
Contents lists available at ScienceDirect

Accident Analysis and Prevention

journal homepage: www.elsevier.com/locate/aap

The importance of flow composition in real-time crash prediction
Franco Bassoa,d,*, Leonardo J. Bassob,d, Raul Pezoac
a School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Chile
b Civil Engineering Department, Universidad de Chile, Chile
c Escuela de Ingeniería Industrial, Universidad Diego Portales, Chile
d Instituto Sistemas Complejos de Ingeniería (ISCI), Chile

A R T I C L E I N F O

Keywords:
Real-time crash prediction
Automatic vehicle identification
Flow composition
Support vector machines
Logistic regression

A B S T R A C T

Previous real-time crash prediction models have scarcely used data disaggregated by vehicle type such as light,
heavy and motorcycles. Thus, little effort has been made to quantify the impact of flow composition variables as
crash precursors. We analyze the advantages of having access to this data by analyzing two scenarios, namely,
with aggregated and disaggregated data. For each case, we build Logistics Regressions and Support Vector
Machines models to predict accidents in a major urban expressway in Santiago, Chile. Our results show that
having access to disaggregated data by vehicle type increases the prediction power up to 30 % providing, at the
same time, much better intuition about the actual traffic conditions that may lead to accidents. These results may
be useful when evaluating technology investments and developments in urban freeways.

1. Introduction

1.1. The problem

Road accidents in cities are a significant externality caused by
traffic, which then causes other costs such as congestion delays and, in
many cases, fatalities. The number of accidents is increasing around the
world, mainly due to an increase in the rate of motorization and dis-
tances traveled. For example, there were 94,879 road accidents in 2017
in Chile, the highest number ever. In that same year, 1483 people died
in road accidents CONASET, 2018), with a sizeable financial impact.
Previous studies calculate that safety measures designed to prevent one
death on interurban highways could cost as much as US$1.3M (Rizzi
and Ortúzar, 2003; Iragüen and Ortúzar, 2004). Understanding the
traffic and external conditions that increase the probability of a road
accident could therefore have a major impact.

With traffic detection technology becoming increasingly common, a
large amount of traffic data is being gathered by authorities and road
and highway managers (Frez et al., 2019). The availability of such data
has sparked research on a number of topics, one of them being road
accidents. Multiple efforts have been deployed to identify the traffic
conditions that lead to car crashes. Furthermore, some of these efforts
have been aimed at the more difficult task of predicting car accidents
based on real-time traffic conditions, given that the necessary com-
munication technologies for the on-line availability of traffic data are

already in place. Nevertheless, most studies are based on information
obtained from inductive-loop detectors (ILD), which generally are not
or cannot be used to obtain vehicle-by-vehicle (VBV) data or to classify
vehicles by type due to its low rate of accuracy (Ki and Baik, 2006).
Thus, typically, modeling variables – such as flow volume, lane-occu-
pancy, and average speed – are aggregated over vehicle types and over
time. Even though loop detectors usually collect data every 20 or 30 s,
when an analysis is performed, the data is generally aggregated into
longer intervals (5−10min) to smooth fluctuations (Parsa et al., 2019)
and to avoid inconsistencies about the precise time of crashes (Golob
and Recker, 2003).

Furthermore, studies based on data from ILD are inherently subject
to the unreliability of these devices, something that curbs the quality of
predictive models. Ahmed and Abdel-Aty (2012) state that, due to en-
vironmental conditions, the failure rates of ILD vary between 24 % and
29 %. Ahmed and Abdel-Aty (2012) improved this using data from free-
flow toll gates with Automatic Vehicle Identification (AVI). This system
rarely fails because the detection is usually used to collect different
fares for different vehicle types. Yet, even in this case, the authors do
not seem to have access to vehicle classification. Consequently, little
emphasis has been placed on the relevance of flow composition in (real-
time) crash prediction, and even fewer studies have focused on the
impact of the presence or absence of different types of vehicles on the
driving behavior leading to accidents.

Even though other technologies may also be used to obtain
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information at a microscopic level, the availability of traffic data by
vehicles type is far from obvious. Recent research has used video
images to collect VBV data; Van Beinum et al. (2018) use empirical
trajectory data collected from a video camera mounted underneath a
hovering helicopter camera to analyze the driving behavior at ex-
pressway ramps and weaving segments. Similarly, Gu et al. (2019)
study the crash risk at interchange merging areas using an unmanned
aerial vehicle (UAV). This technology provides individual VBV data,
which enables conducting traffic analyses at a microscopic level, yet its
application to real-time remains a challenge because of the time needed
to process the video images and the rather expensive application on a
continuous basis. Other technologies, such as cellular phone data has
also been used. For example, Yuan et al. (2018) use Bluetooth data for
real-time safety analysis on urban arterials. Even though VBV data
seems to be available in this case, the impact of signal delay appears as
a significant drawback in real-time application, together with partial
penetration of the technology.

The objective of this paper is to analyze the importance of having
access to disaggregated data per vehicle type for predicting crashes. In
contrast to most of the previous efforts, this study uses a very rich
dataset, provided by Autopista Central, an urban freeway in Santiago,
Chile. This freeway is privately operated, and charges users through
information obtained by AVI gates which communicate with trans-
ponders that are installed in all vehicles, as required by law. The fare
charged depends on the distance traveled, which is obtained from the
AVI gates crossed, and the vehicle type. Considering that the revenue of
the freeway comes from these devices, the failure rate and classification
errors are very small (less than 1 %). Nevertheless, due to the high cost
of installing an AVI gate (which could exceed 500,000 USD), these
devices are sparsely spaced within the study corridor. This feature is a
drawback for the prediction performance. Still, the focus of our paper is
on the relative improvement caused by flow composition data acqui-
sition rather than absolute performance and, in that context, we still
obtain that good prediction power is possible.

