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Stability assessment of underground mine stopes subjected to stress relaxation
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ABSTRACT
Stress relaxation plays an important role in the design of underground stopes. The aim of this
paper is to assess the stope stability in connection with the stress relaxation using a
classification approach. Three types of stress relaxation were clearly defined, namely partial
relaxation, tangential relaxation and full relaxation. A neural network classifier was
implemented to assess the stability of the stopes on the basis of case histories of stope
performances. The results of the classification were compared to existing empirical methods
of quantifying the stress relaxation. Overall, the present study shows higher classification
accuracies, especially when the stress relaxation was considered. The results suggested that
the relaxation type can be a good predictor of stability. Relaxed stope (full and tangential
stress relaxation) cases are the most critical in the sense that lower accuracies were obtained
and the probability of correct classification is rather erratic.
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Introduction

The stress relaxation of a rock mass is a time-depen-
dent phenomenon defined as the decrease of stress at
a constant strain resulting in the deformation or weak-
ening of the rock mass over time (Hudson and Harri-
son 1997). Paraskevopoulou et al. (2017) observed
three stages of stress relaxation in brittle rocks based
on laboratory testing. The first stage of stress relaxation
corresponds to the phase where relaxation occurs with
a decreasing rate; usually most of the relaxation takes
place (55–95% of the total stress relaxation) during
the first stage. In the second stage, the stress decreases
at a constant rate and in the third stage, no further
stress relaxation takes place. Field observations also
show this time-dependent behaviour in the rock mass
especially surrounding underground openings (Kaiser
et al. 2001). In general, the rock mass is subjected to
stress and strain changes after excavation, influencing
the long-term behaviour of the rock and the properties
of the damage zone. In underground hard rock mines,
relaxation is best described as a loss of confinement and
occurs when the compressive stress is absent in the
vicinity of and in a direction parallel to the surface of
an excavation wall or roof due to subsequent mining
of nearby stopes (Diederichs 2003). It is a key control-
ling factor in the stability of a mine stope and the inter-
acting openings especially with complex geometries
(Diederichs and Kaiser 1999). This controlling factor
of the stress relaxation on excavation stability has
been recognized by several researchers (Kaiser et al.
1997; Diederichs and Kaiser 1999; Kaiser et al. 2001;

Suorineni et al. 2001; Stewart and Trueman 2004). A
parametric study carried out by Suorineni et al. (2001)
indicated that the stress relaxation has unfavourable
effects on stope stability when the induced stress is less
than a critical value.

In the design of underground hard rock mines with
an open stoping mining method, the Mathew’s stability
graph method is well accepted and widely used around
the world today due to its simplicity and potential flexi-
bility to accommodate a wide range of hard rock
mining methods. One of the limitations of the method
however, is its inappropriateness for low compressive
stresses and tensile stresses in excavation faces. These
types of stresses often occur along the hangingwalls
and footwalls of relatively tall stopes created, for
example, in longhole open-stoping, AVOCA or other
similar method. However, assessing the stability of
underground stopes using the stability graph method
chart is more appropriate for certain types of in-situ
stress conditions. It has been shown that the method
usually yields reliable results especially in instances
where the maximum induced tangential stress provides
enough compressive stress to confine the excavation
faces, but the method does not account properly for
relaxation situations (Mitri et al. 2011). Therefore, sev-
eral studies in which an adjustment of the stress factor
(A) in the stability graph method, were proposed. Stew-
art and Trueman (2004) found that tangential relax-
ation and full relaxation have the most adverse effect
on excavation stability compared to partial relaxation
and accordingly they proposed an adjustment of the
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stress factor in the extended Mathews stability. Simi-
larly, Mitri et al. (2011) proposed adjustments in the
rock stress factor by introducing a penalty to reflect
the effect of low-stress or tensile stress on critical face
stability as an attempt to overcome that fundamental
limitation in the stability graph method. Meanwhile,
some studies suggest that the effect of the stress relax-
ation on excavation stability is not significant (Potvin
1988; Milne et al. 2002). This may be due to the fact
the phenomenon of relaxation and rheology behaviour
of hard rock and the relations between the various
time-dependent behaviours appear to be complex and
not fully investigated yet, compared with those on soft
rock (Hashiba and Fukui 2016; Yang et al. 2017).

