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Abstract
In 2000, Chile introduced profound health reforms to achieve a more equitable and fairer
system (GES plan). The reforms established a maximum waiting time between diagnosis
and treatment for a set of diseases, described as an opportunity guarantee within the reform.
If the maximum waiting time is exceeded, the patient is referred to another (private) facility
and receives a voucher to cover the additional expenses. This voucher is paid by the health
provider that had to do the procedure, which generally is a public hospital. In general, this
reform has improved the service for patients with GES pathologies at the expense of patients
with non-GES pathologies. These new conditions create a complicated planning scenario
for hospitals, in which the hospital’s OR Manager must balance the fulfillment of these
opportunity guarantees and the timely service of patients not covered by the guarantee.
With the collaboration of the Instituto de Neurocirugía, in Santiago, Chile, we developed
a mathematical model based on stochastic dynamic programming to schedule surgeries in
order to minimize the cost of referrals to the private sector. Given the large size of the state
space, we developed an heuristic to compute good solutions in reasonable time and analyzed
its performance. Our experimental results, with both simulated and real data, show that our
algorithm performs close to optimum and improves upon the current practice. When we
compared the results of our heuristic against those obtained by the hospital’s OR manager
in a simulation setting with real data, we reduced the overtime from occurring 21% of the
time to zero, and the non-GES average waiting list’s length from 71 to 58 patients, without
worsening the average throughput.

Keywords Scheduling · Operating theater · Operating room scheduling

1 Introduction

In 2015, theWorldHealthAssembly unanimously passed a resolution highlighting the critical
role of essential surgical and anesthesia care in achieving universal health coverage, stressing
the importance of access to timely, safe, and affordable surgical and anesthesia services
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(World Health Organization 2017). But health care providers around the world have faced
significant increases in waiting times for surgery and other medical services. If treatment is
not provided in a medically reasonable time, then these excessive delays can deteriorate the
recovery process. To prevent this problem, health authorities have committed to determining
the maximum waiting times, also referred as due dates, for a critical subset of diagnoses.

Due dates can be determined by the surgery team, as in Vansteenkiste et al. (2012), or by
the health authority, as in Patrick and Puterman (2008). Independently of who determines
these performance indicators, in the last 15 years, waiting times and other related metrics
have become significant in operating room (OR) planning [see, for example, Figure 3 in
Samudra et al. (2016)].

In 2000, Chile introduced profound health reforms that aimed to achieve a more equitable
and fairer system (Lenz 2007), with a law enacted in August 2004. This reform, initially
known as the AUGE Plan and later renamed GES, consists of guarantees regarding access,
quality, opportunity, and financial protection for all Chilean citizens diagnosed with a pathol-
ogy within an established set of diagnoses (currently in 80 pathologies). If a patient is
diagnosed with one of these pathologies, she is officially notified of her rights as a GES
patient and is entered into a centralized managed database that tracks all subsequent medical
attentions.

In particular, the opportunity guarantee specifies a maximum number of days for the
patient’s waiting time before receiving appropriate treatment. If the opportunity guarantee
cannot be achieved in due time for any reason, the insurer has two days to identify an
alternative provider (public or private) that is able to fulfill it. This new provider then has
10 days to deliver the appropriate treatment guaranteed by law. The financial protection
guarantee remains for the patient; therefore, the potential cost difference is incurred by the
original health provider. Thus, the patient receives a voucher identifying the health service
required and the newly assigned health provider.

The implementation of the GES plan has proven to be a challenge for OR managers,
who are pressured to provide certain health treatments within fixed time ranges, possibly
postponing other health services that are not included in the 80 pathologies covered by the
GES plan. For example, according to a 2014 report of the Ministry of Health, 56% of non-
GES pathologies have been waiting for more than a year for surgery; a total of 186,377
non-GES patients were not treated between 2009 and 2014 (Catalina De Améstica 2014).

Therefore, the hospital manager not only has to address the extra financial burden repre-
sented by the cost of GES vouchers when the time guarantee is not satisfied, but also has
to consider excessive delays in patient treatment, which result in patient dissatisfaction and,
more importantly, negative health consequences. This is especially true for pathologies not
covered by the GES plan, whose patients have seen a worsening in service level with the
implementation of the new system (Zúñiga-Fajuri 2007).

ORmanagers regularly face the problemof allocating sharedOR time slots among services
including traumatology, gynecology, oncology, and neurology while attempting to satisfy
different stakeholders (mostly OR managers). Each manager handles her assigned OR time
and allocates it among different types of surgeries, again attempting to satisfy different
stakeholders such as patients, surgeons, and anesthesiologists. For example, surgeons and
anesthesiologists often request a stable workload over time and specific shifts during the
day and week. On the other hand, patients appreciate on-time and high-quality service, see
Section 4 in Cardoen et al. (2010) for a discussion of the performance metrics and their
relationships with the different stakeholders.

In this paper, we study the problem faced by a OR manager, who must assign available
OR capacity among patients, while considering the extra cost incurred when the GES oppor-
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tunity guarantee is not satisfied. This study was conducted at the Instituto de Neurocirugía
Dr. A. Asenjo in Santiago, Chile. This hospital is a specialty facility, where patients with
neurosurgical needs, from around the country, are treated. Therefore, the strategic and tactical
decision levels, where the available operating room time is divided over the different surgical
groups with the correspondingmaster surgery schedule, typically a cyclic schedule approach,
are not required. Our study focuses at the operational level where the detailed weekly and/or
daily scheduling takes place, including assigning the specific patient/surgeons to operating
rooms, and determining the order and the start and end times of the surgeries.

The Instituto de Neurocirugía has four operating rooms, where more than 120 different
types of surgeries are performed, with approximately 460 monthly procedures. A detailed
list of the 14 surgeries that account for more than 80% of the OR utilization time can be
found in Appendix A.1. The current practice for the scheduling process is as follows: on
Thursdays, a medical team composed by two physicians, a nurse, and three resident doctors,
revises the waiting list and schedule patients for the following week. Based on the team’s
experience, GES surgeries with opportunity guarantees that expire during the next 2weeks
are scheduled first. Then, non-GES patients are scheduled for the week, with priority given
to those who have been waiting the longest and/or have a higher risk of complications.
This process consumes approximately 2h of time for the six health care professionals. The
scheduling process is manual and relies heavily on the personal experience of the scheduling
team, to the point that the main two physicians are still consulted on the procedure when
they are away in a conference or vacations. The latter provides an opportunity not only to
optimize the scheduling procedure in terms of performancemeasures but also to save valuable
professional resources.

In this work, we formulate this problem as a stochastic dynamic programming (SDP)
model, in order to minimize the expected cost of GES vouchers, taking into account a
minimum service level for non-GES patients. An important feature of our model is the
consideration of physician-dependent surgery times, which is reported as important in the
literature (Stepaniak et al. 2010) and is further confirmed in our collected data.

Given the dimensions of the state space of our problem, which makes solving the SDP
to optimality infeasible for meaningful instances, we develop an heuristic, named GES-
PROG, that provides good solutions in a reasonable computational time. We then compare
the solutions given by GES-PROG, with the value of a lower bound for the problem. Our
computational experiments show that the GES-PROG performs very close to optimal. We
study several settings, through simulated instances, that demonstrate the good performance
of the algorithm.

