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Abstract Integration of renewable energy into mining and processing operations is
becoming necessary as part of a strategy towards sustainability in the minerals indus-
try. A solar photovoltaic plant along with a battery energy storage system (PV-BESS)
can provide a long-term solution to cope with increasing energy costs, thus reducing
the tension with other societal competing needs for a key resource such as clean energy.
However, sizing these systems is challenging, in face of uncertain ore grindability and
solar power availability. In this paper, we present an application of an integrated model
to size the PV-BESS, where the variability of ore grindability is modeled using geosta-
tistical tools, solar irradiance variability is captured using a Markov chain simulation
model, and the entire system is optimized through linear stochastic optimization, con-
sidering a fixed mine schedule for the feed of a semiautogenous grinding (SAG) mill.
The main goals are to minimize the costs associated with operating the SAG mill in the
presence of a PV-BESS system, understand how the sizing and costs change under the
influence of stochastic drivers, and reveal the potential for demand-side management
in mines. The size and costs of the necessary infrastructure are determined for a model
of estimated grindability and an ensemble of 50 simulated models of grindability, and
compared against the sizing and cost of the ground truth. The effect of climate change
on solar energy availability is accounted for by forecasting the ratio of excellent, good,
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and moderate days over bad days in terms of irradiance out to the year 2030. Finally,
the effects of stockpiles and feed control according to the processing plant needs,
namely a demand-side management approach, are evaluated to reveal the impact on
the energy requirements and the sizing of the photovoltaic and storage system. The
model is optimized considering a yearly cost function, with hourly resolution for the
solar irradiance and hardness models. The results show that integrating solar power
into the operation of a SAG mill has potential to reduce the total energy cost by 27%.
Robustness against climate change can be achieved with an increase in total cost of
1%. Finally, use of stockpiles to manage the ore supply to the mill and minimize the
energy cost to process it results in a cost reduction of around 2%, which should offset
the rehandling cost of managing the stockpiles.

Keywords Geometallurgy - Geostatistics - Cosimulation - Solar energy

1 Introduction

Sustainable mining extraction requires revisiting the approach mining companies take
in relation to consumption of key resources for society, such as water and energy
(ICMM 2014; Levesque et al. 2014; Moran and Kunz 2014). Grinding, and comminu-
tion in general, are known to be responsible for a significant proportion of the total
energy consumption in mining. Some accounts indicate that comminution consumes
up to 4% of global electrical energy and accounts for about 50% of the total energy
consumed by a mining operation (Wei and Craig 2009; CEEC 2013; Bouchard et al.
2017). Reductions in energy consumption can undoubtedly be achieved through pro-
cess control (Bouchard et al. 2017) or optimizing grinding media (de Bakker 2014), but
this should be combined with integration of renewable energies (Giurco et al. 2014).

Solar power is one such alternative source of energy that can be used in conjunction
with fuel-based sources to supply the requirements of mining operations and process-
ing plants. Some attempts have been made to incorporate solar energy into operating
mines (Paraszczak and Fytas 2012; Choi and Song 2017). The potential use of solar
energy also becomes more attractive in remote operations as the capital and operating
costs of these technologies decrease (Haas et al. 2017). A significant amount of work
has been done to characterize the solar energy resource available in different parts of
the world, particularly in places with high solar potential (Zweibel et al. 2007; Clifton
and Boruff 2010; Ortega et al. 2010; Ministerio de Energia de Chile 2018) to provide
information for potential users, such as the mining industry.

In mining, there are many challenges for the integration of solar energy into the
supply for processes and operations. One of these challenges is the need to commit to
a size for the solar plant and storage system. In this paper, the focus is on the sizing of
a photovoltaic plant and battery energy storage system (PV-BESS) to provide energy
to a specific process, namely the operation of a semiautogenous grinding (SAG) mill.
Of course, this decision carries risks related to the availability of solar energy, which
depends on the irradiance potential at the location where the PV plant is installed,
combined with the energy requirement of the SAG mill, which depends on the ore fed
into the process. The ore will have variable grindability, which can be characterized
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on site by testing representative volumes of rock. These samples can be used to build
a spatial model of the grindability in a resources block model. The resources are
mined out in a specific sequence defined by the mine plan, thus converting the three-
dimensional distribution of grindability into a one-dimensional time series.

To add complexity to this problem, climate change is causing a clear variation in
the solar availability in some places of the world (Schaeffer et al. 2012). This adds
another dimension to the analysis of a long-term decision such as the construction of
a PV-BESS.

It has been previously shown that the optimum size of the PV-BESS facility depends
on the fluctuations of the grindability of the rock fed into the processing plant, com-
bined with the variable hourly patterns of irradiance for the generation of solar energy
(Pamparana et al. 2019a, b). This suggests the use of a different approach to reduce
the cost of energy consumption and make best use of the PV-BESS infrastructure by
changing the feed to synchronize the grindability to the instantaneous cost of energy,
that is, processing soft rock that requires less energy per ton when the energy cost
is high, but hard rock that requires more energy per ton when the energy is low. The
concept of demand-side management (DSM) has been used successfully in some mine
operations (Pelzer et al. 2008; Matthews and Craig 2013), offering the possibility of a
paradigm change in terms of adjusting the mine plan to optimize an objective function
that integrates the revenues associated with the metal content recovered in combination
with the energy costs associated with their processing. Furthermore, this demand-side
management strategy may also strongly impact the need for energy storage systems. So
far, scientific literature lacks a systematic assessment regarding the PV-BESS design
in combination with demand-side management strategies under the impact of climate
change. This is the goal of the present work.

