Physica Medica 70 (2020) 109-117

Contents lists available at ScienceDirect

Physica

European Journal
of Medical Physics

Physica Medica

journal homepage: www.elsevier.com/locate/ejmp

Original paper

Simulation of hypoxia PET-tracer uptake in tumours: Dependence of clinical @ &

Check for

uptake-values on transport parameters and arterial input function At

Isabela Paredes-Cisneros™”“", Christian P. Karger™", Paola Caprile’, David Nolte®",
Ignacio Espinoza“, Araceli Gago-Arias®™#

@ German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany

Y Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
© Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany

4 pontificia Universidad Catdlica de Chile, Institute of Physics, Santiago, Chile

€ Universidad de Chile, Center for Mathematical Modeling, Santiago, Chile

f University of Groningen, Johann Bernoulli Institute, Groningen, The Netherlands

& Instituto de Investigacién Sanitaria de Santiago (IDIS), Group of Medical Physics and Biomathematics, Santiago de Compostela, Spain

ARTICLE INFO ABSTRACT

Keywords:

Hypoxia tracer uptake
Positron-emission-tomography (PET)
Radiotherapy

Computer simulation

Poor radiotherapy outcome is in many cases related to hypoxia, due to the increased radioresistance of hypoxic
tumour cells. Positron emission tomography may be used to non-invasively assess the oxygenation status of the
tumour using hypoxia-specific radiotracers. Quantification and interpretation of these images remains chal-
lenging, since radiotracer binding and oxygen tension are not uniquely related. Computer simulation is a useful
tool to improve the understanding of tracer dynamics and its relation to clinical uptake parameters currently
used to quantify hypoxia. In this study, a model for simulating oxygen and radiotracer distribution in tumours
was implemented to analyse the impact of physiological transport parameters and of the arterial input function
(AIF) on: oxygenation histograms, time-activity curves, tracer binding and clinical uptake-values (tissue-to-blood
ratio, TBR, and a composed hypoxia-perfusion metric, FHP). Results were obtained for parallel and orthogonal
vessel architectures and for vascular fractions (VFs) of 1% and 3%. The most sensitive parameters were the AIF
and the maximum binding rate (K. ). TBR allowed discriminating VF for different AIF, and FHP for different
Kynax, but neither TBR nor FHP were unbiased in all cases. Biases may especially occur in the comparison of TBR-
or FHP-values between different tumours, where the relation between measured and actual AIF may vary. Thus,
these parameters represent only surrogates rather than absolute measurements of hypoxia in tumours.

1. Introduction

Hypoxia is known to negatively impact radiotherapy outcome [1,2].
Positron emission tomography (PET) can be used to assess the hypoxic
status of tumours, using a hypoxia-specific radiotracer [3,4]. PET-based
assessment of hypoxia has been found to be of prognostic value [5-7],
and targeting hypoxia is a powerful therapeutic strategy for the in-
dividualized treatment of cancer patients [8,9]. Previous studies have
shown that tracer kinetics in PET, represented as time-activity curves
(TAGCs), can provide valuable information, although often only the
static signal (e.g. two hours after tracer injection) is used. However,
none of these methods have reached the status of clinically accepted
routine and assessment of tumour hypoxia still imposes a great chal-
lenge [10]. The main obstacle lies in the limited understanding of the

radiotracer dynamics and its binding, which is heavily influenced by
various physiological factors.

Mathematical modelling of the underlying processes of oxygenation
and hypoxia [11-13], as well as of the hypoxia-PET tracer uptake dis-
tributions in tumours [14-23] provide a valuable tool to better un-
derstand the resulting PET signal.

The model developed by Monnich et al. [17] allowed reproducing
experimental TACs from patients, based on the current understanding
on the involved microscopic processes. As for any model, input para-
meters must be provided and the obtained results therefore depend on
such input. For radiotracer dynamics, input parameters modulate dif-
fusion and binding in the tumour, as well as the delivery of the tracer
from the vessels into the tumour. Of particular relevance is the arterial
input function (AIF), which describes the delivery of the tracer into the
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region of interest. The AIF is usually determined in a large vessel or in
the heart, indicating that it might not be representative for the tissue of
interest, e.g. the tumour.

