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A B S T R A C T

Accurate early diagnosis of neurodegenerative diseases represents a growing challenge for current clinical
practice. Promisingly, current tools can be complemented by computational decision-support methods to objec-
tively analyze multidimensional measures and increase diagnostic confidence. Yet, widespread application of
these tools cannot be recommended unless they are proven to perform consistently and reproducibly across
samples from different countries. We implemented machine-learning algorithms to evaluate the prediction power
of neurocognitive biomarkers (behavioral and imaging measures) for classifying two neurodegenerative condi-
tions –Alzheimer Disease (AD) and behavioral variant frontotemporal dementia (bvFTD)– across three different
countries (>200 participants). We use machine-learning tools integrating multimodal measures such as cognitive
scores (executive functions and cognitive screening) and brain atrophy volume (voxel based morphometry from
fronto-temporo-insular regions in bvFTD, and temporo-parietal regions in AD) to identify the most relevant
features in predicting the incidence of the diseases. In the Country-1 cohort, predictions of AD and bvFTD became
maximally improved upon inclusion of cognitive screenings outcomes combined with atrophy levels. Multimodal
training data from this cohort allowed predicting both AD and bvFTD in the other two novel datasets from other
countries with high accuracy (>90%), demonstrating the robustness of the approach as well as the differential
specificity and reliability of behavioral and neural markers for each condition. In sum, this is the first study, across
d Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.
e~no).
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Abbreviations

AD Alzheimer Disease
bvFTD behavioral variant Frontotempora
ACE Addenbrooke’s cognitive examina
IFS INECO Frontal Screening
HC Healthy controls
TR repetition time
VBM voxel-based morphometry
SPM12 Statistical Parametric Mapping so
WM white matter
GM grey matter
CSF cerebrospinal fluid
ACC anterior cingulate cortex
AAL-atlas Automated Anatomical Labeling
centers and countries, to validate the predictive power of cognitive signatures combined with atrophy levels for
contrastive neurodegenerative conditions, validating a benchmark for future assessments of reliability and
reproducibility.
l Dementia
tion

ftware

(AAL)-Atlas
1. Introduction

Neurodegenerative diseases are a world-wide epidemic (Shah et al.,
2016; Shaw et al., 2007). According to the World Alzheimer Report 2015
from the Alzheimer’s Disease International, more than 130 million peo-
ple above age 60 will be diagnosed with dementia in 2050 (International
AsD, 2015). Accurate early diagnosis across different neurodegenerative
conditions is important for establishing prognosis and accessing adequate
treatment. Diagnosis and differential diagnosis represents a clinical
challenge due to the complexity of neurodegenerative processes, which
disturb the patients’ brain structures and functions, as well as their
cognition and behavior (Oxtoby et al., 2017; Palop et al., 2006). Indeed,
current guidelines require the identification of a clinical phenotype and
the recognition of specific patterns of atrophy or hypoperfusion in neu-
roimaging, which are frequently combined with neuropsychological
evaluation (Forman et al., 2006a; Tong et al., 2017). Accordingly, ac-
curate and timely diagnosis depends on the clinical expertise to recognize
the co-occurrence of clinical phenotype and neuroimaging data. This
frequently leads to misdiagnosis in non-specialized dementia centers,
even among the most common forms of dementia (Johnson et al., 1999;
Padovani et al., 2013). This is especially true for developing countries,
given their minimal mental-health infrastructure, the lack of regionally
organized research, and reliance on non-local (mostly Anglo-Saxon)
reference data (Parra et al., 2018). The development of objective, auto-
mated, and multidimensional decision-support methods for dementia
could critically enhance the current clinical toolkit by increasing diag-
nostic accuracy and confidence (Arbabshirani et al., 2017; Huys et al.,
2016). Computational approaches prove most promising in this context,
given their potential to detect consistent, reproducible markers across
samples from different countries (Henley et al., 2005; Humpel, 2011).
Capitalizing on this novel approach, here we implement
machine-learning algorithms to evaluate the performance of well-defined
cognitive/behavioral and neural markers of neurodegeneration for clas-
sifying patients with Alzheimer’s disease (AD) and behavioral variant
frontotemporal dementia (bvFTD) across three different countries.

Neurodegenerative disorders are characterized by abnormalities at
molecular, synaptic, neuroanatomical, network-level, cognitive, and
behavioral levels (Palop et al., 2006; Piguet et al., 2011a; Seelaar et al.,
2011; Sperling et al., 2011). Although specific disturbances across these
levels are generally associated with different types of dementia, patients
2

present more heterogeneous profiles than would be expected according
to diagnostic criteria (Palop et al., 2006; Piguet et al., 2011a; Seelaar
et al., 2011; Sperling et al., 2011). For example, executive function def-
icits, which are characteristic of bvFTD, may nevertheless be absent in
some patients. Similarly, such deficits may be observed in AD (Seelaar
et al., 2011). This is also true for atrophy patterns. For example, a pre-
vious cluster-based analysis in bvFTD revealed four distinct patterns,
with patients showing temporal-dominant, temporo-frontoparietal,
frontal-dominant, or frontotemporal atrophy patterns (Whitwell et al.,
2009). Given this variability, computational decision-support methods
have been proposed as a powerful novel approach due to their capacity to
jointly assess relevant heterogeneous features (Arbabshirani et al., 2017;
Dottori et al., 2017).

In the study of dementia, both cognitive and structural MRI data have
arisen as potential candidates to establish effective, affordable, and
massive markers of specific diseases (Fox and Schott, 2004; Kloppel et al.,
2008a; Larner and Mitchell, 2014; Moreira et al., 2017). Valuable in-
formation of the patients’ cognitive status can be quickly obtained via
cognitive screening instrument (Crawford et al., 2012; Galton et al.,
2005; Velayudhan et al., 2014), such as the Addenbrooke’s cognitive
examination (ACE) and the INECO Frontal Screening (IFS), which can be
readily administered in general clinical settings. The ACE is a quick tool
to evaluate general cognitive domains (e.g., memory, attention) with
great sensitivity for AD and dementia in general (Larner and Mitchell,
2014; Crawford et al., 2012; Galton et al., 2005; Hsieh et al., 2013), while
the IFS focuses on executive functions (Moreira et al., 2014, 2017; Tor-
ralva et al., 2009a; Bahia et al., 2018; Custodio et al., 2016) –a domain
poorly evaluated by the ACE (Hsieh et al., 2013) – with the aim to
identify characteristic deficits in bvFTD patients who have relative
preservation of other cognitive domains (Piguet et al., 2011a). These two
widely used screening tools (Hsieh et al., 2013; Torralva et al., 2009a), in
particular, have yielded good accuracy rates to discriminate dementia
patients from healthy controls (with scores from 83 to 96%) (Larner and
Mitchell, 2014; Moreira et al., 2017; Hsieh et al., 2013; Torralva et al.,
2009a). On the other hand, structural MRI is a non-invasive method,
generally included in routine assessments of dementia, characterized by
lower costs than other candidate biological biomarkers (Mueller et al.,
2006). Of note, though anatomical images are only visually inspected for
clinical evaluation, they offer automatically derivable metrics of atrophy,
which can reveal subtle neural alterations untraceable to the naked eye
(Orru et al., 2012). Furthermore, several studies applying computational
decision-methods on anatomical neuroimages have yielded good accu-
racy rates (from 80 to 100%) to discriminate AD and bvFTD patients from
healthy controls (Zheng et al., 2016; Bron et al., 2017; Zhang et al., 2013;
Dukart et al., 2011; Kuceyeski et al., 2012; Tahmasian et al., 2016; Zhou
et al., 2010).