The general methodology is presented first, outlining the steps required to build the
different models involved in the final sizing decision. The results of an optimization
for a synthetic study are then presented for cases where forecasts are done without
and with accounting for climate change. Conclusions and an outlook of the potential
of this technology are provided at the end.

2 Methodology

The goal of this work is to assess the size of a photovoltaic (PV) system and battery
energy storage system (BESS), along with the energy contract with the grid, to mini-
mize the total energy cost incurred from operating a SAG mill. The capital expenditure
associated with the PV-BESS system is prorated over the lifespan of the battery sys-
tem. This is done accounting for the variability of the grindability of the ore entering
the SAG mill, and the variability of the solar energy that characterizes the location
of the PV plant. The analysis is expanded to consider the case where stockpiles are
used to manage the grindability of the SAG mill feed, and also by assessing potential
changes in the solar energy available based on a forecast of the solar availability out
to 2030.

Figure 1 shows the energy sources involved in the optimization problem. The pho-
tovoltaic (PV) system provides energy during daylight hours. The amount of energy
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PV provides energy to the BESS provides energy to the The systemis connected to the
system as a function of the systemif it is charged, and stores grid, for power

solarirradiance available energy to use when imports/exports, subject to the
available cost is higher (from PV or grid) power contract
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Fig. 1 Energy sources involved in the optimization

depends on the solar irradiance, which varies depending on the meteorological condi-
tions. The battery energy storage system (BESS) can store energy from the PV cells
or from the grid, in order to provide energy when PV power is not available at night,
or when the grid cost is higher during the day because the grid contract has been
exceeded. Finally, the grid provides energy at a contracted cost up to a limit, and
charges a penalty if the demand is higher than that contracted limit. It can also buy
energy from the PV system or from the BESS.

An optimization is carried out to minimize the yearly cost of energy for the operation
of the SAG mill. This cost includes the energy consumption cost in $/kWh and the
capital cost for the PV-BESS infrastructure, prorated over the life of the battery system,
accounting for the discount rate through an annuity factor (Pamparana et al. 2019a,
b). The energy requirements are defined by the SAG mill consumption, which in
turn depends on the feed. This feed depends on the in situ ore grindability and the
specific extraction sequence and any potential homogenization that may occur by using
stockpiles. Two key inputs are required to infer the energy balance in time:

e First, the time series of the grindability zgpr of the materials fed into the pro-
cessing plant. This time series, in turn, is linked to the in situ model of the ore
resources, which are extracted following a schedule defined by the short-term mine
plan to optimize the grades zcy fed into the plant (Fig. 2). To add complexity to
this problem, consideration is given to the possible use of two stockpiles, one for
soft rock and one for hard rock (Fig. 3). Note that the rock grindability is estimated
from a limited number of metallurgical tests carried out on samples distributed in
space.

e Second, the time series of solar irradiance determines the energy that can be
provided by the PV-BESS plant. The energy can be harvested and stored in the
battery system, or used directly by the SAG mill. The energy can also be sold
back to the grid. The energy in the BESS will likely be fully utilized during
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Fig. 2 Conversion of in situ grindability model into time series
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Fig. 3 Conversion of in situ grindability model into time series, considering two stockpiles for homoge-
nization
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the night by the SAG mill requirements. One last nuisance for the solar model
is that there is a need to forecast solar irradiance, potentially for many decades.
Despite the trends in climate change, this factor is rarely considered. In this study,
a forecast of the solar irradiance trends is performed to determine the impact
that climate change may have over the coming decades for this type of energy
source.

Variability plays a key role in the sizing of the PV-BESS installation, since short
peaks of high energy demand may be supplied by the grid, at a penalty, and this may
be cheaper in the long run than having a larger PV-BESS system. The same happens
with the fluctuations in the solar irradiance, which will also impact the size of the
PV-BESS system. For example, a sequence of several cloudy days may translate into
a high cost to acquire energy from the grid, if the contracted energy is underestimated,
incurring a potentially very high penalty.

2.1 Modeling In Situ Rock Hardness Uncertainty

Rock grindability, zspr(#y), can be characterized at location u, through a relatively
conventional test called the SAG power index (SPI) test. This test is performed using a
few kilograms of material, coming from rejects of a diamond drillhole sample (Starkey
and Dobby 1996). The test can be applied over a set of n samples distributed in
space {zspr(uq), ® = 1, ..., n}, representative of one of the relevant ore domains
Sk, k = 1,..., K, which are henceforth called geometallurgical units, in order to
build a spatial model of the distribution of grindability {Zspr(u), u € Sx}. Zspr(u)
represents a random variable at location u. The model {Zgp1 (), u € Si} represents a
random function, where the random variables Zspy(#) show some spatial correlation.

