A pair (x, u) ∈ Z is a solution to (6.28) if and only if x is a solution to (6.26) and u ∈ ∂g(Lx)
is a solution to the dual problem associated to (6.25):

minimize
u∈U

(f + h)∗(−L∗u) + g∗(u). (6.29)

The operator A : Z → 2Z , (x, u) 7→ (∂f(x) + L∗u,−Lx + (∂g)−1u) is maximally monotone
[8, Proposition 26.32 (iii)] and the operator B : Z → Z, (x, u) 7→ (∇h(x), 0) is θ-cocoercive,
with θ = 1/β. Thus, it is again natural to think of the forward–backward iteration, with
preconditioning. The difference with the construction in Section 6.2 is the presence of the
nonlinear operator ∂f , which prevents us to express xn+ 1

2
in terms of xn and un+ 1

2
. Instead,

the iteration is made explicit by canceling the dependence of xn+ 1
2
from un+ 1

2
in P . That is,

the iteration, written in implicit form, is:(
0
0

)
∈

(
∂f(xn+ 1

2
) + L∗un+ 1

2

−Lxn+ 1
2

+ (∂g)−1un+ 1
2

)
︸ ︷︷ ︸

Az
n+1

2

+

(
∇h(xn)

0

)
︸ ︷︷ ︸

Bzn

+

(
1
τ
Id −L∗
−L 1

σ
Id

)
︸ ︷︷ ︸

P

(
xn+ 1

2
− xn

un+ 1
2
− un

)
︸ ︷︷ ︸

z
n+1

2
−zn

,

(6.30)
where τ > 0 and σ > 0 are two real parameters, zn = (xn, un) and zn+ 1

2
= (xn+ 1

2
, un+ 1

2
).

Thus, let τ > 0 and σ > 0, let x0 ∈ H and u0 ∈ U , and let {ρn}n∈N be a sequence
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of relaxation parameters. The primal–dual forward–backward iteration, which we call the
Condat–Vũ iteration is:

Condat–Vũ iteration form I for 6.25 and 6.29: for n = 0, 1, . . .
xn+ 1

2
= proxτf

(
xn − τ∇h(xn)− τL∗un

)
un+ 1

2
= proxσg∗

(
un + σL(2xn+ 1

2
− xn)

)
xn+1 = xn + ρn(xn+ 1

2
− xn)

un+1 = un + ρn(un+ 1
2
− un)

. (6.31)

This algorithm was proposed independently by the first author [27] and by B. C. Vũ [69].
An alternative is to update u before x, instead of the converse. This yields a different
algorithm, characterized by the primal–dual inclusion

(
0
0

)
∈

(
∂f(xn+ 1

2
) + L∗un+ 1

2

−Lxn+ 1
2

+ (∂g)−1un+ 1
2

)
︸ ︷︷ ︸

Az
n+1

2

+

(
∇h(xn)

0

)
︸ ︷︷ ︸

Bzn

+

(
1
τ
Id L∗

L 1
σ
Id

)
︸ ︷︷ ︸

P

(
xn+ 1

2
− xn

un+ 1
2
− un

)
︸ ︷︷ ︸

z
n+1

2
−zn

.

(6.32)
The corresponding primal–dual forward–backward iteration in this case is given by:

Condat–Vũ iteration form II for (6.25) and (6.29): for n = 0, 1, . . .
un+ 1

2
= proxσg∗

(
un + σLxn

)
xn+ 1

2
= proxτf

(
xn − τ∇h(xn)− τL∗(2un+ 1

2
− un)

)
un+1 = un + ρn(un+ 1

2
− un)

xn+1 = xn + ρn(xn+ 1
2
− xn)

. (6.33)

As an application of Theorem 6.3, we obtain the following convergence result [27, Theorem
3.1]:

Theorem 6.14 (Condat–Vũ algorithm (6.31) and (6.33)) Let x0 ∈ H and u0 ∈ U . Sup-
pose that τ > 0 and σ > 0 satisfy τ

(
σ‖L‖2+β/2

)
< 1 and consider δ = 2−(β/2)

(
1
τ
− σ‖L‖2

)−1
>

1. Suppose that {ρn}n∈N is a sequence in [0, δ] such that
∑

n∈N ρn(δ − ρn) = +∞. Then the
sequences {xn}n∈N and {un}n∈N defined by either the iteration (6.31) or the iteration (6.33)
converge weakly to a solution of (6.25) and to a solution of (6.29), respectively.