To obtain our results and conclusions, we build two logistic re-
gression (LR) models and two Support Vector machine (SVM) models.
The first LR and SVM models use aggregated data, that is, without in-
formation separated by vehicle type. In this case, the logic we pursue is
to replicate similar previous studies (Abdel-Aty and Pande, 2005; Pande
and Abdel-Aty, 2006a, b; Abdel-Aty et al., 2007; Xu et al., 2013;
Theofilatos, 2017; Yang et al., 2018a), in which only aggregated data is
available. The second LR and SVM models use variables separated by
vehicle types. We quantify the improvement of having access to dis-
aggregated data by analyzing the difference in the prediction power
(sensitivity) of disaggregated vs aggregated models, while comparing
across the two classification methods in order to assess if this matters
for our conclusions. It is worth noting that the focus of this paper is not
to advance in analytical methods in crash prediction –though we do use
the current published state of the art– but to identify and quantify the
impact of variables that have been rarely analyzed in previous studies
(flow composition variables).

1.2. Literature review

There has been previous work on this area –some relevant refer-
ences are reviewed below– however, there are two general differences
concerning earlier efforts. First, even when there have been some stu-
dies that use flow composition variables, these works have mainly used
aggregated crash frequency. To the best of our knowledge, this is the
first research that quantifies the effect of having access to data dis-
aggregated by vehicle type in a real-time setting. Second, most of the
previous contributions have used sampling methods to balance the
training data set. Yet, except for a handful of studies (Basso et al., 2018;
Parsa et al., 2019; Yuan et al., 2019), the use of artificially balanced
data was extended to the validation phase which does not show the
actual, real pattern of accidents being rare events (Theofilatos et al.,

2018). It is not simple to conjecture how the models calibrated but also
tested on artificially-balanced data, would perform in a real-time en-
vironment, although they most likely will do worse. In this paper, we
use the full unbalanced data set to analyze how the flow composition
affect real-time crash prediction models. This, we think, allow us to
assess if the flow composition matters for the performance of crash
prediction models in real-time computational tools, like the one cur-
rently working in Autopista Central, Chile1 .

We now review the literature focusing only on articles that at-
tempted to predict or explain accidents using variables of flow com-
position. For a complete review of real-time crash prediction models,
we refer the reader to Hossain et al. (2019).

Montella et al. (2008) use a generalized linear model with data
coming from an unspecified technology for a stretch of a rural freeway
in Southern Italy, to estimate how the increase in the percentage of
heavy vehicles flow affects severe crashes frequency. The authors argue
that when heavy vehicles circulate through the freeway, drivers might
increase their risk perception and thus decrease their speed, reducing
the crash severity, though this hypothesis is not tested.

Dong et al. (2014) use a multivariate Poisson-lognormal model to
study car-truck interaction and their repercussion in crash frequency at
urban signalized intersections using yearly data for Tennessee from
2005 to 2009. They established three types of crashes depending on the
type of vehicles involved: (1) car crashes, (2) car -truck crashes and (3)
truck - crashes. Besides geometric and environmental variables, they
find that the truck percentage in the traffic stream is relevant, with car
crash involvement rate decreasing as the number of trucks increases.
They believe that this may be explained due to the fact that, for a
constant vehicle density, a larger truck percentage implies fewer lane
changing and overtaking movement by cars. Opposed to our work, the
previous two papers, do not seek to predict accidents but to compute
correlations between the explanatory variables and the crash frequency.

More recently, Theofilatos et al. (2018) find that, for a motorway
located in Athens, Greece, the proportion of trucks in traffic does not
affect crash occurrence. Nevertheless, the emphasis is put on the cor-
rection of the bias generated by the small number of crash records
compared to non-crash events, rather than flow composition effects.
Also, the data used comes from ILD and the issue of whether the pro-
portion of trucks is accurate or not is not addressed. In terms of
methodology, this study applies binary logistic regression models for
the prediction, which has been used with relative success for real-time
crash prediction (Abdel-Aty et al., 2004; Ahmed and Abdel-Aty, 2012;
Xu et al., 2013; Theofilatos, 2017; Basso et al., 2018) and the machine
learning algorithm, support vector machines, which was used by Yu and
Abdel-Aty (2013).

Basso et al. (2018) also uses data from AVI gates as we do. However,
the authors focus on a very central stretch of Autopista Central in
Santiago, Chile, so the proportion of vehicles other than light is negli-
gible. This does not allow the authors to determine the real impact of
having access to disaggregated data. Contrarily, this paper study a
section where the proportion of buses and trucks is considerably higher.

Dimitriou et al. (2018) assess rear-end crash potential in urban lo-
cations using ILD data. The authors analyze vehicle-by-vehicle inter-
actions that take two types of vehicle into account, namely heavy goods
vehicles (HGV) and passenger cars. As a behavior conclusion, they find
that speeds were lower and headways higher when HGVs were ahead.
As is common in the literature, and in contrast to our case, the models
were not validated through an actual crash database.

Choudhary et al. (2018) use a multivariate Poisson lognormal re-
gression to evaluate the impact of speed variations on crashes divided
by severity and vehicle type. Contrary to what we do here, the authors
analyze crash rates instead of proposing a real-time model. They also
use the vehicle type as a dependent variable instead of independent

1 www.autopistasegura.cl
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variables as we do.
Finally, Wang et al. (2019) use traffic conditions along with ve-

hicles’ trajectories for real-time safety analysis. The authors find, as we
do, that the change of truck percentage introduces turbulence in-
creasing the crash likelihood. Opposed to our research, the authors use
a matched-case control environment instead of a full unbalanced real
dataset.

The rest of the article is organized as follows. Section 2 describes the
data and preparation process. Section 3 presents the theoretical un-
derpinnings of the methods used for both, variable selection and to fit
the models (classification methods). Section 4 describes the Logistic
regression models, first using aggregated data, then using disaggregated
data and then comparing their performance. Section 5 contains similar
analyses but for the SVM models. Section 6 concludes.

2. Data preparation and descriptive analyses

The study focuses on an 8.9 km portion of Autopista Central, an
urban highway that spans 60.5 km crossing Santiago, Chile2 in the
north-south direction through two sections, General Velásquez and
Ruta 5 as shown in Fig. 1. Every vehicle using the freeway is required
by law to have a transponder which communicates with AVI gates,
information that is then used by Autopista Central to charge the users
based on the distance travelled and type of vehicle, classified in one of
three categories: light (up to small commercial vehicles), heavy (all
types of large trucks or buses) and motorcycle. Moreover, the AVI gate –
transponder technology is able to capture the time and speed of each
(type of) vehicle passing an AVI gate. This allows the Autopista Central
(and us) to report flows and speed of each type of vehicle to the au-
thorities. Autopista Central provided us with all this disaggregate de-
tailed data from November 1 st, 2014 to April 30th, 2016 for every one
of the thirty-one AVI gates present at the freeway, which enable us to
calculate many different variables, averaged as we see fit. Note that, by
focusing only on one segment, and not several segments, road geometry
is kept fixed and, therefore we will not be using geometry variables in
our model. This, in order to focus clearly on the importance of traffic
flow composition.