Conventional geostatistical techniques can be used both to model the distribution
of relevant geometallurgical units {S(«), u € D}, and estimate or simulate SPI within
these domains {Zspr(u), u € S} for k = 1, ..., K. Typically, the geometallurgical
units are linked to some geological properties of the rock such as lithology, mineral-
ization zone, or alteration (Ortiz et al. 2015; Garrido et al. 2018), and can be modeled
by using indicator simulation (Journel and Isaaks 1984), plurigaussian methods (Arm-
strong et al. 2003), or multiple-point simulation (Perez and Ortiz 2011; Mariethoz and
Caers 2014). SPI can then be modeled inside these domains {Sx,k =1, ..., K} by
means of a Gaussian simulation method for continuous variables (Chiles and Delfiner
2012). Grades are the key driver for the feed to the processing plant. Therefore, the
relationship between grades and SPI should be accounted for by means of a joint
spatial model {(Zspr(u#), Zcu(u)), u € D}.

Geometallurgical variables can be challenging to model when they are nonadditive.
This means that the scaling from point samples to block volumes obtained by simply
averaging the point estimates, or equivalently, by applying a change of support in the
estimation via block kriging, may be biased,
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where Zgspy (1) represents the grindability at sample support and Z g/Pl(u) represents the
true grindability at block support. Some solutions to this problem have been proposed,
by modeling the change of support using power-law reexpressions (Deutsch 2015).
However, to apply this approach, experimental data are required.

For the purposes of this study, a cascade approach is used, where the geometal-
lurgical units {S(«), u € D} are modeled by sequential indicator simulation (Deutsch
2006), and SPI is jointly modeled with copper grade {(Zspr (1), Zcy(1)), u € D} using
sequential Gaussian cosimulation (Manchuk and Deutsch 2012), within the domains
defined previously. Multiple realizations are developed to capture the variability asso-
ciated with the spatial distribution of geometallurgical units and SPI distribution within
the units.

2.2 Transferring Rock Hardness to the Processing Plant Feed

The in situ distribution of rock grindability characterized through the SPI must now
be transferred to the time series of the SAG mill feed. However, the key driver for the
processing plant is the copper production. Copper grade and throughput along with
the recovery will determine the concentrate production. Grindability is an operational
constraint and is also strongly related to the throughput; therefore it drives the business
along with the copper grade to achieve the planned metal production. Thus, a fixed
mine plan exists that determines the schedule {Zcy(u;),t =1, ..., T}, where u; is
the location of the block of ore extracted at time ¢ in the schedule. The selection of
blocks sent to the processing plant depends on the copper grade estimated from dense
blasthole data Z{ (u). The sequence of grindability in the blocks fed to the plant
{Zsp1(u;),t = 1,..., T} is thus a consequence of this mine sequence.

2.3 Managing Rock Hardness Fed to the Plant: Demand-Side Management

The plant will receive a feed that satisfies the copper grade requirement, but with a high
variability of ore grindability (Fig. 2). This is detrimental to the plant performance in
terms of its energy requirements. One solution to this problem is to create stockpiles
to homogenize and serve as buffers between the discrete operation of trucks and
the crusher and the continuous operation of the SAG mill (Fig. 3). For this study,
two stocks are considered: one for hard rock and one for soft rock. The first blocks
assigned to the stock become the first blocks fed to the plant when demanded. Hard
rock is associated with high specific energy consumption, and soft rock, with low
specific energy consumption. Keeping the throughput constant, but selecting high or
low specific energy consumption blocks for the SAG mill feed allows the energy
requirement to be managed, while satisfying the production. Note that this approach
does not change the mine plan, but only modifies the daily arrangement of blocks by
sending hard material when the energy cost is low and soft material when it is high,
in order to achieve the same throughput at lower cost.
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Table 1 Definition of day types for solar irradiation model

Type Daily generation

Excellent (E) 95-100% of maximum daily generation for that month
Good (G) 85-95% of maximum daily generation for that month
Moderate (M) 60-85% of maximum daily generation for that month
Bad (B) 0-60% of maximum daily generation for that month

2.4 Modeling Solar Irradiance Variability

Solar irradiance is measured at some meteorological stations. For the purpose of the
study presented here, it is assumed that the PV plant is located in the northern part of
Chile, in the Atacama Desert. Information is available through the “Explorador Solar”
initiative (Ministerio de Energia de Chile 2018), from which an hourly record is avail-
able for the period 2004-2016. From this information, days are classified depending
on the maximum daily energy generation capacity (Table 1) for each month. This
provides an idea of the solar availability in different months of the year and enables
assessment of any climate trend.

The solar irradiance is simulated to account for the variability expected for a given
year in the future. This is done by building a Markov chain of day types according
to Table 1, where day types are simulated based on transition probabilities built on a
monthly basis. This means that all days from a specific month over the available solar
data are pooled together to infer the prior probability and the probability of transition
from one day type to another.