Although this evidence underscores the potential role of cognitive
screenings and neuroimaging as feasible and effective markers for de-
mentia, several limitations undermine their reliability and potential
generalizability. First, works testing the classification properties of the
ACE and the IFS rely on simple statistical methods to establish cut-offs for
maximizing true positives and minimizing false positives, but no
machine-learning approaches have yet been applied to evaluate the
performance of these screenings, alone or in combination with neural
measures (Larner and Mitchell, 2014; Moreira et al., 2017; Hsieh et al.,
2013; Torralva et al., 2009a). Second, although a few neuroimaging
studies have obtained high classification rates via sophisticated
machine-learning approaches (such as support-vector machines), none of
them has assessed the generalizability of their findings to new datasets
(Zheng et al., 2016; Bron et al., 2017; Zhang et al., 2013; Dukart et al.,
2011; Kuceyeski et al., 2012; Tahmasian et al., 2016; Zhou et al., 2010),
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casting doubts on their potential overfitting confounds and widespread
translational relevance. Third, no previous study has assessed the com-
bined sensitivity of neuropsychological screenings and atrophy measures
with computational-decision methods, despite the evidence underscoring
the potential of this approach to tackle behavioral and anatomical het-
erogeneity (Palop et al., 2006; Piguet et al., 2011a; Seelaar et al., 2011;
Sperling et al., 2011). Finally, most previous research is based only on
samples from one clinic (typically, from Anglo-Saxon populations), so
that their results might not be robust against the variability introduced by
cross-center differences in recording parameters, diagnostic criteria, and
the patients’ socio-demographic profiles.

In sum, computational-decision methods combining cognitive
screenings and atrophy measures to detect dementia patient profiles
prove promising, but key tests of their robustness remain to be deter-
mined. Here, we implemented machine-learning algorithms to evaluate
the power of cognitive parameters and brain atrophy measures for clas-
sifying AD and bvFTD patients across three countries, including Latin-
American and Anglo-Saxon samples. In addition, we applied a leave-
two-out cross-validation approach to test the accuracy rates within a
reference dataset (within-country analysis), and then performed a cross-
country validation to further evaluate the generalization of our findings.
We predicted that the ACE, given its target domains, would contribute
more than the IFS for the classification of AD. The IFS, given its emphasis
on frontal executive functions, was hypothesized to be more sensitive to
bvFTD. Moreover, we expected that cognitive measures would generalize
better than atrophy features, as the latter present higher variability due
to differences in MRI scanner and acquisition parameters among centers
(Abdulkadir et al., 2011). Finally, we anticipated that the combination of
cognitive and atrophy features would yield higher classification scores
for both within-country analysis and cross-country generalization.

2. Materials and methods

2.1. Participants

The data analyzed here partially belong to a previously reported
multicenter protocol study (Sede~no et al., 2017), and comprised 202
participants from three countries. Fifty-seven patients fulfilling revised
consensus criteria for probable bvFTD (Rascovsky et al., 2011) and 29
patients who satisfied international criteria for AD (McKhann et al.,
2011) were recruited from three international clinics: INECO Founda-
tion, Argentina (Country-1, C_1); San Ignacio University Hospital,
Colombia (Country-2, C_2); and FRONTIER, the Frontotemporal De-
mentia Research Group, based in Sydney (Country-3, C_3); further details
of the origin of each sample are in Table 1.

As described in previous reports (Baez et al., 2014a; Piguet et al.,
2011b; Torralva et al., 2009b) the clinical diagnosis in each center was
established by a standard examination –involving extensive neurological,
neuropsychiatric, and neuropsychological assessments–, and each case
was discussed by a multidisciplinary clinical meeting of AD and bvFTD
experts. All patients were in early/mild disease stages, and they did not
fulfil criteria for specific psychiatric disorders. Patients presenting pri-
marily with language deficits were excluded (further details about the
clinical evaluation are reported in (Sede~no et al., 2017)). Each patient
sample was matched on sex, age, and education with its own control
group from the same scanning center (see Table 1). Healthy controls (HC,
116 in total) presented no history of psychiatric or neurological disease.

Participants (or their Person Responsible) provided signed informed
consent in accordance with the Declaration of Helsinki. The study pro-
tocol was approved by the institutional Ethics Committee of each center.

2.2. Cognitive assessment

Participants completed a general cognitive screening, the ACE
(Mathuranath et al., 2000), and an executive function brief cognitive test,
IFS (Torralva et al., 2009b). The IFS (Torralva et al., 2009b) is a sensitive
3

tool to detect executive dysfunction in patients with dementia (Dottori
et al., 2017; Baez et al., 2014a, 2014b, 2016a, 2016b, 2019; Melloni
et al., 2016; Santamaria-Garcia et al., 2016, 2017; Sedeno et al., 2016;
Gleichgerrcht et al., 2011). This test includes eight subtests that evaluate
response inhibition and set shifting, abstraction skills, and working
memory. The global score of the IFS (the sum of the subtests, with a
maximum value of 30) was considered here, as in previous works (Ibanez
et al., 2012). The ACE (Mathuranath et al., 2000) is a sensitive tool to
detect early stages of dementia and, more particularly, to distinguish
between AD and FTD patients (Hsieh et al., 2013). This test evaluates
orientation, attention, memory, verbal fluency, language, and visuospa-
tial ability (with a maximum total score of 100).

2.3. Structural imaging

2.3.1. Image acquisition
We followed the guidelines from the Organization for Human Brain

Mapping (Nichols et al., 2017) to report the acquisition and pre-
processing steps. Structural images were obtained from Country-1 par-
ticipants through whole-brain T1-weighted spin echo sequences in a 1.5T
Phillips Intera scanner, and were acquired parallel to the plane con-
necting the anterior and posterior commissures with the following pa-
rameters: matrix size ¼ 256 � 240, 120 slices, approx. 1x1x1 mm
(1x0.97 � 0.97 mm); repetition time (TR) ¼ 7489 ms; echo time (TE) ¼
3420 ms; flip angle ¼ 8�, acquisition time ¼ 7 min. Country-2 partici-
pants were scanned in a 3T Philips Achieva scanner. Whole-brain struc-
tural T1-rapid gradient-echo (MP RAGE) anatomical 3D scans were
acquired with the following parameters: matrix size ¼ 256x256, 160
slices, 1x1x1 mm isotropic; TR¼ 8521 ms; TE¼ 4130 ms; flip angle¼ 9�

ms, acquisition time ¼ 8 min. In Country-3, whole-brain structural
T1-weighted spin echo sequences were acquired through a 3T Philips
MRI scanner with a standard head coil (matrix size ¼ 256x200, 256
slices, 1x1x1 mm isotropic; TR¼ 5903ms: TE¼ 2660 ms; flip angle¼ 8�;
acquisition time ¼ 7.42 min).