The aim of this study is firstly to implement a model to simulate the
oxygen and 18F_fluoromisonidazole (FMISO) distributions in tissue and
to analyse the sensitivity on several input parameters that may impact
the FMISO uptake. In a second step, the impact of the most relevant
parameters on clinical criteria used for PET-based hypoxia assessment is
studied. Different oxygenation levels in the tumour are considered by
using vascular fractions (VFs) of 1% and 3%, and the effect of vascular
geometry variation is studied by random sampling of the vessel dis-
tribution. The parametric sensitivity study includes tracer diffusion and
binding, necrosis in strongly hypoxic areas, as well as properties of the
AIF. Results are represented in terms of oxygen histograms and TACs,
and by analysing the relationship between bound tracer and oxygen
concentrations. Additionally, the clinical parameter tissue-to-blood
ratio (TBR) was calculated and compared with the hypoxia-perfusion
compound parameter FHP proposed by Monnich et al. [17].

2. Materials and methods
2.1. Mathematical models for oxygen and tracer transport

2.1.1. Partial oxygen pressure distribution in tumours

It is assumed that oxygen diffuses from vessels into tumour tissue,
where it is consumed by cells. These two processes are described by a
reaction-diffusion partial differential equation (PDE), as shown in pre-
vious studies [11,12,16,24]:
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If the derivative on the left side is set to zero, P describes the sta-
tionary spatial distribution of oxygen partial pressure defined in a cubic
volume of tumour tissue (V). Do, is the oxygen diffusion coefficient and
8,.ax 1S the maximum oxygen consumption rate. Oxygen consumption is
modelled by the Michaelis-Menten relation (third term in Eq. (1)), in
which Py is the Michaelis-Menten coefficient (partial oxygen pressure at
which consumption is reduced to 50%). Oxygen diffusion through the
vessel walls is described by the capillary permeability coefficient Lo,,
and the vessel-to-tissue concentration difference. This is included by the
boundary condition at the vessel surface ﬁ)-(DO2 VP) = Lo,(By — P),
where P, is the intravessel-value of Pin tumours.

2.1.2. Hypoxia-radiotracer dynamics

As for the oxygen, blood vessels are also the source of the FMISO
radiotracer, which diffuses into the tissue and binds in hypoxic cells.
The total tracer concentration is composed by a free and a bound term
C = C; + Cp, modelled by reaction-diffusion PDEs [16,17].
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Dr is the FMISO diffusion coefficient and the oxygen-dependent
irreversible tracer binding rate is described by the coefficient
K (P) = Fi(P)+F,(P). In this expression, F; considers a hyperbolic rela-
tion between binding rate and the oxygen concentration P[14]:

P
"pyp

F =
(3a)
Kinax is the maximum binding rate and P; describes the oxygen partial
pressure at which the binding rate amounts to 50% of its maximum.
Assuming that cells at very low oxygen concentration become necrotic
and lose their capability for tracer-uptake, the second term F, limits the
binding according to:
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Here, P, describes the oxygen concentration at which 50% of the
cells become necrotic and k describes the steepness of this transition.

The tracer flow through the vessels walls depends on the capillary
permeability for the tracer Ly, and the tissue-vessel tracer concentra-
tion difference, written as the boundary condition:

(3b)

We(DrVCy) = Ly (AIF(t) — C) )

Through this boundary condition the AIF is introduced into the
system: the AIF is the time-dependent tracer concentration of the tu-
mour-supplying artery. As in a previous study by Wack et al. [21], the
AIF was fitted by the double-exponential decay-function:

AIF(t) = Ale’”’ + Aze’w (5)

In Eq. (5), 71, T3, Az, and A, are the fit parameters describing the
tracer removal from the blood with two different rates (74, 75) and their
relative contributions (A;, Az), respectively.