Finally, to validate the usefulness of our algorithm, we applied this methodology to a
real case study conducted at the Instituto de Neurocirugía. For this study, we compared the
performance of our algorithm with those obtained by the hospital OR manager within a
simulation setting. To develop this simulation platform, we collected data from 2015 to 2016
and computed the relevant parameters, such as surgery times, variances, etc. The solutions
obtained by our algorithm led to significant improvements in the waiting list and the overtime
usage in the OR. In particular, while maintaining a throughput of approximately 30 surgeries
per week and a utilization of 90%, the overtime improved from having 21% of days with
overtime to zero. It is important to note that the average overtime is 1h, when there was
overtime. Additionally, the average waiting list’s length was reduced by our algorithm in
20% from 71 to 58 non-GES patients.
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Our contributions The main contributions of our work are as follows:

• We consider due dates as the ones imposed by the health authorities for the GES subset
of pathologies, while warranting capacity for non-GES ones. Furthermore, unlike the
previous literature, these due dates are not mandatory but impose a step-wise type of cost
function when surgery due dates are not met.

• In this study we are interested in the OR planning problem that considers only elective
surgeries, but incorporating the surgery time dependence not only on the pathology but
also on the physician.

• We develop a heuristic to compute solutions quickly, which we further compare to an
analytical lower bound showing that the computed solutions are very good.

• We implemented and tested our algorithm in a real case setting, comparing it to the OR
Manager’s solution. The solutions obtained by our algorithm led to significant improve-
ments in the waiting list and the overtime utilization of the OR in the context of the
hospital that motived our study.

The remainder of this paper is organized as follows: Sect. 2 reviews the existing literature.
Sections 3 and 4 provide the model formulation and the corresponding heuristics. Section 5
details the input data used in the simulation-based performance analysis in Sect. 6 and in the
performance validation in Sect. 7. Finally, conclusions and future research lines are discussed
in Sect. 8.

2 Literature review

There is a wide body of literature on the topic of managing health care capacity. This problem
has been studiedusingquantitative tools since the early 1960s, providingdecisionmakerswith
a wide range of solutions. Demand for health care services has steadily increased over time
due to: (i) the emigration of populations from rural to urban areas in low- and middle-income
countries, and (ii) the increased aging population in high-income countries (Brandeau et al.
2004). Therefore, health providers have been pressured to efficiently use resources without
diminishing patient satisfaction. The operating room is one of the most expensive units in
a hospital, and according to Denton et al. (2007), it accounts for 40% of the total expenses.
There is a vast amount of literature regarding the scheduling problemof operating rooms. This
array of approaches arose because, although all OR managers face under-/over-utilization of
the ORs, they must also consider different performance metrics, stakeholders and how they
interact, and other specific hospital features. Surveys Cardoen et al. (2010) and Guerriero and
Guido (2011) reviewed more than 150 articles on this topic. The former survey provides an
updated overview of OR planning and scheduling that captures recent developments while
the latter focuses on how operations research can be applied to OR scheduling to balance the
interests of different stakeholders.

The OR planning problem can be studied at the strategic, tactical, and operational levels.
Although decisions in these three stages are highly interrelated, they are studied sepa-
rately because of their complexity and different time horizons [see, for example, Beliën and
Demeulemeester (2007) and Santibáñez et al. (2007)]. At the strategic level, hospitals assign
theOR capacity to the different specialties, such as, for example, traumatology, gastroenterol-
ogy and cardiology, in order to balance out the different needs of the medical teams. Then, at
the tactical level, and once the strategic capacity allocation is solved, the hospitals determine
which ORs, days and block of hours are assigned to each specialty. Typically, the hospitals

123



Annals of Operations Research (2020) 286:501–527 505

solve this assignment by building a Block Schedule, also called a Master Surgical Schedule
or OR Block Allocation Table, that usually changes every six to twelve months. Finally, at
the operational level, each specialty determines a daily assignment of patients–physicians to
specific operating rooms and starting times. This problem is usually divided into two steps:
(i) the process of fixing a surgery date for a patient, known as advance scheduling, and (ii)
the process of determining the operating room and the starting time of the procedure on the
specific date of surgery, known as allocation scheduling (Cardoen et al. 2010; Magerlein and
Martin 1978). Notice that, at this level, these decisions can significantly differ depending
on the administrative practice of the hospital and whether or not the OR capacity is shared
between elective and non-elective surgeries. For example, planning horizons may extend
from one week to a month and OR planning may include one or several sub-specialties, or
consider downstream units such as an intensive care unit (ICU) or post-anesthesia care unit
(PACU).

As mentioned in the Introduction, the Instituto de Neurocirugía Dr. A. Asenjo, where
we have applied this study, only does neurosurgical procedures. It has one OR dedicated to
emergency surgeries and four ORs dedicated to elective surgeries: three for adult surgeries
and one shared between adult and pediatric procedures (adults on Mondays and children
from Tuesdays to Fridays). Thus, the Block Schedule assignment is given, and therefore,
we focus at the operational level considering two important features: (i) the surgery time
depends not only on the pathology but also on the physician performing the procedure, and
(ii) GES pathologies have a due date, which when not satisfied, the patient is referred to
a private provider incurring in a higher cost. In this setting, the OR manager chooses the
patients, from the waiting list, to be scheduled for surgery for the upcoming week, based
on the availability of physicians, anesthesiologists and OR capacity. This schedule considers
that failure to satisfy the due time for GES diagnosis will result in additional referral costs
for the hospital. Currently, the OR planning is conducted using spreadsheets and relies on
the experience of the OR team.

In our formulation, the OR capacity is shared between GES and non-GES patients. Thus,
certain amount of capacity should be guaranteed to non-GES procedures. Otherwise, these
could arbitrarily be postponed each time a GES patient needs surgery. Additionally, in our
formulation, physicians and anesthesiologists are scheduled for several weeks. Given the
scope of our problem, we focus on the OR planning literature that addresses three aspects:
the patients’ waiting time costs, the advance scheduling decisions of multiple ORs, and the
variability of surgery times.

Among the articles reviewed that include due dates for surgeries, several consider the
patients’ waiting time as the key performance measure when making operational decisions
[see, for example, Samudra et al. (2016), and references therein]. Others consider the patients’
priority combined with the waiting time. In Patrick and Puterman (2008) and Molina and
Framinan (2009) they consider mandatory due dates, or equivalently, an infinite cost each
time the due date is exceeded. More precisely in Patrick and Puterman (2008) patients are
categorized in different priority classes, where each class has a service time target (due date).
In this article an optimal scheduling policy is proposed to schedule patients on a single
resource using queueing theory. The authors proposed a set of criteria to enable schedulers
to book a single OR in order to meet the waiting time targets for all classes. In Molina and
Framinan (2009), they focus, however, on the difference between assigning a patient to an
OR and then to a surgeon versus the other way around, under the due dates constraints. Other
studies consider desirable, but not mandatory, due dates. In these cases, a cost, proportional
to the deviation time from the due date (extra time), is incurred. In Testi and Tanfani (2009),
this cost was used in a binary-linear programming model that, simultaneously, solves a
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dynamic block problem and the advance scheduling, while minimizing the overall patients
welfare loss. In Aringhieri et al. (2015) the authors address theBlock andAdvance Scheduling
simultaneously in a binary-linear programming formulation, exploiting the stated hierarchy
of both decision levels. They use an objective function that grows linearly with the waiting
time, in order to minimize the total cost of patients’ waiting time at the end of the planning
horizon. A similar approach is used in Tànfani and Testi (2010) to obtain aBlock schedule that
reduces the weighted waiting times simultaneously with improving the hospital efficiency.