2.3.2. Voxel-based morphometry
Structural images from each center were analyzed via voxel-based

morphometry (VBM) with the DARTEL Toolbox of the Statistical Para-
metric Mapping software (SPM12), following validated procedures
(Sede~no et al., 2017). Images were segmented into white matter (WM),
grey matter (GM), and cerebrospinal fluid (CSF). Then, based on the
segmented GM andWM images, we created a template from each center’s
complete data set with the “DARTEL (create template)”module. Next, the
final template from the previous step was affine-registered into the MNI
space with the “Normalize to MNI Space” module from DARTEL Tools,
and then this transformation was applied to all segmented GM scans to
translate them into standard space (images were modulated by Jacobian
determinants). Finally, an isotropic Gaussian kernel of 12-mm full width
at half maximum (FWHM) was applied to all images.

Following previous procedures (Dukart et al., 2013), we used a mask
resembling the characteristic atrophy pattern of AD and bvFTD, respec-
tively, to extract the GM volume for each participant. Given that we aim
to test cognitive and atrophy features with a cross-center validation
strategy, we used this ‘a priori’ feature selection to avoid the potential
bias of a data-driven approach, which might find optimum classification
features for an specific dataset that do not necessarily enable high clas-
sification rates in another one (Dukart et al., 2013). As in a previous
work, the general bvFTD atrophy mask was defined using the Automated
Anatomical Labeling (AAL)-Atlas (Tzourio-Mazoyer et al., 2002), and
involves the main fronto-insulo-temporal areas of early degeneration,
including (Piguet et al., 2011a; Rascovsky et al., 2011; Ibanez andManes,
2012; Schroeter et al., 2007): the anterior cingulate cortex (ACC), the
orbitofrontal cortex, the gyrus rectus, the inferior frontal gyrus, the
frontal middle gyrus, the amygdala, the basal ganglia (caudate nucleus,
putamen and pallidum), the insular cortex, the hippocampus and para-
hippocampus (see Supp. Fig. 1). For AD, the general mask was also based



Table 1
Summary of demographic data for each group.

Country-1

C_1-FTD HC F-value p-value

Age [years] 66.72
�9.56

68.73
�8.48

0.57 .452

Education [years] 15.05
�2.97

15.86
�2.92

0.85 .360

IFS 16.30
�7.01

25.37
�1.84

46.46 <.001

ACE 76.72
�15.39

93.76
�4.25

33.02 <.001

Chi-square p-value
Gender [M/F] F ¼ 11 (16)

M ¼ 7 (13)
F ¼ 21 (24)
M ¼ 9 (10)

0.40 .527

C_1-AD HC F-value p-value

Age [years] 75.37
�8.72

71.54
�6.00

2.57 .117

Education [years] 12.94
�4.97

15.13
�3.10

2.81 .102

IFS 16.59
�4.46

25.07
�1.87

64.34 <.001

ACE 69.50
�14.11

93.90
�4.28

58.89 <.001

Chi-square p-value
Sex [M/F] F ¼ 13 (13)

M ¼ 3 (3)
F ¼ 17 (18)
M ¼ 5 (6)

0.08 .766

Country-2
C_2-FTD HC F-value p-value

Age [years] 66.55
�9.37

61.18
�7.74

2.72 .109

Education [years] 15.89
�2.31

14.73
�5.41

0.38 0.542

IFS 12.78
�6.21

22.87
�2.97

38.13 <.001

ACE – – – –

Chi-square p-value
Sex [M/F] F ¼ 7 (12)

M ¼ 2 (4)
F ¼ 11 (16)
M ¼ 11 (12)

2.03 .155

Country-3
C_3-FTD HC F-value p-value

Age [years] 64.90
�9.44

69.50
�6.43

1.88 .184

Education [years] 12.20
�3.47

14.27
�2.77

2.50 .128

IFS – – – –

ACE 75.36
�14.99

96.25
�2.42

22.73 <.001

Chi-square p-value
Sex [M/F] F ¼ 4 (4)

M ¼ 7 (8)
F ¼ 5 (7)
M ¼ 7 (8)

0.06 .794

C_3-AD HC F-value p-value

Age [years] 64.00
�5.83

69.50
�6.43

4.34 .051

Education [years] 12.80
�2.89

14.27
�2.77

1.47 .238

IFS – – – –

ACE 62.10
�11.58

96.25
�2.41

100.09 <.001

Chi-square p-value
Sex [M/F] F ¼ 3 (5)

M ¼ 7 (8)
F ¼ 7 (8)
M ¼ 5 (7)

1.76 .183

Table 1. Subject groups for the two diseases and the three countries. Because of
occasional missing data, we indicate for each gender and country, first the
number of subjects actually used in the current study and then in parentheses the
total of recruited subjects. Note also that different cognitive tests were used
depending on the country. Age, education, IFS and ACE scores are given with the
mean� SD. C_1 ¼ Country-1; C_2 ¼ Country-2; C_3 ¼ Country-3.

Fig. 1. Standardize (grey box): data were standardized by converting them to z-
scores, so that each feature in the control group had a zero mean and standard
deviation of one. Data exploration (light orange boxes): these procedures were
used only to explore and obtain knowledge about the behavior of the data.
Clustering: we used a k-means algorithm with k ¼ 2 to separate groups in two
clusters to explore data distribution, and evaluate the presence of potential sub-
groups of participants (details in section 2.4.1). Visualization and inspection: the
hypothetically most informative features (cognitive screenings and atrophy)
were inspected by graphing pairs of dimensions for the reference dataset
(Country-1) (details in section 2.4). Principal component analysis (PCA): We
used MATLAB’s default implementation of PCA to explore the most informative
combination of features as measured by the explained variance of the data.
Classification (light green boxes): Within-country classification: we imple-
mented a logistic regression classifier with cognitive and brain atrophy features
within the Country-1 dataset, given that it was the largest one with full
completion of cognitive screenings. To evaluate the performance of this model,
we used a leave-two-out cross-validation scheme. Cross-country classification:
this was performed to further validate the generalization and prediction power
of our findings. The logistic regression classifier was trained with Country-1
subjects and tested on participants from Country-2 or Country-3. Finally, to
evaluate the relevance of each feature, after performing the classification with
the whole feature set, the procedure was repeated but one-by-one each of the
features was omitted in the classification (details in sections 2.4.2 and 2.4.3).
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on the AAL-atlas including the most common atrophy areas for this de-
mentia such as the posterior cingulate cortex, the hippocampus, the
parahippocampus, the amygdala, the angular gyrus, the precuneus, and
the temporal superior and middle gyrus (Whitwell et al., 2009; Du et al.,
2007) (see Supp. Fig. 1). Regions for both masks were selected
bilaterally.
2.4. Classification analysis

To test the power of cognitive and brain atrophy features for classi-
fying AD and bvFTD patients, we first implemented machine-learning
algorithms within a reference dataset. For this analysis (from now on
referred to as “within-country” approach), we selected the largest dataset
available with full completion of cognitive screenings, namely, the one
from Country-1. Then, we performed a cross-country classification
analysis to further validate the generalization and prediction power of
our findings with the within-country approach. In short, the classifier was
trained with Country-1 subjects, and tested on participants from Country-
2 or Country-3.