Assuming similar tumour tissue surrounding the simulation volume,
zero oxygen and tracer flows into the volume were set as external
boundary conditions. All parameters related to this model have been
described in previously published studies, and the references and values
applied here are summarized in Table 2.

2.2. Parametric sensitivity study for the FMISO dynamics

2.2.1. VF and vascular architecture

Vascular architectures were considered as arrays of vessels modelled
as circular cylinder with 10 pm radius. Tumour samples of
500 X 500 X 500um?> were simulated employing VFs of 1% and 3%. Two
types of vascular architectures were analysed, similar to those simu-
lated in previously published studies [12,23]: parallel and orthogonal
vessels (parallel to the x, y, or z axis). In both cases, the vessels covered
the whole length of the volume. The spatial vessel distribution and
direction of the vessels in 3D were generated randomly using a uniform
probability distribution. For each combination of VF (1% or 3%) and
vascular architecture type, ten different tumour samples were gener-
ated.

2.2.2. Experimental and artificial AIFs

The impact of the AIF on the FMISO uptake was analysed using the
parallel vessel architecture with VFs 1% and 3%. Experimental patient
AlFs were modelled by double-exponential functions (Eq. (5)), fitted to
the mean AIF as presented by Wack et al. [21], as well as to the upper
and lower 95%-confidence limits (CL). Two additional artificial AIFs
were generated having the same area under the curve as the mean
experimental AIF, during the first 120 min, but showing a slowly de-
creasing or a flat shape, respectively. The AIFs are shown in Fig. 1 and
the corresponding fitting parameters are presented in Table 1.

2.2.3. Parameters related to the FMISO uptake

The sensitivity study for the tracer uptake was performed using the
parallel vessel architecture with VFs of 1% and 3%. Parameter values
were varied using the minimum, maximum and mean values of the
intervals shown in Table 2. The effects of parameter variation on the
tracer binding C, as a function of P, as well as the TAC shape, were

studied. For this, the TAC was calculated according to:
TAC(t) = C;(t) + Gy (t) + AIF(£)+VF 6)

2.3. Impact on clinically-relevant PET-parameters for hypoxia assessment

Based on the parametric sensitivity analysis, those input parameters
with greater impact on the simulated FMISO uptake were selected to
study the resulting variability of the clinically-employed parameters,
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Fig. 1. Experimental AIFs from Wack et al. [21] (a) and artificial AIFs (red and blue curves in b).
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Table 1
Fit parameters according to Equation (5), describing the AIFs used in this study.
Fitting parameters for A(kBg/ml)  Ay(kBg/ml) 7 (s™1) (sl
AlFs
Experimental AIFs [21]
Upper AIF (upper CL) 19.13 12.16 1.93 x 1073 147 x 103
Mean AIF 18.11 10.93 2.00 x 1073 1.90 x 10~3
Lower AIF (lower CL) 15.64 15.64 224 X103 248 x 1073
Artificial AIFs
Slowly decreasing AIF 11.03 8.44 2,00 x 1074 121 x 1074
Flat AIF 8.40 4.00 2.00 X 1075  2.59 x 1073
Table 2

Parameter values (in bold) used to simulate the spatiotemporal oxygen and
FMISO distributions.

Parameter Symbol  Value
Oxygen distribution
Intravessel P in tumours Py, 40mmHg [17]
Capillary permeability to oxygen Lo, 4.1 x 10~*ms~! [17]
Oxygen diffusion coefficient Dy, 2 x 10~°m2s~! [17]
Maximum oxygen consumption rate Emax 15mmHg s~! [17]
Michaelis-Menten coefficient of Py 2.0mmHg [17]
oxygen consumption
FMISO dynamics
Capillary permeability to FMISO Ly (2.4 — 9.4) x 10~°ms~! [16]
FMISO diffusion coefficient Dr (5.5 — 7.9) x 10"1m?2s~1 [21,25]
P inhibiting binding by 50% of its Py (0.8 — 1.5)mmHg [26]
maximum
Maximum binding rate Knax (1.7 — 4.5) x 10~4s71 [17,23]
P inducing 50% necrosis P, (0.1 — 1.0)mmHg [17,27]
Viable-necrotic tissue transition k (0.3 —1.0) [17]

steepness factor

TBR and FHP [19], at 120 min post injection (p.i.):