Autopista Central also provided manually recorded crash data,
which includes the time and exact location of every accident, de-
termined using recording cameras, which completely cover the
highway. Every crash record was then assigned to the sections used by
Autopista Central for management. In this study we focus on the south
direction of the lowest part of General Velásquez section, shown in
Fig. 2. This section combines a sufficient number of accidents over the
studied period (68 accidents) for empirics to be performed, and a high
participation of vehicles other than light which, we think, allows to
pursue our research question. This section spans for 8.9 km and has two
AVI gates (PA-22 and PA-20 according to the direction of traffic; see
Fig. 2), eight entry ramps (four of them in the section between the AVI
gates) and six exit ramps (four of them in the section between the AVI
gates). We also considered data from the upstream AVI gate, namely
PA-24, which is only one kilometer away from the studied section.

We decided to focus on the afternoon rush hour, defined as the
period between 5:30p and 8:30p during weekdays because it corre-
sponds to the evening rush hour in which 19 of the 68 accidents of the
section occurred. That is, 28 % of the accidents are concentrated in only
13 % of the day. The data was aggregated to 5-min averages, similar to
what was done by Ahmed et al. (2012a) and Basso et al. (2018).

For the case of disaggregated data, we calculate 8 variables for each
AVI gate and type of vehicle: flow, mean speed, standard deviation of
the speed, percentage of such type of vehicle in total flow; and also, the

change in all of those variables compared to the previous 5-min in-
terval. Besides, we compute the traffic density for each 5-minute in-
terval. Since we are studying mixed traffic, we follow the Highway
Capacity Manual (Transportation Research Board, 2000) to calculate
the density through a passenger-car equivalent flow rate approach
using the most recent passenger-car equivalent factors for Chile
(SECTRA, 2013). The average densities over the studied period are
29.7, 39.4, and 40.7 [pce/km] for gates 20, 22, and 24, respectively.
Note that these calculations are only possible when vehicle classifica-
tion is available.

On the other hand, for the aggregated data case, we compute the
same 8 variables mentioned before but not differentiated by vehicle
type. Also, as we are assuming that vehicle classification information is
not available, we calculate a proxy of density for each 5-minute in-
terval, simply defined as the quotient of total flow [veh/h] and average
speed [km/h]. Thus, this approach assumes that traffic is homogeneous.
Although this measure is only a proxy of the real traffic density, for the
sake of simplicity, we will refer to it as density. Finally, for both dis-
aggregated and aggregated case, we include the change of each density
measure compared to the previous 5-min interval as explanatory vari-
ables.

A summary with some basic descriptive statistics for the variables
considered is shown in Table 1 for AVI gate PA-20, Table 2 for AVI gate
PA-22 and Table 3 for AVI gate PA-24.3 The final variable considered
was binary and indicates whether an accident occurred during the next
five minutes’ interval or not. This definition enables using the estimated
model to predict crash occurrence using current traffic conditions. In
the case of the model with aggregated data, we obviously calculate a
single value for flow, mean speed, standard deviation of the speed and
density for each 5-min interval and AVI gate, that is, we aggregate all
types of vehicles into a unique category, just as if there was no classi-
fication information available. Evidently, we do not use the composi-
tion variable for each type of vehicle either.

After preparation, the dataset consists of 13,350 observations (5-
min intervals), where only in 19 of them (0.14 %) an accident oc-
curred.4 This is known in the statistics literature as “rare events” and
induce a number of difficulties, particularly for classification, since a
model that always predict no accident would be a very good model
almost always. From Tables 1 and 2 we can see a high share of heavy
vehicles in flow composition, averaging a 12.4 % in the upstream AVI
gate (PA-22) and 16.9 % in the downstream AVI gate (PA-20). This
percentage is explained because Autopista Central offers reduced fares
to this type of vehicles in this section, compared to the parallel North/
South section where heavy vehicles account for only 4 % of the flow in
the same period of the weekdays (Basso et al., 2018). It is possible to
notice also a low participation of motorcycles, compared to the North/
South section where this type of vehicle represents around 3 % of the
flow, which is probably induced by the high participation of buses and
trucks. In fact, there are many periods where no motorcycles passed
through any of the AVI gates: 1304 and 574 observations of the AVI
gate PA-20 and PA-22 respectively have zero motorcycles, representing
the 9.8 % and 4.3 % of the total data of each gate.

2 Santiago: Population: 5,822,316; Area: 641km2; Motorization Rate: 177
[veh/1000 inh]; Motorized travels per day: 10,792,200; Modal split: Public
46.9%, Private 46.4%, Other 6.7%.

3 As a referee correctly points out, traffic flow is sensitive to some road
geometry characteristics, in particular entry and exit ramps. Table A1 in the
Appendix shows that a non-negligible percentage of the flow enters or exits the
highway between two AVI gates.

4 Prediction of rare events such as crash accidents is indeed a major challenge
and generally implies working with few accidents data. For example, the results
of Theofilatos et al. (2018), were conducted using a data set that consists of 17
crashes and 91,118 non-crash cases (crash ratio: 0.019%). Parsa et al. (2019)
data set consists of 32 crashes and 85,182 non-crash cases (crash ratio:
0.038%).
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3. Methodology

In this Section, we briefly present the theoretical underpinnings of
the methods we use, both for selecting relevant variables as for classi-
fication. We choose these methods because they have been widely and
successfully used in previous studies with high predictive power, al-
lowing us to keep the focus in the objective of the paper, namely, to
determine the relevance of flow composition in real-time crash pre-
diction. Nevertheless, for a recent comprehensive review of big data
and machine learning methodologies applied to road safety, we refer
the reader to Stylianou et al. (2019).