For both classification approaches, six features of interest were
included in the analysis: IFS and ACE scores, the volume of atrophy, and
demographic data including sex, age and number of years of formal ed-
ucation. Participants missing any of these parameters were excluded
from further study. The general processing and analysis steps (conducted
separately for the two diseases) are presented in Fig. 1. First the data was
standardized by converting to z-scores, so that each feature in the control
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group had a zero mean and standard deviation of one (see Fig. 1; the
details of z-scoring depend on the chosen cross-validation scheme, and
are described in Sections 2.4.2 and 2.4.3). This also transforms the dis-
tances between data points to be on the same scale. In this way, this step
is preferred for some clustering and classification methods in order to
improve their convergence and to avoid bias merely due to different
feature ranges. The only categorical variable, sex, was not standardized
but was given values�1, since otherwise the values would be different in
each group due to different proportions of females and males. Next, the
hypothetically most informative features were inspected by graphing
pairs of dimensions for Country-1 –the reference dataset (see 2.4.1
Clustering, below). This exploration was completed by principal
component analysis (PCA), an exploratory technique that finds the most
informative combination of features as measured by the explained vari-
ance of the data. We used MATLAB’s default implementation of PCAwith
a singular value decomposition of feature correlation matrix. Indeed, the
PCA showed that for Country-1 AD (C_1-AD) [vs Country-1 FTD (C_1-
FTD)] the first principal component explains 46% (43%) of variance (of
the standardized data), and 82% of this component (97%, calculated as
the norm of the coefficient vector) comprises roughly equal shares of IFS,
ACE, and atrophy scores. Due to the small number of features, dimen-
sionality reduction was not needed, and so the clustering and classifi-
cation analyses were not performed on the principal components, but
only on the z-scored parameters.

2.4.1. Clustering
Clustering is an exploratory technique used when the actual groups

(like disease and HC, here) are not known. The objective was to assess
whether the subjects from the reference dataset (Country-1) could be
clustered into two separate groups, without any knowledge about the
meaning of the features. Such an exploration might provide additional
insights into the distribution of the data, and help predict difficulties at
the classification stage, and also show potential errors in the diagnostic
label or the presence of potential sub-groups of participants. Given that
the clustering analysis was conducted solely for exploratory purposes and
that its results were not used in any form for the classification analyses
(see sections 2.4.2 and 2.4.3), we used the classic k-means algorithm
(see, e.g. (Duda et al., 2001),) implemented in Matlab, with k ¼ 2 (see
Supp. Data 1). To evaluate differences in the expected geometries, we use
the Euclidean distance. Although there are many other more sophisti-
cated clustering methods, k-means provided us with just enough baseline
information (i.e., that the data can be reasonably divided into two
meaningful groups) to proceed to classification.

2.4.2. Within-country classification
We used a default logistic regression classifier (Hastie et al., 2009)

implemented in Matlab, (see Supp. Data 1) to discriminate patients from
HC for Country-1, our reference data-set. Logistic regression is a type of
regression specifically designed to model probabilities –in this case, the
probability of a subject belonging to a condition group (AD or bvFTD).
Since probability is always limited to the interval from 0 to 1, predictions
of linear regression are ill-defined, because they may lie outside of this
interval. On the other hand, logistic regression uses a logistic function,
which is a smooth step function whose values range exactly from 0 to 1,
and is thus well fitted to the classification problems. This scheme was
used, since the sample of this country was the largest one compared to the
other ones. Also, only participants from this country have completed all
the cognitive screening assessments (IFS and ACE). These characteristics
are fundamental to train data both for classification within the country as
well as for cross-country validation.

To evaluate the classifier’s performance, we used a leave-two-out
cross-validation that is computationally more demanding but allows a
better sampling than either leave-one-out or 10-fold cross-validation
(Kearns and Ron, 1999; Wang et al., 2019). In each run, two partici-
pants were held out from the training set: one from the condition group
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(of size ncn) and one from the control group (of size ncl); the classifier was
trained on the remaining ncn þ ncl � 2 subjects and tested on the two
hold-out subjects. In this cross-validation scheme, all z-scores were based
on the mean and standard deviation of the ncl � 1 training controls. The
idea is to use only what we know about the training set for classification.
Any transformation of the test set must be performed using only that
knowledge, including the values of training means and standard
deviations.

The true/false positive/negative scores were accumulated over all
runs. Due to the small size of the data set, the cross-validation was
exhaustive, i.e., all ncn∙ncl pairs of condition-control subjects were tested.
From the accumulated scores, the sensitivity, TP/(TP þ FN), and speci-
ficity, TN/(TN þ FP), values were obtained.

To evaluate a classifier’s performance the receiver-operating char-
acteristic (ROC) curves (Fawcett, 2006) were calculated, see Fig. 3. The
curves depict sensitivity (true positive rate) plotted versus 1-specificity
(false positive rate). They are calculated by shifting the probability
threshold (a moving vertical decision line in the histograms of Figs. 3 and
4) by means of which subjects are assigned to groups. The probability
range was from 0 to 1 in steps of 0.05. The area under the ROC curve
(AUC) and the accuracy classification rates were used as metrics of the
classifier’s performance. These were also used to evaluate the relative
importance of a given feature for prediction results: first, the classifica-
tion was performed on the whole feature set (denoted “All” in the ROC
plots), and then, one by one, each of the six (or five for Country-2 and
Country-3 data sets) features was omitted in the classification. If the
resulting AUC or accuracy score decreased without a given feature, the
feature can be considered relevant, conversely if these values increased,
the feature can be considered to introduce unwanted noise or correla-
tions. The statistical significance of differences between the AUC
involving all features and each of the AUC when one feature was
removed, was estimated with the Mann-Whitney statistic (DeLong et al.,
1988) (p-values are expressed after Bonferroni correction). Typically this
test would use as input ncn þ ncl classification scores, which in this case
gives a small sample size (i.e. the expected confidence intervals and
coverage probability in (Gengsheng and Hotilovac, 2008)). As a rule of
thumb to obtain 90% power for distinguishing AUC 0.96 and 0.95 at 0.05
significance level one needs a sample size over 6000, which means in our
case the tests for ROC differences are severely underpowered (Zhou et al.,
2010). Since we perform the leave-two-out procedure, we decided to
bootstrap the sample to 2∙ncn∙ncl scores (of the order of 1000). How-
ever, such a resampling leads to a stronger bias and produces under-
estimated p-values. We nevertheless provide these p-values in the
Supplementary Data 2 to accompany AUC reported in Table 2.

2.4.3. Cross-country classification
For cross-country classification, the classifier was trained on Country-

1 subjects and tested on either Country-2 or Country-3, given that
Country-1 was the largest one and included data from both the IFS and
ACE for all the participants. As above, the z-scores were computed based
on the mean and standard deviation of the control group of the training
set (Country-1). Again, this is to avoid so called data leakage: if we intend
to standardize the data based on the control group, then we must not use
any knowledge from the test set. Z-scoring based on the control group of
the test set already introduces some knowledge (via mean and standard
deviation) about how the set is divided. We circumvented this issue by
using only the training set for that purpose. Note that instead of z-scores
the classifiers can also take as input PCA components – again, with PCA
loadings computed only on the training set. Although the performance of
those classifiers is comparable or only slightly better, for simplicity and
interpretability of features, we report on the logistic regression classifier
using z-scored features only (See Supp. Table 3 for results with PCA
components).

Thanks to having separate training and test subjects, leave-two-out
cross-validation was no longer necessary to estimate the out-of-sample



Table 2
Within-country and cross-country classification results (for all features and excluding one feature at a time from the overall model).