TBR(120 min p.i.)= w
AIF (120 min p.i.) @)

FHP(120 min p.i)= LAc (120 minpi) (}201?19 p-i)
TAC|,min ®

2.4. Simulations software tools and analysis of results

Vascular architectures were generated in Gmsh [28] and used as

input to solve all PDEs via the finite element method with FEniCS [29],
both available as open-source softwares. Since the tracer distribution
depends on the stationary oxygen distribution, Eq. (1) was solved first.
The P distribution was saved and used as input to solve equations Egs.
(2a) and (2b). The time-dependent tracer distribution was evaluated
between 0 and 120 min p.i.. Results were analysed by oxygen histo-
grams, plots of Cy, as a function of P, and TACs. The behaviour of TBR
and FHP with respect to the hypoxic fraction (HF, fractional volume
with P < 5 mmHg) was studied. All plots were generated using MA-
TLAB R2016b (The Mathworks Inc., MA), while the visualization of P
and tracer distributions was performed using the open-source software
Paraview [30].

3. Results

Fig. 2 shows the simulated distributions of P and C}, for a sample
architecture with parallel vessels and VF 3%. Increased FMISO binding
can be seen at large distances from the vessels.

3.1. Parametric sensitivity study for the FMISO dynamics

3.1.1. VF and vascular architecture

Fig. 3 shows the oxygen histograms and TACs simulated for the
parallel and orthogonal vessel architectures, with VFs 1% and 3%. The
better oxygenation achieved for the 3% VF is reflected by the oxygen
histogram exhibiting reduced HF. The largest variability between the
different simulated samples was found at the lowest P values. In-
creasing the VF from 1% to 3% led to increased peak in the TAC at early
time points (from 0 to 20 min p.i.) and decreased tracer uptake at large
p.i. times. A larger TAC variability was found for VF 1%. No significant
differences in oxygenation and TACs were found when comparing
parallel and orthogonal vessel architectures for different VF.

3.1.2. Experimental and artificial AIFs

Fig. 4 shows the TACs for the parallel vessel architecture with VF
1% simulated using different AIFs as input. The vertical shifts between
the three experimental AIFs (Fig. 4a) led to similar shifts of the TACs
that were larger than the sampling variability. For the artificial AIFs,
the TAC shape changed drastically (Fig. 4b). For the slowly decreasing
AIF, the TAC peaked later than for the mean experimental AIF. In
contrast, the TAC simulated with the flat AIF did not show any initial
peak, but rather a continuously increasing binding with time.

3.1.3. Parameters related to the FMISO uptake
Fig. 5 shows C} as a function of P for different parameter settings in
the FMISO dynamics model. The shape of C;,(P) was basically the same
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Fig. 2. Example of simulated P (a) and C, distributions, 120 min p.i., for a sample of the parallel vessels (black circles) architecture with VF 3%. Distributions are

shown for the central plane of the simulated tumour volume.

for all settings: the binding increased with increasing P, reached a
maximum at around 2 mmHg and decreased after. Essentially, no var-
iation was observed for varying Ly and Dr values. Increasing P; and
K,uax separately led to an increased binding, for P > 0.1 mmHg and for
all P values, respectively. Increasing separately the value of P, and k led
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to a decreased binding for P < 2 mmHg and a shifting of the binding
maximum towards larger P values.