The prior probabilities of days of type i € {E, G, M, B} for month m are determined
from the historical dataset. The subscript “(0)” refers to the case where probabilities
have not been corrected to account for climate change

n'"
Pi0) = Teomn o’ @

where nl’.”(o) are the frequencies of days of type i for month m. Transition probabilities
are calculated for days of the same month in a similar fashion as

n?}l(ﬂ) (3)

m —
Pij.0) D ie(E.G.M.B} 2 je(E.G.M.B) "ij,0)

where n;’j’ (0) are the frequencies of transitions from days of type i to days of type j for
month m. Then, from an initial day type, the sequence of day types is simulated using
these transition probabilities. The hourly irradiance values for a day simulated in the
sequence through the Markov chain are assigned by means of hot deck imputation;
that is, the full record of 24-hourly irradiance is pasted from a day of the same type
and month, selected randomly from the available data (Izenman 2008).
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Several simulated sequences of hourly irradiance can be generated in this fashion
and used to account for the expected variability in solar energy generation at the PV
plant.

2.5 Forecasting Solar Irradiance: Climate Change

Climate change may have an effect on the available solar power for PV generation (Li
et al. 2012; Ohunakin et al. 2015), which could change the optimum decision about
the sizing of the PV-BESS infrastructure. To consider this factor, a relatively simple
trend analysis is done over the 13 years of available data, and a forecast model is used
to modify the transition probabilities for different day types, and hence the marginal
probabilities.

The prior probabilities of days in each one of the four proposed classes are computed
for each year from the available database. Additive log ratios (alr) are then calculated
for each year to account for the fact that the four categories are constrained by the total
number of days in the year (Tolosana-Delgado et al. 2018). The additive log ratios for
year y computed with respect to bad (B) days are

]
alr{ o= ln< LO ), 4)

PB,(0)

where pz (0) are the prior probabilities of days of type [ € {E, G, M} and p]}_,;’(o) is the
prior probability for days of type B in year y. For each alr, a linear regression can be
performed to forecast the proportion of days in each category in year y = yy

—

alrly’(zo))'0 =my - yo +ny, 5

where m; and n; are the slope and intersect of the regression line corresponding to the
alr /.

Monthly transition probabilities are then updated (Eq. 6) to ensure that the global
yearly proportions match the forecast. The subscript “(1)” refers to the case where
probabilities have been corrected. Transition probabilities in warm months are affected
by a fixed set of factors, while transition probabilities in cold months are affected by
a different set of factors

Pij.ay = Pl fijs (©)

where pl’;’ ) is the updated transition probability from days of type i to days of type j
in month m, and fls] is an updating factor that depends on the cold (May until October,
s = C) or warm season (November to April, s = W). fl“; is obtained by calibration to
match the frequencies of different day types when the yearly proportions change due
to the trends inferred from Eq. 5.
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The forecasted alr must be backtransformed to the updated marginal proportions
of each day type, by applying closure to the inverse of the log ratios

P%? =alr~! <1n<%((00))>) = C[exp([Pl'f(o);OD]. @)

The correction factors flsj , s € {C, W} are determined such that the marginal probabil-
ities obtained using the corrected transition probability matrices match the forecasted
marginal probabilities for each day type, over the year

{p»y:yo} = {py»:’“}w : {p?’ } (8)
LO) ieE,G,M,B) N ]; i elE,G,M,B) LO[;ce,6,MB)

Y=Yo

where { Pi. o) is the vector of updated marginal probabilities of the differ-

}ie{E,G,M,B}
Y=o

ent day types for the year yy, { Pij.) is the matrix of updated transition

}i,j,e{E,G,M,B}
probabilities obtained by combining the monthly updated transition probability matri-

ces p{'}’(l), w is a large integer to achieve convergence of the marginal probabilities,
and [ pl.y (0)} is the initial vector of marginal probabilities of the different

ie{E,G,M,B}
day types. In summary, two sets of 16 factors (for cold and warm months) are found

so that the aggregated monthly marginal probabilities from the updated monthly tran-
sition probability matrices match the target forecasted marginal probabilities from the
regression model.

2.6 Optimization Model

The optimization model minimizes an objective function that combines the investment
cost of the PV-BESS infrastructure, the contracted energy cost from the grid, and the
operational cost of the PV-BESS. All costs are prorated to a yearly basis, accounting
for a discount rate, and depend on the life of the batteries, which in turn depends on
the number of charge cycles of the storage. Costs are used based on 2020 estimates
(Child et al. 2017). The optimization model imposes constraints related to providing
sufficient energy to comply with the energy demand of the SAG mill at all times,
limits to the charging and discharging capacities of the BESS component to ensure a
longer battery life, and costing associated with the contracted energy from the grid and
the overconsumption. Similar stochastic optimization models have been used in the
context of production scheduling in mining (Goodfellow and Dimitrakopoulos 2017,
Lamghari 2017). We now provide a simplified description of the optimization model.