Group All IFS ACE Atrophy Age Gender Scholarity

C_1-AD AUC 0.956 0.918 0.924 0.967 0.964 0.958 0.959
Acc 0.938 0.865 0.906 0.938 0.967 0.938 0.938
1-Spec 1 0.824 1 1 1 1 1
Sens 0.875 0.906 0.813 0.875 0.935 0.875 0.875

C_1-FTD AUC 0.967 0.921 0.958 0.957 0.969 0.969 0.965
Acc 0.912 0.885 0.895 0.885 0.920 0.912 0.893
1-Spec 0.937 0.937 0.794 0.935 0.902 0.935 0.898
Sens 0.877 0.833 0.996 0.835 0.939 0.889 0.887

C_2-FTD AUC 0.935
�0.022

0.800
�0.035

– 0.919
�0.026

0.949
�0.020

0.935
�0.019

0.925
�0.022

Acc 0.913
�0.000

0.784
�0.008

– 0.913
�0.011

0.914
�0.007

0.913
�0.000

0.913
�0.000

1-Spec 1
�0.000

0.999
�0.007

– 0.997
�0.016

1
�0.000

1
�0.000

1
�0.000

Sens 0.818
�0.000

0.548
�0.017

– 0.821
�0.019

0.821
�0.014

0.818
�0.000

0.818
�0.000

C_3-FTD AUC 0.906
�0.021

– 0.795
�0.040

0.938
�0.021

0.919
�0.0151

0.908
�0.018

0.882
�0.028

Acc 0.913
�0.000

– 0.784
�0.007

0.913
�0.011

0.914
�0.007

0.913
�0.000

0.913
�0.000

1-Spec 1
�0.000

– 0.999
�0.007

0.997
�0.016

1
�0.000

1
�0.000

1
�0.000

Sens 0.818
�0.000

– 0.548
�0.017

0.821
�0.019

0.821
�0.014

0.818
�0.000

0.818
�0.000

C_3-AD AUC 1.0
�0.000

– 0.936
�0.060

1.0
�0.000

1.0
�0.000

1.0
�0.000

1.0
�0.000

Acc 1.0
�0.000

– 0.906
�0.029

1.0
�0.000

1.0
�0.000

1.0
�0.000

1.0
�0.000

1-Spec 1.0
�0.000

– 0.847
�0.031

1.0
�0.000

1.0
�0.000

1.0
�0.000

1.0
�0.000

Sens 1.0
�0.000

– 0.978
�0.076

1.0
�0.000

1.0
�0.000

1.0
�0.000

1.0
�0.000

Table 2: Classification outcomes for each group and conditions (rows) computed for models using different features (columns). The column denoted “All” corresponds to
results gathered from a model trained with all the features, while the others correspond to results obtained excluding the denoted feature. In all cases the model was
trained with the Country-1 cohort, and prediction computed for the other countries. For cross-country classification the areas are provided with error estimates as
described in Sec. III B 2. Auc ¼ area under the ROC; Acc ¼ maximal accuracy; 1-Spec ¼ 1-specificity (for maximal accuracy); Sens ¼ sensitivity (maximal accuracy).
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error as above; however, it could be used to obtain an estimate on the
classification uncertainties. To that purpose, we performed the same
leave-two-out scheme as before, with two subjects being removed from
the training set, with the crucial difference that the test set always stayed
the same (i.e., it comprised all the Country-2 or Country-3 subjects). In
other words, this scheme models a possible variance of the training set,
but does not involve variance of the test set. While in the within-country
case, in each run there were only two subjects classified and the results
had to be accumulated to obtain true/false positive/negative scores, in
the cross-country case the test set was big enough to allow computing the
scores already in each run. Consequently, we calculated means and
standard deviations of these scores over all cross-validation runs, thus
obtaining a more robust estimate. The AUCs were then given error esti-
mates as well, by shifting each point in ROC by respective standard de-
viation and calculating the areas under the maximally shifted curves. The
errors are not symmetric, so for simplicity we report only on the larger of
the two. The statistical significance of the differences between AUCs can
already be approximately inferred from such error estimates. However,
for comparability, the p-values were estimated following the same pro-
cedure as indicated in the previous section 2.4.270 (with the only dif-
ference that leave-one-out bootstrap was used to obtain comparable
sample sizes: ntrain∙ntest).

2.5. Research data for this article

Cognitive and neuroimaging final processed data from the patients of
this study are available on the “Open Science Framework” repository
under the following link: https://osf.io/ctjkv/
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3. Results

3.1. Clustering

In the case of k-means clustering with Euclidean distance for C_1-AD,
the patients and control groups are clearly visible, and the obtained
partition is approximately correct with IFS and atrophy measures, with
only 3 mis-classifications (2 false negatives and 1 false positive) (Fig. 2-
C). For C_1-FTD, the partition is different from the real distribution with
only the extreme atrophy and IFS score subjects clustered separately from
the control group. The other 10 bvFTD individuals were clustered
together with the control. A similar clustering partition was found
regarding the ACE and atrophy features, in which the C_1-AD patients
and controls present 3 misclassifications (2 false negatives and 1 false
positive), while the C_1-FTD showed 10 misclassifications (10 false
negatives). These results show that the unsupervised clustering tech-
niques alone do not deal well with the borderline cases, especially given
sparse data (as in the case of bvFTD patients).
3.2. Within-country classification

The results of classification are illustrated in Fig. 3 and also in Table 2.
The histograms show the probability score (accumulated over all runs of
cross-validation) provided by the logistic regression, which is the prob-
ability of assigning a subject to the dementia group. Visibly, the subjects
from the control and dementia groups are well separated.

In Fig. 3, the ROC curves shown refer to classifiers using all the
available features or all but one (seven curves in total). The combination
of features yielded highmaximal classification accuracy rates for both AD
(0.94) and bvFTD (0.91). Notably, in C_1-AD group, general performance

https://osf.io/ctjkv/


Fig. 2. Atrophy measures and cognitive data distribution. A. Real distribution of IFS and atrophy data. The degree of brain atrophy and the IFS score are
standardized in z-scores. B. Real distribution of ACE and atrophy data. The degree of brain atrophy and the IFS score are standardized in z-scores. C. Clustering of
IFS and atrophy results from panel A. Red-white circles represent patients wrongly identified as controls, and red diamonds represent controls who were mistaken
with patients. D. Clustering of ACE and atrophy results from panel B. Red-white circles represent patients wrongly identified as controls, and red diamonds
represent controls who were mistaken with patients.

Fig. 3. Within-country classification. The two top panels depict the histograms of the probability of belonging to the patient group, as revealed by logistic
regression. The bottom panels correspond to ROC curves obtained for the groups’ data from the first row. Different curves show the ROC calculation omitting the
feature denoted in the legend on a one-by-one basis.
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Fig. 4. Cross-country classification. The three top panels depict the real data distribution in z-score values. The three middle panels show the histograms of the
probability of belonging to the diseased group, as revealed by logistic regression. The graphs in the three bottom panels correspond to the ROC curves obtained for
each condition, by considering all the features (“All”) or by omitting the single features indicated in the legends. The fourth row illustrate the effect of removing a
single feature from classification. Removing IFS or ACE affects results the most, which indicates their high informativeness in distinguishing FTD and AD from controls.
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decreased the most when the IFS parameter was removed, which high-
lights this measure as a crucial feature in predicting the population of AD
in this cohort. In addition, all AUC results presented significant differ-
ences compared to the one including all features, except for the one
excluding gender (see Supp. Data 2). In the C_1-FTD group, classification
accuracy values decreased the most upon removal of IFS scores and at-
rophy measures. Only this AUC and the one excluding ACE presented
significant differences against the one combining all features (see Supp.
8

Data 2). One must be cautious, however, that the result of removing a
feature from the classifier depends on the correlations between the fea-
tures. It is thus not surprising that the performance did not drop after
removing atrophy in C_1-AD group, since it is highly linearly correlated
with IFS, as visible in Fig. 2-A. As a complementary analysis, we tested
this same within-country approach but combining the data sets that share
the same cognitive screening (i.e., Country-1 and Country-2, which share
the IFS; and Country-1 and Country-3, which share the ACE), with the
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aim of increasing the sample size of our analyses. As shown in Table 2,
accuracy scores were around 0.88 when all features were considered, and
results also showed that cognitive screening scores and atrophy measures
were relevant features for AD and bvFTD classification (see Supp. Fig. 2
and Supp. Data 3).

