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Floquet boundary states in AB-stacked graphite
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We report on the effect of laser illumination with circularly polarized light on the electronic structure of AB-
stacked graphite samples. By using Floquet theory in combination with Green’s function techniques, we find that
the polarized light induces band-gap openings at the Floquet zone edge h̄�/2, bridged by chiral boundary states.
These states propagate mainly along the borders of the constituting layers as evidenced by the time-averaged
local density of states and the probability current density in several geometries. Semianalytic calculations of
the Chern number suggest that these states are of topological nature, similar to those found in illuminated 2D
samples like monolayer and bilayer graphene. These states are promising candidates for the realization of a
three-dimensional version of the quantum Hall effect for Floquet systems.
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I. INTRODUCTION

Condensed matter physics has provided one of the most
fertile and captivating grounds for discoveries over the last
few decades [1]: from two-dimensional materials [2], which
were thought to be impossible to exist in nature, to new
topological phases of matter [3–7], which have completely
reshaped our understanding of old concepts. The use of light
has been an instrumental cornerstone in this adventure, being
one of the prime tools for unveiling a material or device
properties [8,9]. However, beyond this already important role,
a new research front aims at using light in an active fash-
ion to actually change the response of a material [10,11]
by opening a gap [10,12–15] or even endowing a material
with topological states [10,11,16–19] or a spontaneous orbital
magnetization [20].

Experiments have successfully confirmed the possibility
of creating and tuning hybrid electron-photon states, [15,21]
also called Floquet-Bloch states, and also the generation
of a laser-induced Hall effect in graphene [22]. The name
Floquet here is used because the prevalent theory for this type
of driven systems: the Floquet theory [23–26], from which
the spectrum, effective Hamiltonians, [27,28] a map of the
topological invariants [29,30] and transport properties [31–33]
can be computed. It is also worthy to mention that this Floquet
picture can be ported, with small changes, to phonon-induced
states as in Refs. [34,35]. Most of the attention has been
devoted to illuminating two-dimensional materials, including
graphene [10,36–38], germanene [39], silicene [40], MoS2

[41], and manufactured systems like periodic arrangements
of quantum rings [42]. More recently, the interest in Flo-
quet engineering three-dimensional materials such as three-
dimensional topological insulators [43,44], Weyl semimetals
[45,46], or Dirac materials [47] has been growing.

Here we focus on laser-illuminated graphite. In contrast
with most three-dimensional crystals, graphite has a hierarchi-

cal structure of weakly coupled layers making it an archetypal
system for learning on the way from two to three dimensions.
In two dimensions, circularly polarized radiation leads to
band-gap openings and Floquet edge states that bridge the
gap [10,18,36–38]. These topological Floquet edge states are
akin to those found in Chern insulators or in the integer
quantum Hall effect, they are robust and chiral [18]. By
analogy with the physics of the quantum Hall effect which
was discovered in two dimensions [48,49] and which has been
predicted to be possible in three dimensions [50], a prediction
which has not been verified until very recently [51], one
might then wonder what happens in three dimensions with the
laser-induced states. In this paper, we show that for graphite
there are also laser-induced band gaps at ±h̄�/2 which turn
out to be bridged by surface states. Our calculations, which
are based on Green’s functions techniques combined with
Floquet theory, show that these surface states are chiral, have
a topological nature and can form a band of chiral states
bridging the bulk gap. In the following, we introduce our
model, followed by an analysis of bulk graphite, and finite
samples with emphasis on the surface states and the associated
currents.

II. HAMILTONIAN MODEL AND FLOQUET SPACE
SOLUTION SCHEME

Let us introduce our model for graphite under circularly
polarized laser illumination. We consider graphene layers
in graphite with AB stacking, and we follow Ref. [52] for
the tight-binding parameters obtained in the static case (see
below). We consider a tight-binding description for graphite
given by the generic Hamiltonian

Ĥ =
∑
r,r′

γr,r′ |r〉〈r′| , (1)
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where r and r′ denote the positions of the carbon atoms in
the lattice, such that the states |r〉 form a real-space basis.
Under this notation, the sum runs over sites connected by
the hopping amplitudes γr,r′ , and it also includes the on-site
energies through γr,r = εr.

The laser field is included within a semiclassical approx-
imation as a time-dependent term in the Hamiltonian. The
time-periodic electric field E(r, t ), with period T = 2π/�, is
included through the gauge E = −∂t A, where the vector po-
tential takes the form A(r, t ) = Re[A0ei�(z/c−t )], such that its
direction of propagation points perpendicular to the graphene
layers, defined in the xy planes. As a consequence, in three-
dimensional samples there is a variation of the wave along the
z direction due to the phase factor �z/c in A(r, t ). This would
become appreciable in samples with transversal lengths higher
than Lz ∼ 0.1λ, with λ = 2πc/� the laser’s wavelength. For
laser frequencies near the infrared region (h̄� ∼ 2 eV) this
implies Lz ∼ 620 Å, which in graphite means a number of
∼185 transversal layers. As we will assume smaller values for
Lz, the z dependence in the vector potential can be neglected
in a first approximation. We will work with circularly po-
larized light, by taking A0 = A0(1, iτ, 0), with τ = ±1 the
handedness of the polarized light.1 By means of Peierls’
substitution, the vector potential enters in Eq. (1) by adding
a time-dependent phase in the hopping amplitudes, namely,

γr,r′
laser−−→ gr,r′ (t ) = γr,r′ exp

[
i
2π

	0

∫ r

r′
d� · A(t )

]
, (2)

with 	0 the magnetic flux quantum and the line integral
taken over the straight path connecting sites r′ and r. Given
the specific form of the vector potential, the time-dependent
hopping terms entering in the Hamiltonian are given by

gr,r′ (t ) = γr,r′

∞∑
n=−∞

inJn(ζr,r′ )ein(�t−φr,r′ ), (3)

where we used the Jacobi-Anger expansion for future con-
venience. In this expression, Jn(ζr,r′ ) represents the nth
Bessel function of the first kind, and the adimensional vari-
able ζr,r′ = 2πA0|r − r′| sin θr,r′/	0 quantifies the strength of
the laser along the carbon bond, characterized by r − r′ =
|r − r′|(sin θr,r′ cos φr,r′ , sin θr,r′ sin φr,r′ , cos θr,r′ ).

A. Floquet theory

In this section, we introduce the basics of Floquet theory as
used later in this paper. The readers already acquainted with
the technical details or focused on the results rather than the
techniques may skip this in a first reading.

According to Floquet theory [23–26], there is a full set of
solutions to the time-dependent Schrödinger equation (TDSE)
of the form |ψ (t )〉 = e−iεt/h̄ |φ(t )〉, where the Floquet state
|φ(t )〉 presents the same periodicity of the Hamiltonian, i.e.,
|φ(t + T )〉 = |φ(t )〉. By replacing this ansatz in the TDSE,
one obtains

ĤF |φ(t )〉 = ε |φ(t )〉 , (4)

1Throughout the manuscript we will take τ = 1, unless otherwise
indicated.

where ĤF = Ĥ(t ) − ih̄∂t is the so-called Floquet Hamiltonian
and ε its associated quasienergy. The great advantage of Flo-
quet theory is that ĤF can be reduced to a time-independent
matrix when described in the product space (also called
Floquet space) F = R ⊗ T , with R the usual Hilbert space
and T the space of time-periodic functions, spanned by the
set of orthonormal vectors 〈t |n〉 = ein�t , with n an integer
number. Working within the local space representation, a
suitable basis for F is given by the product states |r, n〉 =
|r〉 ⊗ |n〉, representing the lattice site r and the Fourier replica
n, together with the inner product rule

〈r, n|r′, m〉 =
∫ T

0

dt

T
ei(m−n)�t 〈r|r′〉 = δr,r′δn,m. (5)