3.1. Random forest for variable relevance

In order to select the best variables for both models (with ag-
gregated and disaggregated data), a Random Forest (RF) classifier is
used. RF is an ensemble classifier that constructs many decision trees,
where each tree cast a unit vote for the most popular class. Then, the
class which has been assigned most times is selected (Breiman, 2001).

RF logic is based on two techniques, namely, bootstrapping ag-
gregating and feature bagging. Every one of the T trees used is trained
using a bootstrap sample of the original data and m random features.
Then, this tree is used for test purposes only in the instances not con-
tained in the bootstrap sample used to train, called out-of-bag (OBB)
data, which should account for around one third of the total data. The
use of the OBB data allows RF to compute an unbiased estimator of the
classification error. Nevertheless, this estimator depends on the number
of features m used for each tree. A large value of m leads to high

correlation between different trees, increasing the OBB error. On the
other hand, it also increases the strength of each tree which implies a
lower error. The use of a small value of m produces the opposite effect.
For the purpose of this study, we use the suggested value

= +m log M( 1)2 , where M is the total number of available features.
The measure used to rank the variables importance will be the mean

decrease in Gini. The Gini impurity index (Breiman et al., 1984) is
defined for the node t as:

=i t p t p t( ) 2 (1/ ) (2/ )

where p i t( / ) is the probability of class i given node t . Every time we
split a tree using the variable u, the sum of the impurity of the children
nodes is less than the impurity of the parent node. The decrease in
impurity is then defined as this difference. The mean decrease Gini is
defined as the average of each variable over all the trees.

RF for feature selection has been widely used in the context of real-
time crash prediction (Abdel-Aty et al., 2008; Ahmed and Abdel-Aty,
2012; Xu et al., 2013; Wang et al., 2015; Lin et al., 2015; Basso et. al,
2018).

3.2. Logistic regression for classification

Logistic regression is a method that can be used to classify binary
outcomes. In particular, given a set of predictors x, the probability of a
crash occurrence p(x) is defined in the classical fashion:

= +logit(p(x)) xT
0

where 0 and are estimated by maximum likelihood and

Fig. 1. Autopista Central, Santiago, Chile.
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= p
p

logit(p(x)) log
1

so,

=
+

p(x) 1
exp( x) 1T

0

This classification method has been used by many previous studies
(Ahmed et al., 2012a; and 2012b; Theofilatos, 2017; Theofilatos et al.,
2018; Basso et al., 2018) and, as opposed to non-parametric classifi-
cation methods, it has the upside that parameters are very easy to in-
terpret: a positive parameter i for the predictor xi indicates a positive
effect on the crash probability. Moreover, other useful indicators such
as (point) elasticities may be calculated.

Fig. 2. Studied section of Autopista Central.

Table 1
Descriptive statistics of AVI gate PA-20.

AVI PA-20

Average Std. Dev. Minimum Maximum

Light Speed [km/h] 91.4 11.8 9.1 108.4
Flow [veh/5min] 157 34.6 44 281
% Composition 81.7 % 4.0 % 59.9 % 99.0 %

Heavy Speed [km/h] 82.3 10.4 6.5 102.5
Flow [veh/5min] 32.5 10.1 0 71
% Composition 16.9 % 3.9 % 0.0 % 39.0 %

Motorcyles Speed [km/h] 85.1 16.9 5.5 186.9
Flow [veh/5min] 2.7 1.9 0 15
% Composition 1.4 % 0.9 % 0.0 % 7.4 %

Table 2
Descriptive statistics of AVI gate PA-22.

AVI PA-22

Average Std. Dev. Minimum Maximum

Light Speed [km/h] 88.5 12.6 12.9 107.0
Flow [veh/5min] 228.4 51.5 62 418
% Composition 86.2 % 2.8 % 73.5 % 100 %

Heavy Speed [km/h] 82.7 12.1 7.1 102.0
Flow [veh/5min] 32.8 9.8 0 68
% Composition 12.4 % 2.7 % 0.0 % 25.7 %

Motorcyles Speed [km/h] 87.2 13.5 3.3 187.6
Flow [veh/5min] 4.0 2.4 0 18
% Composition 1.5 % 0.8 % 0.0 % 7.7 %

Table 3
Descriptive statistics of AVI gate PA-24.

AVI PA-24

Average Std. Dev. Minimum Maximum

Light Speed [km/h] 74.1 13.8 7.8 98.8
Flow [veh/5min] 239.8 62.0 36 393
% Composition 86.8 % 2.8 % 57.6 % 100 %

Heavy Speed [km/h] 70.4 11.7 6.8 100.5
Flow [veh/5min] 31.8 10.1 0 62
% Composition 11.5 % 2.6 % 0.0 % 30.3 %

Motorcyles Speed [km/h] 72.7 20.4 11.4 193.2
Flow [veh/5min] 4.5 2.7 0 20
% Composition 1.6 % 1.2 % 0.0 % 12.1 %
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3.3. Support vector machine for classification

In the context of binary classification, Support Vector Machines
(SVM) seek to find a separator hyperplane = +z zf w b( ) that max-
imizes the distance between the hyperplane and the data points in the
two classes. For the case where data is not linearly separable, Cortes
and Vapnik (1995) introduced the so-called soft-margin separator hy-
perplane, which allows misclassification by using a penalization
parameter C . If we consider the labeled data

… = …x x xy y y i n( , ), , ( , ) { 1,1}, , 1, ,n ii n i
d

1 , such hyperplane can
be found by solving the optimization problem:

+wmin C1
2

|| ||
i i

2

+ = …x ws a y b i n. . ( ) 1 , 1, ,ii i

= …i n0, 1, ,i

The intuition for the parameter C is then straightforward, because it
controls the tradeoff between misclassification and the classifier’s
margin. A small value of C will cause a separator hyperplane with a
large margin, at the cost of possibly more points being misclassified. On
the other hand, a large value of C will produce a separator hyperplane
with a smaller margin, but with more training points being correctly
classified.

Cortes and Vapnik (1995) also showed that the hyperplane men-
tioned has the form

= +z x zf b( ) i
S

i

with S the set of support vectors, that is, the data points xi that either
attain the minimum margin or violate it.

