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hyperbolicity on the half line can be written as diagonal system with a perturbation 
which is small enough. Moreover we show that the diagonal terms are contained in 
the nonuniform exponential dichotomy spectrum. For this purpose we introduce the 
concepts of nonuniform almost reducibility and nonuniform contractibility which 
are generalizations of these notions originally defined in a uniform context.
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1. Introduction

Given a linear operator T , to find an ordered basis in which T assumes an especially simple form is a 
classic problem in linear algebra. When we are working in finite dimensional spaces, this problem has a 
strong relation with the study of the dynamics of a linear differential equation

ẋ = A(t)x, (1)

where x ∈ Rn and t ∈ J with J ⊆ R an interval.

1.1. Autonomous and nonautonomous contexts

When A(t) = A, the knowledge of the real part of eigenvalues of A allows us to construct the stable and 
unstable invariant manifolds and the resulting canonical form of A gives some insights into the form of the 
solutions of (1).
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In a nonautonomous context, the problem of finding a simpler form of the matrix A(t) and as a conse-
quence to study the qualitative behavior of (1) is a more delicate task. In fact, contrarily to the autonomous 
case, the eigenvalues analysis does not always allow any conclusion over the stability of the solutions, and 
thus an alternative focusing must be considered.

The first approach in this direction was given by G. Floquet [9], which established that a periodic system 
can be transformed into a constant coefficients system. Floquet’s result can be seen as an example of the 
properties of kinematical similarity and reducibility, which refers that a linear system (1) can be transformed 
into

ẏ = B(t)y (2)

through a coordinate change x = L(t)y, where the invertible matrix function L(t) is known as Lyapunov 
transformation.

The problem in order to obtain a simpler form of (1) has been tackled by using the concept of reducibility
by O. Perron in [16], which proves that (1) can be reduced via unitary transformation to a system (2) where 
B(t) has a triangular form whose diagonal coefficients are real. Moreover, under subtle technical conditions 
it can be proved that B(t) has a block–triangular form consisting of blocks whose diagonal coefficients are 
real.

We have mentioned that an eigenvalues–based approach has several shortcomings and is not an adequate 
tool to cope with stability issues in the nonautonomous framework. A tool that emulates the role of the 
eigenvalues in this context was developed in terms of the property of uniform exponential dichotomy (a type 
of nonautonomous hyperbolicity), namely, the Sacker–Sell spectrum associated to (1), which is the set

σ(A) := {λ ∈ R : ẋ = (A(t) − λI)x has not uniform exponential dichotomy on J ⊂ R}.

This spectrum plays a fundamental role in a better localization of diagonal terms when the system (1) can 
be transformed to a diagonal one. In fact, B. F. Bylov in [4] introduced the notion of almost reducibility, i.e., 
reducibility with a negligible error and he proved that any linear system is almost reducible to some diagonal 
system with real coefficients. Later, F. Lin in [14] improves the Bylov’s result by proving that the diagonal 
coefficients are contained in the Sacker–Sell Spectrum. Moreover, F. Lin proved that this spectrum is the 
minimal compact set where the diagonal terms belong to, this phenomenon is known as the contractibility
of a linear system.

We emphasize that these concepts of reducibility and almost reducibility also have a vast literature as 
well as in the uniform hyperbolicity ([8], [12]) or in Schrödinger operators [10].

1.2. Structure and novelty of the article

The section 2 introduces the concepts of nonuniformly almost reducible and nonuniformly contractible
systems, both notions are the generalizations of the ideas of almost reducibility and contractibility previously 
mentioned. Instead of using the set σ(A), we use the spectrum of the nonuniform exponential dichotomy
introduced in [7,22]. The main result of section 3 states that if the linear system (1) verifies a subtle 
condition of nonuniform hyperbolicity on J = R+

0 , then this system is nonuniformly contracted to the 
spectrum of nonuniform exponential dichotomy (a formal definition will be given later). The section 4 deals 
with preparatory Lemmas in order to obtain the main result, which is proved in the section 5. Finally, in 
section 6, we give an scalar and planar applications of our principal theorem.