On this basis, the Floquet states in Eq. (4) can be computed as

|φ(t )〉 =
∑

n

ein�t |φn〉 F−→ |φ〉 =
∑
r,n

φn(r) |r, n〉 , (6)

with φn(r) = 〈r, n|φ〉 the amplitude of the Floquet state at
site r and replica n. Importantly, the matrix elements of the
Floquet Hamiltonian [HF]n,m

r,r′ = 〈r, n| ĤF |r′, m〉 are in this
basis

[HF]n,m
r,r′ =

∫ T

0

dt

T
ei(m−n)�t Hr,r′ (t ),+nh̄�δr,r′δnm, (7)

where the inner product includes the average over one driving
cycle, thus Eq. (4) written in this composite space becomes
a time-independent eigenvalue problem. Once the Floquet
eigenstates |φ〉 are obtained in F , it is possible to return
to the usual Hilbert space R and calculate the expectation
value of any observable from the general solution |ψ (t )〉 of
the TDSE. In particular, we are interested in the probability
density ρ̂(r) = |r〉〈r|, whose time-averaged expectation value
with respect to some eigenstate of the TDSE writes

ρ(r) =
∫ T

0

dt

T
〈ρ̂(r)〉 =

∑
n

|φn(r)|2. (8)

We are also interested in the probability current density, de-
fined as Ĵ (r, t ) = −i[Ĥ(t ), ρ̂(r)]/h̄. Its time-averaged expec-
tation value can be written in terms of the Floquet Hamiltonian

J (r) = 2

h̄

∑
r′

∑
n,m

Im
{
φ∗

n (r)[HF]n,m
r,r′ φm(r′)

}
. (9)

Since the averaged probability current at site r needs to be
zero due to probability conservation, we will use this quan-
tity to check that there is no charge accumulation/loss after
completing one period of the driving field. More interestingly,
from this expression we can extract the bond current as [53]

J (r, r′) = 2

h̄

∑
n,m

Im
{
φ∗

n (r)[HF]n,m
r,r′ φm(r′)

}
, (10)

which, as we will show later on, gives a clear picture on the
chiral nature of the resulting eigenstates of the illuminated
system.

As we already mentioned, the periodic time dependence
enters in Eq. (2) as an additional phase that the electron
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FIG. 1. Graphite with AB stacking. (a) Schematic view of three
adjacent graphene layers. The hopping amplitudes are marked by
yellow arrows (see text). (b) Graphite’s first Brillouin zone with the
high-symmetry points.

picks up when it “hops” from site r′ to site r. The Floquet
Hamiltonian can then be calculated from Eq. (7) as

[HF]n,m
r,r′ = γ

(m−n)
r,r′ + nh̄�δr,r′δnm, (11)

where the hopping amplitudes are defined as Fourier compo-
nents of the time-dependent ones appearing in Eq. (3), i.e.,

γ
(n)

r,r′ =
∫ T

0

dt

T
gr,r′ (t )ein�t = γr,r′ inJn(ζr,r′ )einφr,r′ , (12)

and this can be interpreted as the probability amplitude for
the electron to hop from site r′ to site r, together with the
absorption (n > 0) or emission (n < 0) of |n| photons.

So far we have not specified the tight-binding Hamiltonian
of Eq. (1), so the above discussion is somewhat general as
far as the light propagates along the z direction. In graphite

with AB stacking, the unit cell contains four basis sites: A1

and B1 in the lower graphene layer (LL), A2 and B2 in the
upper graphene layer (UL), see Fig. 1. The sites in the UL are
displayed in such a way that the A2 site is aligned with the A1

site of the LL. This implies the following choice for the basis
vectors in the unit cell:

LL → δA1 = (0, 0, 0), δB1 = (0, a0, 0), (13)

UL → δA2 = (0, 0, c0), δB2 =
(√

3a0

2
,

a0

2
, c0

)
, (14)

where a0 = 1.42 Å is the carbon-carbon distance in graphene
and c0 = 3.35 Å is the separation between two adjacent lay-
ers. The graphite’s Bravais lattice can then be described by the
primitive vectors

a1 =
(√

3a0

2
,

3a0

2
, 0

)
, a2 =

(
−

√
3a0

2
,

3a0

2
, 0

)
,

a3 = (0, 0, 2c0). (15)

The translational invariance along the three directions given
by the primitive vectors allows us to decompose the static
Hamiltonian in Eq. (1) as the following operator representing
the Bloch Hamiltonian:

Ĥk =
∑

R

V̂Reik·R, (16)

where R denotes the position of the nearest-neighbor unit cells
to the one placed at the origin. In the general description
of the unit cell position through R = n1a1 + n2a2 + n3a3,
with ni integer numbers, the lattice connectivity given by the
hopping parameters determined in Ref. [52] implies that the
possible values for ni in R are ni = {−1, 0, 1}. To reconcile
the notation, we notice that the hopping operator V̂R represents
the bonds going from site r′ = δ(r′) to site r = R + δ(r),
where δ(r) indicates the basis vector associated with r.

In the case of graphite with AB stacking, we consider for
the static case the following parameters [52]: γ0 = 3.16 eV
connecting nearest-neighbor in-plane sites (A1B1 and A2B2),
γ1 = 0.39 eV for A1A2, γ2 = −0.02 eV connecting B sites
(B1B1 and B2B2) between consecutive cells along a3, γ3 =
0.315 eV for B1B2, γ4 = 0.044 eV for A1B2 and B1A2, and
γ5 = 0.038 eV connecting A sites (A1A1 and A2A2) between
consecutive cells along a3. This can be easily understood,
for example, by inspecting the matrix elements of the Bloch
Hamiltonian with respect to the site basis {|i〉}, with i =
1, . . . , 4 for (A1, B1, A2, B2):

Hk =

⎛
⎜⎝

ε0 + � + γ5 f5 γ0 f1 γ1 f4 γ4 f2 f4

γ0 f ∗
1 ε0 + γ2 f5 γ4 f ∗

1 f4 γ3 f3 f4

γ1 f ∗
4 γ4 f1 f ∗

4 ε0 + � + γ5 f5 γ0 f2

γ4 f ∗
2 f ∗

4 γ3 f ∗
3 f ∗

4 γ0 f ∗
2 ε0 + γ2 f5

⎞
⎟⎠, (17)

where ε0 = −0.024 eV is the Fermi energy and � = −0.008 eV is the energy shift between inequivalent carbon atoms. The
functions fi = fi(k) carry information about the directions in which the basis sites in the unit cell are connected with its
neighbors, and are defined as

f1 = 1 + eik·a1 + eik·a2 , f2 = 1 + eik·a1 + eik·(a1−a2 ) = eik·a1 f ∗
1 , f3 = 1 + e−ik·a2 + eik·(a1−a2 ) = e−ik·a2 f1,

f4 = 1 + eik·a3 , f5 = 2 cos(k · a3).
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FIG. 2. Bulk graphite’s dispersion relations. (a) Static case where no laser is applied. The labels in the k axis (horizontal) correspond to the
symmetry points depicted in Fig. 1(b). The valence bands are labeled as 1v and 2v, while the conduction bands are labeled as 1c and 2c. The
insets are zoom regions around the K and H symmetry points and the Fermi energy is depicted in dotted red. (b) and (c) are zoom regions around
the K and H symmetry points [gray shaded rectangles in (a)], respectively, for circularly polarized light with ζ0 = 0.04 Å−1 × 1.42 Å = 0.0568
and h̄� = 2.2 eV. The inset in (c) is a zoom around ε = 0 and shows the LL bands in solid red and the UL bands in solid blue (see text). The
color scale represents the weight of the k states on the zeroth Fourier replica, according to Eq. (20).

So, for example, in the matrix element [Hk]12, the func-
tion f1 accounts for the intracell connection δB1 → δA1 and
the intercell connections δB1 → a1 + δA1 and δB1 → a2 + δA1 .
Similarly, f2 in [Hk]34 takes into account those bonds con-
necting δB2 with δA2 . With this notation, it is clear that the
coupling between different graphene layers enters in the 2 × 2
off-diagonal blocks, which are modulated by either f4 or f ∗

4 .
In the diagonal blocks, on the other hand, there are in-plane
connections given by γ0 and on-site energy corrections due
to the coupling to neighbor cells along a3. Additionally, the
difference in the involved directions given by f1 in the LL and
f2 in the UL, respectively, comes from the choice of the unit
cell basis sites. Notice, in particular, that | f1| = | f2| = | f3|.