In this paper, we focus at the operational decision level, by solving the advance and
allocation scheduling, considering that the Block Schedule is given. Several papers have
considered this approach, but differ in capturing the particular setting of our study. For
example, in Jebali et al. (2006) the objective function minimizes the cost incurred by keeping
the patients in hospital waiting to be treated in the operating room, as well as undertime
and overtime costs, indirectly considering patients’ waiting time. Another example is Addis
et al. (2016) where the advance scheduling is generated considering the possibility of a
cancellation due to two sources of uncertainty: surgery times, andnon-elective patient arrivals.
The problem is solved using a rolling horizon in which the mid-term optimization window is
moved one week at each iteration. The objective is to minimize an overall penalty that grows
linearly with the number of days that surgeries are postponed after the due dates. A similar
approach is developed inAstaraky andPatrick (2015),Bruni et al. (2015),Min andYih (2010),
where a stochastic dynamic programming model is proposed for the advance scheduling
problem. In Astaraky and Patrick (2015), the objective is to minimize a combination of
patients’ waiting times, overtime in the ORs, and congestion in the wards. In Bruni et al.
(2015), the goal is to schedule elective surgeries in a planning horizon of a week, considering
simultaneously random service times, random emergency occurrences, and patient priorities
by allowing some reasonable overtime. The problem is formulated as a Markov Decision
Process, using a version of the Least Squares Approximate to find a policy. Finally in Min
and Yih (2010), the objective function captures the notion that higher waiting times may
result on higher health care costs, due to additional treatments.

In what follows, we discuss the variability of surgery times. It has been reported since
the 70’s that the effectiveness of the scheduling depends on the accuracy of the procedure-
time estimates. If the estimates are consistently lower than the times actually incurred, the
schedule will be overloaded, whereas if the estimates are consistently higher, idle time will
result (Magerlein and Martin 1978). There is evidence that surgery times present significant
variability for a single procedure. This could be explained by patient attributes, physician
practices, type of anesthesia, or random events. This heterogeneity has been reported and
analyzed in the recent literature at various hospitals; see, for example, Dexter et al. (2008)
and Stepaniak et al. (2010), where the authors suggest that using this information to improve
the accuracy of surgery times would improve OR management. In particular, at the Instituto
de Neurocirugía Dr A. Asenjo, according to the OR manager, surgery times vary signifi-
cantly among physicians, and these differences are considered at tactical and operational
OR planning. In fact, our analysis of the database showed cases where this difference across
physicians is greater than 60% [see Azar et al. (2017) for details]. Most of the studies address-
ing this uncertainty consider a single probability distribution for surgery time that takes into
account all sources of uncertainty. This leads to a probability distribution that only depends
on the type of procedure; see for example, Astaraky and Patrick (2015), Min and Yih (2010).
A robust formulation for surgery planning is presented in Hans et al. (2008), where the objec-
tive is to maximize the capacity utilization and minimize the risk of overtime, assuming that
the operating times for each type of surgery are normally distributed. In Bruni et al. (2015),
the authors developed a stochastic programming model in which overtime acts as a cushion
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to absorb variability in operating times and emergency arrivals. In Landa et al. (2016), the
authors proposed a chance-constrained formulation to address variability in surgery time and
implemented a local search optimization module using Monte Carlo simulation to handle
several random surgery times. In Duma and Aringhieri (2015), when the weekly schedule is
implemented, if there is a significant delay during a particular day, the OR manager chooses
between using overtime or canceling and re-scheduling some of the remaining surgeries.
Thus, the OR manager assumes an active role to manage the variability of surgery times.
A handful of papers have explicitly considered variability among surgeons to improve the
assignment of physicians to patients to increase throughput. This approachwas used inGomes
et al. (2012), where data mining techniques were implemented to predict the surgery times:
specific physician’s operating time estimations were used to maximize the average OR uti-
lization in the scheduling formulation.In our paper, we use a similar approach. We propose
a formulation for OR planning where, for a given pair of physician-surgery procedure, a
deterministic surgery time is considered. This is estimated using historical information to
reduce variability.

In our formulation, we proceed by dividing the operational scheduling into two stages.
First, at the advance scheduling, the surgery date, surgeon and anesthesiologist are assigned
to each patient. We consider a planning horizon of several weeks to take into account the
complete waiting list with the corresponding due dates of all patients and future arrivals.
Second, at the allocation scheduling, we take the assignment for the upcoming week and
determine a starting time and date for each patient’s surgery.According to theChilean context,
GES health plan imposes due dates for a subset of pathologies. If the due date is exceeded, the
hospital incurs in a fixed cost for transferring the patient to a private facility. This cost can be
twice to three times the cost of treating the patient in the hospital, and therefore, it impacts,
in terms of costs, might be highly significant. It is fundamental, in this case, to capture
this behavior, and model the cost as a step function, which we have not found previously
in the literature. These types of functions are generally difficult to deal with in scheduling
contexts (Pinedo 2012), but in our setting it is necessary to model the requirement that the
GES program imposes to the hospital. Finally, in the setting we are studying, emergencies
are served in a dedicated OR, and therefore, the main source of variability is from surgery
times. We chose to deal with this by reducing the uncertainty through explicitly using the
detailed information of surgery times by physician–pathology pairs.

Our work differs from the aforementioned literature in providing an advance scheduling
that assigns physicians to patients according to their specific surgery times. Moreover, in
order to capture the reality of Chilean hospitals, our formulation incorporates the cost of not
meeting due dates according to a step function, that introduces a new degree of difficulty
compared to those reported in the literature.We remark that these two features are considered
in the OR scheduling at the hospital we work with. In our paper, we develop a heuristic to
solve the general stochastic dynamic formulation for the weekly scheduling problem, in the
presence of multiple ORs.We study the benefits of scheduling physicians–patients according
to this setting.

Although it is clear that there are medical reasons to assign a physician to a particular
patient, there are patients for whom the choice of physician is flexible. This would lead to
a higher OR throughput [see discussion in Molina and Framinan (2009)]. Our formulation
and resolution algorithm are flexible to evaluate the increase of throughput under these two
scenarios. Finally, we test our algorithm using real data to illustrate the simulation-based
performance analysis when the algorithm is used in a real case scenario.
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Fig. 1 The two steps of the scheduling procedure

3 Stochastic dynamic programmingmodel

In this section, we formulate a stochastic dynamic programming model (SDPM) to optimally
schedule patients and physicians in the hospital ORs. The model solves the advance schedul-
ing problem, where patient–physician pairs are allocated on a daily basis for a planning
horizon of several weeks. At this level, we determine the daily aggregate number of surgeries
to be performed by each physician, considering the capacity of each OR. Next we perform
allocation scheduling, where surgeries are scheduled into the specific time slots for each OR
room (see Fig. 1). In the next section we describe the allocation scheduling methodology
used.

Within each pathology, patients are first classified according to the number of days they
have been waiting to be treated. The maximum admissible waiting time is given by the
GES plan; any patient that surpasses this threshold is referred to an alternative hospital at a
higher treatment cost. Additionally, the model guarantees that at least a percentage of the OR
throughput, defined by the decision maker, is dedicated to non-GES pathologies within the
planning horizon. This constraint is incorporated as a border condition, such that a large cost
is incurred if it is not satisfied. For this purpose, the model incorporates two additional state
variables: the number of GES and non-GES surgeries performed until period t . The model
also considers physician-dependent surgery times.