Our main result is a generalization of the Lin’s work in [14]. In spite that our proof follows the lines of 
that article, it is worth to stressing that, compared with the uniform case, the nonuniform behavior of the 
solutions of (1) combined with our restriction to J = R+

0 arises technical subtleties and bulky technicalities 
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(namely conditions (C1)–(C4) in the section 5) in order to obtain the desired result, which deserve interest 
on itself.

2. Preliminaries

We consider the linear system (1) with x as a column vector of Rn and t �→ A(t) ∈ Rn×n the matrix 
function with the following properties:

(P1) There exists a couple of positive numbers μ, M > 0, such that

‖A(t)‖ ≤ M exp(μt)

for any t ∈ R+
0 .

(P2) The evolution operator Φ(t, s) of (1) has a nonuniformly bounded growth ([22]); namely, there exist 
constants K0 ≥ 1, a ≥ 0 and ε̄ ≥ 0 such that

‖Φ(t, s)‖ ≤ K0 exp(a |t− s| + ε̄s), t, s ∈ R+
0 ,

where ‖·‖ denotes a matrix norm and

x(t) = Φ(t, s)x(s), Φ(t, s)Φ(s, τ) = Φ(t, τ), for all t, s, τ ∈ R+
0 .

The purpose of this article is to study the nonuniform contractibility or nonuniform almost reducibility 
to a diagonal system. Namely, the δ-nonuniform kinematical similarity of (1) to

ẏ = U(t)y, (3)

where U(t) = C(t) + B(t); C(t) is a diagonal matrix and B(t) has smallness properties which will be 
explained later.

Definition 1. ([22]) The system (1) is nonuniformly kinematically similar (resp. δ−nonuniformly kinemat-
ically similar with a fixed δ > 0) to (3) if there exist an invertible transformation S(t) (resp. Sδ(t)) and 
υ ≥ 0 satisfying

‖S(t)‖ ≤ Mυ exp(υt) and
∥∥S−1(t)

∥∥ ≤ Mυ exp(υt)

or respectively

‖S(δ, t)‖ ≤ Mυ,δ exp(υt) and
∥∥S−1(δ, t)

∥∥ ≤ Mυ,δ exp(υt),

such that the change of coordinates y(t) = S−1(t)x(t) (resp. y(t) = S−1
δ (t)x(t)) transforms (1) into (3), 

where

U(t) = S−1(t)A(t)S(t) − S−1(t)Ṡ(t), (4)

for any t ∈ R+
0 .

Remark 1. The nonuniform kinematical similarity preserves nonuniformly growth bounded. In fact, if (1)
and (3) are nonuniform kinematically similar through of the function S(·) and their respective evolution 
operators are Φ1(t, s) and Φ2(t, s), then by lemma 3.1 in [22] we have the invariance property
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Φ1(t, s)S(s) = S(t)Φ2(t, s) for all t, s ∈ R+
0 ,

and if ‖Φ1(t, s)‖ ≤ K0 exp(a |t− s| + ε̄ |s|), then we verify that

‖Φ2(t, s)‖ ≤
∥∥S−1(t)

∥∥ ‖S(s)‖ ‖Φ1(t, s)‖
≤ Mυ exp(υt)Mυ exp(υs)K0 exp(a|t− s| + ε̄s),

and finally, we obtain that

‖Φ2(t, s)‖ ≤ M2
υK0 exp((υ + a)|t− s| + (2υ + ε̄)s).

As we said previously, the concept of almost reducibility was introduced in the 60’s by B. F. Bylov in the 
continuous context. A discrete version of this notion was given by Á. Castañeda and G. Robledo (see [5]).

Now we introduce the definition of nonuniformly almost reducible, which is a version of the previous 
concept in the nonuniform framework.

Definition 2. The system (1) is nonunifomly almost reducible to

ẏ = C(t)y,

if for any δ > 0 and ε ≥ 0, there exists a constant Kδ,ε ≥ 1 such that (1) is δ−nonuniformly kinematically 
similar to

ẏ = [C(t) + B(t)]y, with ‖B(t)‖ ≤ δKδ,ε

for any t ∈ R+
0 .

Remark 2.

(i) It is appropriate to say that the parameter ε represents the nonuniform part in the definition of nonuni-
form exponential dichotomy of the linear system (1), as will be seen in the examples that will be 
presented at the end of this work.