If we now turn on the laser, one should notice that the
vector potential does not break translational invariance, so it
is possible to combine Eq. (16) with Eq. (7) by introducing a
superindex (m − n) in the Bloch Hamiltonian which accounts
for the replicas m → n it connects. This implies that all
hoppings belonging to Ĥ(m−n)

k need to be transformed as
γr,r′ → γ

(m−n)
r,r′ , and we obtain the following structure:

ĤF,k =
∑
n,m

[
Ĥ(m−n)

k + nh̄�Îδn,m
] ⊗ |n〉〈m| , (18)

for the Floquet-Bloch Hamiltonian, defined in the F space.
Here, Î represents the identity operator in the reduced space
of the unit cell and |n〉 corresponds to the Fourier replica n.

Summarizing, the construction of ĤF,k follows two simple
steps: (1) the identification of the static Bloch Hamiltonian of
Eq. (16) and (2) the Fourier decomposition of all their matrix
elements once the laser has been incorporated. Notice that
there is, however, a subtlety in going from step 1 to step 2:
as the time-dependent hopping phases [cf. Eq. (3)] depend on
both the magnitude and direction of the bond connecting sites
r′ and r, this information needs to be given in step 1 even if in
the static case such a dependence is not present.

Following the above steps, the matrix elements of
the Floquet-Bloch Hamiltonian for bulk graphite can be

compactly written in terms of the hopping amplitudes between
the different basis sites i, j = {A1, B1, A2, B2} as

[HF,k]n,m
i, j =

∑
R

γ
(n−m)

R+δi,δ j
eik·R + nh̄�δi, jδn,m. (19)

Notice that not all lattice vectors R contribute to the sum on
the right-hand side, as we assume some finite range for the
allowed hopping parameters.

III. ILLUMINATED BULK GRAPHITE

The purpose of this section is to give an explicit calculation
of the Floquet Hamiltonian in illuminated graphite, such that
the role of the laser field is evidenced as modifications in the
band structure of the static material. This will allow us to
identify, in turn, the band crossing regions where boundary
states induced by the laser may appear.

As starting point, in Fig. 2(a), we show the dispersion rela-
tion for bulk graphite in the absence of laser illumination. We
can see how the highest valence (1v) and the lowest conduc-
tion (1c) bands cross at the K symmetry point. These bands
are quadratic in shape (a reminiscence of bilayer graphene’s
band structure), and cross each other at two different points:
one of them along the �-K path, while the other exactly at
the K point (see inset) [54]. The breaking of the electron-hole
(e-h) symmetry is clearly visible along the whole spectrum
and is produced by the hoppings γ2, γ4, and γ5. Along the
A-H-L path [top face of the Brillouin zone in Fig. 1(b)]
the energy bands become doubly degenerate. Inspecting the
Bloch Hamiltonian in Eq. (17), this band degeneracy can be
easily understood since f4 becomes exactly zero, meaning that
the layers are completely decoupled along this path and, in
addition, | f1| = | f2|. Exactly at the H point, there is a gap
�ε � 124 meV due to γ2, γ5, and �.

For illuminated graphite, one should notice that an infinite
number of replicas develop in the quasienergy spectrum asso-
ciated with the Floquet-Bloch Hamiltonian. We are, however,
interested in the changes that the laser field produces on
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the static spectrum shown in Fig. 2(a). A convenient way to
visualize this is to use a color scale that represents the weight
of the k eigenstates on the n = 0 Fourier replica, i.e.,

w̄k =
∑

r

|φk,0(r)|2, (20)

where the sum runs over the basis sites composing the unit
cell, i.e., r = {δA1 , δB1 , δA2 , δB2}. Comparing the above expres-
sion with Eq. (8), w̄k represents the fraction of the (time-
averaged) probability density which is distributed along the
n = 0 replica. Notice that in the static case w̄k = ∑

r ρk(r) =
1 since no other replicas are involved. We set the strenght of
the laser through ζ0 = 2πA0a0/	0 = 0.0568, such that ζr,r′ =
ζ0|r − r′| sin θr,r′/a0, and the frequency as h̄� = 2.2 eV. In
this regime, no strong modifications of the entire band struc-
ture are expected and one can, in turn, safely truncate the
full Floquet space by taking an adequate number of replicas
such that the observed spectrum converges. For the chosen
parameters, appreciable changes induced by the laser only
appear around the K and H symmetry points where the bands
come close to each other, so we can focus in the gray shaded
rectangles of Fig. 2(a). This is plotted in Fig. 2(b) in the vicin-
ity of the K point along the path �-K-Mand in Fig. 2(c) for
the vicinity of the H point along the path A-H-L, respectively.
The main features in these plots are the band-gap openings
that appear around the boundaries of the Floquet zone (FZB),
defined at ε = ±h̄�/2. Although not clearly visible, there is
also a band-gap opening around the center of the Floquet zone
(FZC) at ε = 0. The large difference in the magnitude of the
two gaps obeys a simple reason: the gap in the FZB region
depends linearly on the laser’s strength, while for the FZC
gap such a dependence is quadratic [14].

As it happens in two-dimensional samples with circularly
polarized light [10,14], the band gap openings are a known
consequence of the breaking of the time-reversal symmetry,
which in this case extends to three-dimensional graphite. In
Fig. 2(b), we can also distiguish some avoided crossings above
and below the FZB gaps, between different e-h band partners.
Take for example the one marked by the dotted circle, which
corresponds to the crossing between the 2c–0 and the 1v–1
bands, where “–n” means that it belongs to the nth Fourier
replica in the limit ζ0 → 0. We can see, however, that this is
not a fully developed gap since for that energy range the 1c–0
band (to the left) is barely affected by the laser.

Interestingly, in Fig. 2(c), the band degeneracy observed
along the A-H-L trajectory in Fig. 2(a) for the static case is
removed by the laser (see inset). Although the lower and the
upper layers are still decoupled, the combination of the broken
sublattice symmetry, due to the on-site energies, i.e.,

εA1 = εA2 = ε0 + � − 2γ5,

εB1 = εB2 = ε0 − 2γ2,

together with the handedness of the circularly polarized
waves, allows one to distinguish between LLs and ULs, since
these are mirror images of each other. This is depicted in the
inset of Fig. 2(c), where we use red for the LL bands and blue
for the UL bands. If we change the handedness of the laser
field, then the bands behavior is indeed inverted (i.e., “red

becomes blue” and vice versa), as expected from the z → −z
inversion operation.

It is important to notice that for the gap at the FZC to be
greater than that at the FZB one needs to be in the strong
coupling regime. Therefore, as the laser intensity is smoothly
increased from zero, the first visible feature, without the
complications of heating and nonequilibrium effects present
in the strong coupling regime [55], should be the gap at the
FZB. Because of this, and also to keep within the validity
range of our assumptions, we focus from now on in the FZB
modes. Later on, when inspecting the bond currents in Sec. V,
we will set a stronger laser intensity where the FZC gap
becomes clearly visible.

IV. LASER INDUCED BOUNDARY STATES

Having finished our program with illuminated bulk
graphite, our next step is to check for laser-induced bound-
ary states. To do it we introduce a boundary and inspect
whether midgap states appear or not. We take one of the
three directions of the lattice given by the primitive vectors
of Eq. (15) as finite, while keeping translational invariance
along the other two. For example, we could define a “slab”
geometry along the â1 direction by taking a lattice with R =
n1a1 + n2a2 + n3a3, such that 1 � n1 � N1, and {n2, n3} ∈
Z. The problem then is that one should take a sufficiently
large width as to prevent a considerable overlap between the
expected boundary states, if these are present at the borders of
the sample. This brings with it an important numerical effort
since this geometry increases the dimension of the effective
Hamiltonian to be diagonalized.