We consider a hospital with J operating rooms that are shared among I pathologies and
a planning horizon of T days. In each period of time, we determine the optimal surgery
allocation for each pathology i to minimize the total expected cost incurred when referring
GES patients to another facility. We use the following notation:
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Parameters

• T : length of the planning horizon, in days.
• I : number of pathologies treated, where pathology i has the following parameters:

– gi : maximum number of waiting days according to the GES plan (Opportunity Guar-
antee).

– λi t : arrival rate of patients on day t .
– Ci : additional cost if the surgery is transferred to an alternative provider (referral

cost). This cost is incurred when a patient reaches the maximumwaiting time without
receiving treatment.

– Sik1: number of patients with pathology i at the beginning of the planning horizon
(t = 1) that has been waiting for k days.

– G and Ĝ are the sets of pathologies included and not included in the GES plan,
respectively. Thus, we have that Ci = 0,∀i ∈ Ĝ.

– α: minimum fraction of non-GES surgeries required during the planning horizon.

• J : number of operating rooms at the hospital, where OR j is characterized by:

– ν j t : total hours available on day t for surgeries in operating room j .
– E j : set of pathologies that can be treated in operating room j . Additionally, Ei j = 1

if pathology i can be operated in OR j and 0 otherwise.

• M : total number of physicians, where physician m is characterized by:

– aa
mt , a p

mt : number of hours that physician m has available on the morning (aa
mt ) and

the afternoon (a p
mt ) of day t . Note that this parameter may change on a weekly basis

according to the physician’s availability.
– pmi = 1 if physician m operates on pathology type i and 0 otherwise. In the general

setting, physicians operate on only some pathologies.
– Him : average time required by physician m to operate on pathology i .

• L: total number of anesthesiologists, where anesthesiologist l is characterized by:

– ua
lt , u p

lt = 1 if anesthesiologist l is available in the morning (ua
lt ) and the afternoon

(u p
lt ) of day t respectively. Note that this parameter may change on a weekly basis

according to the anesthesiologist’s availability.
– Nil : average time required by anesthesiologist l for pathology i .

• Hilm = Him + Nil : average time required by physician m and anesthesiologist l for
pathology i .

State variables

• Sikt : number of patients with pathology i waiting for k days at the beginning of day t .
• Ĝt : number of non-GES surgeries performed from the beginning of the planning horizon

until t .
• Gt : number of GES surgeries performed from the beginning of the planning horizon until

t .

Decision variables

• xik j t : number of patients with pathology i waiting for k days that are operated on in OR
j on day t .

• ya
iml j t , y p

iml j t : number of type i surgeries assigned to physician m with anesthesiologist
l on day t in OR j , in the morning (AM) or afternoon (PM), respectively.
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• za
l j t , z p

l j t : 1 if anesthesiologist l is assigned to OR j on day t in the morning (AM) and
afternoon (PM), respectively, and 0 otherwise.

• za
jt , z p

jt : 1 if an anesthesiologist is assigned to OR j on day t in the morning (AM) and
afternoon (PM), respectively, and 0 otherwise.

Random variables

• ηi t : total number of patients with pathology i that arrive during period t , E(ηi t ) = λi t .

We define f ∗
t (St , Ĝt , Gt ) as the minimum expected cost from period t until the end of the

planning horizon if the state variables are equal to St , Ĝt , and Gt at the beginning of period
t

SDPM f ∗
t (St , Ĝt , Gt ) = min

xt ,Yt

∑

i

Ci Sigi+1t + E( f ∗
t+1(St+1, Ĝt+1, Gt+1)),

where E( f ∗
t+1(St+1, Ĝt+1, Gt+1)) is the expected optimal cost from period t + 1 onwards,

with respect to {ηi t }I
i=1; with the following constraints:

1. Consistency

• Definition of auxiliary variable xi j t as the total number of patients with pathology i
that are operated on in OR j on day t .

xi j t =
gi∑

k=1

xi jkt , ∀i,∀ j,∀t . (1)

• Definition of auxiliary variable yr
imjt as the total number of type i surgeries assigned

to physician m in OR j on day t and shift r (a (am) or p (pm)).

yr
imjt =

L∑

l=1

yr
iml j t , ∀i,∀m,∀ j,∀t, r = {a, p}. (2)

• Definition of auxiliary variable zr
j t as 1 if an anesthesiologist is assigned to OR j on

day t and shift r (a(am) or p (pm)) and 0 otherwise.

zr
j t =

L∑

l=1

zr
l j t , ∀ j,∀t, r = {a, p}. (3)

2. Flow and assignment

• Update of waiting list at the beginning of day t + 1.

Sik+1t+1 = Sikt −
J∑

j=1

xik j t , ∀i, k ∈ [1, gi + 1], (4)

Si1t+1 = ηi t , ∀i, (5)

Sik1 = waiting list on day 1, ∀i and 1 ≤ k ≤ gi + 1. (6)

• Update of number of non-GES surgeries performed until time t + 1.

Ĝt+1 = Ĝt +
∑

i∈Ĝ

∑

j

∑

k

xik j t . (7)
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• Update of number of GES surgeries performed until time t + 1.

Gt+1 = Gt +
∑

i∈G

∑

j

∑

k

xik j t . (8)

• For each pathology, the number of scheduled surgeries must be equal to the number
of surgeries assigned to the physicians for each day t .

xi j t =
M∑

m=1

(
ya

imjt + y p
imjt

)
, ∀i,∀ j,∀t . (9)

• Operating rooms are equipped to serve only certain types of pathologies.

xik j t = 0, ∀i /∈ E j ,∀k,∀t, (10)

or equivalently,

gi∑

k=1

xik j t ≤ MEi j , ∀i,∀ j,∀t, (11)

where M is a large number.

3. Capacity/availability

• The number of surgeries must be less than or equal to the number of patients with
the corresponding pathology on each day t .

J∑

j=1

xi j t ≤
gi∑

k=1

Sikt ∀i,∀t . (12)

• Physicians operate on only a subset of pathologies.

J∑

j=1

(
ya

imjt + y p
imjt

)
≤ Mpmi , ∀m,∀i,∀t, (13)

where M is a large number.
• The number of surgery hours assigned to each physician must be less than or equal

to his/her availability.

J∑

j=1

I∑

i=1

L∑

l=1

Himl yr
iml j t ≤ ar

mt , ∀m,∀t, r = {a, p}. (14)

• There is no more than one anesthesiologist per OR for any given day and shift.

zr
j t ≤ 1, ∀ j,∀t, r = {a, p}. (15)

• Anesthesiologist’s availability at each shift r and day t .

J∑

j=1

zr
l j t ≤ ur

lt , ∀l,∀t, r = {a, p}. (16)
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• Guarantee that all scheduled surgeries have an anesthesiologist assigned to the OR.

I∑

i=1

M∑

m=1

yr
imjt ≤ Mzr

j t , ∀ j,∀t, r = {a, p}, (17)

zr
j t ≤

I∑

i=1

M∑

m=1

yr
imjt , ∀ j,∀t, r = {a, p}. (18)

• The number of surgeries in an OR cannot exceed its capacity on each day.