3.3. Cross-country classification

As discussed above, it is uncertain how variable are the biomarkers of
neurodegenerative diseases across countries. A way to test for that is to
attempt out-of-sample predictions, i.e., train the classifier with data from
one country and test it on the others. This case is presented in Table 2 and
Fig. 4 (in the same format as used in Fig. 3) where the results for Country-
2 bvFTD (C_2-FTD) are in the left column, those from Country-3 bvFTD
(C_3-FTD) and Country-3 AD (C_3-AD) in the middle and right columns,
respectively. ROC curves showed that the combination of features yields
high accuracy rates for C_2-FTD (0.91), for C_3-FTD (0.91), and for C_3-
AD (1.00). Across countries, the cognitive screenings were the features
that most contributed to the classification rates. Atrophy and de-
mographic features showed lower accuracy results compared to cognitive
measures. In bvFTD patients from Country-2 and -3, all the AUCs pre-
sented significant differences when features were excluded, compared to
the AUC combining all of them (except for gender in Country-2) (see
Supp. Data 2 and the error estimates in Table 2). Notwithstanding, for the
classification between controls and bvFTD from Country-2 and -3, atro-
phy data was the most relevant feature to correctly identify non-
pathological cases (specificity outcome, 1-Spec). In the case of AD, the
only AUC that presented significant differences was the one in which ACE
was not included as a feature, given that the other models presented the
same values as the AUC combining all the features (see Supp. Data 2).
Overall, results showed that the training data obtained from the Country-
1 cohort is able to predict classes with high scores for both bvFTD and AD
in the other two countries, demonstrating the robustness of the approach
and the reliability of the markers.

4. Discussion

This is the first work to validate the relevance of combined cognitive-
behavioral assessment and neuroanatomical measures for identifying
bvFTD and AD patients from controls, across countries, based on
machine-learning algorithms. We obtained high classification rates
(>0.91) for both diseases in Country-1. More crucially, these results
offered high predictive power (>0.91) when used to classify new patient
cohorts from other international centers using different MRI acquisition
equipment. Therefore, despite further research is needed, our study
strongly supports the implementation of computer-based methods
combining cognitive screenings and anatomical information as a poten-
tial gold-standard for clinical neuroscience (Huys et al., 2016; Cohen
et al., 2017).

As shown by the within-country analysis of Country-1, classification
of bvFTD via combined measures (>0.91) surpassed previous outcomes
based on cognitive screenings (using simple statistical methods) (Moreira
et al., 2017; Hsieh et al., 2013; Torralva et al., 2009a) and anatomical
neuroimaging features (relying on data-driven computational ap-
proaches) (Bron et al., 2017; Zhang et al., 2013; Dukart et al., 2011;
Kuceyeski et al., 2012; Tahmasian et al., 2016). Similarly, discrimination
of AD patients through combined measures was higher than or similar to
previous results based solely on cognitive or atrophy measures (Larner
and Mitchell, 2014; Crawford et al., 2012; Galton et al., 2005; Hsieh
et al., 2013; Zheng et al., 2016; Salvatore et al., 2016). Moreover, our
cross-country validation presented a large predictive accuracy power for
both diseases (>0.91 for bvFTD patients from Country-2 and -3, and 1.00
for AD patients from Country-3), highlighting the reliability of these
markers for optimal classification of new patients. This robust general-
ization to independent data suggests that these measures are able to face
the variability introduced by clinical assessments and MRI recordings
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from different centers, and that they might reflect universal properties
and alterations of neurodegenerative conditions. This characteristic is
critical to evaluate the potential role of a measure as an early biomarker
for a disease (Henley et al., 2005; Humpel, 2011).

Furthermore, the latter results are particularly relevant, as previous
research on dementia has yielded high detection and differentiation rates
but limited generalization power (Zheng et al., 2016; Bron et al., 2017;
Zhang et al., 2013; Dukart et al., 2011; Kuceyeski et al., 2012; Tahmasian
et al., 2016; Salvatore et al., 2016). This is especially true for data-driven
studies in which anatomical feature selection was based on the minimum
number of areas providing optimal separation of samples for a specific
dataset, which was later used for the validation process (Zheng et al.,
2016; Bron et al., 2017; Zhang et al., 2013; Dukart et al., 2011; Kuceyeski
et al., 2012; Tahmasian et al., 2016; Salvatore et al., 2016). Although this
procedure can yield large accuracy rates, it does not necessarily enable
the same performance for independent cohorts, given that features might
be specific for the initial data (Huys et al., 2016). To overcome this po-
tential bias, we first selected hypothesis-driven cognitive and atrophy
features (Dukart et al., 2013) reported as hallmarks of bvFTD and AD in a
country-unspecific fashion, and tested them in two independent samples.
The high accuracy rates thus obtained extend previous MRI studies
successfully using cross-center validation methods in Anglo-Saxon AD
samples (Kloppel et al., 2008a; Abdulkadir et al., 2011; Dukart et al.,
2013; Gerardin et al., 2009; Varol et al., 2012; Yang et al., 2011). Of note,
to our knowledge, present results for this condition (1.00 for AD from
Country-3) surpass even the highest outcomes reported in the literature
so far, emphasizing the relevance of combined neuropsychological and
neuroanatomical methods.

Such a combined approach affords a more plausible model of the
complex alterations found in dementia patients (Oxtoby et al., 2017).
Neurodegenerative disorders are characterized by abnormalities at
multiple levels –from molecular deficits to behavioral impairments
(Palop et al., 2006; Piguet et al., 2011a; Seelaar et al., 2011; Sperling
et al., 2011). Also, although these abnormalities tend to present specific
profiles according to different types of dementia, several works have
shown a more heterogeneous scenario. In this way, despite that executive
functions are a target for bvFTD (Piguet et al., 2011a), such deficits may
prove subtle and they are nosologically unspecific –in fact, they are
frequently observed in AD (Seelaar et al., 2011). The same is true for
other cognitive functions, such as memory skills, which is compromised
in both AD and bvFTD (Ye et al., 2015; Yew et al., 2013). A similar
scenario concerns atrophy patterns, as bvFTD patients might present
anatomical alterations similar to those of AD (e.g., a posterior pattern
comprising temporofrontoparietal regions), while AD may involve subtle
frontal alterations overlapping with those of bvFTD (Noh et al., 2014;
Ossenkoppele et al., 2015). Although future research is needed, the
integration of neuropsychological and neuroanatomical measures may
prove critical to address this variability (Arbabshirani et al., 2017; Dot-
tori et al., 2017) and provide useful insights for clinical settings. Our
findings represent the first demonstration of the feasibility of this
approach both within and across centers.