Perhaps a more convenient strategy to circumvent this
issue is to refer to the time-averaged local density of states
(LDoS) Nr,k(ε), which characterizes the weight of the k state
at quasienergy ε on the site r along the broken direction. In
the context of Floquet theory, this quantity can be written as
[56]

Nr,k(ε) = − 1

π
lim

η→0+
Im[〈r, 0| ĜF,k(ε + iη) |r, 0〉], (21)

with ĜF,k the Floquet-Green operator associated with ĤF,k,
i.e.,

ĜF,k(ε) = [εÎF − ĤF,k]−1. (22)

The advantage of this method relies in that one still operates
in the original dimension of the truncated Floquet space, i.e.,
dim F = 4 × (2nr + 1), where nr � 0 denotes the highest
taken value for the Fourier replica and we consider the replicas
going from −nr to nr . The recursive Green’s function method
allows us to calculate the effective Hamiltonian of the unit cell
placed at different positions within the sample,2 by including
the self-energy corrections that account for the presence of all
subsequent unit cells. This involves a decimation procedure
which is explained in detail in Ref. [57].

In Fig. 3, we show the illuminated graphite LDoS for
different slab geometries as a function of the quasienergy ε

2For example, if the slab is finite along â1, we can evaluate Nr,k for
r = n1a1 + δi, with n1 = 1, . . . , N1 and δi the basis sites.
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FIG. 3. Quasienergy and k resolved local density of states Nr,k(ε) in logarithmic scale for illuminated graphite. The LDoS is evaluated in
a sample with N unit cells along â2 in (a)–(c) and (e) and along â3 in (d). The insets schematically illustrate the regions in which the LDoS is
being evaluated. (a), (b), and (c) show the LDoS evaluated at n2 = 1, N/2, and N , respectively, for k = k1â1; in (d), the LDoS is evaluated at
n3 = 1 for k = k1â1, while in (e) n2 = 1 and k = (π/

√
3a0 + 0.4 Å−1)â1 + k3â3. We use an extremely large value for N , i.e., N ∼ 225, such

that the sample can be considered as semi-infinite in (a), (c)–(e), while in (b), the sample can be understood as infinite. In (f), we show the
LDoS at n2 = 1 as a function of energy and k = k1â1 + k3â3. The laser parameters coincide with those in Fig. 2 and the FZB at ε = 1.1 eV is
denoted by red dashed lines.

and wave vector k. Panels (a)–(c) and (e) refer to a sample
which is finite along â2, containing N2 unit cells. In this case
the corresponding Bravais lattice is rectangular, and given
by primitive vectors a1 and a3. Therefore the primitive unit
vectors of the reciprocal lattice coincide with those of the real
lattice, and the wave vector can be written as k = k1â1 + k3â3.
We evaluate the LDoS at the positions n2 = 1 in (a) and (e),
N2/2 in (b) and N2 in (c), respectively. In panels (a)–(c), we
take the wave vector as k = k1â1 and fixed k3 = 0, while in
panel (e) we use k = k3â3 and fixed k1 = π/

√
3a0 + 0.4 Å−1.

The insets illustrate the regions where the LDoS is being
evaluated: yellow rectangles denote the evaluation region and
grey rectangles represent the graphene layers. In Fig. 3(d), we
consider another geometry, where the sample is finite along â3

and we evaluate the LDoS at the n3 = 1 unit cell (see inset). In
this case, the corresponding Bravais lattice is triangular, and
we evaluate the LDoS for k = k1â1. As we use a huge value
(∼225) for the amount of unit cells along the broken direction,
the sample can be taken as semi-infinite in Figs. 3(a) and
3(c)–3(e), while in Fig. 3(b) the sample is effectively infinite.

Figure 3 shows the laser induced gap around ε = h̄�/2 =
1.1 eV (see red dashed lines) and four states crossing the gap

in (a) and (c), while these peaks in the LDoS disappear in (b).
In panel (d), there is a clear gap induced by the laser at the
FZB, and no peaks crossing this region can be observed. These
are clear signals of the presence of laser induced boundary
states, located at those surfaces perpendicular to the graphene
layers [although not shown, figures similar to (a)–(c) are
obtained for a finite sample along â1]. The shape of the bands
in Fig. 3(b) suggests that the laser produces two gaps centered
around different quasienergies, which could be attributed to
the four band structure observed in Fig. 2. The effective
gapped region corresponds to the intersection between the two
gaps, and outside this region these states may strongly mix
with the bands [see black arrows in Figs. 3(a) and 3(c)]. From
the slope of the trajectories defined by the LDoS peaks in
Figs. 3(a) and 3(c), we can infer that these states propagate
along the â1 direction and with opposite velocities, depending
on the border which is being evaluated. Specifically, the peaks
shown in (a) can be attributed to states localized around the
n2 = 1 border that propagate along −â1, while the peaks in
(b) correspond to states localized around the n2 = N2 border
which propagate along +â1, see violet arrows in the inset
schemes. In Fig. 3(e), we can observe the evolution of the

075424-6



FLOQUET BOUNDARY STATES IN AB-STACKED … PHYSICAL REVIEW B 101, 075424 (2020)

localized states as we move the wavevector along the stack-
ing direction, i.e., k = (π/

√
3a0 + 0.4 Å−1)â1 + k3â3, in the

same spatial region as in Fig. 3(a), i.e., n2 = 1. The peaks
reveal some dispersion (non-negligible slope), meaning that
the boundary states also propagate along the stacked layers.
However, for a given border, these peaks stay in the middle of
the gap without crossing it, and the slopes developed by them
take both positive and negative values (a similar behavior
occurs for n2 = N2). This means that the sign of the group
velocity along the stacking direction is not restricted to the
border in which the state is localized, so the two directions
(say, positive and negative) may coexist in the same border
(see violet arrows in the inset).

Notice that a similar behavior is obtained in monolayer
graphene [18], where the circularly polarized laser induces
chiral edge states. By “chiral” is meant that the direction of
propagation of the state depends on both the edge in which
it is localized and the laser’s handedness. In this sense, all
the previous analysis indicates that in illuminated graphite
there are also localized chiral states. We can continue this
analogy and infer whether the observed localized states in
graphite can be characterized by a topological invariant. This
is presented in Appendix A, where we calculate the Chern
number associated with the FZB for a simplified model of
graphite that retains the leading hoppings γ0, γ1, and γ3, and
neglects all remaining (static) parameters. We are interested
in the localized states generated by the mixing of the n = 0
and n = 1 replicas, so we truncate the Floquet space to these
subspaces. Although higher-order mixings are also possible
[30], the associated gaps decrease very fast for the considered
small laser intensity, and these contributions can be neglected
for the purpose of the present discussion. Under this approx-
imation it is possible to derive analytic expressions for the
eigenenergies of the bulk Hamiltonian of Eq. (17), which
allows us to identify the crossings between conduction and
valence bands that belong to the n = 0 and n = 1 replicas,
respectively. The main conclusion is that the contribution
to the Chern number for a fixed value of k3 is given by
the number of bands that cross the FZB, multiplied by the
sign τ of the polarization (thereby the chiral nature of these
states). For the chosen frequency h̄� = 2.2 eV, this number
results to be 4τ , in full agreement with the bulk-boundary
correspondence, since the crossing bands are 1c–0, 1v–1,
2c–0, and 2v–1. Since we are computing only the contribution
from the FZB gap to the topological invariant, it is implicitly
assumed that the contributions from the bands below does
not change. Considering all the contributions involves a more
complex procedure as presented in Ref. [30] and is beyond
our present scope.