(ii) In the case when C(t) is a diagonal matrix, if Kδ,ε = 1, it is said that (1) is almost reducible to a 
diagonal system and it was proved by B.F. Bylov in [4] that any continuous linear system satisfies this 
property and the components of C(t) are real numbers.

The concept of almost reducibility to diagonal system was rediscovered and improved in the 90’s by F. 
Lin in [14], who introduces the concept of contractibility in the continuous context, while in the discrete 
case was proposed in [5]. In this paper we introduce its nonuniform version.

Definition 3. The system (1) is nonuniformly contracted to the compact subset E ⊂ R if is nonuniformly 
almost reducible to a diagonal system

ẏ = Diag(C1(t), . . . , Cn(t))y,

where Ci(t) ∈ E, for any t ∈ R+
0 .

It is worth to emphasize that while Bylov’s result only says that the diagonal components are real num-
bers, Lin’s definition provides explicit localization properties, as the fact that a compact set is contractible 
if it is the minimal compact set such that the system (1) can be contracted.
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In the continuous and discrete cases, the concept of contractibility has been applied in some results of 
topological equivalence and almost topological equivalence respectively (see [15], [6]). The major contribution 
of [14] is to prove that the contractible set of a linear system (1) is its Sacker and Sell Spectrum (see [18]). 
Mimicing the construction of that spectrum, S. Siegmund in [19] defines the nonuniform spectrum Σ(A) (a 
formal definition will be given later). To the best of our knowledge, there exists no result in the nonuniform 
framework and the purpose of this article is to obtain condition for the nonuniform contractibility of (1) to 
Σ(A) by following some lines of Lin’s work in [14].

3. Main result: nonuniform almost reducibility to diagonal systems and nonuniform spectrum

3.1. Dichotomy and nonuniform spectrum

In this section we recall the concept of nonuniform exponential dichotomy introduced by L. Barreira and 
C. Valls in [1] and its associated spectrum with some properties.

Definition 4. ([1], [7], [22]) The system (1) has a nonuniform exponential dichotomy on J ⊂ R if there exist 
an invariant projector P (·), constants K ≥ 1, α > 0 and ε ≥ 0 such that

‖Φ(t, s)P (s)‖ ≤ K exp(−α(t− s) + ε |s|), t ≥ s, t, s ∈ J,

‖Φ(t, s)(I − P (s))‖ ≤ K exp(α(t− s) + ε |s|), t ≤ s, t, s ∈ J.
(5)

Remark 3. We have the following comments with respect to this nonuniform dichotomy:

1. In the definition of nonuniform exponential dichotomy the condition ε < α appears in [7] and [22], 
allowing them to show their respective technical results. Our definition is inspired in the work of Y. Xia 
et al. [21].

2. It is considered a projector P (t) that satisfies the equation

P (t)Φ(t, s) = Φ(t, s)P (s)

and it is invariant in the following sense

dim(Ker(P (t))) = dim(Ker(P (s))),

for all t, s ∈ J .

Definition 5. ([7], [22]) The nonuniform spectrum (also called nonuniform exponential dichotomy spectrum) 
of (1) is the set Σ(A) of λ ∈ R such that the system

ẋ = [A(t) − λI]x (6)

has not nonuniform exponential dichotomy on R+
0 .

Remark 4. The evolution operator of (6) is Φλ(t, s) = exp(−λ(t − s))Φ(t, s). Moreover, if λ /∈ Σ(A), then 
there exist constants K ≥ 1, α > 0, ε ≥ 0 and an invariant projector P (t) such that Φλ(t, s) satisfies the 
following estimations for t, s ∈ J :

‖exp(−λ(t− s))Φ(t, s)P (s)‖ ≤ K exp(−α(t− s) + ε |s|), t ≥ s,

‖exp(λ(t− s))Φ(t, s)(I − P (s))‖ ≤ K exp(α(t− s) + ε |s|), t ≤ s.
(7)



6 Á. Castañeda, I. Huerta / J. Math. Anal. Appl. 485 (2020) 123822
Remark 5. If λ /∈ Σ(A), then λ belongs to the resolvent set of A, which is denoted by ρ(A).

The following result allows us to give a better description of the spectrum when the evolution operator 
of system (1) has a nonuniformly bounded growth.