The objective function to minimize is the total yearly cost incurred to satisfy the
required energy demand

minf = C™ + C" . p + E(CYP). )
This includes:
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1. The investment cost C'"V, which includes the investment in the PV solar plant
and in the BESS system brought to an annual basis using a discount rate. These
investments depend on the maximum generating capacity.
2. The contracted power cost from the grid C°"- p®°", i.e., the cost per MW multiplied
by the contracted power capacity.
3. The expected operational cost over a set of energy requirement scenarios E (C;’P),
composed of the operational costs related to
(a) The generator, i.e., maintenance of the solar PV plant
(b) The storage, i.e., the battery replacement cost on a per-MW basis, which
depends on the number of charge/discharge cycles

(c) The grid, i.e., the costs of importing/exporting energy to the grid

(d) Operational penalties due to overconsumption from the grid beyond the con-
tracted energy

The optimization is constrained by several conditions:

1. The yearly generated power profile of the PV plant is limited by the PV plant
capacity;

2. The BESS power capacity is limited by the charging and discharging capacities
of the equipment;

3. The BESS energy balance must be imposed, considering that the BESS capacity
also depends on the charging and discharging efficiencies of the batteries;

4. The energy balance of the overall system must include the sum of all the energy
inputs and outputs, and must match the SAG mill’s energy consumption;

5. The grid contracted energy establishes a maximum amount to be imported, with
any overconsumption above the contracted energy from the grid incurring a
penalty.

A detailed description of the optimization setup and parameters used can be found
in Pamparana et al. (2019a, b).

3 Case Study
3.1 Model Setup
3.1.1 In Situ Model

The simulated model studied is generated respecting the statistical and spatial dis-
tributions obtained from real data collected at a porphyry copper deposit to impose
realistic statistical and spatial distributions of the geometallurgical domains, the SPI,
and copper (Cu) grade over a domain that represents a realistic volume for long-term
production (10 years). Model dimensions are presented in Table 2.

SPI and copper grade sample values from three typical geometallurgical units in
a porphyry copper deposit are available. The distribution of geometallurgical units
is simulated with sequential indicator simulation. SPI and copper grade distributions
are jointly modeled with sequential Gaussian cosimulation, accounting for a linear
relationship (p = 0.55). A linear model of coregionalization is fit to the experimental
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Table 2 Model dimensions

Coordinate Number of blocks Dimensions (m)
East (X) 150 10.0
North (Y) 150 10.0
Elevation (Z) 8 12.0
- Reference GMU Bench 1 — Reference Cu Data Bench1
1 E o3 x E T P % Af‘
‘? ‘ ¢ =q! o 5 20

GMU3-Soft

GMU2-Hard

GMU1-Medium

4.0_Correlation SPI vs Cu
B eference I Data Bench 1 _ Number of data 720000

Number plotted 7185

150
X Variable: mean 98.246
3.0 std. dev. 31.399
Y Variable: mean 0.389
125 std. dev. 0.449
. correlation 0.553
* rank correlation 0.629
Y=aX+b
a 0.008
b -0.388

Cu

50 100 150 200
SPI

 East

Fig. 4 Reference spatial distributions of geometallurgical units, copper grade, and SPI. The scatter plot
between SPI and copper grades is provided (only 1% of the simulated points are shown)

direct and cross variograms (not shown). Maps at point support (every block is repre-
sented by four points) and the scatter plot showing the relationship between the SPI
and grade are shown in Fig. 4.

This simulated model represents the ground truth (see Fig. 5 for block statistics),
and defines the copper grades on which the mine schedule is based. It is used for all
subsequent comparisons. A cutoff grade of 0.3% Cu is applied to assign the blocks
to the processing plant. This determines the sequence of SPI values to be fed into the
SAG mill.

The ground truth is sampled on a 50 m x 50 m grid to represent a geometallurgical
campaign. These samples are used to create an estimated model of SPI with ordinary
kriging to account for the fact that, in reality, SPI is not known everywhere in the
domain. Copper grades from the ground truth at block support are used to create the
mine sequence, since for simplicity, it is assumed that the short-term grade model
from blastholes is precise enough to correctly assign each block to the processing
plant (which is not true in practice). The estimated SPI model is presented in Fig. 6.
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SPI Final Block Model Cu Final Block Model
B o Number of Data 180000 i Number of Data 180000
0.067 riL mean 98.233 1 mean 0.389
3 mn std. dev. 27.527 0.10 std. dev. 0.397
B M coef. of var 0.280 1 coef. of var 1.019
0.05_] M L maximum 214.150 1 maximum 5.699
] upper quartile 115.223 0.08_] upper quartile 0.528
B dian 97.070 it median 0.297
3 3 lower quartile 80.567 by 1 lower quartile 0.117
& 004 minimum 10.903 e 1 minimum - 0.000
[0} ] @ 006_]
El ] 0 o0
0.03 ] o ]
IS o ]
[ 1 L 0.04_]
0.02] 4
0.01] 0'02*_
0.00] it | Hi . 0.00_] MU [ - !
50 100 150 200 0.0 0.5 1.0 15 20
SPI Cu

Fig. 5 Histograms and statistics of SPI and copper grade at block support

Estimated Block SPI Bench 1 250_Correlation Block SPI vs Est SPI

1500 , &

umber of data 180000
Number plotted 180000

200} X Variable: mean 98.233
std. dev. 27.527

Y Variable: mean 98.208
std. dev. 14.449

correlation 0.600
rank correlation 0.593

150_|

Estimate

100 b 67.251

North

50_]