The values of = ( )i x Si can be found solving the maximization
problem

= +DW
C

Pmax ( , ) 1 1
2

( )T T
2

2

=Ys.t. 0T

0

0 1

where =Y y( )i x Si correspond to the labels of the support vectors and D
is a symmetric matrix with elements

= x x x xD y y i j S, such that ,i j i jij i j

By replacing the dot product for a general form of the dot product in a
Hilbert space, =u v u vK ( , ) ( ) ( ), : n N , the separator hyper-
plane is then expressed as

= +z x zf b( ) ( ) ( )i
S

i

mimicking the case where the original feature space is mapped into a
higher dimensional space using the vector function

= …x x x x i x S( ) ( ), ( ), , ( ) such thati i i iN i1 2

allowing for non-linear decision boundaries in the original feature
space. The values of = ( )i x Si can be found solving the same max-
imization problem P( )2 , but where now D is a symmetric matrix with
elements

=D y y x x i j x x S( ) ( ) , such that ,ij i j i j i j

As remarked by Cortes and Vapnik (1995), the function u vK ( , )
used must satisfy the condition

>u v u v u vK g b d d( , ) ( ) ( ) 0

For all g such that <u ug d( )2 . The general dot products used in

this paper are the classical ones that satisfy the given condition:

1 Radial: =u v u vK ( , ) exp( || || )2

2 Polynomial: = +u v u vK ( , ) ( 1)q, with =q 2,3
3 Sigmoid: = +u v u vK ( , ) tanh( 1)

3.4. Oversampling techniques

As discussed in Section 2, accidents are infrequent events, ac-
counting for only 0.14 % of the data in this study. This can be trou-
blesome because the simplest and most effective classifier (in terms of
accuracy) will be the one that classifies almost all instances as negative
(Akbani et al., 2004). There are multiple ways to tackle this issue,
usually called class-imbalance, see e.g., Weiss (2004) for a review. In
this paper, we explore two techniques. The first one simply oversamples
the minority class; the second, more advanced, use the Synthetic Min-
ority Oversampling Technique (SMOTE).

The basic oversampling method deals with class-imbalance by du-
plicating minority class examples. In other words, to balance the da-
taset this method keeps all the majority class observations, while
making n exact copies of every minority class observation. In this study,
we try different values of n, in order to oversample the minority class
(for training purposes only) up to a proportion ranging from 60 % to
100 % of the majority class. The exact value of n is chosen via cross-
validation. For this oversampling method, all of the majority class (non-
crashes) cases are considered, i.e. no undersampling method is used.
Even though this method does not increase information, it increases the
misclassification cost of the minority class (Mani and Zhang, 2003).
This method has been used by Mussone et al. (2017) in a related study,
in order to balance a dataset of crashes and its respective injury se-
verity.

Since the basic oversampling method involves making exact copies
of the minority class data, it could lead to overfitting, and thus, may not
significantly improve minority class recognition (Chawla et al., 2002).
To overcome this problem, we use the Synthetic Minority Oversampling
Technique (SMOTE), introduced by Chawla et al. (2002). This method
oversamples the minority class by randomly creating synthetic data
points among the minority class data points and their k nearest
neighbors, while the majority class is undersampled by randomly re-
moving samples from the majority class population until the minority
class becomes some specified percentage of the majority class. This
method has been used to balance datasets for real-time crash prediction
(Basso et al., 2018) and real-time accident detection (Parsa et al.,
2019). Parsa et al. (2019) also use two modifications of the SMOTE
method, namely, borderline SMOTE and SVM SMOTE. Although in
their case, regular SMOTE proved to achieve the highest performance.
Thus, we decided to use the regular SMOTE technique in this study.

3.5. Validation

To assess the performance of the calibrated models we do not use a
matched-case control methodology as other papers in the literature;
instead, we use a 5-fold cross-validation procedure in the full un-
balanced data set. Breiman and Spector (1992) showed that this pro-
cedure helps reducing bias in a regression setting. The crash to non-
crash ratio is 0.14 % showing the rare event pattern discussed above.

The 5-fold cross-validation procedure is as follows: we first partition
the data set randomly into 5 subsets of equal size, and then calibrate
using 80 % of the sample (four subsets, 10,680 rows in this case) while
validation is done using the remaining 20 % of the sample one subset,
2670 rows in this case where no balance technique takes place. In other
words, we validate our models over the full unbalanced validation
dataset. The procedure is repeated five times by choosing different
subsets for validation. The overall sensitivity for the 5-fold cross-vali-
dation process is given simply by the average of the five sensitivities
obtained.
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Considering that in our context the minority class has very few
observations (19 accidents), to ensure that the validation data set has
an appropriate number of accidents, we use a stratified approach to
select the five random subsets. That is, we choose the random subsets in
a way that the class distribution in each fold is approximately the same
as in the initial data set (Diamantidis et al., 2000). This is done by
randomly dividing each of the two classes into groups of about 20
percent each and then combining (Breiman et al., 1984). Empirical
studies show that stratified cross-validation gives better estimates for
both bias and variance (Kohavi, 1996).

The mean sensitivity obtained through the 5-fold cross-validation
process may be an inaccurate estimator of the actual predictor power of
the model, because of the random nature of the five partitions. In order
to obtain a more robust sensitivity value for the model, it is advised to
perform many repetitions (Kim, 2009). We, therefore, performed 500
repetitions of the 5-fold validation process for each selected model.
Thus, overall, we believe we have a very robust and strong metho-
dology for validation, well-rooted in best practices.

4. Logistic regression models

4.1. Aggregated LR model

We start analyzing the case where only aggregated data is used, that
is when all variables –flow, mean speed, standard deviation of the
speed, density, and the changes in all of those variables compared to the
previous 5′ interval– are calculated using all data regardless of the type
of vehicle. By doing so we intend to replicate previous studies where
vehicle classification is either not available or unreliable.

First, as explained in Section 3, we apply a Random Forest classifier
to rank available variables according to their importance as crash
precursors. From this analysis, synthesized in Fig. 3, the speed and
density registered 5min before an accident in the upstream AVI gate
(PA22) seems to be the most important variables for crash prediction.
Also, speed, density and speed change in the downstream AVI gate
(PA20) are also relevant. This last variable has been found to be im-
portant as a crash precursor in previous studies (Abdel-Aty et. al, 2004;
Abdel-Aty and Pande, 2005; Ahmed and Abdel-Aty, 2012).