4.1. Contribution of cognitive screenings

To our knowledge, this is the first study showing the high reliability
and predictive power of the ACE and IFS –two instruments greatly sen-
sitive to AD and bvFTD, respectively (Crawford et al., 2012; Galton et al.,
2005; Velayudhan et al., 2014)�, based on machine-learning methods
with a cross-country validation. In the within-country analysis, the IFS
was distinctively relevant for the classification of bvFTD patients than the
ACE –classification rates decreased more upon exclusion of IFS results
(Table 2). This was expected given that the IFS was specially designed to
target executive function deficits (a domain poorly assessed by the ACE
(Torralva et al., 2009a)), which are characteristically affected in bvFTD
(Piguet et al., 2011a). Moreover, previous studies have shown that
relative to the ACE, the Mini-Mental State Examination, and even other
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frontal screenings such as the Frontal Assessment Battery, the IFS proves
better to discriminate bvFTD patients from controls and other pathol-
ogies (Moreira et al., 2017; Torralva et al., 2009a; Gleichgerrcht et al.,
2011). Regarding AD, although we expected a greater contribution from
the ACE given its proven sensitivity for this condition (Larner and
Mitchell, 2014; Crawford et al., 2012; Galton et al., 2005; Hsieh et al.,
2013), it was again the IFS that afforded the greatest discriminatory
contribution. This might partially reflect the heterogeneity in cognitive
and atrophy profiles of dementias, as discussed above (Palop et al., 2006;
Piguet et al., 2011a; Seelaar et al., 2011; Sperling et al., 2011). Indeed,
AD patients can also present with deficits in executive function (Seelaar
et al., 2011) (even in early stages and previous to global cognition al-
terations (Amieva et al., 2004; Sgaramella et al., 2001)), as well as frontal
atrophy (Noh et al., 2014; Ossenkoppele et al., 2015) (which is more
common with disease progression (Noh et al., 2014)). Furthermore, the
IFS has systematically differentiated and discriminated AD patients from
healthy controls (Torralva et al., 2009a; Bahia et al., 2018; Custodio
et al., 2016; Moreira et al., 2014; Gleichgerrcht et al., 2011). Thus,
though unexpected, the relevance of this instrument for identifying AD
patients aligns with previous evidence. Moreover, the classification rates
obtained when the ACE was considered with other features but not the
IFS were high (0.86), and similar to previous studies that tested its
(isolated) discriminative power (Larner and Mitchell, 2014; Crawford
et al., 2012; Galton et al., 2005; Hsieh et al., 2013).

Despite the partial missing data of these cognitive measures in the
two independent cohorts, the cross-country validation approach showed
that classification of bvFTD from Country-2 was mainly driven by the IFS,
whereas classification of both bvFTD and AD from Country-3 was mainly
informed by the ACE. These findings constitute the first demonstration of
the reliability and predictive power of these cognitive screenings to novel
and unseen data from socio-culturally diverse contexts. Since cognitive
screenings are standardized instruments, they rely on predefined pro-
cedures, norms, and scoring rules that help reducing bias and discrep-
ancies in administration and interpretation (Hsieh et al., 2013; Torralva
et al., 2009a). This may explain the consistency of our results with both
tools across countries. Additionally, these instruments were specially
designed to target specific cognitive domains affected in each disease and
provide useful information in clinical settings. Moreover, their psycho-
metric properties have been further evaluated and validated in several
works (Larner and Mitchell, 2014; Crawford et al., 2012; Galton et al.,
2005; Hsieh et al., 2013; Torralva et al., 2009a). Finally, these screenings
have yielded large differences between dementia patients and controls
from different origins (including both Anglo-Saxon and Latin America
participants) (Hsieh et al., 2013; Bahia et al., 2018; Custodio et al., 2016;
Jory et al., 2013), which underscores their reliability and consistency in
the face of socio-cultural diversity.

Briefly, our findings validated for the first time the application of the
ACE and IFS as robust and reliable markers to discriminate both bvFTD
and AD patients from healthy controls based on machine-learning algo-
rithms. Their combination allows covering, in a very short time, a large
number of cognitive domains, even despite the complexity and vari-
ability found across dementia subtypes.

4.2. Contribution of anatomical metrics

The contribution of brain atrophy measures to patient discrimination
proved inconsistent. Although they were not as informative as cognitive
screenings in the within-country analyses, classification of bvFTD
reached its peak upon their inclusion as a feature (0.92, when age was not
considered). The same was true for these patients from Country-2 in the
cross-country analysis, in which the combination of atrophy values and
IFS scores yielded the highest discrimination accuracy (0.91). However,
these data proved mostly irrelevant in every other analysis, especially for
identifying AD patients in the within-country analysis and both patho-
logical groups in the cross-country analyses. In all of these, exclusion of
atrophy values did not affect the discrimination of patients from controls.
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In the case of the within-country analysis, this may be due to the large
association found between atrophy values and the cognitive screening
scores in AD (see Fig. 2), which is in line with previous findings in these
patients (Canu et al., 2017; Sorensen et al., 2016). Thus, given their
co-linear association, the novel information afforded by atrophy values
might, in some cases, prove marginal for classification compared to the
cognitive tools.

Even though this explanation might also apply to the cross-country
findings, inter-center variability in MRI equipment and acquisition pa-
rameters needs to be considered, too. Between the training (Country-1)
and the testing (Country-2, and -3) samples, there are several differences
regarding scanner models of the equipment (Philip Intera in Country-1,
and Philip Achieva in Country �2 and �3), magnetic field intensity
(1.5 T for Country-1, and 3 T for Country-2 and -3), and the parameters
used in each center for the 3D T1 sequence. As previously shown, these
differences may affect the consistency of MRI sequences across centers
for classification analysis (Abdulkadir et al., 2011) –however, there are
studies showing that variability across centers is relatively low and
comparable (Sede~no et al., 2017; Biswal et al., 2010). Thus, the higher
variance of neuroimaging data compared to cognitive screenings may
have undermined its predictive power for independent and unseen co-
horts. Hence, the standardized nature of cognitive instruments (Hsieh
et al., 2013; Torralva et al., 2009a) may thus represent a clear advantage
for cross-country validation protocols. Yet, despite the mixed neuroan-
atomical results, these features yielded discrimination values similar to
previous reports based on MRI images when cognitive values were not
included in the cross-country analysis (Kloppel et al., 2008a; Abdulkadir
et al., 2011; Dukart et al., 2013; Gerardin et al., 2009; Varol et al., 2012;
Yang et al., 2011). Moreover, the contribution of atrophy results was
highlighted by specificity outcomes, which showed that its removal af-
fects these values the most, especially for bvFTD patients from the
cross-country analysis. Therefore, this highlights the relevance of
neuroanatomical features for discriminating dementia patients, under-
scoring the inclusion of neuroimaging automatized methods as potential
complementary tools for clinical settings.