Fig. 6 displays the TACs for all parameter settings. Increasing VF
from 1% to 3% altered significantly the height of the peak at early p.i.
times, and the tracer accumulation at late p.i. times. As shown for the
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Fig. 3. Simulated probability distributions for P (a, b) and TACs (c, d) for parallel (red) and orthogonal (blue) vessel distributions, using VFs of 1% (a, c¢) and 3% (b,
d). Errors bars represent single standard deviations over the ten simulated samples. TAC shaded regions represent the 95% confidence interval for the ten simulated

samples.
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Fig. 4. Simulated TACs for experimental AIFs from Wack et al. [21] (a) and for artificial AIFs (blue and red curves in b) for the parallel vessel architecture and VF 1%.
Shaded regions show the 95% confidence interval for the ten simulated samples. For better visibility, confidence intervals are shown only for the mean AIF in (a).

central parameter settings (Table 2) by the shaded regions, the TAC was
sensitive to the sampling variability, and the TAC variation was larger
for VF 1% than for 3%. Regarding the different parameter settings,
TACs did not differ significantly for varying Lr, and only small differ-
ences in the peak were found for Dr. Also, for P, only minor differences
in the uptake were seen at large p.i. times. The largest sensitivity of the
TAC was found for variations of K,,,., which exhibited identical peak
heights but markedly different tracer uptakes at large p.i. times.
Varying the values of P, and k did not change the peak height but led to
changes of the late uptake, of the same magnitude as the sample var-
iation.

3.2. Impact on clinically-relevant parameters for PET-based hypoxia
assessment

Based on Figs. 4-6, the most relevant parameters influencing the
FMISO uptake were K,,,, and the AIF. For different settings of these two
parameters, TBRs and FHPs were calculated for VFs 1% and 3%, and the
obtained values are shown Table 3.

For the mean AIF, increased K, led to increased TBR, and this
trend was more pronounced for VF 1%. For the same value of K,
larger TBR was obtained for smaller VF, and therefore in this case TBR
allowed discriminating between the two VF and the related HF.
However, a comparable TBR was obtained for K., = 1.7 X 107*1/s at
VF 1% and for Ko = 4.5 X 107*1/s at VF 3%.

Only small differences in TBRs were obtained for the flat AIFs at VF
1% and 3%. In contrast, TBR-differences were markedly larger for the
slowly decreasing AIF. Assuming the same AIF, differentiation of VF
based on TBR-values was possible.

For the mean AIF, increased K., led to increased FHP and lower
FHPs were obtained at VF 3% for all K,,,,, values, in comparison to VF
1%. Therefore, FHP also allowed discriminating between the two VF.

Compared to the mean AIF at the same value of K., FHP was
larger for the flat than for the slowly decreasing AIF. For the same AIF,
FHP allowed discriminating different VF and HF, however, FHP for the
flat AIF at VF 3% was larger than that for the mean and slowly de-
creasing AIF at VF 1%.

4. Discussion
4.1. Parametric sensitivity study for the FMISO dynamics

In accordance with previous studies [12,23], very similar oxygen
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distributions were found for architectures with parallel and orthogonal
vessels, as long as the same VF and the same degree of heterogeneity in
the vessel distribution were used. This is in accordance with the study
by Warren and Partridge [23], who analysed vascular architectures
with isotropic vessel orientations and showed similar oxygen distribu-
tions. This leads to the conclusion that oxygen distributions for these
three types of vascular architectures are the same on a macroscopic
level, for identical VF and degree of heterogeneity in the vessel dis-
tribution. We therefore restricted further analysis to the parallel vessel
architecture.

While high P values may result from a small distance from a single
vessel or moderate distances to multiple vessels, low P values depend
critically on the largest distance to the nearest vessels, which is in the
order of the oxygen diffusion radius. Low P values are therefore more
dependent on the individual vessel position and thus exhibit larger
variations in the sampling experiments. The impact of the VF can be
clearly seen in the TACs. While the TAC at VF 3% exhibits a prominent
initial peak, which indicates a good perfusion, the TAC at VF 1% re-
sulted in a reduced peak with an increased uptake at large p.i. times,
indicating a reduced perfusion with increased hypoxia.