M∑

m=1

I∑

i=1

L∑

l=1

Himl

(
ya

iml j t + y p
iml j t

)
≤ ν j t , ∀ j,∀t . (19)

Finally, the border conditions are as follows:

f ∗
T +1(ST +1, ĜT +1, GT +1) =

⎧
⎨

⎩

∑
i Ci |SiT +1|, if

ĜT +1
ĜT +1+GT +1

≥ α̃

M otherwise.
,

whereCi ≥ 0 is the treatment cost of the remaining patients at the end of the planning horizon,

|Si,T +1| = ∑gi
k=1 SikT +1, and α̃ = min

{
α,

∑
i∈Ĝ

∑
k Sik1∑

i∈I
∑

k Sik1

}
. The inequality ĜT +1

ĜT +1+GT +1
≥ α̃

guarantees a minimum fraction of non-GES surgeries of the total number of surgeries within
the planning horizon. As discussed previously, in the absence of this constraint, there are no
incentives to treat patients with pathologies not included in the GES plan.

The dimensions of the state space for this problem become extremely large and intractable
even for relatively small problems. For example, if we consider a total of 5 pathologies, a
maximum of 20 waiting days and 20 patients waiting for each, then the state space takes
20100 possible values considering only the waiting list. Therefore, in Sect. 4, we develop
an heuristic, based on a deterministic version of SDPM, to find good approximations of the
optimal solution for the stochastic model. The following proposition provides a lower bound
for the total expected cost obtained by the stochastic model, which we later use to measure
the quality of these approximations.

Proposition 1 The expected value of the objective function of the model below (Eη[L B(η)])
provides a lower bound for the SDPM problem.

L B(η) = min
x,y,S

I∑

i=1

T∑

t=1

Ci Sigi +1t , (20)

subject to: (1)–(6), (9), and (11)–(19) and the following constraint:

• The total number of GES-related surgeries must maintain the defined ratio:

W Aw +
∑

i∈Ĝ

∑J
j=1

∑T
t=1 Him

(
ya

imjt + y p
imjt

)

∑
i∈{Ĝ∪G}

∑J
j=1

∑T
t=1 Him

(
ya

imjt + y p
imjt

) ≥ α̃

(
W + T

7

)
, (21)

where Aw is the average number of hours of non-GES surgeries in the last W weeks.

Proof: It follows directly since any solution of theSDPM problem is feasible for this problem.
We notice that (20) solves for the optimal schedule with perfect information regarding future
patients’ arrivals, and therefore, its expected value outperforms the solution of the stochastic
model that considers all possible random arrivals when making scheduling decisions. We
refer to this model as the perfect information model (PIM). �	
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4 The GES-PROG algorithm

In this sectionwe describe the heuristic developed to find good approximations for the optimal
solution of the SDPM. The heuristic runs on a rolling horizon basis, i.e., the waiting list is
updated at the beginning of each week and the model is solved for the complete planning
horizon. The solution for only the current week is then implemented.

The current practice at the Instituto de Neurocirugía consists of weekly meetings with
the OR manager, a physician, three interns, and a nurse in charge of scheduling. Based on
the waiting list, and without explicitly considering future (uncertain) arrivals, the committee
schedules surgeries for the coming week. This procedure is highly manual and relies heavily
on the personal experience of the committee members. Priority is given to patients with dead-
lines that expire during the immediate week. The heuristic proposed in this section, namely
GES–PROG, is similar to the current decision process at the hospital in terms of considering
only the waiting list and not future stochastic arrivals when making scheduling decisions.
However, we note that our heuristic found an optimal solution for the optimization model,
which outperforms the personal experience of the decision-making team at the hospital. The
objective function in this model is the minimization of the total GES referral costs. However,
to maximize the utilization of the operating rooms, we include a reward for programming
additional pathologies even if they do not account for referral costs.

After obtaining the advance scheduling solution for the current week, we solve the alloca-
tion scheduling problem to obtain the final daily schedule. The allocation scheduling problem
solved and the methodology used are described in Azar et al. (2017). In Azar et al. (2017),
we develop an efficient time-indexed scheduling formulation that is able to compute, an opti-
mal solution for the allocation problem. The solution to that problem is computed in a few
minutes thanks to the fact that we reduce the number of patient/physician pairs through the
GES-PROG algorithm. In order to schedule as many surgeries as possible, we maximize the
throughput of surgeries.

Because the advance schedulingmodel considers the aggregate daily availability of physi-
cians, there may be infeasibilities when scheduling daily surgeries. There could be cases
where the only feasible solution is to schedule a physician in two ORs at overlapping
times. The allocation scheduling model finds the solution that maximizes the through-
put. All surgeries that cannot be scheduled are returned to the waiting list for future
scheduling.

Algorithm GES-PROG
1: Initialization: Sik1 = number of patientswith pathology i that have beenwaiting for k days at the beginning

of the planning horizon.
2: Solve Advance Scheduling:

L B1 = min
x,y,S

I∑

i=1

T∑

t=1

Ci Sigi +1t − 10−3
I∑

i=1

J∑

j=1

gi∑

k=1

T∑

t=1

k xi jkt ,

subject to (1)–(19), (21), and Si1t = 0,∀t .
3: Solve the allocation scheduling: Using the weekly assignment from Step 2, we use the operational model

described in Azar et al. (2017) to determine which time slot, physician, and OR to assign to each patient.
If some surgeries cannot be scheduled due to infeasibility, they are returned to the waiting list.

4: Implement the solution for the first week: Number of all surgeries scheduled by the model, for GES
and non-GES procedures, by physician, operating room, waiting time and day: x = xik j t ,∀i, ∀k, ∀ j, t =
{1, . . . , 7}.
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We also studied a second heuristic, which accounted for the expected number of future
arrivals on the weekly schedule. The purpose of this heuristic was to avoid myopic decisions
when using just the current waiting list without considering that patients with expensive and
short deadline surgeries might arrive in future weeks, which might “displace” already sched-
uled patients. The computational analysis, described in Sect. 6, showed that this heuristic,
systematically, underperformed GES–PROG described above, and therefore, we only report
the performance of the latter.

5 Data

The Instituto de Neurocirugía has five ORs: one for emergency procedures and four for
elective surgeries. Preparation and recuperation from anesthesia are performed on site. One
of these four OR units is used four days a week for pediatric and one day a week for adult
surgeries. Log data from2015 and 2016, consisting of diagnosis, surgeon and anesthesiologist
in charge, and surgery and anesthetic times, were analyzed. Among all types of surgeries
performed at the hospital, 19 accounted for 80% of all procedures. Two types of surgery
performed at the hospital are classified as GES and therefore are subject to the opportunity
guarantee.

Brain tumor surgeries are divided into two diagnoses depending on severity; thus, they
typically last either 4 or 7h. This information is known prior to the scheduling process.
Additionally, we obtained the average number of surgeries performed at the hospital per day.
Given that the defection rate is low, these estimates are used as a good approximation of
the average arrival rates of new patients; see Appendix A, Table 5. We also calculated the
average surgery time for each diagnosis and surgeon; see Table 7. We note that, for a given
diagnosis, the average surgery time varies significantly among surgeons. For example, for
HNP, the range of surgery time among physicians is [1, 3] hours with an average of 1.4h.
Finally, Table 6 shows the opportunity guarantees and costs for GES diagnoses, for which,
according to the hospital’s OR Manager, the referral costs are double the in-hospital costs.