For these reasons, it is important to determine the
extent of the effect of the types of stress on stope stab-
ility and to make a few suggestions as alternatives or
complements to the use of the stability graph method.
Hence, in this paper, a classification model for stope
stability constrained by the relaxation types is
implemented. The classification approach is justified
by the fact that in a previous study by Stewart and
Trueman (2004), a misclassification of failed stopes
was used to account for the relaxation effect. An artifi-
cial neural network (ANN)-based classifier is chosen as
a convenient tool to recognize the effect of relaxation.

Methods

ANN-based classifiers

ANNs are known as artificial intelligence tools which
model human brain functions and learn from sample
data presented to them. They are used to capture the
relationship among data such as correlations, patterns
or clusters. ANNs consist of neurons which are the
basic processing units; they are densely interconnected
in such a way that performing large parallel compu-
tations is possible. Theories on ANNs are widely avail-
able in the literature. They can fairly approximate any
kind of function and also be used as a classifier (Engel-
brecht 2007). Readers may refer to Veelenturf (1995)
for theoretical background while a concise overview
on the subject can be found in Adoko et al. (2013).
According to the network architecture or the training
algorithm, the types of ANN include back-propagation,
counter-propagation, feed-forward and dynamic net-
works. They can also be classified as static (feed-for-
ward) or dynamic. In each neuron n input data are
processed and a single output is determined as follows:

y = f
∑n
i=1

wixi + u

( )
(1)

where xi,wi,u and f are the values of the ith input, the
values of the ith weight, the bias of the neuron and the
activation function of the neuron, respectively (Veelen-
turf 1995). A network consists of at least three layers of

neurons (input, hidden and output layer) as illustrated
in Figure 1. The first one, the input layer distributes the
input dataset. It should be noted that there is no pro-
cessing in that layer; each neuron receive just one com-
ponent of the input vector which gets distributed,
unchanged, to all neurons from the input layer. The
last layer is the output layer which outputs the pro-
cessed data. The layers between the input one and
the output one are called hidden layers. In feed-for-
ward neural networks (FFNNs), there are no feedback
elements; inputs are received and simply forwarded
through all the next layers to obtain the outputs. As
an illustration of how the output is computed, the out-
puts of the second hidden layer J2 (Figure 1) are calcu-
lated explicitly as follows:

YJ2
k = f2

∑N1

j=1

w2
k,jf1

∑N0

i=1

w1
j,ixi + u1j

( )
+ u2k

( )

k = 1, 2, . . . , N2

(2)

whereN0,N1 andN2 are the number of inputs, neur-
ons in the first layer, and neurons in the second layer;
YJ2
k is the kth output of J2; f2 is the activation function of

J2;w2
k,j is the weight between the kth neuron of J2 layer

and the jth neuron of J1 layer; f1 is the activation func-
tion of the first layer; w1

j,i is the weight between the jth
neuron of the first layer and ith input; xi is the ith
input; u1j is the bias of jth neuron in the first layer
and u2k is the bias of kth neuron in the second layer.
Given a pair of training datasets and its corresponding
target values, the network computes the outputs
(according to Equation (2)) using its initial weights
and biases. Then, the weights and biases are adjusted
by comparing the output values and the target values,
until the network outputs match the targets. Usually,
in the training process, the sum of squared errors is
used as a performance index while the Levenberg-Mar-
quardt algorithm (back-propagation) or any variant is
mostly implemented to minimize the errors (Adoko
et al. 2013).