With this information, multiple models were adjusted. We started by
including the two most important variables, namely the speed and
density registered 5min before an accident in the upstream AVI. Fig. 4
shows all data points, with accidents in red, graphed according to those
two variables. As it seems obvious, these two variables are not really
useful to separate crashes from non-crash points. We can also observe
that the hyper congestion part of the density-speed graph has very few
points, implying that most of the time traffic conditions correspond to

the congestion branch and, moreover, accidents mostly happen in those
times.

Because using the two most important variables was not enough to
separate safe from hazardous traffic conditions, we then searched for a
third variable to include. For this we used the mean sensitivity over a 5-
fold cross-validation as the performance indicator when each other
possible variable was added. In each of the five repetitions (and for each
variable tested) we set a threshold probability such that the model
achieves a false positive rate (FPR) close to 20 % over the training
dataset. This value for the FPR was chosen to make sensitivity com-
parable to what Basso et al. (2018) found, since their FPR was about 20
% in their best model. The overall procedure led to select the variable
speed at the AVI gate PA20 as the third variable, which coincidentally is
exactly the third most important variable according to the RF proce-
dure. We settled with three explicative variables due to our small
number of crash cases (19), and considering that a higher number of
predictors could lead to biased regression coefficients and overfitting,
which here degraded the predictive power of the model, as explained by
Peduzzi et al. (1996). The degradation of the predictive power when
including more than three variables is consistent with the fact that we
could not find a model with four variables with estimated parameters
different from zero at 90 % confidence level. Finally, the three variables
model attains a mean sensitivity of 47.4 % and a mean FPR of 20.1 % in
the 5-fold cross-validation.

The estimated parameters of the logistic regression over the full
dataset are shown in Table 4; two of the parameters are different from
zero at 95 % confidence level (but not 99 %), the third variable is
different from zero at 90 % confidence level. The estimated values
allow us to conjecture what are the conditions that lead to high-risk
situations: lower than average speeds in both AVI gates together with a
low density in the upstream gate increase the risk of a crash in the next
five minutes. but other than that, the intuition of crash occurrence is
not clear. We conjecture that an element is missing from this model,
which makes difficult to fully understand the phenomenon. In the next
section, we will explore this issue.

The decision frontier of the LR three variables model is shown in
Fig. 5, with a threshold probability set at =p 0.177%0 . The model
predicts that a crash will occur in the next five minutes for any point to
the left of the plane. Changing the threshold probability moves the
decision frontier in parallel fashion, moving to the right if the p0 is set at
a smaller value, creating a smaller “high-risk” zone, with a lower FPR
but with also a lower sensitivity (Yang et al., 2018b). A larger threshold
probability induces the opposite effect, causing a larger FPR and sen-
sitivity. Considering that in a real-life context, taking a decision asso-
ciated with this trade-off of FPR/Sensitivity is not easy, we will present
in the next section the receiver operating characteristic (ROC) curve for

Fig. 3. Variable importance according to Mean Decrease Gini.
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both the aggregated and disaggregated model. This curve shows the
prediction power under different FPR, and thus, under different stra-
tegic decisions.

Fig. 6 shows the evolution of the mean sensitivity estimate with the
increase of 5-fold validation repetitions, when fixing the FPR at around
20 %. It can be seen that these 500 repetitions seem to be enough to

obtain a stable sensitivity estimate: the mean sensitivity reaches 49.9 %,
which we take as the most likely value of performance for the model
with aggregated data. This value is low in comparison to previous
studies (see Table 8 in Basso et al., 2018). The conjecture we have is
that the model fails to predict better because the stretch study has a
high share of other than light-duty vehicles, whose behavior and in-
teractions matter, but are lost when using aggregate data. For example,
Basso et al. (2018), who obtain a mean sensitivity of 67 %, use dis-
aggregated data but in a section of the highway where light vehicles
account for around 93 % of the traffic, and indeed they find that the
most relevant variables are the ones related to light vehicles. The poor
performance of the aggregated model is also reflected, quantitatively, in
the fact that parameters are significant only at 10 % and, qualitatively,
in the fact that it does not seem obvious, from a traffic theory point of
view, what is exactly leading to accidents.

Fig. 4. Speed [km/h] versus density [veh/km] in PA22.

Table 4
Maximum likelihood parameters for the aggregated logistic regression model.

Variable Estimate Std. Error p-value

Speed.PA22 −0.097 0.040 0.015
Density.PA22 −0.975 0.414 0.018
Speed.PA20 −0.019 0.012 0.097

Fig. 5. Decision frontier for the three variables logistic regression for the aggregated data.
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4.2. Disaggregated LR model

We now turn to the model that uses disaggregated information, i.e.
including the type of vehicle (light, heavy or motorbike) for each data
point. We calculate 8 variables for each AVI gate and vehicle type: flow,
mean speed, standard deviation of the speed, percentage of such type of
vehicle in total flow; and also the change in all of those variables
compared to the previous 5-min interval for each vehicle type. The final
two variables are average traffic density (over all vehicle types) and its
change. The 10 most relevant variables, according to the RF procedure,
are presented in Fig. 7, which presents us with the first evidence that
recognizing types of vehicles matter: the most important crash pre-
dictor is the flow change of heavy-duty vehicles at the AVI gate PA22.
Note that, since the flow of light-duty vehicles dominate all others,
there was no proxy for this variable in the aggregated model. Moreover,
9 of the 10 most important variables correspond to values associated to
motorcycles or heavy vehicles, even though some of them are highly
correlated (e.g. heavy vehicles flow change and heavy vehicles com-
position change). The only variable related to light-duty vehicles that
appear is their change in speed at the downstream AVI gate PA20.

We also conducted a graphical analysis to asses to the importance of
the variables as accident precursors. We compare the mean value of
each variable five minutes before the accident against the mean values
registered in non-accident conditions. In Figs. 8 and 9, we show this for
the change in flow for heavy-duty vehicles upstream (PA22), the most
relevant variable, and for the change in speed of light-duty vehicles
downstream, (PA20), the only variable related to light-duty vehicles

that the RF procedure selected. What Figs. 8 and 9 unveil is striking: the
global minimum of the mean value for both variables is registered ex-
actly five minutes before the accidents.