Based on this data analysis, we generated a waiting list of patients equivalent to 100
days. According to the OR Manager, this scenario represents a normal traffic case. For the
simulations, the waiting list is updated weekly on a rolling horizon basis by eliminating those
patients that have received treatment and incorporating new randomly generated arrivals.
The initial waiting list includes 37 GES patients and 139 non-GES patients. A complete
description of the waiting list is given in Appendix A.2.

6 Simulation-based performance analysis

In this section we present a computational study of the GES-PROG algorithm. We divide
this study into two parts. First, in Sect. 6.1, we study the relationships between the cost of
referrals and the due dates of the GES pathologies, and how they affect the solutions given
by GES-PROG. Next, in Sect. 6.2 we study larger instances (more pathologies and larger
waiting lists) to understand the effect of the system’s size and load on the performance of
our algorithm.

The purpose of this analysis is to study the performance of GES-PROG under different
settings, and provide a sensitivity analysis for the relevant parameters. Later, in Sect. 7, we
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validate its usefulness in a real case scenario, by comparing the results of our algorithm
against the solutions proposed by the OR manager.

All computational experiments in Sects. 6 and 7 were done in an Intel Xeon CPU E5-2640
v2 2.00GHzwith 24GBof RAM runningCentOS 7 as operating system.All algorithmswere
implemented in Python 3.5, using Gurobi 7.5 as solver for the corresponding optimization
model. In each analysis, we simulated a single operating room with a daily availability of
8h, and studied the output of the GES-PROG algorithm by simulating 10 years of 30 weeks
each. We computed weekly average metrics. The size of the instances was chosen in order
to obtain a coefficient of variation of less than 0.001 for the estimation of all metrics.

6.1 GES-PROG sensitivity analysis

In this subsection we present the sensitivity analysis of the GES-PROG algorithm, with
respect to due dates and referral costs for GES pathologies. For this purpose, we analyze the
results of the algorithm for a set of test caseswith twoGES pathologies, A and B.We consider
that the surgery times for pathologies A and B are 1 and 2h respectively, independently of
the physician (HAm = 1,∀m and HBm = 2,∀m). We fixed the due date of pathology A to 20
days and the referral cost to 1 (gA = 20 and CA = 1). In what follows, we analyze the effect
of the due date and referral cost of pathology B (gB and CB) on the performance indicators
of the algorithm, such as the number of referrals and average patients’ waiting time. In each
run, we start with an empty waiting list and study the output for different arrival rates of
new patients. Each pair of arrival rates for surgeries A and B, was selected in order to keep
the combined rate constant and equivalent to 10% higher than the available OR capacity, i.e.
a combined arrival rate equal to 44h of surgery per week. For all the experiments in this
subsection, the worst coefficient of variation was 0.00076. Figures 2 and 3 summarize the
results of this analysis, showing the average weekly referrals for each pathology.

Figure 2 shows the effect on referrals when varying the due date of pathology B in
gB ∈ {5, 10, 20, 30, 40} for each arrival rate pair, while keeping the referral cost of B
constant and equal to 1 (CB = 1). Figures 2a, b show the referrals of A and B respectively.
We observe that the increase in the due date of B, allows the algorithm to accommodate
more surgeries without requiring referrals, due to the added flexibility. Figure 2b shows that
the increase in the due date of pathology B reduces the number of patients that need to be
referred, while avoiding referrals of pathology A, as observed in Fig. 2a. As the arrival rate
of pathology B decreases to 0, the referrals of A increase, but only when the arrival rate of
A increases significantly, since the length of this pathology is only half of B.

Figure 3 shows the number of referrals as a function of the referral cost of B, for CB ∈
{0.1, 0.5, 1, 2, 5, 10} for each arrival rate pair. For these computational experiments, we set
the due dates of both pathologies in 20 days. Figure 3a, b show the referrals of A and B
respectively. We observe that the algorithm has a binary behavior: when referral cost per
hour of B is less than the referral cost per hour of A, then the algorithm only refers A-type
surgeries, whereas only B-type surgeries are referred when the cost per hour of B is lower.

It is important to note that, since the instances were small enough, in all these experiments
we were able to compute the lower bound described in Proposition 1. In all cases the algo-
rithm’s solution had the same cost as the lower bound, .i.e. GES–PROG led to the optimal
solution.

In what follows we study the effect of due dates on the average patient’s waiting time. For
this purpose, we analyze a set of instances with the two GES pathologies currently treated
at the Instituto de Neurocirugía, using the actual values of the referrals costs and due dates
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Fig. 2 Referrals for CB = 1 with varying gB . a Referrals of A. b Referrals of B

(see Table 6), and assuming all physicians can operate all pathologies. For each case, we
compute the average values for several important performance metrics while scaling the due
dates by different factors. The purpose of this study is to determine the effects on the patients’
waiting times, if, for example, the health authority decides to modify the current due dates
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Fig. 3 Referrals for gB = 20 with varying CB . a Referrals of A. b Referrals of B

of the GES pathologies. For these instances, we also computed the lower bound described in
Proposition 1, showing that there is no difference in the optimal value between that solution
and the one obtained by GES-PROG. Details of the performance metrics computed for these
experiments can be found in Appendix B.1.
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Table 1 Results for scaling gA

Metric/scaling factor 0.1 0.5 0.8 1.0 1.3 1.5 2.0

Average GES A patient waiting time (days) 2.6 3.1 3.2 3.2 3.2 3.2 3.2

Average GES B patient waiting time (days) 3.4 3.4 3.4 3.4 3.4 3.4 3.4

Table 2 Results for scaling gB

Metric/scaling factor 0.1 0.5 0.8 1.0 1.3 1.5 2.0

Average GES A patient waiting time (days) 3.5 3.2 3.2 3.2 3.2 3.2 3.2

Average GES B patient waiting time (days) 1.7 3.2 3.4 3.4 3.4 3.4 3.4

Table 3 Performance analysis for larger instances and different load factors

Light Normal Heavy

OR utilization (%) 0.549 0.934 0.946

Normalized average GES patient waiting time (days) 0.159 0.499 0.785

Average non GES patient waiting time (days) 4.982 13.461 19.452

Average HNP referrals (per week) 0.000 0.000 0.006

Average TE referrals (per week) 0.000 0.006 0.457

Average number of served patients (per week) 17.730 31.648 33.810

Average number of patients assigned by advance scheduling (per week) 18.069 35.051 37.480

Scaling the due dateswithout changing the referral cost does not affect the patients’waiting
time. Tables 1 and 2 show the average waiting time for each type of patient when scaling
the due dates for surgery A (gA) and B (gB ) respectively. In both cases, the average waiting
time remains constant for all scaling factors, except 0.1, where the due dates are shorter than
a week. In this case, the algorithm cannot cope with all the arrivals and must refer several
patients, modifying the average waiting time.

6.2 Impact of patients’ load on GES-PROG’s performance

To evaluate the effect of the patients’ load in the system on the performance of GES-PROG ,
we stressed the algorithm under different load levels. For this purpose, we analyze the
performance of GES-PROG considering 28 different pathologies treated at Instituto de Neu-
rocirugía, including the two GES pathologies. The initial patient waiting list was generated
for 8 weeks of arrivals, and the largest coefficient of variation in all the experiments was
0.0068. Several performance metrics were computed for different load levels. The average
results are summarized in Table 3.