Proof. In view of (6.30) and (6.32), this is Theorem 6.3 applied to the problem (6.28). The
condition on τ and σ implies that στ‖L‖2 < 1, so that P is strongly positive, For this, P
must be strongly positive, which is the case if and only if στ‖L‖2 < 1, by virtue of the
properties of the Schur complement. Let us establish the cocoercivity of P−1B in ZP . Set

χ =
1

β

(
1

τ
− σ‖L‖2

)
. In both cases (6.30) and (6.32), we have, for every z = (x, u) and
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z′ = (x′, u′) in Z,

‖P−1Bz − P−1Bz′‖2
P = 〈P−1Bz − P−1Bz′, Bz −Bz′〉

=
〈

1
σ

(
1
στ

Id− L∗L
)−1(∇h(x)−∇h(x′)

)
,∇h(x)−∇h(x′)

〉
≤
(

1
τ
− σ‖L‖2

)−1〈∇h(x)−∇h(x′),∇h(x)−∇h(x′)
〉

≤ β
(

1
τ
− σ‖L‖2

)−1〈
x− x′,∇h(x)−∇h(x′)

〉
= β

(
1
τ
− σ‖L‖2

)−1〈
z − z′, Bz −Bz′

〉
= β

(
1
τ
− σ‖L‖2

)−1〈
z − z′, P−1Bz − P−1Bz′

〉
P
.

So, P−1B is χ-cocoercive in ZP . Moreover, χ > 1/2 if and only if τ(σ‖L‖2 + β/2) < 1.
Finally, δ = 2− 1/(2χ). �

We can observe that if h = 0, the Condat–Vũ iteration reverts to the Chambolle–Pock
iteration. So, the former can be viewed as a generalization of the latter. Accordingly, if we
set β = 0 in Theorem 6.14, we recover Theorem 6.13. If f = 0, the Condat–Vũ iteration and
the Loris–Verhoeven iteration are different. One can expect the larger range of parameters
of the latter to be beneficial to the convergence speed in practice.

For the Condat–Vũ algorithm, let us focus on the case where h is a quadratic function;
that is, h : x 7→ 1

2
〈x,Qx〉 + 〈x, c〉, for some bounded, self-adjoint, positive, nonzero, linear

operator Q on H and some element c ∈ H. We have β = ‖Q‖. We can rewrite the primal–
dual inclusion (6.30), which characterizes the Condat–Vũ iteration (6.31), as(

0
0

)
∈

(
(∂f +∇h)(xn+ 1

2
) + L∗un+ 1

2

−Lxn+ 1
2

+ (∂g)−1un+ 1
2

)
︸ ︷︷ ︸

Az
n+1

2

+

(
1
τ
I−Q −L∗
−L 1

σ
I

)
︸ ︷︷ ︸

P

(
xn+ 1

2
− xn

un+ 1
2
− un

)
︸ ︷︷ ︸

z
n+1

2
−zn

. (6.34)

Similarly, we can rewrite the primal–dual inclusion (6.32), which characterizes the second
form of the Condat–Vũ iteration (6.33), as (6.34), with L replaced by −L. In both cases,
using the properties of the Schur complement, P is strongly positive if and only if

τ‖Q+ σL∗L‖ < 1 (6.35)

(which implies that τ < 1/β). Thus, a sufficient condition for this inequality holds is
τ(σ‖L‖2+β) < 1. However, in some applications, ‖Q+σL∗L‖may be smaller than σ‖L‖2+β,
so that larger stepsizes τ and σ may be used when h is quadratic, for the benefit of con-
vergence speed. Thus, when h is quadratic, the Condat–Vũ iteration can be viewed as a
preconditioned Chambolle–Pock iteration. Accordingly, as an application of Theorem 6.6,
we have:

Theorem 6.15 (Condat–Vũ algorithm (6.31) and (6.33), quadratic case) Let x0 ∈ H
and u0 ∈ U . Suppose that τ‖Q + σL∗L‖ < 1. Suppose that {ρn}n∈N is a sequence in [0, 2]
such that

∑
n∈N ρn(2−ρn) = +∞. Then the sequences {xn}n∈N and {un}n∈N defined by either

the iteration (6.31) or the iteration (6.33) converge weakly to a solution of (6.25) and to a
solution of (6.29), respectively.
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Remark 6.16 The problem (6.25) was first considered in [21] using a forward–backward–
forward scheme. This method is not as popular as the Condat–Vũ algorithm, since it involves
more auxiliary variables and is generally slower.