Figure 1. FFNN schematic diagram.
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When FFNNs are used as a classifier, several struc-
tures can be employed depending on the classification
of the feature patterns including the one-against-all,
weighted one-against-all, binary coded, parallel-struc-
tured, weighted parallel-structured and tree-structured
(Lam et al. 2014). For all these classifiers, the input pat-
tern ofx(k) = {x1(k), x2(k), . . . , xn(k)} is recognized as
the feature vector of a target object to be classified. Basi-
cally, these classifiers group the feature patterns into N
classes using a supervised learning framework. For
example, in the one-against-all classifier, a multiple-
input-single-output fully connected FFNN correlates
the featurepatternx(k) in the formof input and generates
a single value y(k) as output. Then, the target output yd(k)
takes value of i whenever the input feature pattern x(k)
corresponds to the class i. Hence, this classifier is trained
in such as a way that the output y(k) is in the maximum
proximity to yd(k) in accordancewith the class,which the
feature pattern x(k) belongs to. The output class j is gen-
erically represented by the equation as follows:

j = argmin
i

{|y(k)− i|, i [ {1, . . .N}} (3)

where |·| symbolizes the absolute value operator.

A brief review of the stability graph method

The stability graph commonly known as the Mathews
stability chart method has its origin from a project
investigating stope stability in deep Canadian mines
(Mathews et al. 1981). Since then, several authors
have elaborated on the method and expanded the
initial database from 26 case histories to more than
400 case histories collected frommines in North Amer-
ica, Australia, Chile and England (Potvin 1988; Maw-
desley et al. 2001; Vallejos et al. 2016) with a series of
modifications to the way the stability number and its
factors are determined. The stability graph relates the
size of an excavation surface to the rock mass compe-
tency to provide an indication of stability or instability.
It involves two main parameters: the stability number,
(N) and the hydraulic radius (HR). The stability num-
ber N is defined as follows:

N = Q′ × A× B× C (4)

Q′ = RQD
Jn

× Jr
Ja

(5)

In Equations (4) and (5), A is the rock stress factor,
B is the joint orientation adjustment factor and C is the
gravity adjustment; Q’ represents the rock mass quality
determined by the rock quality designation (RQD), the
joint set number (Jn), the joint roughness number (Jr)
and the joint alteration number (Ja). Meanwhile HR
is defined as the ratio of a stope face area over its per-
imeter. The adjustment factors are determined using
charts as provided in Figure 2(a–c).

Relaxed stope surface data description

The relaxation case histories utilized for this study,
came from several sources across the world pertaining
to open stoping mining environments. The dataset was
compiled from relevant literature and the contributing
mines included Ruttan mine (Pakalnis 1986; Potvin
1988), Detour Lake mine (Pakalnis et al. 1991), South
Crofty mine (Stewart 2005), Cobar mine (Mathews
et al. 1981) and Kundana Gold mine (Stewart 2005).
Three types of stress relaxation have been considered
according to the magnitude and direction of the prin-
cipal stresses obtained from 3D modelling using
Map3D (Stewart and Trueman 2004; Stewart 2005).
Partial relaxation of stope surfaces refers to a situation
where σ3 is less than 0·2 MPa, while σ2 and σ1 both
exceed 0·2 MPa. Full relaxation is defined as stope sur-
faces where σ3 and σ2 are both less than 0·2 MPa. Tan-
gential relaxation is defined as stope surfaces where at
least one of the modelled principal stresses is less than
0·2 MPa and the corresponding direction of the stress
deviates less than 20° parallel to the excavation wall
in a 3D situation; this means the angle between the
stress direction and the stope surface dip or strike is
less than 20°. It is noted that based on these definitions,
a stope surface can be simultaneously fully relaxed and
tangentially relaxed. When evaluating the potential for
stress relaxation, the choice of three-dimensional mod-
elling will impact upon the modelled state of relaxation.
For some stope geometries, a two dimensional stress
analysis will predict that the rock mass in the vicinity
of an excavation is relaxed, but it may not be when a
three-dimensional stress analysis is performed. In
such a case, the stope surface will not be truly relaxed.
Hence, the results of this study are constrained by the
assumption of 3D linear elastic modelling of Map3D
software which had been used to estimate the in-situ
stress (Stewart and Trueman 2004).