Proposition 1. ([2], [13], [19], [21], [22]) If the evolution operator of (1) satisfies (P2), then its nonuniform 
spectrum Σ(A) is the union of m compact intervals where 0 < m ≤ n, namely,

Σ(A) =
m⋃
i=1

[ai, bi], (8)

with −∞ < a1 ≤ b1 < . . . < am ≤ bm < +∞.

Remark 6. Notice that in [2, Theorem 5] this result is done in the discrete framework with J = N. While 
that the rest of references are immersed in the continuous context. For more details see [13, Theorem 5.12], 
[19, Theorem 3.1], [21, Corollary 1.8] and [22, Theorem 1.2].

The following result allows us to characterize the nonuniformly bounded growth of the evolution operator 
associated to (1) from subtle hypothesis of its nonuniform spectrum.

Proposition 2. Suppose that the system (1) has spectrum Σ(A) = [a, b], then its evolution operator Φ(t, s)
satisfies (P2).

Proof. Let γ, λ ∈ ρ(A) such that γ < a ≤ b < λ, then we have that the system

ẋ = (A(t) − γI)x

has a nonuniform exponential dichotomy with projector P (t) = 0. On the other hand, the system

ẋ = (A(t) − λI)x

has a nonuniform exponential dichotomy with projector P (t) = I.
Therefore there exist α1, α2, > 0, ε1, ε2 ≥ 0, K1, K2 ≥ 1 such that satisfies

‖Φ(t, s)‖ ≤ K1 exp((γ + α1)(t− s) + ε1s) (t ≤ s),

‖Φ(t, s)‖ ≤ K2 exp((λ− α2)(t− s) + ε2s) (t ≥ s).

Now we define a = max {0,−γ − α1, λ− α2}, ε = max {ε1, ε2} and K = max {K1,K2} which allow to 
conclude that

‖Φ(t, s)‖ ≤ K exp(a|t− s| + εs) (t, s ∈ R+
0 ). �

An important property of the spectrum is its decompose when the system is diagonal, as we can see in 
the following lemma. We point out that this result will be useful in the last section when we give planar 
example of our main result.

Lemma 1. Consider the system (3) where U is written as

U(t) =
(
U1(t) 0

0 U (t)

)
(9)
2
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where U1 : R+
0 → Mn1(R), U2 : R+

0 → Mn2(R), therefore the spectra satisfy

Σ(U) = Σ(U1) ∪ Σ(U2). (10)

Proof. If λ ∈ (ρ(U1) ∩ ρ(U2)), then the systems

ẋ1 = (U1(t) − λI)x1

and

ẋ2 = (U2(t) − λI)x2

with evolution operators Φλ,1(t, s) and Φλ,2(t, s) respectively, have a nonuniform exponential dichotomy, i.e., 
there exist constants K1, K2 ≥ 1, αi > 0, μi ≥ 0, for i ∈ {1, 2} and P1 : R+

0 → Mn1(R), P2 : R+
0 → Mn2(R)

its invariant projectors respectively, satisfying{
‖Φλ,i(t, s)Pi(s)‖ ≤ Ki exp(−αi(t− s) + μis), t ≥ s,

‖Φλ,i(t, s)(I − Pi(s))‖ ≤ Ki exp(αi(t− s) + μis), t ≤ s.

If we consider the evolution operator of system ẋ = (U(t) − λI)x and an invariant projection as follows

Φλ(t, s) = diag(Φλ,1(t, s),Φλ,2(t, s)) and P (t) = diag(P1(t), P2(t)) (11)

and constants K = max {K1,K2} , α = min {α1, α2} and μ = max {μ1, μ2}, then we have
{

‖Φλ(t, s)P (s)‖ ≤ K exp(−α(t− s) + μs), t ≥ s,

‖Φλ(t, s)(I − P (s))‖ ≤ K exp(α(t− s) + μs), t ≤ s,
(12)

therefore λ ∈ ρ(U).
If λ ∈ ρ(U), then the system ẋ = (U(t) −λI)x admits a nonuniform exponential dichotomy, which implies 

that it is satisfied (12). We can write Φλ(t, s) and P (t) as in (11) and we can get the following estimates:

‖Φλ,i(t, s)Pi(s)‖ ≤ ‖Φλ(t, s)P (s)‖ ≤ K exp(−α(t− s) + μs),
‖Φλ,i(t, s)(I − Pi(s))‖ ≤ ‖Φλ(t, s)(I − P (s))‖ ≤ K exp(α(t− s) + μs),

for t ≥ s and t ≤ s respectively, which implies that λ ∈ (ρ(U1) ∩ ρ(U2)). �
Remark 7. If λ /∈ Σ(A), it follows from Definition 5 that (6) has a nonuniform exponential dichotomy on 
R+

0 with projector Pλ. Nevertheless, it is interesting to note that:

a) Rank(Pλ) is constant for any λ ∈ (bi−1, ai) (i ∈ {1, . . . , m}).
b) If λi ∈ (bi−1, ai) and λi+1 ∈ (bi, ai+1), then Rank(Pλi

) < Rank(Pλi+1).
c) Rank(Pλ) = 0 for any λ ∈ (−∞, ai) and Rank(Pλ) = n for any λ ∈ (bm, +∞).

3.2. Main result

The main goal of this article is to prove the following result.

Theorem 1. If (P1)-(P2) are satisfied, then (1) is nonuniformly contracted to Σ(A).

In the next section, we will give the technical results which allow us to prove this Theorem.
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4. Preparatory results

The nonuniform kinematical similarity between (1) and (3) will be denoted by A ∼= U . Let us recall that 
nonuniform kinematical similarity is an equivalence relation having several properties.

Lemma 2. If A ∼= B, then A − λI ∼= B − λI for any λ ∈ R.

Proof. If A ∼= B by the transformation y(t) = S−1(t)x(t), then S(t) satisfies

B(t) = S−1(t)A(t)S(t) − S−1(t)Ṡ(t).

It is straightforward to see that

(B(t) − λI) = S−1(t)(A(t) − λI)S(t) − S−1(t)Ṡ(t),

then A(t) − λI ∼= B(t) − λI. �
Lemma 3. If A ∼= B, then Σ(A) = Σ(B).

Proof. Let λ ∈ ρ(A) then the system

ẋ = [A(t) − λI]x

has a nonuniform exponential dichotomy on R+
0 with invariant projector P(t).

We define ΦB(t, s) = S−1(t)ΦA(t, s)S(t) which corresponds to the evolution operator associated to the 
system

ẏ = [B(t) − λI]y

and an invariant projector is Q(t) = S−1(t)P (t)S(t).
This fact combined with the submultiplicative property of norms and the estimates for S and S−1 allow 

us to prove that if t ≥ s (the case t ≤ s can be proved similarly), then we deduce the estimation

‖ΦB(t, s) exp(−λ(t− s))Q(s)‖ ≤
∥∥S−1(t)

∥∥ ‖ΦA(t, s) exp(−λ(t− s))P (s)‖ ‖S(s)‖
≤ Mυ exp(υt)K exp(−α(t− s) + εs)Mυ exp(υs).

Finally, if α > υ, then λ ∈ ρ(B). In order to prove the other contention, we use the fact that ∼= is an 
equivalence relation. �
Proposition 3. If Σ(A) ⊂ [a, b] and λ > b (resp. or λ < a) the system

ẋ = (A(t) − λI)x

has a nonuniform exponential dichotomy with projector P (t) = I (resp. with projector P (t) = 0).

Proof. By condition (P2) we have that the evolution operator satisfies

‖Φ(t, s)‖ ≤ K0 exp(L |t− s| + ε̄ |s|), t, s ∈ R+
0 .
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Now, we consider λ > b. Let h = max {L + 1 + ε̄, λ + 1 + ε̄} and

Φh(t, s) = Φ(t, s) exp(−h(t− s)),

then we obtain the following estimation

‖Φh(t, s)‖ = ‖Φ(t, s)‖ exp(−h(t− s)) ≤ K0 exp(L(t− s) + ε̄|s| − h(t− s)), (t ≥ s).