6.4 Numerical experiment

In this section, we implement the instance of Loris–Verhoeven algorithm and Condat–Vũ
algorithm, described in (6.22) and (6.31) respectively in image recovering setting and make
a comparisson of the obtained results. For the numerical experiments and following a similar
scheme as [28], we solve the following optimization problem:

Find x̂ ∈ arg min
x∈Ω

1

2
‖Ax− y‖2 + λ · TV(x), (6.36)

where:

• H = RNh×RNv of a gray scale images of size Nh columns times Nh rows, endowed with
the usual Euclidean inner product.
• The data y, which lives in a real Hilbert space U , represents the available image.
• A : X → U is a linear and bounded operator modeling the acquisition process. As

an image corruption A, we used a Gaussian blur of 25× 25 and standard desviation 4
(applied by Mathlab function fspecial), followed by additive zero mean white Gaussian
noise with standard desviation 5.
• Ω is a closed and convex subset of H.
• λ > 0 is a tradeoff parameter to tune, depending of the properties od A and the noisy

level.

The discrete total variation, which is denoted by TV in (6.36), is defined as follow (see also
[28] and the references therein): We define the discrete gradient operator D : H → H2, which
maps an image x to a pair of images (uh, uv) with, for every kh = 1, · · · , Nh, kv = 1, · · · , Nv,

uh[kh, kv] = {x[kh, kv]− x[kh − 1, kv], if kh ≥ 2, 0 else}
uv[kh, kv] = {x[kh, kv]− x[kh, kv − 1], if kv ≥ 2, 0 else} .

Thus, we have TV(x) = ‖Dx‖1,2, with ‖(uh, uv)‖1,2 =

Nh∑
kh=1

Nv∑
kv=1

√
uh[kh, kv]2 + uv[kh, kv]2.

According with [16], ‖D∗D‖ ≤ 8. Hence, the problem (6.36) becomes to the problem (6.16)
with:

• h(x) = 1
2
‖Ax− y‖2.

• g(x) = ιΩ(x), where ιΩ in the indicator function on Ω.
• U = H ×H, λ · TV = g ◦ L, with h = λ‖ · ‖1,2 and L = D.
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(a) (b)

(c) (d)

Figure 6.1: (a) correspond to the original image, (b) correspond to the corrupted image, (c)
is the recovered image by Condat–Vũ (6.31) with σ = 0.04, τ = 0.99

0.5+8σ
, ρ = 1, ‖L‖2 = 8,

λ = 0.5 and (d) is the image recovered by Loris–Verhoeven (6.22) with σ = 0.125, τ = 0.99,
ρ = 1.5, ‖L‖2 = 8 and λ = 0.5, after 3000 iterations.

Figure 6.2: Comparisson of the convergence rate between Loris–Verhoeven algorithm (blue)
and Condat–Vũ algorithm (orange), after 3000 iterations.
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Chapter 7

Work in progress 2: Study of the
convergence of the gradient algorithm in
absence Lipschitz-continuity condition.

The main goal of this work is to investigate whether it is possible to transfer the conver-
gence properties of the Frank–Wolf algorithm obtained in [72] to the gradient algorithm by
cosidering the assumptions in [72] instead of the usual Lipschitz condition. This problem
was proposed by professor Hong-Kun Xu during my visit research to the Hahgzhou-Dianzi
University in Hangzhou, China.

Convergence of the Frank–Wolf algorithm

The Frank–Wolf Algorithm (FWA) [36] is a first order optimization method also known as
conditional gradient method [66], which allows to aproximate the solutions of the constrained
optimization problem:

minimize
x∈C

f(x), (7.1)

whose solution set is supposed nonempty, C ⊂ Rn nonempty, compact and convex set,
f ∈ Γ0(Rn) differentiable, with ∇f Lipschitz continuous on C with constant L > 0. Starting
with an intial x0 ∈ C, the (FWA) is described as follow:

xn = arg min
x∈C

〈∇f(xn), x〉, ,

xn+1 = xn +
2

n+ 2
(xn − xn) .