The dataset consists of key information on factors
influencing the stope performance including the
stope geometry, geological properties, modelled in-
situ stress, and the stope response (stable, failure and
major failure). The input parameters are namely, the
hydraulic radius HR, rock quality designation RQD,
joint set number Jn, joint roughness number Jr, joint
alteration number Ja, stress factor A, joint orientation
adjustment factor B, gravity factor C, and the stress
relaxation category. The output is the stope perform-
ance (stability) which is being evaluated in this study.
For the purpose of classifying the stope responses,
they were categorized into three classes: stable, failed
and major failure. Figure 3 shows histograms of the
two main parameters of the ANN model.

The dataset is composed of 43%, 31.3%, and 25.7%
of stable, failed and major failure, respectively. Also,
23.7%, 31.3% and 45 29% correspond to fully relaxed,
tangentially and partially relaxed cases, respectively.
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A statistical description of the data and a sample of the
data are provided in Table 1 while a stability graph of
the dataset is shown in Figure 4. For the purpose of
implementing the ANN-based classifier, it was necess-
ary to translate the relaxation type variable into a
numerical attribute using a semi-quantitative encoding
(Adoko et al. 2017).

Results of the ANN classification

In order to account for the effect of the stress relaxation
on the ANN-classifier’s ability to recognize the stope
stability, several data structures were used. First, the
entire dataset was employed with A = 1 for each case
history representing situations where no adjustment
due to relaxation in the Mathews stability graph was
considered; then the stability numbers were recalcu-
lated according to (Stewart and Trueman 2004), i.e.
A = 0.7 for relaxed stopes and A = 1 for partially
relaxed. Next, the classification modelling was con-
ducted according to each type of relaxation. For most
cases, the dataset was randomly divided into three
parts: training (70%), validation (15%) and testing

(15%). The inputs consist of three parameters namely,
the HR, N and the relaxation category. The output con-
sists of the following vectors(1, 0, 0); (0, 1, 0)
and(0, 0, 1) representing stable stope walls, failed
stope walls and major failure of stope walls, respect-
ively. These vectors were used because the target data
for pattern recognition networks should consist of vec-
tors of all zero values except for a 1 in element i, where i
is the class they are to represent. Several FFNNs were
attempted in order to classify the stope stability.
Three principal steps were involved: defining the net-
work, then the training and testing of the network.
The required computation was carried out using the
neural network toolbox of MATLAB software (version
R2014a). It was important to determine the optimum
network architecture to achieve reliable results. After
a series of experiments based on the trial-and-error
method (with 1–4 hidden layers and 10–60 neurons
in each), a maximum of two hidden layers in the
FFNN were found suitable for most cases. The cross-
entropy algorithm was used to evaluate the perform-
ance of the network. The transfer functions logistic sig-
moid (Logsig) in the hidden layers and softmax

Figure 2. Adjustment factors of the stability graph (Vallejos et al. 2016).

Figure 3. Histogram of the dataset corresponding to HR and N parameters. Images are available in colour online.
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transfer function in the output layer were used accord-
ing to:

log sig(n) = 1
1+ e−n

(6)

softmax (n) = en∑
en

(7)

These transfer functions return values within [0, 1]
which makes them convenient for classification pro-
blems and the main advantage of using softmax is
that it represents also the output probabilities range
for having any stope classified as stable, failed or with
major failure.