T T T 1
50 100 150 200 250

East

Fig. 6 Estimated SPI and correlation with ground truth

Simulated Block SPI Sim 5 Bench 1
AT T T

1500 g8 v
] e ¥

50

i b}
East 1500

Fig. 7 Simulated SPI and E-type model from 50 realizations

To model the uncertainty associated with SPI, 50 realizations conditional to the
sampled SPI values over the 50 m x 50 m grid are built using sequential Gaussian
simulation. Figure 7 shows one simulation at block support and the E-type estimate
over 50 realizations (average of the ensemble of conditional simulations), for the same
bench displayed in Figs. 4 and 6. It can be seen that the general trends are correctly
reproduced, delineating volumes of hard and soft rock.This completes the generation
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Table 3 Average and forecasted counts of day types and their corresponding log ratios

Case Excellent Good Moderate Bad Total In(E/B) In(G/B) In(M/B)
Average 2004-2016  48.69 208.15 97.00 11.15 365 1.55 3.03 2.26
Forecast 2030 93.03 168.76 75.46 27.75 365 1.21 1.81 1.00

of the in situ spatial models of reserves used for planning. As mentioned above, the
mine sequence is applied considering the copper grades from the reference model.
This defines the following time series:

1. Ground truth: the time series of true block SPI values from the ground truth model.

2. Estimated: the time series of estimated block SPI values from the limited samples
over the 50 m x 50 m grid.

3. Simulated [1-50]: the time series of simulated block SPI values from the limited
samples over the 50 m x 50 m grid.

3.1.2 Solar Model

The simulated model is located in the Atacama Desert, in northern Chile, where
hourly data of solar irradiance are available from the Explorador Solar (Ministerio de
Energia de Chile 2018) for the period between 2004 and 2016. Monthly classification
thresholds are determined as a function of the maximum daily irradiance within each
month over the 13 years. The total count of day types per month and the corresponding
additive log ratios (alr) are computed, and presented in the “Appendix.” Transition
probability matrices are computed for each month. An example is presented in the
“Appendix.”

Based on the alr for each of the 13 years of information, a linear regression is
applied to forecast these log ratios out to 2030 (Fig. 8). All three log ratios decrease
in time. The linear decreasing model is conservative, as a cumulative sum analysis
(not shown) revealed a dramatic change in the ratios starting in 2014. Based on these
linear regressions, the forecasted log ratios and corresponding data type counts for
2030 are presented in Table 3. This trend reflects an increase in the count of bad and
excellent days during the year, balanced with a decrease in good and moderate days.
Correction factors fl‘j are found to update the transition probabilities in the cold and
warm months, in order to match the forecasted marginal probabilities obtained from
the counts of day types presented in Table 3.

Two models of solar irradiance are considered. The original (current) and updated
transition matrices (forecast year 2030) are used to simulate the sequence of day types.
The corresponding hourly solar irradiance is simulated by hot deck imputation, where
the 24-hourly irradiance of a day of the simulated type in the corresponding month is
directly drawn from the available data.
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Fig. 8 Log ratio regression models

3.1.3 Demand-Side Management

To complete the experimental settings used in this application, consideration is given
to a demand-side management (DSM) approach, where the SAG mill can determine
the feed used depending on the cost of the energy and/or some other objective func-
tion, such as maximizing the percentage of renewable energy used by the system or
minimizing the CO; emissions. This is achieved by using two stockpiles of limited
capacity, to classify ore as hard or soft, depending on its expected grindability (Fig. 3).
The SAG mill will draw from one of the two stockpiles at will to minimize the energy
cost. If one of the stocks is emptied, the ore from the other stockpile is used. Stockpiles
are modeled using a first-in first-out approach. In our application, a simplified heuristic
is used to feed hard rock during the day and soft rock during the night.

3.1.4 Final Cases Studied

The final cases analyzed in the next section are compared by looking at the following
outputs of the optimization model:

Size of the power contract (MW).

Size of the BESS system (MW).

Size of the PV plant (MW).

Yearly cost (objective function) (USD/year).
Operational cost of imports (USD/year).

NS

The cases are summarized in Table 4.
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Table 4 Summary of cases analyzed

Case SPI model Solar model PV-BESS DSM
0 (no PV-BESS) Ground truth Current No No
la Ground truth Current Yes No
2a Ground truth Current Yes Yes
3a Ground truth Forecast 2030 Yes No
4a Ground truth Forecast 2030 Yes Yes
1b Estimated Current Yes No
2b Estimated Current Yes Yes
3b Estimated Forecast 2030 Yes No
4b Estimated Forecast 2030 Yes Yes
Ic Simulated Current Yes No
2c Simulated Current Yes Yes
3c Simulated Forecast 2030 Yes No
4c Simulated Forecast 2030 Yes Yes

3.2 Results

Results of the optimization are presented in Table 5 for the current solar model and
in Table 6 for the forecasted solar model. All values are presented relative to case la,
that is, the use of a PV-BESS sized using the ground truth, under the current solar
conditions and without considering DSM (Figs. 9, 10).

Results in Tables 5 and 6 show the objective function assessed with the input time
series of SPI, which is either estimated or simulated.