The Normal Load setting was simulated by using the current arrival rates for different
types of patients at the Instituto de Neurocirugía. The Light Load and Heavy Load settings
were simulated by scaling the normal arrival rates by 0.5 and 2, respectively. Increasing the
arrival rates barely changes the average number of referrals because the algorithm delays
non-GES surgeries. This delay substantially increases the average waiting time of non-GES
patients, as well as that of GES patients, who now have to wait almost 80% of the total due

123



Annals of Operations Research (2020) 286:501–527 519

date before their surgery is performed. Another important result from these experiments is
that the number of patients assigned by advance and allocation scheduling (see Fig. 1 in
Sect. 3) are similar. Therefore, the aggregated daily physicians’ time allocation that takes
place at the advance scheduling does not substantially affect the algorithm’s performance.
In fact, in all settings, more than 90% of the patients assigned by advance scheduling are
actually scheduled in the allocation scheduling.

Finally, as in the previous experiments, the we also computed the lower bound described in
Proposition 1 for comparison. In the three scenarios, the lower bound was able to schedule all
GES patients without requiring referrals. For GES-PROG , this was only true for the light and
normal loads. In the heavy load setting, the GES-PROG had few referrals per week (0.46).
This number is small considering that the setting has a large number of patients arriving and
that the computation of the lower bound described in Proposition 1 (which is obtained by
solving an optimization problem) takes several orders of magnitude more time to solve.

7 Performance validation: application at the Instituto de Neurocirugía

In order to validate the simulation based analysis, and further understand the performance
of GES-PROG, in this section we compare our algorithm against the current practice at the
Instituto de Neurocirugía in a real case setting. For this purpose, we developed a simulation
tool in which the hospital’s OR Manager performs weekly scheduling for a given initial
waiting list with stochastic patient arrivals. We also used our heuristic to solve the problem
for the same simulation instances.

Method the simulation process is as follows. The hospital’s ORManager scheduled surgeries
on a weekly basis for a total of 15 weeks or 75 days. This planning horizon was chosen by
the OR Manager given his time availability to perform the study. We remark that in real
life, the weekly schedule requires approximately 2h of six professionals, and therefore, this
simulation process took approximately 30h for the neurosurgeon OR manager.

Four OR rooms were considered, with one functioning only once a week (the rest of the
time is dedicated to pediatric surgery). The regular OR hours are from 8 am to 5 pm. The
initial patientswaiting listwas generated considering12weeksof arrivals.As suggestedby the
OR Manager, we assumed that all physicians were available during the considered planning
horizon.Wenote that the hospitalwaiting list consists of patient–physician pairs, i.e., surgeons
are assigned to patients; therefore, there is one less degree of flexibility when determining the
weekly schedule. During the simulation process, we observed the following behavior of the
hospital OR Manager: he first scheduled all GES pathologies whose opportunity guarantee
would expire during the current week and then scheduled non-GES patients with the longest
waiting times. Finally, if OR capacity remained, he balanced the physicians’ workloads. We
also observed that the OR Manager utilized discretionary overtime.

The scheduling results from the hospital’s OR Manager simulations were compared
with those obtained using GES-PROG. In the latter case, we analyzed two cases for the
patient–physician pairs: (i) preassigned, as considered by the hospital’s OR Manager, and
(ii) determined by the scheduling model.

Results For the case where the hospital’s OR Manager utilized overtime, the scheduling
led to an average OR utilization of 87.9% with 30.5 surgeries per week and approximately
30% corresponding to GES surgeries. The average overtime was 58.8 minutes, and each OR
had overtime scheduled on 21.3% of the days. Non-GES patients that were attended waited
an average of 39.4 days, and GES patients waited an average of 24.7 days (29.1 and 19.0
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days for herniated nucleus pulposus (HNP) and brain tumor (TU–ENC), respectively). The
same analysis was performed after eliminating surgeries that were scheduled past the regular
hours of operation. In this case, the OR utilization and average number of weekly surgeries
decreased to 82% and 27, respectively.

By contrast, using GES-PROG without allowing overtime, we obtained a significant
increase in OR capacity utilization, reaching an average of 91.5%. It is important to note
that this increase is achieved without incurring overtime.

Finally, we ran the heuristic without the patient–physician constraint to study the impact
on the additional flexibility of determining which physicians will perform which surgeries
during the weekly scheduling. In this case, the average number of surgeries increased from
30.5 to 35.2, with an important reduction in number of waiting days from 39.4 to 26.3 for
non-GES patients and from 24.7 to 15.7 for GES patients. It is interesting to note that OR
utilization in this case decreased slightly from 87.9 to 87.3%, mainly due to the reduction
of almost half of the patients on the waiting list. There were fewer patients to schedule;
therefore, some slots were left open.

Table 4 shows the detailed results of the performance validation analysis. Tables 11 and
12 in Appendix B.2 present the performance indicators of the weekly simulations.

Table 4 OR Manager versus GES-PROG performance

Performance measures OR Manager GES-PROG

With overtime W/o overtime With assigned
patient/physician

W/o assigned
patient/physician

OR utilization (SD) 87.9% (0.9) 82.0% (0.8) 91.5% (4.1) 87.3 (1.0)

Average number of
surgeries/week (SD)

30.5 (2.1) 27.0 (2.0) 31.4 (4.5) 35.2 (5.1)

GES surgeries/week as
fraction of total surgeries
(SD)

30.3% (9.3) 31.3% (11.2) 32.5% (9.8) 28.6 (9.1)

Average minutes of overtime,
if there is overtime (SD)

58.8 (37.2) 0 (0) 0 (0) 0 (0)

Percentage of days–OR with
overtime (SD)

21.3% (41) 0% (0) 0% (0) 0% (0)

Average waiting days for
non-GES surgeries (SD)

39.4 (3.4) 39.0 (3.7) 35.4 (4.7) 26.3 (5.2)

Average waiting days for
GES surgeries (SD)

24.7 (1.1) 23.2 (1.5) 22.4 (1.6) 15.7 (2.6)

Average waiting days for
GES HNP (SD) opportunity
guarantee = 45 days

29.1 (2.1) 28.6 (2.1) 22.0 (3.0) 16.5 (3.4)

Average waiting days for
TU-ENC (SD) opportunity
guarantee= 25 days

19.0 (1.5) 19.1 (1.5) 22.2 (0.3) 15.0 (1.6)

Average length of waiting list
for non-GES patients (SD)

71.2 (5.0) 73.8 (4.8) 57.7 (4.6) 35.4 (6.7)

Average length of waiting list
for GES patients (SD)

26.4 (1.3) 27.1 (1.3) 20.9 (1.6) 12.0 (2.5)

SD standard deviation
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8 Conclusions

In this paper we have developed an SDPmodel to compute a near-optimal solution for the OR
for the Advanced Scheduling problem, in reasonable times to be used as a regular tool by a
health provider. The problem addresses the issue of patients waiting to be treated, according
to the Hospital de Neurocirugía Dr. A. Asenjo’s physical and organizational conditions. An
important novelty of our model, is the consideration that patients with a subset of diagnoses
defined by the GES plan are referred to the private system when the due date opportunity
guarantee is not satisfied, resulting in additional expenses for the public system. This cost is
model according to a step function that it is different from the cost functions reported in the
literature. We consider a planning horizon of several weeks to take into account the complete
waiting list with the corresponding due dates of all patients and future arrivals. Due to the
extremely large size of the state space of the model, we developed the GES-PROG algorithm
proposed in Sect. 4 to find good approximations to the optimal solution.