(7.2)

Moreover, it is proved that f(xn) − f ∗ ≤ O

(
1

n

)
, where f ∗ = min{f(x) : x ∈ C} (see

[41, 42, Theorem 1]). On the other hand, Xu [72] considere the problem (7.1) in general
Banach space setting, with C ⊂ X nonempty, convex and weakly compact in X. Thus, a
more general version of Frank–Wolf algorithm (7.2) is considered in order to approach the
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solution of (7.1), namely: {
xn = arg min

x∈C
〈f ′(xn), x〉, ,

xn+1 = xn + γn (xn − xn) ,
(7.3)

where f is a continuously Fréchet differentiable, where f ′ is supposed uniformly continuous
on C and the step size γn is chosen by:

• Linear Search:
γn = arg min

γ∈[0,1]

f (xn − γ(xn − xn)) , (7.4)

• Open Loop Rule: The sequence {γn}n∈N satisfies one of the follwoing two conditions
(a) lim

n→∞
γn = 0.

(b)
∞∑
n=1

γn =∞.

In order to correct the abscense of Lipschitz condition on f ′, [72] considered the notion of
curvature constant of f of order σ ∈ (1, 2] on C, which is given by:

C
(σ)
f = sup

{
σ

γσ
(f(y)− f(x)− 〈y − x,∇f(x)〉) : x, z ∈ C, γ ∈ (0, 1), y = x+ γ(z − x)

}
.

Thus, C(σ)
f ≥ 0 is the least nonnegtive number such that

f(y) ≤ f(x) + 〈f ′(x), y − x〉+
γσ

σ
C

(σ)
f , (7.5)

for all x, y ∈ C such that y = x+ γ(z − x) for all γ ∈ [0, 1] and z ∈ C. The following result
comes from [72, Theorem 4.9 and Theorem 4.10]:

Theorem 7.1 Let {xn}n∈N be generated by (7.3). Suppose that there exist σ > 1 such that
C

(σ)
f is finite. If the step size {γn}n∈N is selected by linear search (7.4), then

f(xn)− f ∗ ≤ θ(
1 + 1

σ
θ

1
σ−1

(
C

(σ)
f

) 1
σ−1 · n

)σ−1 = O

(
1

nσ−1

)
(7.6)

where θ = f(x0)− f ∗. In particular:

• If f ′ is ν-Hölder continuous with constant Lν > 0 and ν ∈ (0, 1], then

f(xn)− f ∗ ≤ θ(
1 + 1

ν+1
θ

1
ν (Lνδν+1)−

1
ν · n

)ν = O

(
1

nν

)
,

• If f ′ is Lipschitz continuous with constant L > 0, then

f(xn)− f ∗ ≤ θ

1 + θ
2Lδ2
· n

= O

(
1

n

)
, (7.7)
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with δ = diam(C).

If the step sizes {γn}n∈N ⊂ (0, 1] satisfies the open loop rule, then

f(xn)− f ∗ ≤ σσ∆

nσ−1
for all n ≥ 1, (7.8)

where ∆ = max

{
f(x0)− f ∗, 1

σ
C

(σ)
f

}
.

• If f ′ is ν-Hölder continuous and ν ∈ (0, 1], then

f(xn)− f ∗ ≤ O

(
1

nν

)
.

• If f ′ is Lipschitz continuous with constant C, then

f(xn)− f ∗ ≤ O

(
1

n

)
.

Advanced work on the gradient method

Consider X a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, f ∈ Γ0(X) differen-
tiable, such that inf(f) > −∞ and ∇f is uniformly continuous on X. Our main goal is to
extend the result obtained in [72] for Frank–Wolf algorithm to gradient algorithm:

xn = xn−1 − γn∇f(xn−1), n ∈ N, (7.9)

with initial point x0 ∈ C. From now on, let us suppose that C(σ)
f is finite for some σ > 1,

and the step size γn ∈ [0, 1] is chosen by linear search (7.4). Then, for each n ∈ N we have

f(xn+1) = f(xn − γn∇f(xn)) = min
γ∈[0,1]

f(xn − γ∇f(xn)) ≤ f(xn). (7.10)

Therefore {f(xn)}n∈N is nonincreasing.