3.2.1 Results Based on Ground Truth SPI Time Series

The first important result is that not using a PV-BESS (case 0) implies a much higher
energy cost for the SAG mill, which translates into a 37% increase in total yearly cost
(Table 5, objective function value of case 0), with respect to the case of implementing
the PV-BESS (case 1a). The use of a forecasted solar model creates a slight increase
in the total cost (case 3a) of about 1%, which may be explained by the increase in
excellent and bad days and the compensating change. The use of DSM reduces the cost
by about 2% for both solar models. This means that, as long as the cost of rehandling
ore to manage the stockpiles does not offset this 2% cost reduction, it is advantageous
to consider this option. It should be pointed out that stockpiles were not optimized
to minimize the energy cost in this application, but instead fixed sizes were defined,
which could be revised to improve the DSM performance.

Finally, the power contract with the grid is 4% larger if PV-BESS is not considered
(case 0), and 6% smaller when considering DSM (cases 2a and 4a), with respect to
the comparable cases (1a and 3a, respectively).
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Fig. 9 Optimization results for current solar conditions (cases 0, la, 1b, lc, 2a, 2b, and 2c)
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Fig. 10 Optimization results for forecasted solar conditions (cases 3a, 3b, 3c, 4a, 4b, and 4c). Case 0
included for reference

3.2.2 Results Based on Estimated SPI Time Series

The sequence of blocks is fixed and defined by the mine schedule, which depends on
the copper grades. Therefore, the sequence of SPI values feeding the SAG mill when
stockpiles are not used, or entering the stockpiles when these are considered, is fixed
and defined by the block sequence based on grades. Now, decisions are made based
on estimated SPI values, which will depart from the optimum decision. The reported
objective function in Tables 5 and 6 approximates the actual objective function, and
is not actually assessed with the true values, so it should only be considered as a
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reference value indicating how well the estimated yearly cost is inferred from the
estimated models. The actual objective function, when using the true SPI time series
with the sized PV-BESS infrastructure based on the estimated or simulated SPI values,
is presented in Table 7. It can be seen that the sizing of the PV-BESS infrastructure
using simulated values slightly improves the objective function. This improvement
should not be disregarded considering the significant energy cost incurred in mineral
processing plants.

Other interesting insights from these results include the fact that, if the variability
is underestimated, the size of the PV plant becomes slightly smaller, and the BESS is
underestimated, as there is no need for a significantly larger buffer to cover fluctuations
in the grindability of the feed to the SAG mill. This can be seen in all cases. The BESS
energy capacity using the estimated time series of grindability is sized as only 77%
(case 1b) of that of the ground truth (case 1a) without DSM. When DSM is considered,
the change in the BESS energy capacity is even more dramatic, going from 297%
(case 2a) to 130% (case 2b). This can be explained based on the fact that, when DSM
is used, there is more control over the variability of the feed, hence it is safe to invest
in a large BESS since it will be used at its full potential. However, if the variability
is underestimated due to the smoothing of the SPI estimation, the DSM will not have
such a significant effect, and the required battery system will be sized smaller than it
should be. Similar trends can be seen in the case with the forecasted solar model.

3.2.3 Results Based on Simulated SPI Time Series

Again, in this case, the objective function reported is evaluated considering the simu-
lated values and not the true values, in Tables 5 and 6, while the actual objective function
results are presented in Table 7 (for the current solar conditions). It is interesting to
note the effect of the variability on the sizing of the PV and BESS infrastructure. The
PV plant tends to be of a size similar to the case of the ground truth. However, the
BESS capacity is systematically larger than that defined in the ground truth: 299%
(case 1c) versus 100% (case 1a), and 378% (case 2c) versus 297% (case 2a), with
similar results being found in the case with the updated solar model. This is balanced
by a smaller grid contract and smaller imports operational costs.

Considering the range of possible variations in SPI and solar irradiance simulated
for these experiments, the resulting buffer capacity in the battery system becomes
very large, to minimize the grid imports beyond the contract, which may prove to be
very expensive. The BESS system is thus prepared to buffer a large array of possible
combinations of day types.

3.2.4 Results Based on Forecasted Solar Model

The forecasted solar model generates slight increases of 1% in total yearly cost with
respect to the current solar model (case 3a versus case la or case 4a versus case 2a).
As mentioned above, the forecasted solar model implies an increase of the frequency
of bad days, along with excellent days, so the effect may not be significant. However,
this is a fairly crude forecast model that does not consider the significant change seen
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in 2014 onwards. Additional scenarios could be evaluated to investigate the sensitivity
of the result when drastic changes are considered.

4 Conclusions

Energy is one of the key resources required to produce raw materials and metals. The
mining industry is well aware of the challenges related to the increasing hardness of
ores, which translates into higher specific energy consumption, and must search for
alternative sources of energy. Solar energy offers a solution to this problem, given the
significant development of photovoltaic plants and battery energy storage systems in
recent years. In areas where solar power is abundant, integration of this energy source
can favorably affect the overall yearly energy cost of a mining operation. This paper
presents some of the benefits of the integration of solar energy, in the context of a
mineral processing plant, and specifically in relation to the power consumption of a
SAG mill.