The results of the classification are shown in Figures
5–7. Figure 5(A and B) compare the classifier network
performances without and with the consideration of
the relaxation effect, respectively. As it can be seen,
higher performance was achieved when the type of

stress relaxation was specified in the input dataset.
This indicates that the implemented network recog-
nizes better the stope wall stability constrained by stress
relaxation and the relaxation is highly correlated to the
stope response.

A confusion matrix of the classification correspond-
ing to the whole dataset with relaxation was obtained
and shown in Figure 6. This figure illustrates the clas-
sifiers’ predictive performance. As it can be seen, the
confusion value (i.e. fraction of samples misclassified)
for training, validation, testing and all datasets together
is 8.9%, 25%, 16.7% and 12.5%, respectively, which is
considered very high. The target classes are the actual
classes and the output classes are the predicted classes.
Figure 6 shows that overall, two cases of stable stope
were misclassified as failed while three cases were mis-
classified the other way around; three cases of major
failure of stope were misclassified as failed stope
(minor failure).

In addition, the receiver operating characteristic
(ROC) and the quality of the classification (accuracy,
sensitivity and specificity) were employed to further
assess the performance of the classification. The follow-
ing indices (accuracy, sensitivity and specificity)
defined (in Equations (8)–(10)) were calculated and
are provided in Table 2.

Accuracy = Tp + Tn

Tp + Tn + Fp + Fn
(8)

Sensitivity = Tp

Tp + Fn
(9)

Specificity = Tn

Tn + Fp
(10)

Table 1. Statistical description of the dataset.
Q’ A B C N HR σc/σi σ1 σ2 σ3 Relaxation Stability

Unit – – – – – – – MPa MPa MPa Logic Logic
Max 60.0 1.0 0.5 8.0 154.6 33.0 6846.2 21.0 14.0 0.4 3 Major failure
Min 0.3 0.7 0.5 3.7 0.6 2.0 −2966.7 0.0 −7.5 −7.1 1 Stable
Mean 14.3 0.9 0.5 6.0 38.0 11.0 −56.0 6.3 2.0 −0.7 N/A N/A
St.dev. 16.6 0.1 0.0 1.2 43.6 6.2 1082.1 5.7 3.7 1.4 N/A N/A

Figure 4. Stability graph of the dataset used in this study.
Images are available in colour online.

Figure 5. ANN-based classifier performance: (A) without relaxation effect; (B) with relaxation effect. Images are available in colour online.
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Tp, Tn, Fp and Fn stand for true positive, true nega-
tive, false positive and false negative, respectively.

The ROC is an indicator commonly used to check
the quality of classifiers. Figure 7 shows the ROC
curves for the entire dataset. For each class, the ROC
uses a threshold to the outputs in order to recognize
the class to be predicted (Qi et al. 2018). Two values
are calculated namely, the true positive rates and the
false positive rates. The closer the ROC curves to the
upper left corner, the better the classification. In
Figures 6 and 7, classes 1, 2 and 3 stand for stable
stope, failed stope and major failure of stopes, respect-
ively. The results indicate that class 2 is far from the
upper left corner compared to the other classes. This
means class 2 is not very well classified. This is in agree-
ment with Table 2 where it can be seen the sensitivity of
class 2 (failure) is 80%. The FFNN-classifier never mis-
classified a stable stope as a major failure and vice
versa. Table 2 summarizes the indices of performance
for each class. The last rows of Table 2 show the
classification results according to the methodology of
Stewart and Trueman (2004) where a logistic
regression model is used to determine the boundary
of stable and unstable zones of the stability graph
(see Figure 4) with the assumption of A = 0.7 for
relaxed stopes and A = 1 for partially relaxed.

It should be noted that because of the limited data-
set, full and tangential relaxation cases were modelled

together. Overall, from Table 2, it can be seen that
the neural network classifier outperformed previous
results. In particular, in partial relaxation conditions,
the network can be classified with very high accuracy,
sensitivity and specificity (all above 90%). However,
when the stopes are fully and tangentially relaxed, the

Figure 6. Confusion matrix of the classification. Images are available in colour online.