So, what is new in this three-dimensional system? The
first obvious difference with monolayer graphene is that now,
rather than edge-states, what the LDoS peaks reveal are
surface states located perpendicular to the planes defined by
the graphene layers. To get an idea on how these surface
states look, in Fig. 3(f), we evaluate the LDoS at n2 = 1 for
k = k1â1 + k3â3 to picture out its shape in the two directions
where translational invariance holds. This was done by fixing
the quasienergy in steps of 0.005 eV within the range 1.03 eV
� ε � 1.15 eV. We use a transparency scale (arbitrary units)
to visualize all k points where the LDoS takes a large value,
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FIG. 4. Laser induced surface states extracted from the LDoS.
(a) and (b) show the two peaks of Fig. 3(f), respectively, correspond-
ing to the LDoS at n2 = 1. Similarly, (c) and (d) show the LDoS
peaks when evaluated at n2 = N . The used colorscale goes from red
(ε = 1.15 eV) to yellow (ε = 1.03 eV).

such that the obtained curves define what can be thought of as
the “skeleton” of the surface states. In fact, a close inspection
for all energy steps when sweeping both k1 and k3 reveals
two peaks which are separated each other, i.e., each peak
defines an open trajectory. This suggests the presence of two
surface states (in the shown region) which can be imagined as
the natural dimensional extension of the chiral edge-states in
graphene when adding an infinite number of layers. Another
difference with monolayer graphene is that here the number
of chiral states per value of k3 is doubled, since now the
gap comprises the crossing between four energy bands, due
to the four basis sites in the unit cell. This, however, may
change depending on the value of the chosen frequency. When
h̄�/2 � 0.25γ0 and k3 ∼ 0, it may happen that the bands that
cross at the FZB are only 1c–0 and 1v–1, so the expected
Chern number is in this case 2τ (see Appendix A).

In Fig. 4, we extract the maxima of the peaks of Fig. 3(f)
and separate them in panels (a) and (b) to appreciate the
surface states individually. The same is done in (c) and (d)
for the LDoS evaluated at n2 = N2. The lines thus correspond
to those boundary states that form the surface state for a
fixed energy. We use the same energies as in Fig. 3(f) but
these are distinguished through a colorscale ranging from
red (ε = 1.15 eV) to yellow (ε = 1.03 eV). The shown plots
thus resemble maps of equipotential lines (quasienergies)
associated to the surface states. From the color scale, it is
possible then to infer the group velocity of these states. Since

vg(k) = 1

h̄
∇kεk, (23)
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FIG. 5. LDoS evaluated at n2 = 1 for broken â2 and â3 directions. (a) and (b) are k vs ε LDoS maps for N3 = 5 and 10, respectively,
obtained from an exact calculation. (c) and (d) show the approximated LDoS through the normal mode decomposition for N3 = 10 and 100,
respectively. In all plots, we normalized the densities to its maximum value and used a logarithmic scale. The red dashed lines at ε = 1.1 eV
denote the FZB.

the group velocity points from yellow to red and perpendicular
to the equipotential lines. From the plots it is easy to see that,
in almost all cases, vg points along the horizontal axis, i.e.,
â1. In Fig. 4(d), there is, however, a particular region where a
local minimum develops,3 and the â3 component of the group
velocity dominates over the â1 component at least locally. In
any case, the mirror symmetry around k3 = 0 implies that

vg(k1, k3) · â3 = −vg(k1,−k3) · â3, (24)

meaning that for a given Fermi energy within the gapped
region the overall velocity points along â1 only. With this
in mind, we can again conclude that these states are chiral,
since the group velocity points towards opposite directions
regarding to which border the surface state belongs.

All the above findings, therefore, enforce the idea that the
physics behind illumination on graphite is, to some extent,
similar to that of monolayer (or bilayer) graphene. The addi-
tional dimension present in this case contributes with a weak
component of the group velocity along the new direction,
which averages to zero when populating the system to the
FZB. This is possibly due to the large separation between the
stacked layers (c0), as compared to the first-neighbor distance
(a0). The obtained surface states are rather continuations of
graphene’s edge states in the stacking direction so in this sense
one could say that these move through the boundary of the
sample in an orderly manner. To which extent this is true is
a question whose answer requires the evaluation of the LDoS
along the boundary when both the a2 and a3 directions are
finite. This obviously difficults the calculation of the LDoS
as the effective dimension over which one operates is now
dim F = 4N3 × (2nr + 1), where N3 is the number of unit
cells along â3. For small samples (N3 ∼ 10) this can be done
in the same way we did before (i.e., an exact calculation),
but for larger samples the previous strategy becomes very
demanding (computationally speaking) and we employ an
approximation scheme based on a decomposition into nor-
mal modes similar to that used in Refs. [34,58]. Although
in graphite this decomposition scheme is not exact due to

3We increased the resolution in steps of ε = 0.001 eV within the
range 1.085 eV � ε � 1.095 eV to identify this local minimum.

the next-nearest-neighbor couplings γ2 and γ5, deviations
from the exact result can be considered as a small perturba-
tion acting only on n3 = 1 and n3 = N3, which can be ne-
glected in large samples. This we explain in further details in
Appendix B.

In Fig. 5, we show the LDoS evaluated at n2 = 1 for
different sample sizes, given by the number N3 of unit cells
along â3. Panels (a)–(d) are the maps in the same k1 region as
in Fig. 3(a). In (a) and (b), we used the standard decimation
procedure as in all previous calculations, while in (c) and
(d), we used the normal mode decomposition explained in
Appendix B. A comparison between Figs. 5(b) and 5(c) for
N3 = 10 shows that the used decomposition, though not exact,
yields an accurate LDoS even in relatively small samples.

As expected, we can see that the peaks of Fig. 3 are also
present in this case, maintaining the same chiral behavior
as before. This is somewhat obvious when regarding the
LDoS as decomposed by normal modes along â3. Since this
decomposition takes discrete values of k3, cf. Eq. (B1), the
LDoS for a fixed k3 is similar to that of Fig. 3(a), and the
final LDoS is given as the sum of all mode contributions.
For the considered region in the maps, then, the number of
chiral edge-states crossing the gap simply goes as 4N3, as
anticipated by the total Chern number of Appendix A. This is
easy to see when N3 is small, as it happens in Figs. 5(a)–5(c).
For N3 = 100, however, such a counting is no longer possible
in Fig. 5(d) even if we would be able to increase the map
resolution indefinitely. The reason for this is a rather subtle
effect we did not comment so far. All LDoS peaks we have
shown have, in fact, a finite width, which is independent of the
chosen regularization energy η of Eq. (21).4 To understand the
origin of this width, notice that the localized states around ε =
h̄�/2 are produced by the coupling between n = 0 and n = 1
replicas. However, other extended states belonging to other
replicas may be present within the gapped region. Strictly
speaking, there is no real gap in the FZB where the localized
states develop. However, we refer to the opening of n = 0

4In all LDoS calculations, we use η = 1 × 10−5 eV, as this reaches
the thermodynamic limit for the number N ∼ 225 of considered unit
cells.
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FIG. 6. (a) Circulation of the time-averaged probability current as a function of the quasienergy in arbitrary units. The gray scale
emphasizes the mixing of the n = 0 replica (see text). The red dashed lines at ε = ±4 eV denote the FZB. (b) Examples of laser induced
probability currents in few-layer graphite. The chosen geometry for the layers is hexagonal and we used N3 = 3, i.e., six graphene layers. The
position of the carbon atoms is represented by dots and we use a gray scale to denote the time-averaged probability density of Eq. (8). The
corresponding probability bond currents (red arrows) are plotted in a transparency scale according to their magnitude. Blue arrows indicate
the overall direction of the bond currents. The laser parameters were changed to h̄� = 8 eV and ζ0 = 0.5 Å−1 × 1.42 Å = 0.71.

and n = 1 bands as a “gap” since the contributions coming
from other replicas to the time-averaged LDoS are quite small.
In other words, only when the replicas n = 0 and n = 1 are
considered, the band opening at the FZB is a real gap. The
observed width in the LDoS peaks then signals a small mixing
term between the localized states (formed as a superposition
of the n = 0 and n = 1 replicas) and extended states from
other Floquet replicas (in this case the main contribution
comes from n = −1 and 2). This implies that the localized
states decay into the bulk upon absorption or emission of
photons, in a characteristic time proportional to the inverse
of the energy width of the peaks. Therefore, when the number
of localized states is small, the mean level spacing is larger
than their widths, and the system “recognizes” its finite size
along â3. When increasing N3, at some point the level spacing
becomes comparable to the energy width, and the system is
no longer able to discern its finite size, so it behaves as a
bulk in the staking direction. This originates the formation of
localized states bands of Fig. 5(d), which may well be taken
as surface states even in this limit of relatively small N3.