In addition to these two variables we included in the model a third
variable, using again the mean sensitivity over a 5-fold cross validation
as the performance indicator. The chosen variable was the speed of
heavy vehicles at the upstream gate PA24; note that this gate is before
the stretch being analyzed. The estimated parameters of the logistic
regression over the full data set are presented in Table 5 while the
decision frontier is shown in Fig. 10, with a threshold probability set at

=p 0.207%0 . Any point falling to the left of the plane shown in Fig. 10
will be predicted as a crash under this model.

The first relevant observation is that two of the variables are sig-
nificantly different from zero at 99 % confidence level, while the third
variable reaches 95 %, an improvement over the disaggregated model.
The initial reading of the signs of the parameters indicate that the
probability of crashes increases when: (i) heavy vehicles drive faster at
gate PA24 (ii) their number at gate PA22 diminishes and (iii) down-
stream, in gate PA20, light vehicles are slowing down. A more involved
explanation goes as follows. If upstream, at gate PA24, heavy vehicles
pursue high speeds, so do light vehicles. This is because light vehicles
are sometimes slowed by heavy vehicles, but the opposite rarely occurs
(Johnson and Murray, 2010). Furthermore, heavy vehicles speeds have
lower standard deviation than light vehicles speeds (Table 3), so the
inclusion of the former in the model might be preferable. Moreover, if
at the middle gate PA22, the number of heavy vehicles decreases, light
vehicles will increase even more their speed, most likely in a non-

Fig. 6. Mean sensitivity for different number of cross validation repetitions.

Fig. 7. Variable importance according to Mean Decrease Gini – 10 most important variables.
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uniform way. But if this happens in addition to slowing cars down-
stream, at gate PA20, then the likelihood of accidents –possible rear-
end crashes– increases sizably.

To test this possible explanation, we graph the change in speed of
light vehicles against the change in flow of heavy vehicles at gate PA22;
this is shown in Fig. 11. An evident correlation as conjectured is indeed
observed (Pearson's =r 0.23), although there is observable variability,
indicating that the acceleration of light vehicles is far from uniform
after a reduction in the number of heavy vehicles. Indeed, the standard
deviation of light vehicle speed at the same gate increases in average
when heavy vehicles exit the freeway. These analyses show that, in fact,
light vehicles drivers modify their behavior when the traffic composi-
tion changes; when less heavy vehicles circulate through the freeway,
drivers might decrease their risk perception and thus increase their
speed, much like Montella et al. (2008) suggested.

Now, the fact that the correlations are low –as it is evident from
Fig. 11– implies that the change in flow of heavy vehicles will be poorly
represented by the light-vehicle variables (change in speed and stan-
dard deviations of speed), which suggest that there are other effects
related to this driving behavior that cannot be captured by the mea-
sured variables. One of these effects could be, for example, a reduction

in the headway as a consequence of the exit of heavy vehicles, which
could increase the risk of rear-end collision.

Turning to robust validation, we use the same methodology de-
scribed in the previous section: 500 repetitions of a 5-fold cross vali-
dation with a fixed FPR of 20 % in the training set. The distribution of
the sensitivities obtained is shown in Fig. 12, while the mean sensitivity
over the 500 repetitions is 65.90 %. This value represents our best as-
sessment of the performance of the disaggregated model. It achieves 16
percentage points more of prediction power than the aggregated model,
in addition to providing better intuition from a traffic engineering point
of view. Thus, traffic composition does improve significantly real-time
crash prediction accuracy through the use of separated traffic flows

Fig. 8. Mean values of Delta.Flow.HeavyPA22 around the time of accidents.

Fig. 9. Mean values of Delta.Speed.LightPA20 around the time of accidents.

Table 5
Maximum likelihood parameters for the disaggregated logistic regression
model.

Variable Estimate Std. Error p-value

Delta.Flow.HeavyPA22 −0.080 0.028 0.004
Speed.HeavyPA24 0.067 0.032 0.039
Delta.Speed.LightPA20 −0.073 0.026 0.005
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rather than passenger-car equivalent density.

4.3. ROC comparison

As explained in the previous sections, a fixed FPR of around 20 %
was used in the training datasets to find the threshold probability of the
logistic models. We showed that the use of disaggregated data produces
an increase of 16 percentage points in the prediction power of the
model. Nevertheless, the choice of such FPR is arbitrary, and there may
be scenarios where, for example, only a 10 % of FPR is acceptable. To
address the issue of whether the use of disaggregate data is indeed a
sizable advantage for other FPR, we present the comparison of the re-
ceiver operating characteristic curve, or ROC curve. This curve shows
the sensitivity achieved for different values of the maximum FPR al-
lowed: in this case, values from 0 % to 100 %, with increments of 2.5 %.
Every point of the curves was obtained with the same methodology
proposed, using 500 repetitions of a 5-fold cross-validation.

From Fig. 13, it can be seen that the model that used disaggregated
information always dominate the model that only use aggregated data,

as expected. Nevertheless, this difference is more important for rela-
tively low values of FPR, reaching a maximum of 30 percentage points
in sensitivity when a 15 % of FPR is allowed. Given the nature of the
studied phenomenon, it does not seem audacious to argue that low
values of FPR are the only ones that matter, because if a tool for real-
time crash prediction is to be useful, it should not often deliver false
alarms.

5. Support vector machine models

We now turn to the use of SVM as the classification method, instead
of Logistic regressions. The goal here is to see if any improvement or
degradation in predictor power affects both, disaggregated and ag-
gregated models in the same way, or their relative performance
changes. We reuse the variable selection results from the previous
section, so we present the best result found using the same three vari-
ables for each case: Speed.PA22, Density.PA22 and Speed.PA20 for the
case with aggregated data; Delta.Flow.HeavyPA22, Speed.HeavyPA24
and Delta.Speed.LightPA20 for the case with disaggregated data.

Fig. 10. Decision frontier for the three variables logistic regression for the disaggregated data.