Figure 7. ROC curves for the classification. Images are available
in colour online.
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classification performance is a little poorer. The sensi-
tivity for failed stopes is 77% which means the amount
of false prediction is slightly higher (23%) but is still
within an acceptable range compared to when A = 0.7
the false predictions for the failed stopes were 48%.
In summary, although high accuracy was achieved in
general, the results indicate that the FFNN-classifier
cannot always recognize failed stopes (based on the
false prediction), especially when full and tangential
stress relaxation prevail.

In addition, 3D probability graphical representation
(in X–Y view) of failed stopes is plotted with colour
code and provided in Figure 6 using the nearest neigh-
bour interpolation method. This figure provides a bet-
ter visualization of the stability zones with their
associated probabilities. They consist of areas of vari-
able colours. Intuitively, a rough area corresponding
to failed stope is delimited by two lines (just for illus-
tration purposes) as shown in Figure 8(A and B). In
both Figure 8(A and B), the area above represents the
stable zone while the bottom area is where major fail-
ure of stopes will be located. In Figure 8(A), the yellow
and light blue areas have high probability to be stable
(with a probability of correct prediction more than
0.6) while in Figure 8(B) the yellow and light blue
areas correspond to cases where a stope will probably
fail. Nevertheless, it is more logical for the failed
area on the graph to be irregular. It is noted that in
Figure 8(A and B) and, reference is made in respect
of stable stopes and failed stopes, respectively. Simi-
larly, major failure in stopes could be considered as a
reference as well.

Another important result of the study is the
quantification of the effect of the type of relaxation
on the excavation response. 3D probability graphical
representation (in X–Y view) of stable stopes and
major failure of stopes are plotted with colour code
as shown in Figure 9(A and B). In these figures, the
x-axis represents the relaxation type and y-axis HR. It

was found that the relaxation type can substitute the
stability number (N) as the goodness of fit (R2) when
fitting the data points of the graphs was higher than
0.86. As it can be seen in both figures, there was no
major difference between full and tangential relax-
ations for both figures. However, partial relaxation is
a good prediction of stability (correlates very well
with the stope response). As a matter of fact, when

Table 2. Summary of the classification performance.
Excavation stability Accuracy Sensitivity Specificity Confusion value

Whole dataset (A = 1) Stable 0.88 0.88 0.87 0.27
Failure 0.74 0.48 0.85
Major failure 0.86 0.81 0.88
Average 0.83 0.72 0.87

Whole dataset (with relaxation) Stable 0.94 0.94 0.93 0.12
Failure 0.88 0.80 0.91
Major failure 0.94 0.86 0.97
Average 0.92 0.87 0.94

Full and tangentially relaxed Stable 0.91 0.96 0.85 0.11
Failure 0.91 0.77 0.97
Major failure 0.95 0.86 0.97
Average 0.92 0.86 0.93

Partial relaxation Stable 0.97 0.90 1.00 0.083
Failure 0.94 0.92 0.96
Major failure 0.92 0.93 0.91
Average 0.94 0.92 0.96

(Stewart and Trueman 2004) Stable 0.84 0.76 0.89 0.33
Failure 0.66 0.52 0.73
Major failure 0.83 0.67 0.88
Average 0.78 0.65 0.83

Figure 8. (A) Probability map of stable stopes. (B) Probability
map of failed stopes. Images are available in colour online.
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HR<5 m, the stopes are likely to be stable with high
probability (Figure 9(A)) and when HR>12 m, major
failure are likely to occur in the stopes with high prob-
ability (Figure 9(B)). While major failure is less associ-
ated with full and tangential relaxations and stable
stopes are found within a narrow range of HR between
15 and 20 m.