The proposed algorithm was studied first in a simplified scenario with only two patholo-
gies, and later in a more realistic simulation game with the collaboration of the OR manager
at Instituto de Neurocirugía. For this purpose, we collected data from 2015 and 2016 to esti-
mate all the relevant parameters of the model. In the simplified situation, we reported results
that show a very good performance even when compared to a lower bound for the objective
function for all the demand load scenarios considered: light, medium, and heavy traffic. The
reported worst-case scenario has only a small increment in the number of referrals compared
to the proposed lower bound.

In the simulation game, the results showed significant improvements in termsof thewaiting
list size and theORovertime. It is important to note that theORmanager has a vast experience,
with more than 9 years at the hospital, and although his scheduling process does a great job
in programming the current week, it does not take into account optimization decisions that
might affect future weeks. Due to this, and other discussed factors, our algorithm is able to
improve all metrics when compared to the solution decided by the OR Manager. Moreover,
flexibility to choose the physician for each patient results in benefits for both the hospital
and the patients, and this is something that could only be done within the framework of our
model.

From a qualitative point of view, the current allocation process at the hospital takes approx-
imately 1.5–2.0h perweek,where six professionalsmeet to set theweekly schedule.Applying
our heuristics takes only a few seconds and provides an excellent initial allocation for the
decisionmakers. This allows them to use their timemore effectively inmedical-related issues,
and it does not rely on the experience of the main physicians. We also note that this process
can be done online, without the physical presence of the actors involved. Due to these bene-
fits, at this stage, we are working closely with the administrators of the hospital to make this
algorithm available as a platform connected with their current information system.

One of the important things we were able to note during the development and testing of
our algorithm, is that variability in surgery times is an important factor that can lead to large
discrepancies between the proposed schedules and the actual realization. Due to this, our
future line of research is on how to add this variability within our models and give robust
schedules that can control the effect of the variance on the overtime and utilization of ORs.
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A Data analysis 2015–2016

A.1 Pathologies characterization

In the following section, we report the analysis performed for the case study in Sect. 7.
Tables 5, 6, and 7 show the arrival rates per pathology, surgery times, and GES parameters,
respectively.

A.2 Waiting list characterization

Figure 4a, b show the number of patients in each waiting time range at the beginning of the
planning horizon for each GES diagnosis. Table 8 contains the number of non-GES patients
on the waiting list at the beginning of the planning horizon.

B Experimental results details

B.1 Simulation based performance analysis

Tables 9 and 10 show the results of the simulations conducted to investigate the effect of
due date changes. The simulations were performed using real values for CA, CB , gA, and gB

Table 5 Arrival rates (*GES pathology)

Code Pathology ID Arrival rate (patients/day)

ANS ANEURYSM 0.341

C-EP EPILEPSY SURGERY 0.060

CRANE CRANIOPLASTY 0.164

ESC SCOLIOSIS 0.103

FIJ-C SPINE FUSION 0.107

HNP LUMBAR DISC* 0.445

ID SHUNTING 0.077

LAM DISCOMPRESSIVE LAMINECTOMY 0.833

R-FIS CSF FISTULA REPAIR 0.515

STC CARPAL TUNNEL SYNDROME 0.141

TU-ES PITUITARY TUMOR 0.097

TU-Q-M MEDULAR CYST 0.489

TU-B-C SKULL BASE TUMOR 0.341

TU-ENC ENCEPHALIC TUMORS* 0.140

Table 6 GES pathology parameters

Code Cost at hospital Cost at referral Opportunity guarantee (days)

HNP 1 2 45

TU-ENC 1 2.9 25
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Fig. 4 Waiting list characterization. a Waiting time histogram in days for HNP. b Waiting time histogram in
days for TU-ENC

Table 8 Number of non-GES
patients on the waiting list

Diagnosis code Number of non-GES patients
on the initial waiting list

AN 20

C-EP 2

CRANE 9

ESC 29

FIJ-C 5

ID 22

LAM 4

R-FIS 9

STC 21

TU-ES 11

TU-Q-M 4

TU-B-C 3

and assuming that all physicians can operate on all pathologies. For each case, we simulated
10years of 30 weeks each and computed the average values for each important metric while
scaling gA in Table 9 and scaling gB in Table 10.

B.2 Performance validation

Tables 11 and 12 show additional details of the case study conducted at Instituto de Neuro-
cirugía to validate the simulation results.
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Table 9 Results for changing gA

Metric/scaling factor 0.1 0.5 0.8 1 1.3 1.5 2

OR utilization (%) 0.093 0.096 0.096 0.096 0.096 0.096 0.096

Average GES patient waiting time (normalized) 0.368 0.138 0.112 0.103 0.094 0.090 0.084

Average GES A patient waiting time (days) 2.621 3.117 3.186 3.186 3.159 3.162 3.186

Average GES B patient waiting time (days) 3.433 3.418 3.418 3.418 3.418 3.418 3.418

Average GES referrals 0 0 0 0 0 0 0

Average number of patients served 9.58 10 10 10 10 10 10

Average number of patients assigned
by the advance schedule

9.58 10 10 10 10 10 10

Gap (GES-PROG/lower bound) 0 0 0 0 0 0 0

Table 10 Results for changing gB

Metric/scaling factor 0.1 0.5 0.8 1 1.3 1.5 2

OR utilization (%) 0.065 0.094 0.096 0.096 0.096 0.096 0.096

Average GES patient waiting time (normalized) 0.371 0.159 0.119 0.103 0.087 0.080 0.070

Average GES A patient waiting time (days) 3.530 3.159 3.184 3.186 3.186 3.186 3.186

Average GES B patient waiting time (days) 1.713 3.168 3.405 3.418 3.367 3.373 3.418

Average GES referrals 0 0 0 0 0 0 0

Average number of patients served 7.503 9.813 9.97 10 10 10 10

Average number of patients assigned
by the advance schedule

7.503 9.813 9.97 10 10 10 10

Gap (GES-PROG/lower bound) 0 0 0 0 0 0 0

Table 11 OR Manager performance with assigned patient–physician pairs

Week Total number
of surgeries

% GES (h)
surgeries (%)

Referrals Overtime (h) OR capacity
utilization (%)

1 33 31 0 3.5 87

2 27 41 0 1.5 82

3 31 39 0 1.4 89

4 35 27 0 4.3 91

5 32 18 0 3.7 88

6 29 13 0 1.4 85

7 29 25 0 1.1 85

8 31 44 0 2.5 91

9 29 25 0 1.6 91

10 31 38 0 0.6 86

11 28 44 0 1.3 89

12 30 37 0 2.9 81

13 29 25 0 2.0 91

14 33 30 0 2.0 91

15 30 43 0 0.7 91
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Table 12 GES-PROG performance with assigned patient–physician pairs

Week Total number
of surgeries

% GES
surgeries (%)

Referrals Overtime (h) OR capacity
utilization (%)

1 43 22 0 0 90

2 33 26 0 0 88

3 32 45 0 0 94

4 32 31 0 0 92

5 31 31 0 0 96

6 28 10 0 0 88

7 26 22 0 0 92

8 39 28 0 0 96

9 30 45 0 0 94

10 29 39 0 0 89

11 32 32 0 0 95

12 32 43 0 0 95

13 27 36 0 0 85

14 30 37 0 0 84

15 27 39 0 0 95
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