TACs clearly reflect differences in VF, and it also depends critically
on the AIF (Figs. 1 and 4), as previously shown by Wack et al. [21]. For
different investigated AlFs, the TAC variations were larger than sam-
pling variability. In principle, the AIF can be measured simultaneously
with the TAC and may then be used to remove or reduce the depen-
dence of the measured parameters on the AIF. Examples for such
parameters are the TBR, where TACs are normalized to AIF-values, or
physiological parameters, determined in more advanced pharmacoki-
netic analyses. In real measurements, however, the AIF is typically
measured in the heart or in a large artery proximal to the tumour to
avoid partial volume effects. Depending on how the tumour is con-
nected to the vascular system, an initially sharply peaked AIF will
spread and the actual AIF in the tumour may be less sharp or even flat
as simulated in our study by the “slowly decreasing” or “flat” AIF. Thus,
even if the measured parameters are corrected for the impact of the AIF,
it may still include some uncertainty resulting from the fact that the
measured rather than the actual AIF of the tumour has been used. The
strong dependence of the TAC on the AIF may also explain the very
different TAC shapes observed by Mena-Romano et al. [31] in three
different rat prostate tumour sublines.

Besides VF and AIF, the highest sensitivity of the TACs was found for
the maximum binding rate K. While the exact value of this para-
meter is unknown, it is primarily a chemical reaction constant, which
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Fig. 5. Simulated FMISO binding concentration C, as a function of P at 120 min p.i., for all parameters related to the FMISO dynamics model using the experimental
mean AIF: FMISO capillary permeability Ly (a), FMISO diffusion coefficient Dy (b), P, indicating the value of P for 50% binding (c), maximum binding rate K, (d),
P, indicating the value of P for 50% necrosis (e), and transition steepness factor for necrosis k (f). Simulations were performed for the parallel vessel architecture and
VF 1% using the reference parameter settings and in each plot, the denoted parameter was varied within the ranges shown in Table 2.

should not differ between different cell lines although it cannot be
ruled-out that there is an additional dependence on the tracer uptake
into the cell and the nucleus.

The model used to simulate the FMISO dynamics showed the com-
plex behaviour of tracer binding, exhibiting a reduced binding for both
well-oxygenated and very poorly oxygenated regions, which are as-
sumed to become necrotic (Fig. 5). While it is undoubted that severe
hypoxia can lead to necrosis and that FMISO will not bind to necrotic
regions, the oxygen level leading to necrosis as well as the underlying
time scale is unknown and may vary between cell lines as they may
adapt differently to the hypoxic environment. With this respect, the
modelling of the uptake in necrotic regions by the function F,(P) has to
be considered as a heuristic approach, which may be questioned. In
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contrast, the uptake function in hypoxic but viable tissue regions, F, (P)
appears more reliable as the underlying mechanism is better under-
stood. In addition, only minor changes of the uptake was found for
variations of the related parameter P;.

In contrast to the parameters describing the tracer uptake, tracer
binding (Fig. 5) and TAC shape (Fig. 6) turned out to be essentially
independent of the permeability Ly and the diffusion coefficient Dr. As
shown by Kelly and Brady [16], relevant TAC changes may be observed
only when these parameters are varied by an order of magnitude.

4.2. Reliability of clinically-relevant PET-parameters

PET-based hypoxia assessment is often performed using parameters
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Fig. 6. TACs simulated with the experimental mean AIF and different parameter settings of the FMISO dynamics model, for the parallel vessel architecture with VFs
of 1% (red curves) and 3% (blue curves): FMISO capillary permeability Lr (a), FMISO diffusion coefficient Dr (b), P, indicating the value of P for 50% binding (c),
maximum binding rate K4 (d), P, indicating the value of P for 50% necrosis (e), and transition steepness factor for necrosis k (f). Simulations were performed for
the reference parameter settings and in each plot, the denoted parameter was varied within the ranges shown in Table 2. Each TAC represents an average over ten
samples shown in solid, dashed and dotted lines. Shaded regions represent the 95% confidence interval of the simulations performed with the central parameter

setting (solid line).