Comparison with existing results and
discussions

The results of this study were compared to those of
existing studies for discussion purposes. In order to

make any meaningful comparison, the entire dataset
was categorized into two classes: stable stopes on one
hand and failed stopes on the other, similar to previous
studies (Stewart and Trueman 2004). The perform-
ances of each method are summarized in Table 3.
The sensitivity and specificity were determined
(Equations (9) and (10)); the confusion value of the
classification is basically the percentage of misclassifi-
cations. The classifications were carried out for each
type of relaxation and the whole dataset using: a stress
factor of A = 1 as in the stability graph (Potvin 1988); A
= 0.7 for relaxed stopes and A = 1 for partially relaxed
stope (Stewart and Trueman 2004);
A = 0.9 exp11(st/UCS) (Diederichs and Kaiser 1999)
and the FFNN-based classifier. As it can be seen, the
FFNN-based method yielded the least confusion
value (3.7%) which is extremely low in comparison
with that of existing work. In short, the proposed meth-
odology showed improvement over previous studies.

In general, the results indicate good classification
performance with the confusion values around 10%
(see Table 2). An interpretation of this is that if new
data (with the assumption that their statistical descrip-
tion is very close to that of the employed dataset), were
presented to the network, there would be likely up to 1
or 2 misclassified stope stability out of 10 cases. This is
quite reasonable based on the performances of the
existing stability graphs (Potvin 1988; Clark 1998;
Mawdesley et al. 2001; Vallejos et al. 2017).

The probability maps reflect peculiarities in the
stability zones. For example, the red area in the left
upper corner of Figure 8(A) and the yellow area on
the right bottom corner Figure 8(B). The first area cor-
responds to failed stopes (see Figure 8(B)) while located
into an area supposedly to be stable. This map is dictated
by the data employed. The actual case history data corre-
sponding to this area is stope ‘13D F/w’withN = 154, HR
= 12 m, subjected to partial relaxation and pertained to
the Ruttan mine (Pakalnis 1986). The stability graph
would evaluate any new stope with similar data as stable
but with the use of the probability maps of stability, the
stope would be assessed as failed (very low probability
of being stable, less than 0.1). However, this does not
mean that any new stope from another mine falling

Table 3. Summary of the classification performance.
Factor A Full relaxation Tangential relaxation Partial relaxation Whole dataset

The stability graph (A = 1) Sensitivity 0.90 0.86 0.90 0.88
Specificity 0.67 0.64 0.92 0.80
Confusion value 0.21 0.24 0.083 0.17

Stewart and Trueman (2004) Sensitivity 0.70 0.71 0.90 0.76
Specificity 0.88 0.82 0.92 0.89
Confusion value 0.21 0.24 0.083 0.16

Diederichs and Kaiser (1999) Sensitivity 0.70 0.71 0.90 0.76
Specificity 1.0 0.91 0.92 0.93
Confusion value 0.16 0.2 0.083 0.13

FFNN-based classification Sensitivity 1.00 0.92 0.90 94.1
Specificity 0.77 0.91 1.00 95
Confusion value 0.10 0.08 0.02 0.037

Figure 9. (A) Stable stope probability vs HR and relaxation. (B)
Major failure probability vs HR and relaxation. Images are avail-
able in colour online.
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within that area will necessarily fail. The probability of
failure will be higher if the stope to be evaluated has simi-
lar characteristics (geology, design, etc…) as that of the
stope ‘13D F/w’. Another example is the yellow area in
the right bottom corner Figure 6(B). Using the stability
graph, in principle a stope falling in that area would
fail; nevertheless the actual case history data correspond-
ing to this area shows stable stope walls. Therefore, it is
necessary to make use of engineering judgment when
dealing with empirical data. One advantage of these
coloured coded maps is the visualization of the associated
probability of the stope performance which is useful and
more convenient for less experienced users.