V. LASER INDUCED PROBABILITY CURRENTS
IN FINITE SYSTEMS

Another interesting effect that we would like to address is
the fact that chiral states, by having a well-defined direction of
propagation, are able to transport a probability current along
the sample. This was shown in the context of illuminated
monolayer graphene, where the laser-induced probability cur-
rent appears either along the borders of the sample [59] or sur-
rounds different types of defects like vacancies and adatoms
[60]. Interestingly, such edge-states and their associated cur-
rents are able to be accessed by measuring the magnetic field
they produce [59]. In graphite, therefore, similar effects can
be naturally expected. To illustrate this, we consider a finite
graphite sample consisting in a few hexagonal layers along the
stacking direction. According to the discussion in Sec. II A,

the quantity of interest, rather than the site current J (r), is
the bond current J (r, r′) given by Eq. (10) [53]. The carbon
bonds where this current is nonzero are thus given by those
sites coupled by the Floquet Hamiltonian.

In order to identify the role of the laser illumination on the
chirality of these currents, we also calculate the circulation of
the bond currents through the lateral borders of the sample.
This can be computed as the following discrete version of the
line integral of the bond currents:

Cα =
∑

r,r′∈S

Jα (r, r′), (25)

where α labels the Floquet state and the sum runs over all
sites belonging to the border of the layers. In Fig. 6(a), we
show the obtained circulation of the probability current for
the hexagonal sample shown in Fig. 6(b). The dots in the plot
are the obtained quasienergies from the eigenvalue equation,
and we used a grayscale to indicate the weight of the Floquet
eigenstate |α〉 on the n = 0 replica, but with a minor change
with respect to Eq. (20), i.e.,

w̄′
α = 1 − 2

∣∣∣∣w̄α − 1

2

∣∣∣∣, where w̄α =
∑

r

|〈r, 0|α〉|2. (26)

The idea behind this modification is to highlight the super-
position of the n = 0 replica with the remaining ones: when
w̄α = 1, the Floquet state has full weight on the n = 0 replica,
so there is no mixing with higher-order replicas (w̄′

α = 0),
and when w̄α = 0 the state has no weight on n = 0 and so
again there is no mixing. The maximum value w̄′

α = 1 is
reached when w̄α = 1/2, meaning that the probability to find
the system in the n = 0 replica is equal to that of finding it
in all other replicas. Roughly speaking, w̄′

α serves to infer
where photon emission/absorption processes are more likely
to occur. For the calculations, we used 366 carbon atoms per
layer, so the total dimension of the truncated Floquet space
is dim F = 366 × 6 × 5, where the six corresponds to the

075424-9



CALVO, VARGAS, AND FOA TORRES PHYSICAL REVIEW B 101, 075424 (2020)

-2

0

2

4

6

-1 -0.5 0 0.5 1
-10

-5

0

5

10
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for broken â2 direction as in Fig. 3(a). The used laser parameters
coincide with those of Fig. 6. Red dashed lines at ε = 0 and 4eV
denote the FZC and FZB, respectively.

number of layers and we considered five Floquet replicas, i.e.,
n = −2, . . . , 2. For this example then, diagonalization of the
Floquet Hamiltonian is a problem that can be treated exactly.
However, as we discussed before in the context of the LDoS,
for larger samples such a calculation may become seriously
hard and one should move to the normal mode decomposition
of Appendix B. We here took h̄� = 8 eV and ζ0 = 0.71 for
the laser’s parameters. Though these parameters may exceed
standard values, we use them as to illustrate the effect in a
relatively small sample. The same effects would be obtained
for smaller parameters when used in larger samples, specially
the size of the hexagonal layers, were a mode decomposition
is not available.

In order to support the obtained circulation of the bond
currents we show, in Fig. 7, the LDoS for the same geometry
as that used in Fig. 3(a). This allows us to identify the
boundary states appearing at the FZB and FZC gaps in this
regime of laser parameters.

The main feature of Fig. 6(a) are the peaks of Cα in the
vicinity of the FZB, defined at ε = ±h̄�/2 (red dashed lines).
In all states within this region, the probability density circu-
lates through the boundaries of the hexagonal layers, with a
given handedness. Obviously, if we change the sign of the
circularly polarized waves, the direction of the bond currents
is inverted, and with it the sign of the circulation. In addition,
the mixing of the n = 0 replica in the peaks is large (i.e.,
w̄′

α ∼ 1), which indicates a correlation between circulation
and photon emission/absorption processes. In other words,
the illuminated electrons are more likely to circulate in the en-
ergy regions where the interaction with the laser field becomes
relevant. This also happens around the FZC, defined at ε = 0.
Although here the band crossings are more complicated than
in the FZB, we can appreciate a negative circulation, though
not all states are participating in this peak. In fact, we can

identify some states with small (or even positive) circulation,
which accordingly are weakly mixed. This can be attributed to
the boundary states appearing in the FZC gap of Fig. 7, where
we can see two states with positive group velocity and a single
state with negative group velocity. Of course, the comparison
between Figs. 6(a) and 7 can only be taken as qualitative, since
for the LDoS we used a semi-infinite sample along the â2

direction while for the bond currents we used a finite system.
In Fig. 6(b), we show the bond currents and probability

densities for three Floquet states whose eigenenergies lie
close to h̄�/2. The bond currents J (r, r′) are shown in red
arrows that go from r′ to r, and we use a transparency scale
to indicate its relative magnitude to the maximum current.
For each carbon atom, we also calculated the time-averaged
probability density ρ(r) given in Eq. (8) and is shown through
a gray scale. The resulting Floquet states around this energy
region are clearly localized at the boundaries of the hexagonal
layers. As Eq. (10) suggests, the bond currents are expected
to be nonzero in those sites where ρ(r) is appreciable, so they
are also confined to the boundaries of the layers.

The bond currents’ features discussed in this section are
clear fingerprints of the chiral nature of the laser induced
localized states. Interestingly, some differences appear when
comparing these states with those found in illuminated mono-
layers. In fact, the magnitude of the bond currents in Fig. 6(b)
is not constant along the full border of the hexagonal layers,
but it rather alternates between successive layers. This is
provided by some small, but non negligible, bond currents
pointing along the stacking direction. Although this effect
does not break the chirality of the localized states, the proba-
bility current displays nontrivial patterns due to the interlayer
hopping amplitudes.

VI. SUMMARY AND FINAL REMARKS

To sum up, illumination by a circularly polarized laser
on graphite generates boundary states. These boundary states
turn out to be chiral, may form bands bridging the gap, and
bear similarities and differences with those found in graphene.
In the limit of large samples we show that a normal mode
decomposition is applicable along the vertical direction. This
provides a useful tool to reduce the 3D system onto a set of
decoupled 2D subsystems where the z component of the wave
vector enters as a fixed parameter. Under this decomposition
scheme we were able to calculate the corresponding Chern
number, which can be linked to the number of bands that
intersect at the symmetry point ε = h̄�/2. We highlight, how-
ever, two interesting features which we attribute to the extra
dimension of the sample. First, we observe a smooth transition
in the local density of states that goes from separable peaks
(bundles) to the formation of bands of surface states, which
evidence the three-dimensional nature of the sample even
for relatively small N3 values. This is attributed to a photon
assisted decay of the localized states into extended states
that belong to higher-order replicas. Second, the calculated
probability currents may display intrincate patterns due to the
small component along the stacking direction.