The effect of the variability of the ore grindability, as well as the variability in solar
irradiance to generate the energy in the photovoltaic plant, along with the sizing of
a proper battery storage system has been studied. The modeling approach integrates
geostatistical simulation of the geometallurgical units in a copper deposit, and cosim-
ulation of the copper grades and the SAG power index, to characterize the joint spatial
relationship of the grade and grindability. A sampling campaign over the spatial model
is performed to emulate the information available for decision-making in practice. The
reserves model is then transferred into a time series by means of a mine plan, and the
use of stockpiles is considered, modeling two stocks based on the estimated or simu-
lated SPI values. The specific energy consumption of the rock determines the energy
demand of the SAG mill. This energy is supplied by a combination of energy from
the grid, which is defined by a power contract, and additional imports that may be
required if the contracted demand is exceeded. This energy can be balanced by energy
provided by a solar photovoltaic plant along with a battery energy storage system. The
energy supplied by this system depends on the solar irradiance at the location where
the PV plant is built. A first-order Markov model is built to simulate the variability in
day types in terms of solar irradiance, and the hourly energy is mimicked by hot deck
imputation from a database of solar irradiance available for the last 13 years. Sizing
of the optimum PV-BESS is done using linear stochastic optimization. Finally, the
possible change in solar irradiance patterns due to climate change is assessed based on
a forecasted model of log ratios of the data types out to the year 2030. Results show
that integrating a PV-BESS into a SAG mill generates significant cost reductions and
should be studied in all operations where solar availability is high.

Demand-side management (i.e., adapting the demand profile to price signals) can be
applied to the SAG mill operation, by creating stockpiles that allow management of the
blend or ore fed to the plant. This reduces the overall energy cost of the plant by about
2% in the cases studied. In this case study, it led to larger battery storage, balanced
with a smaller grid contract, and smaller imports from the grid when additional energy
is needed. This could be further optimized by ensuring a more homogeneous feed, to
take full advantage of the PV-BESS infrastructure and ensure optimum use of the
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batteries capacity, minimum requirements for overconsumption from the grid, and
better grinding performance (not discussed in this paper).

Finally, climate change was considered by forecasting the solar irradiance out to
2030. Although this translates into significant changes in the marginal probabilities of
days of different types in relation to the solar irradiance availability, it did not affect
the results in a significant manner, leading to a small cost increase. This means that the
PV-BESS infrastructure is robust against climate change, needing only a small increase
in size to cover future fluctuations in solar patterns. More sophisticated forecasting
models could be considered to assess the effect of these changes, as well as a more
complex approach to simulate the day types. The current approach uses a first-order
Markov chain, which inherently misses weather trends that persist over multiple days.

The presented application integrates modeling approaches from different areas in
the mining value chain. Itis, in the authors’ opinion, a true geometallurgical integration
of knowledge from different areas to address a significant challenge in the mining
industry, related to its energy intensiveness.
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Appendix

The maximum daily irradiance and the corresponding thresholds to define the day
types for each month, based on the 13 years of data available, are presented in Table 7.
The corresponding numbers of days of each type are computed in Table 8, and an
example transition probability matrix is presented in Table 9.

Table 7 Thresholds for day

types for every month Month 1(;/15.:1)(. of 95% 85% 60%
aily PV
Jan 10.190 9.681 8.662 6.114
Feb 9.395 8.925 7.986 5.637
Mar 8.819 8.378 7.496 5.291
Apr 7.573 7.194 6.437 4.544
May 6.276 5.962 5.335 3.766
Jun 5.477 5.203 4.655 3.286
Jul 6.000 5.700 5.100 3.600
Aug 7.067 6.714 6.007 4.240
Sep 8.483 8.059 7.211 5.090
Oct 9.619 9.138 8.176 5.771
Nov 10.047 9.545 8.540 6.028
Dec 10.378 9.859 8.821 6.227
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Table 8 Count of day types per month and additive log ratios

Year Excellent Good Moderate Bad Total In(E/B) In(G/B) In(M/B)

2004 47 200 111 8 366 1.771 3.219 2.630
2005 39 210 102 14 365 1.025 2.708 1.986
2006 26 221 113 5 365 1.649 3.789 3.118
2007 46 211 92 16 365 1.056 2.579 1.749
2008 42 234 83 7 366 1.792 3.509 2473
2009 55 212 90 8 365 1.928 3.277 2.420
2010 46 223 90 6 365 2.037 3.615 2.708
2011 69 184 101 11 365 1.836 2.817 2.217
2012 50 212 98 6 366 2.120 3.565 2.793
2013 44 218 91 12 365 1.299 2.900 2.026
2014 48 197 110 10 365 1.569 2.981 2.398
2015 53 192 99 18 362 1.080 2.367 1.705
2016 68 192 81 24 365 1.041 2.079 1.216

Table 9 Example transition

probabilities between day types From To

from solar data (January) Excellent Good Moderate Bad
Excellent 0.46 0.46 0.08 0.00
Good 0.04 0.69 0.26 0.02
Moderate 0.03 0.56 0.42 0.00
Bad 0.25 0.50 0.25 0.00
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