4.3. Relevance of multimodal machine-learning approach

Although further studies comparing our machine-learning approach
with other data-driven and automatic strategies are needed, our findings
represent a potential milestone regarding the clinical implementation of
machine-learning algorithms. Currently, timely detection of bvFTD and
AD involves several challenges: varying levels of expertise and training
from clinicians, non-systematic confirmation from clinical routine-MRI
via visual inspection (Kloppel et al., 2008b, 2012; Koikkalainen et al.,
2016), variability of clinical and atrophy patterns, a certain degree of
subjective interpretation and evaluation of signs and symptoms (Parra
et al., 2018; Forman et al., 2006b), and strong variability of these factors
across countries and centers. Against this framework, our approach un-
derscores the reliability and predictive power of cognitive screenings and
quantitative anatomical measures. Their combination yielded high clas-
sification rates for both conditions (bvFTD and AD). In addition, these
measures showed great generalization power, indicating that they were
able to precisely identify whether a new and unseen participant belongs
to a given pathological group. Given the complexity and multi-level na-
ture of alterations on the neurodegenerative process (Palop et al., 2006;
Piguet et al., 2011a; Seelaar et al., 2011; Sperling et al., 2011), it is not
expected that only one type of biomarker could be enough to highly
discriminate patients (Dukart et al., 2013; McMillan et al., 2014). Our
findings support this view, as they testify to the relevance of combining
cognitive screening and atrophy measures for the discrimination of these
dementias.

On the other hand, these features also showed consistency to face
within- and cross-country variability. The socio-cultural heterogeneity of
our Latin American and Anglo-Saxon participants was further marked by
divergences in equipment and acquisition parameters. Thus, our high
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classification results suggest that cognitive screening and atrophy mea-
sures are robust against the variability that characterized individualized
clinical assessments. This is an essential characteristic of a potential early
biomarker (Henley et al., 2005; Humpel, 2011), as it might reflect
sensitivity to potentially universal properties of each condition.

Regarding the machine-learning algorithm applied, we used a very
simple but powerful one (namely, logistic regression) to test the validity
of the cognitive screenings and MRI information, which yielded high
discrimination rates (>90) that were consistent and reliable in the
context of a cross-center validation approach. We did not attempt any
regularization procedure (we used the default parameters of the model)
because we did not face any overfitting problem. Moreover, given our
findings, we did not perform a direct comparison with other machine-
learning algorithms because using a simple and fast one with its
default parameters helps to promote its generalization and highlight its
potential scalability. Further studies might compare the performance of
different algorithms, and test their generalization power but considering
a trade-off between the cost and benefit of each model.

Biomarkers should be low-cost, affordable, and massively applicable
(Henley et al., 2005; Humpel, 2011), which is especially relevant for
developing countries given their minimal mental health infrastructure,
and lack of standardized diagnostic procedures (Parra et al., 2018).
Against this background, cognitive screenings emerge as potential can-
didates given that they are cost-effective, quick (they are completed in
10–15 min), easy to implement and learn for clinicians, and, hence,
broadly applicable in primary care levels (Crawford et al., 2012; Galton
et al., 2005; Hsieh et al., 2013; Torralva et al., 2009a). Moreover, the
application of similar digital version of these tasks, such as the Cam-
bridge Neuropsychological Test Automated Battery (CANTAB, htt
ps://www.cambridgecognition.com/cantab) (Barnett et al., 2016; Gie-
draitiene and Kaubrys, 2019; Janssen et al., 2014; Smith et al., 2013)
(offering an automatized platform for administration and scoring) would
allow for more efficient and faster transferring of clinical data to a
machine-learning model already implemented, leading to a comprehen-
sive report with the results of the model. Also, structural MRI is a
non-invasive method, usually included as a routine exam for dementias,
and it proves less time-consuming than other neuroimaging modalities
(such as positron emission tomography, functional, and
diffusion-weighted MR imaging (Kloppel et al., 2008a; Dukart et al.,
2011; Dukart et al., 2013; McMillan et al., 2014; Moller et al., 2016)).
Although its availability in developing countries is limited compared to
high-income countries (Parra et al., 2018), the implementation of
quantitative analysis of MRI data can be beneficial for patients who have
access to a more complete medical coverage, and especially for those
whose cognitive screenings and clinical evaluation yield inconclusive
results.

Finally, our study showed the potential translational relevance of
automatic image quantification methods that are sensitive to subtle brain
alterations which escape the naked eye or even traditional univariate
methods (Orru et al., 2012). In addition, our results also underscore the
potential clinical implementation of computerized decision-support ap-
proaches (such as machine-learning algorithms) given that they allow
characterizations at the individual level, which could be useful for
diagnosis and treatment decisions (Orru et al., 2012).

4.4. Limitations and future directions

First, each sample had a moderate size; yet, similar (and smaller) sizes
have been used in previous works (Crawford et al., 2012; Sede~no et al.,
2017; Salvatore et al., 2016), and the consistency of our results suggests
that they were not biased by power issues. Second, the patients’ diagnosis
was based on clinical evaluations without pathological/genetic confir-
mation. However, this approach is similar to previous studies (Bron et al.,
2017; Zhang et al., 2013; Dukart et al., 2011; Kuceyeski et al., 2012;
Tahmasian et al., 2016; Zhou et al., 2010; Salvatore et al., 2016) yielding
compatible results. Moreover, the research centers from this work are
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specialized in the diagnosis, treatment and study of dementia, and they
followed validated protocols and diagnostic guidelines (combining clin-
ical information, neuroimaging data, and neuropsychological assess-
ments). Third, from a technical viewpoint, our hypothesis-driven
approach for estimating atrophy metrics could miss relevant information
that is outside the predefined mask –especially compared to a
whole-brain data driven approach. Yet, atrophy regions were selected
based on robust evidence (Piguet et al., 2011a; Rascovsky et al., 2011;
Ibanez and Manes, 2012; Schroeter et al., 2007; Du et al., 2007; Whitwell
et al., 2011; Pini et al., 2016), and our procedure avoids bias regarding
feature selection and allows testing the generalization power of atrophy
levels in independent cohorts (Dukart et al., 2013). Future studies should
compare the performance of our machine-learning pipeline with one
employing a data-driven feature selection strategy. Fourth, given the
absence of AD patients from Country-2, we were not able to perform a
cross-validation analysis between dementia subtypes. However, given
that our study was based on cognitive screenings and main atrophy areas
of AD and bvFTD, our goal was to test their generalization power to
discriminate patients from healthy controls given its feasibility to be
implemented in different contexts (for example, both high- or
low-income countries). Nevertheless, future research should test whether
this and similar features could be used to discriminate different dementia
subtypes based on a cross-center validation approach. In this sense,
regarding the potential clinical application of our approach, future
studies should: (i) check for inter-relations between classification results
and each patient’s functional severity, progression, and response to
rehabilitation therapy; (ii) include functional connectivity measures,
which have been proposed as potential biomarkers for dementia (Pievani
et al., 2011, 2014); (iii) evaluate whether digital cognitive tasks (such as
the CANTAB) also afford robust and reliable markers that generalize to
new and unseen data given their advantages over traditional
pen-and-paper screening tasks (automatization of administration and
scoring); and (iv) be tested in pre-symptomatic patients to search for
markers in prodromal disease stages, and also in the comparison between
different subtypes of dementias.

5. Conclusion

Our study is the first to use machine-learning algorithms to show the
high classification rates (>0.91) obtained from the combination of
cognitive screenings and quantitative neuroanatomical measures for
identifying bvFTD and AD patients across three countries. Moreover, our
results presented a robust generalization power (>0.91), validated with
two independent samples from different countries, which underscores
the reliability of these measures to new, unseen data from heterogeneous
contexts. Therefore, although further research is needed, our work sup-
ports the implementation of computer-based methods combining these
measures as a potential affordable and complementary tool with clinical
value for individual diagnosis and treatment decisions.
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