On the other hand

f(xn+1) = f(xn − γn∇f(xn))

= min
γ∈[0,1]

f(xn − γ∇f(xn))

≤ min
γ∈[0,1]

{
f(xn)− γ‖∇f(xn)‖2 +

γσ

σ
C

(σ)
f

}
(7.11)

where the inequality holds by (7.5). Let φ(γ) = f(xn)− γ‖∇f(xn)‖2 +
γσ

σ
C

(σ)
f and suppose

that γ̂ ∈ [0, 1] is the minimizer of φ in [0, 1] and consider the following cases:

Case 1: If γ̂ = 1, we obtain

C
(σ)
f ≤ (1− γ)σ

1− γσ
‖∇f(xn)‖2, for all γ ∈ [0, 1). (7.12)
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Combining (7.11) and (7.12) we have:

f(xn+1) ≤ f(xn)−
C

(σ)
f

σ

[
1− 2γσ + γσ+1

(1− γ)σ

]
, for all γ ∈ [0, 1). (7.13)

Passing to the limit γ → 0 in (7.13) we obtain

f(xn+1) ≤ f(xn)−
C

(σ)
f

σ
. (7.14)

If (7.14) holds for an infinity number of iterations and since {f(xn)}n∈N is decreasing, then
inf(f) = −∞, which is a contradiction because f is bounded from below. Therefore γ̂ = 1
in a finite number of iterations.

Case 2: Now, let us suppose that 0 < γ̂ < 1. By first order optimality condition, we have

0 = φ′(γ̂) = −‖∇f(xn)‖2 + γ̂σ−1C
(σ)
f .

Thus γ̂ =
‖∇f(xn)‖

2
σ−1

C
(σ)
f

1
σ−1

. From (7.11) we obtain

f(xn+1) ≤ f(xn)− ‖∇f(xn)‖
2σ
σ−1 (σ − 1)

σC
(σ)
f

1
σ−1

(7.15)

By subgradient inequality, we have

− ‖∇f(xn)‖
2σ
σ−1 ≤ −(f(xn)− f(xn+1))

σ
σ−1

γ
σ
σ−1
n

. (7.16)

Replacing (7.16) in (7.15), we get

f(xn+1) ≤ f(xn)− (σ − 1) (f(xn)− f(xn+1))
σ
σ−1

σC
(σ)
f

1
σ−1γ

σ
σ−1
n

≤ f(xn)− (σ − 1) (f(xn)− f(xn+1))
σ
σ−1

σC
(σ)
f

1
σ−1 Σ

σ
σ−1
n

,

(7.17)

where Σn =
n∑
k=1

γk. Thus, for θn := f(xn)− f ∗ we have

θn+1 ≤ θn −
(σ − 1) (θn − θn+1)

σ
σ−1

σC
(σ)
f

1
σ−1 Σ

σ
σ−1
n

. (7.18)

It is necessary to obtain a recurrence formula for the sequence θn which enable us to obtain
information on the convergence rate for the gradient algorithm without Lipschitz condition.
On the other hand, there is not information about the convergence of the iterations {xn}n∈N
described by (7.9). Another interesting problem is to study the convergence properties the
proximal gradient algorithm under assumption described in [72] for the smooth part, in-
stead of Lipschitz condition. This work represents an interesting challenge, which could be
developed in a post-doctoral project.
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Conclutions

The conclutions of this thesis are summarize as follow:

1. The continuous trajectories associated to a differential inclusion governed by the sum
of a maximally monotone operator with a cocoercive operator and the discrete ones
generated by means of a forward backward discretization of the continuous system, can
be compared looking at their qualitative differences and similarities in terms of the
convergence of these trajectories in finite and infinity horizon. Although the existing
theory for resolvent iterations can be applied in this setting, their implementation
becomes computationally intractable, since computing the resolvent of a sum of two
operator is a difficult task. The new theory presented in this manuscript for forward
backward iteration is more adequate because the two operator involved are treated
independently.

2. The relationship between continuous and discrete systems described above allows to
obtain new asymptotic properties of the forward backward algorithm, such as was
showed in Theorem 4.11, where we provided new results on the strong convergence for
forward backward algorithm. In the particular case of the explicit iterations governed
by an operator deriving from a potential, we provided important results concerning to
the strong convergence of gradient algorithm, such as was showed in Theorem 3.18.

3. Relaxed versions of the preconditioned forward backward algorithm can be obtained
when the cocoercive operator is affine. These new versions allow to obtain relaxed
versions of some outstanding primal dual algorithms, such as Loris-Verhoeven and
Condat-Vũ algorithms. The relaxation of these algorithms can be interpreted as accel-
erated versions of the original ones, which can be appreciated by means of numerical
experiments in image recovery.
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