Regarding other possible stacking orders for graphite it
should be noticed that, in principle, each crystal structure
could present a topological structure of its own. However,
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given the hierarchical layered structure of graphite, we expect
that in this case the main features observed for AB stacking
should be kept. Notwithstanding, this is beyond the scope
of our study, which remains nonexhaustive in this respect,
motivating further investigations on illuminated multilayered
systems.

We hope that the obtained results may stimulate further
experimental research in strong light-matter interaction in
graphite and related systems.
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APPENDIX A: CHERN NUMBER CALCULATION

In this section, we sketch the calculation of the Chern
number associated with the light induced band-gap openings
around the crossing region ε = h̄�/2, i.e., the Floquet zone
boundary (FZB). To such end, we derive analytic expressions
for the energies of those bands crossing at the FZB, under
the mode decomposition scheme presented in Appendix B.
This implies that in the present model we consider the most
relevant hopping terms γ0, γ1 and γ3, and neglect all remaining
ones in the bulk Hamiltonian of Eq. (17). The contributions
cp to the Chern numbers are given by each band crossing p
taking place at the FZB, when the laser is turned off, and
can be obtained by reducing the Hamiltonian to those bands
participating in the crossing. This yields a 2 × 2 effective
Hamiltonian of the form

Ĥp,eff = hp · σ̂, (A1)

with σ̂ the vector of Pauli matrices and hp the associated
vector to the p-crossing. The corresponding expression for cp

is the following [5]:

cp = 1

4π

∫
d2k ĥp · (

∂kx ĥp × ∂ky ĥp
)
, (A2)

where the integral is taken over the first Brillouin zone for
k3 fixed as in Eq. (B1) and ĥp is the unit vector associated
with hp. In order to obtain hp, we start with the bulk Floquet
Hamiltonian of Eq. (19), and truncate the Floquet space
to replicas n = 0 and n = 1. This can be computed as the
following matrix:

HF =
(

H (0) − w H (1)

H (−1) H (0) + w

)
, (A3)

where we shifted the energy origin to w = h̄�/2 so that
the crossings we are interested in are placed at ε = 0. The
structure of these block matrices obey the form given in

Eq. (17), i.e.,

H (n) =

⎛
⎜⎜⎝

0 γ
(n)

12 γ
(n)

13 0
γ

(n)
21 0 0 γ

(n)
24

γ
(n)

31 0 0 γ
(n)

34
0 γ

(n)
42 γ

(n)
43 0

⎞
⎟⎟⎠. (A4)

For the calculation of the hopping terms, we assume ζ0 � 1
so the phase introduced by the vector potential in Eq. (2) can
be linearized as

ei2π (r−r′ )·A(t )/	0 � 1 + iζ0 cos(�t − τφr,r′ ), (A5)

where τ = ±1 denotes the laser handedness. Following
Eq. (2), we notice that in all cases we have |r − r′| sin θr,r′ =
a0, and hence ζr,r′ = ζ0. Recalling that in the construction
of the Floquet Hamiltonian we multiply these terms by
exp(in�t ) and take the time-integral over one period, this
yields for the above equation:

δn,0 + i
ζ0

2
einτφr,r′ (δn,−1 + δn,1). (A6)

Therefore the hopping terms can be specified by

γ
(0)

21 = γ0(1 + e−ik·a1 + e−ik·a2 ),

γ
(1)

21 = i
ζ0γ0

2

(
e+iτ 1

2 π + e−i(k·a1+τ 5
6 π ) + e−i(k·a2+τ 1

6 π )
)
,

γ
(1)

12 = i
ζ0γ0

2

(
e−iτ 1

2 π + e+i(k·a1+τ 1
6 π ) + e+i(k·a2+τ 5

6 π )
)
,

together with

γ
(n)

31 = γ1
(
1 + e−ik·a3

)
δn,0,

γ
(n)

43 = γ
(n)

12 e−ik·a1 ,

γ
(n)

42 = γ3

γ0
γ

(n)
21 e+ik·a2

(
1 + e−ik·a3

)
,

and the general rule γ
(n)

i j = [γ (−n)
ji ]∗. With all these terms

specified, we now construct the above Floquet Hamiltonian,
and diagonalize the blocks H (0). This gives the following
eigenenergies:

ε1,c =
√

α

2
−

√
α2

4
− β, ε2,c =

√
α

2
+

√
α2

4
− β,

for the conduction bands, while for the valence bands we have
εp,v = −εp,c for p = 1, 2, as in this model the e-h symmetry
is preserved when γ2, γ4, and γ5 are neglected. The terms in
the above expressions are given by

α = |γ21|2 + |γ31|2 + |γ42|2 + |γ43|2,
β = |γ21|2|γ43|2 + |γ31|2|γ42|2 − 2Re(γ13γ34γ42γ21),

where we simplified the notation by taking γ (0) → γ , i.e.,
all hoppings in α and β correspond to the zeroth Fourier
component. When including the w term in these bands, we
obtain the following two crossings:

ε1,c − w = ε1,v + w, and ε2,c − w = ε2,v + w. (A7)

So we have that the bands that participate in the crossings
are the conduction bands associated to the n = 0 replica and
the valence bands for the n = 1 replica. The above mentioned
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FIG. 8. Localized states and Chern numbers as a function of
the driving frequency �. (a) Contributions to the Chern number
from the crossings p = 1 and p = 2. The red shaded areas denote
transition regions where the Chern number may vary depending
on the value of k3. The laser intensity is ζ0 = 0.01 and we took
k3 = 0. (b) LDoS for broken a2 direction and evaluated at n2 = 1
for ε = h̄�/2. (c) Number of bands crossing at the FZB, divided by
N3, for N3 = 5 (red) and 10 (blue), in the limit ζ0 = 0.

e-h symmetry implies that the crossing conditions are simply
given by εp,c = w, where p = 1, 2 now labels each band
crossing.

The following step is to reduce the Floquet Hamiltonian
to the found crossings. What we obtain then is the effective
Hamiltonian as

Ĥp,eff =
(

εp,c − w γ
(p,1)

c,v

γ
(p,−1)

v,c εp,v + w

)
, (A8)

where γ
(p,−1)

v,c and γ
(p,1)

c,v are obtained after applying the trans-
formation matrix U that diagonalizes H (0) on the coupling
matrices H (±1) between the replicas, i.e.,

γ (p,−1)
v,c = 〈p, v, 1|U†H (−1)U |p, c, 0〉 , (A9)

γ (p,+1)
c,v = 〈p, c, 0|U†H (+1)U |p, v, 1〉 . (A10)

In this way, we can identify the components of the hp vector
multiplying the Pauli matrices in Eq. (A1) as

hp = (
Re

[
γ (p,−1)

v,c

]
, Im

[
γ (p,−1)

v,c

]
, εp,c − w

)
. (A11)

What follows in the calculation of cp are the kx and ky deriva-
tives, together with the integration over the first Brillouin
zone. We carried out this numerically and obtained the Chern
number depicted in Fig. 8(a). By way of comparison, we also
show in (b) the LDoS for a semi-infinite geometry along the

a2 direction, evaluated at n2 = 1 and ε = h̄�/2, as a function
of k1, with k3 = 0. For the relevant parameter region of �,
we find a perfect agreement between the number of chiral
states and the calculated Chern number, i.e., bulk-boundary
correspondence is verified. In addition, it is possible to ob-
serve that the chirality of the localized states is determined by
the laser handedness, since the inversion τ → −τ naturally
changes the sign of the Chern number. From the obtained
result, we conclude that the contributions to the Chern num-
ber is τ times the number of bands crossing at the FZB.
In fact, we distinguish four different regions for the Chern
number, which coincide with those cases in which either the
p = 1 or p = 2 bands cross this energy. For example, for
h̄�/2 � 0.25 γ0, only the p = 1 bands can fulfill the crossing
condition, so c1 = 2τ and c2 = 0. The opposite happens for
2.5 γ0 � h̄�/2 � 3.5 γ0, where c1 = 0 and c2 = 2τ . In this
sense, we can say that the Chern number (and with it the
number of localized states for a given k3) signals the number
of band crossings taking place at the FZB.