Fig. 11. Delta.Speed.LightPA22 [km/h] versus Delta.Flow.HeavyPA22 [veh].
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5.1. Aggregated SVM model

As explained in Section 3, the optimization problem P( )2 solved to
obtain the parameters = ( )i x Si of the decision function f depends on
the values ofC and . To find the values of these parameters that allows
us to find the best possibly classifier, we used a grid search. Particularly,
we considered values = …C 2 , 2 , , 215 13 15 and = …2 , 2 , ,215 13 15.
That is, we used exponentially growing sequences of C and , as sug-
gested by Hsu et al. (2004). We performed a 5-fold cross-validation for
each combination of values and kernels presented in Section 3.3.
Overall, the training data set in each of the five repetition consists of
10,680 rows and 2670 for the validation data-set. The best results found
are presented in Table 6.

From Table 6, it can be seen that both types of oversampling tech-
niques achieve a similar result, with a mean sensitivity of around 42 %
over the 500 repetitions of a 5-fold cross validation. This means that the
SVM model with aggregate data performs even worse than the logistic
regression model, as it losses 8 percentage points of sensitivity.

5.2. Disagreggated SVM model

Just as in the case of the Logistic Regression, the variables used here
are the change in flow of heavy vehicles in PA22, the change in speed of
light vehicles at gate PA20, and the speed of heavy vehicles at gate
PA24. The values of C and found using a grid search are presented in
Table 7.

Performing 500 repetitions of a 5-fold cross-validation, we obtain a

Fig. 12. Distribution of mean sensitivity of 5-fold CV over 500 repetitions – disaggregated model.

Fig. 13. ROC curves for the aggregated data and disaggregated data models.

Table 6
Results of SVM model, aggregated data case.

Type of Oversampling Basic SMOTE

Oversampling parameters 100 % of
majority class

perc.under= 450,
perc.over=750

Kernel Radial Radial
C 32 8192

7.8 10 3 2
Mean Sensitivity (500

repetitions 5-fold CV)
42.6 % 42.1 %

Mean FPR (500 repetitions
5-fold CV)

20.1 % 20.4 %

Table 7
Results of SVM model, disaggregated data case.

Type of Oversampling Basic SMOTE

Oversampling parameters 90 % of
majority class

perc.under=200,
perc.over= 150

Kernel Radial Radial
C 2 0.125

1.22 10 4 1.95 10 3

Mean Sensitivity (500
repetitions 5-fold CV)

62.1 % 64.2 %

Mean FPR (500 repetitions
5-fold CV)

20.1 % 21.5 %
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mean sensitivity of 62.1 % for the model with the basic oversampling
technique, and a 64.2 % for the model with SMOTE, although with a
slightly higher FPR. Comparing the mean sensitivity of the dis-
aggregated model with the aggregated model, we observe an im-
provement, this time of 20 percentage points, which seems to confirm
that the gain from observing and using disaggregated data does not
depend on the classification method.

Note that in the case of SVM models, as discussed by Platt (1999),
the result produces an uncalibrated value that is not a probability, and
therefore, is not possible to directly set an FPR. Nevertheless, to over-
come this issue, we follow Platt (1999) to train a sigmoid function to
map the SVM output into probabilities. The results of the ROC curves
for both SVM with basic oversampling and SVM with SMOTE are de-
picted in Figs. 14 and 15. Except for one point, the disaggregated model
performed strictly better than the aggregated model for both over-
sampling techniques confirming the advantage of having access to
disaggregated data.

6. Concluding remarks

Our results show that models for crash prediction that use variables
separated by vehicle type have prediction power that is sizably larger,
while also providing much better intuition about the actual traffic
conditions that may lead to accidents; in a nutshell, for the stretch of
the highway we analyze, most crashes occur when, following a fall in
the number of heavy-duty vehicles, light-duty vehicles accelerate at
different paces, inducing a large dispersion of speeds, but encounter

slowing traffic down the road. We show that this phenomenon simply
cannot be captured when data is aggregated. Learning that much is
gained by having access to disaggregated vehicle-type information in
crash prediction and, eventually, crash prevention, is important: we
believe, as a policy conclusion, that our results should be an important
part for assessing technology investments on urban freeways and may
be informative on what technology improvements and innovations
should be pursued (Chung and Hensher, 2018; Song et al., 2018).

The results of this paper suggest that new road infrastructure should
incorporate devices able to determine reliable flow composition data.
This last may have a sizeable impact on the Active Traffic Management
(Mirshahi et al., 2007) performance that has proliferated last years with
the objective of reducing congestion and increasing security. The ma-
jority of the highways worldwide are equipped with loop detectors
which, usually, are not able to properly distinguish the vehicle types. In
this research, AVIs data has been used for determining the impact of
having access to disaggregated data. In Santiago, Chile transponders are
mandatory for using the urban expressways and, therefore, all vehicles
are equipped with this kind of devices; nevertheless, we are aware that
Chile is an exception in that way. Moreover, the cost of an AVI gate
such as the ones used in Chilean urban highways may easily exceed
USD 500,000, something that limits their use. In a more massive set-
ting, new technologies, such as video devices; microwave and laser
radar; and passive infrared, ultrasonic, and acoustic sensors should be
considered in the near future (Yang et al., 2018a). Nowadays, this is
possible due to the technology's advances and cost reduction.

Even though we do not believe that the findings of this paper would

Fig. 14. ROC curves for the aggregated data and disaggregated data models, SVM with basic oversampling.

Fig. 15. ROC curves for the aggregated data and disaggregated data models, SVM with SMOTE.
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change if other classifications techniques were used instead, we do
think that crash-prediction accuracy could be improved if new, more
advanced techniques are employed. In particular, there is a recent trend
of using deep learning methods in intelligent transportation systems
(Nguyen et al., 2018). Nevertheless, its application to crash-prediction
is at an early stage. Recent contributions on the subject are not directly
applicable to a real-time rare event environment as the one we con-
sidered here, because they intend to predict crash frequency in ag-
gregated terms (Dong et al., 2018; Cai et al., 2019), or they do not use
the full data set (Theofilatos et al., 2019) or they use spatially ag-
gregated models (Bao et al., 2019). Thus, more research is required,
something that we are indeed pursuing.
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