such as tissue-to-blood ratios, tissue-to-muscle ratios, or standardized
uptakes values (SUV), which are uptake measurements, normalized to
that of a reference volume or to the injected activity per mass and
which can be used without additional use of detailed pharmacokinetic
models. TBR is determined in a region of interest at a certain p.i. time
and is normalized to the activity in the blood (Eq. (7)). FHP was sug-
gested by Monnich et al. [19] as a “measure of hypoxia-related tracer
retention that is normalized by a simple measure of perfusion” (Eq. (8))
and it was found that FHP allowed assessing the median P with higher
accuracy than with a simple measurement at 4 h p.i.

As shown in Table 3, larger or comparable TBRs may be obtained for
VF 3% than for 1%, for different K., values. Therefore, if K4, varies
within the tumour, discriminating between hypoxic and non-hypoxic
tissues may become difficult. In contrast, the parameter FHP can still
discriminate these conditions. On the other hand, if K,,,, is considered
only as a chemical reaction constant, independent of the transport
capabilities of the cell membranes, either TBR or FHP may be used to
distinguish different degrees of oxygenation.

Regarding the dependence on the AIF, the parameter FHP could not
always distinguish different VF, since this metric depends on the
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Table 3
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TBR and FHP (mean * standard deviation) for different maximum binding rates K, and AIFs, for VFs 1% and 3% (and corresponding HFs, mean =+ standard

deviation). Standard deviations were calculated for the ten simulated samples.

AIF Flat Slowly decr. Mean Mean Mean
Kpax [X10741/s] 1.7 1.7 1.7 31 4.5
TBR
VF =1%* 142 +0.04 178 + 0.05 147 +0.04 1.81 + 007 212+ 0.10
VE=3%" 1.20 + 0.03 1.34 + 0.06 122 +0.03 1.37 + 0.06 151 +0.08
FHP
VF =1%* 1.67 + 0.08 0.81 + 0.04 0.94 + 0.04 114 + 0.04 133 +0.05
VF=3%" 110 + 0.08 0.48 + 0.04 0.63 + 0.02 0.70 + 0.04 0.77 + 0.05
* HF =70.3% +2.7%.
* HF =22.5% + 5.4%.

relation between late and early values of the TAC, which changes References

drastically between the different AIFs. Especially for the flat AIF, the
lack of an initial peak led to markedly increased FHP-values. This
complicates especially the inter-individual comparison of FHP-values if
the tumours have significantly different AIFs. The parameter TBR, on
the other hand, allowed distinguishing the different VF independently
of the actual AIF. However, inter-individual variations of the AIF will
lead to variation of TBR, which introduces additional uncertainty in the
comparison of TBR-values between different tumours. This problem
persists for both parameters TBR and FHP as long as the measured AIF
does not truly reflect the actual AIF in the tumour.

5. Conclusion

This study implemented a model for hypoxia-PET radiotracer dy-
namics and performed a parametric sensitivity study to gain insight in
the relationship between 18F_fluoromisonidazole (FMISO) transport
processes and time-activity curves (TACs), tissue-to-blood ratios (TBRs)
and the hypoxia-perfusion compound parameter FHP. The input para-
meters considered were vascular architecture, vascular fraction (VF),
arterial input function (AIF) and parameters related to the FMISO dy-
namics. The most sensitive parameters were the AIF and the maximum
binding rate (Kyq). TBR allowed discriminating VF for different AIF,
and FHP for different K., but neither TBR nor FHP were unbiased in
all cases. This bias may especially occur in the comparison of TBR- or
FHP-values between different tumours, where the relation between
measured and actual AIF may vary. Thus, these parameters represent
only surrogates rather than absolute measurements of hypoxia in tu-
mours.
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