As far as the relaxation maps are considered, the stab-
ility of the stopes is affected by the stress relaxation in
different ways. The classification performances suggest
that full and tangential relaxations are found to be critical
in the sense that any stope stability under these types of
relaxation will be predicted with lower accuracy while par-
tial relaxation indicates failed stopes or major failure in
stopes. In other words partial relaxation indicates more
instability around the stopes which is in agreement with
field observation. It is noted that tangential relaxation
and full relaxation would have an adverse effect on exca-
vation stability especially within a range of HR between 20
and 30 m approximately. Also, when the minor principal
stress is negative (i.e. tensile) the intermediate principal
stress has been identified as significantly affecting jointed
rock mass behaviour as substantiated by most stope
cases from the employed dataset.

In summary, these results are not only in agreement
with existing studies but also complement them. With
the use of the obtained colour coded maps, there is no
need to determine specifically any boundary limit using
logistic regression; and the stability of any stope can be
determined in a probabilistic way. The relaxation map
will be particularly relevant in a mining environment
where rock mass properties (geotechnical domains)
show limited variability i.e. N doesn’t vary that much.
However, this study has some limitations. For example
the data range, size, dimension, variability dictate the
accuracy and the reliability of the classification. There
were limited case studies to investigate full and tangen-
tial stress relaxation separately; more data points would
provide an additional insight to the individual effect of
the tangential and the full relaxation stress. Also, con-
cerning the FFNN-classifier, the results show poor per-
formance in predicting failed stopes, further studies
may focus on improving this. Nonetheless, the results
of this study can serve as valuable inputs for further
studies with focus on the improvement of the FFNN
architecture or implementing other types of classifiers
and redefining the thresholds used for the classifi-
cation. Although the main idea behind the stability
graph was to establish a non-rigorous method for
open stope performance prediction (Stewart and For-
syth 1995), there has been an increasing need from

the industry to develop more accurate and reliable
tools. The results of this study could contribute toward
improving the reliability of the existing graph with the
implementation of FFNN-classifier as a complemen-
tary tool to existing stability graphs.

Conclusion

In this paper, an approach based on a neural network
classifier model was implemented to assess the stability
of underground mine stope walls where three types of
stress relaxation namely, partial, full and tangential relax-
ation were defined. Historical cases of open stope design
data were employed to establish the different models.
The data included mainly the stability number N
defining the rock mass properties, the hydraulic radius
HR accounting for the stope geometry and stress relax-
ation category reflecting the design characteristics of
the stopes. The output was the stope response which
was categorized into three classes (stable, failure and
major failure). A feed-forward network (FFNN) classifier
with 2–3 hidden layers was implemented to recognize
each type of stability classes. In general, the results indi-
cated very good performances of the models. High accu-
racies were achieved (73–98%) for the different cases that
were considered while the extended Mathews stability
method showed 67%. These results indicated improve-
ment over the existing methods. This indicates that the
proposed classifier was extremely capable of differentiat-
ing clearly stable stope and stope with major failure.

Secondly, the probabilities of classifying correctly
the stable and failed stopes were determined from the
network outputs and were plotted against HR, N and
the relaxation type in a 2D graph with colour code
for visualization purposes. Overall, it is found that
the stability zones were consistent with existing graphs
but within a certain range of N and HR values. How-
ever, outside this range, some differences were
observed. In addition, the results suggested that the
relaxation type is also a good predictor of stability.
However, relaxed stope (full and tangential stress relax-
ation) cases were the most ‘critical’ in the sense that
lower accuracies were obtained and the probability of
correct classification was rather erratic. Therefore,
sound engineering judgment is required when dealing
particularly with relaxed stope walls. One of the merits
of the current study is that the probability map of hav-
ing a stope stable, failed or with major failure can used
to assess open stope stability. The map can be updated
when more data become available. The results of this
study could also contribute to the probabilistic design
of mine stopes in general. Based on the results, it is
suggested that the FFNN-based classifier could serve
as alternative to the conventional stability graph
method in the design of open stope especially in
narrow-vein geometries which are often prone to stress
relaxation effects.
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