Of course, the above analysis is valid under the assumption
that the contributions from the stacking direction can be de-
composed into normal modes, such that k3 given by Eq. (B1)
can be fairly taken as a fixed parameter. In this case, we notice
that the interlayer hoppings depend on k3, and therefore the
Chern number can change from one normal mode to another.
When adding up all contributions coming from the normal
modes, the total Chern number

cFZB =
2∑

p=1

N3∑
n=1

cp,n, (A12)

varies in a similar way as in Fig. 8(a), but with the following
differences: (1) such a quantity needs to be multiplied by N3.
(2) Around the transition region centered at h̄�/2 = 0, the
total Chern number varies in a staggered way from 2τN3 to
4τN3, while around h̄�/2 = 3γ0 this number changes from
4τN3 to 0. This behavior is shown in Fig. 8(c), where we
calculate the number of bands that cross at the FZB as a
function of the driving frequency for N3 = 5 (solid red) and
10 (solid blue).

We recognize that, in order to deal with a semianalytic
calculation for the Chern number, we worked in a simplified
model of graphite where next-nearest-neighbor couplings and
energy shifts between inequivalent carbon atoms were disre-
garded. The inclusion of these terms would only complicate
such a calculation, though the main result would remain the
same, namely, each band crossing at the FZB contributes with
a factor 2τ to the total Chern number. With this in mind, we
only expect some differences in the number of crossings near
the transition regions of Fig. 8 (red shaded areas), as the bands
experience slight modifications when including these terms.
However, for the considered frequency value h̄� = 2.2 eV
we used along this work, the Chern number would remain the
same regardless of the value of k3, so for finite samples along
the stacking direction we expect cFZB = 4τN3.

APPENDIX B: NORMAL MODE DECOMPOSITION

In this section, we discuss the employed normal mode
decomposition in the calculation of the local density of states
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shown in Fig. 4. Let us consider the bulk Hamiltonian Ĥk of
Eq. (16) whose matrix representation is given in Eq. (17). We
first break translational invariance along the z-direction, by
considering N3 unit cells along â3. The set of allowed values
for k3 is no longer a continuum, and we expect some discrete
set which we propose to be given by

k3 = nπ

c0(2N3 + 1)
, n = 1, 2, . . . , N3. (B1)

In this way, we obtain that the functions that depend on k3 take
the following values:

f4 = 1 + e2iϕn , and f5 = 2 cos(2ϕn), (B2)

where ϕn = nπ/(2N3 + 1). Now, for every value n and fixed
k = (kx, ky) we can diagonalize Ĥk → Ĥn

k, where the su-

perscript indicates that k3 is given by n. This yields four
eigenenergies and their corresponding eigenkets, i.e.,

Ĥn
k

∣∣φn
α,k

〉 = εn
α,k

∣∣φn
α,k

〉
, α = 1, . . . , 4, (B3)

where the eigenket can be written in terms of the site basis
i = {A1, B1, A2, B2} as

∣∣φn
α,k

〉 =
∑

i

φn
α,k(δi ) |i〉 , (B4)

and φn
α,k(δi ) = 〈δi|φn

α,k〉. What we do now is to translate these
coefficients into a new space of dimension 4N3, given by the
amount of units cells spanned along â3. This is accomplished
by transforming these coefficients as follows:

φn
α,k(δi, n3) = 2√

N3 + 1
φn

α,k(δi )

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin

[
(2n3 − 1)nπ

2N3 + 1

]
e−iϕn/2, i ∈ LL

sin

[
2n3nπ

2N3 + 1

]
e+iϕn/2, i ∈ UL

≡ φn
α,k(δi )

{
an,n3 , i ∈ LL
bn,n3 , i ∈ UL , (B5)

where the index n3 = 1, . . . , N3 denotes the unit cell in the
finite system. We can therefore construct the following states
in this new space as

∣∣	n
α,k

〉 =
N3∑

n3=1

∑
i

φn
α,k(δi, n3) |i, n3〉 . (B6)

The idea then is to test such a transformation in the full
Hamiltonian that arises when translational invariance along
â3 is broken. In terms of the {|n3〉} basis, this Hamiltonian
presents the following structure:

Ĥk =
N3∑

n3=1

h ⊗ |n3〉〈n3| +
N3−1∑
n3=1

(v ⊗ |n3 + 1〉〈n3| + H.c.),

where the block matrices h and v represent the intra- and
intercell couplings, respectively, and are defined as

h =

⎛
⎜⎝

ε0 + � γ0 f1 γ1 γ4 f2

γ0 f ∗
1 ε0 γ4 f ∗

1 γ3 f3

γ1 γ4 f1 ε0 + � γ0 f2

γ4 f ∗
2 γ3 f ∗

3 γ0 f ∗
2 ε0

⎞
⎟⎠ (B7)

and

v =

⎛
⎜⎝

γ5 0 γ1 γ4 f2

0 γ2 γ4 f ∗
1 γ3 f3

0 0 γ5 0
0 0 0 γ2

⎞
⎟⎠. (B8)

If we now apply this Hamiltonian into the proposed state given
by Eq. (B6), we obtain

Ĥk

∣∣	n
α,k

〉 = (
εn
α,kÎ + V̂

) ∣∣	n
α,k

〉
, (B9)

where Î is the identity operator in this extended space and

V̂ = γ5
(
P̂A1,1 + P̂A2,N3

) + γ2
(
P̂B1,1 + P̂B2,N3

)
,

where we defined the projectors P̂i,n3 = |i, n3〉〈i, n3|. The ma-
trix associated with this operator is therefore diagonal, and the
nonzero elements are only in the first (n3 = 1) and last (n3 =
N3) unit cells. The proposed decomposition scheme, therefore,
is not exact due to the next-nearest-neighbor hoppings γ5 and
γ2 appearing in V̂ . However, as both γ2 and γ5 are much
smaller than γ0, the operator V̂ can be taken as a small
perturbation on Ĥk when we increase N3, such that it can
be disregarded in a first approximation. This implies that the
energies εn

α,k, obtained from a 4 × 4 Hamiltonian matrix, are
in fact a good approximation to the exact eigenenergies, which
would be obtained from a 4N3 × 4N3 matrix.

It is important to notice that the above presented decom-
position can be extended straightforwardly to incorporate the
circularly polarized light. What changes in this case is that the
static Bloch Hamiltonian in Eq. (B3) should be replaced by the
Bloch-Floquet Hamiltonian of Eq. (18), and the state |φn

α,k〉
is now defined in the F-space, whose dimension is 4(2nr +
1) (recall that 2nr + 1 is the amount of considered Floquet
replicas). Additionally, for the LDoS of Fig. 4, translational
invariance is not only broken along â3, but also in â2. For a
given k3, specified by n, we can calculate an effective local
density Nr,n by following the decimation procedure discussed
in detail in Ref. [57]. This procedure consists in the recursive
calculation of the self-energy correction on the site located
at r0 = n2a2 + δi, due to the presence of the other sites in
the lattice. Once we obtain Nr,n, the final LDoS at site r =
r0 + n3a3 can be obtained as

Nr =
∑

n

Nr0,n

{|an,n3 |2, i ∈ LL
|bn,n3 |2, i ∈ UL

. (B10)

The relevance of this decomposition scheme relies on the
fact that it effectively reduces the dimension of the involved
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Hamiltonians, and thus the computation time demanded by
the calculation of either the system eigenenergies or the
LDoS. This scheme, in turn, yields a very good approximation
to the exact solutions for large values of N3, such that surface

effects due to the perturbation V̂ can be neglected. It is
precisely in this limit where the exact calculation becomes
highly demanding and, in most of cases, almost impossible
to carry out.
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