Assuming this, now we define α = h − L > ε̄ and the previous equation becomes

‖Φh(t, s)‖ ≤ K0 exp(−α(t− s) + ε̄|s|) (t ≥ s),

which implies that the system

ẋ = (A(t) − hI)x

has a nonuniform exponential dichotomy with projector P (t) = I and [λ, h] ⊂ ρ(A).
By using Remark 7, the system

ẋ = (A(t) − λI)x

also has a nonuniform exponential dichotomy with projector P (t) = I.
For λ < a the proof is similar considering h = min {−(L + 1 + ε̄), (λ− 1 − ε̄)}. �
The following result has been proved by X. Zhang and J. Chu et al. by using the condition (P2).

Proposition 4. ([7,22]) If the system (1) satisfies (P1)–(P2) then its spectrum is as in (8) and there exist 
m+2 matrix functions Bi : R → Mni

(R) such that

‖Bi(t)‖ ≤ Mi exp(μit) with μi,Mi > 0 (13)

where Σ(Bi) = [ai, bi] with i ∈ {1, . . . , m} and Σ(B0) = Σ(Bm+1) = ∅ such that (1) is nonuniformly 
kinematically similar to

ẏ = Diag(B0(t), B1(t), . . . , Bm(t), Bm+1(t))y. (14)

Remark 8. In our case the blocks B0(t) and Bm+1(t) are omitted due to their dimensions N0 and Nm+1
respectively are 0 (for more details, see [20, Theorem 3.2]).

In [17] it is introduced the concept of diagonal significance which is fundamental in order to obtain the 
almost reducibility in the case of exponential dichotomy [5, Proposition 4] in a discrete context.

We point out that in [3] the concept of diagonal significance is studied in the continuous framework. In 
our case this condition it is not necessary. However, in the case of nonuniform exponential dichotomy the 
condition of diagonal significance is still open.

The following result is inspired by F. Lin [14], which mention a property about the spectrum of the upper 
triangular systems.

Proposition 5. Let C(t) be an upper triangular n × n-matrix function such that Σ(C) = [a, b], then

n⋃
i=1

Σ(cii) ⊂ Σ(C),

where cii(t) are the diagonal coefficients of C(t).
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Proof. Let λ /∈ Σ(C) = [a, b] such that λ > b. By Proposition 3, we have that the upper triangular system

ẋ = (C(t) − λI)x, (15)

has a nonuniform exponential dichotomy with projector P (t) = I. That is, the evolution operator of (15), 
namely Φλ(t, s), satisfies

‖Φλ(t, s)‖ ≤ Kλ exp(−αλ(t− s) + ελ|s|) (t ≥ s).

Now for each i ∈ {1, . . . , n}, we have the following estimate

exp

⎛
⎝ t∫

s

(cii(r) − λ)dr

⎞
⎠ ≤ ‖Φλ(t, s)‖ ≤ Kλ exp(−αλ(t− s) + ελ|s|) (t ≥ s),

and we conclude that the diagonal systems

ẋi = (cii(t) − λ)xi

have a nonuniform exponential dichotomy with projector P (t) = 1 (scalar systems), which implies that 
λ /∈

⋃n
i=1 Σ(cii).

The case λ < a can be proved analogously, thus 
⋃n

i=1 Σ(cii) ⊂ Σ(C). �
5. Proof of main results

5.1. Proof of Theorem 1

The proof will be made in several steps, whose ideas are inspired by the work developed by F. Lin in [14]:
Step 1): The system (1) is nonuniform kinematically similar to an upper triangular system: By Proposi-

tion 1, there exists a positive integer m ≤ n such that:

Σ(A) =
m⋃
i=1

[ai, bi], with −∞ < a1 ≤ b1 < . . . < am ≤ bm < +∞.

The Proposition 4 says that the systems (1) and (14) are nonuniformly kinematically similar, where Bi(t)
are matrix function of order ni × ni satisfying (13) and Σ(Bi) = [ai, bi] with i ∈ {1, . . . , m}. Now, by using 
the method of QR factorization, we know that, for each i ∈ {1, . . . , m}, the system

ẋi = Bi(t)xi (16)

is kinematically similar (see Definition 1 with υ = 0) to

ẏi = Di(t)yi, (17)

where Di(t) is a upper triangular ni × ni-matrix function such that

‖Di(t)‖ ≤ Ni exp(ςit) and Σ(Di) = [ai, bi]

Step 2): Nonuniform exponential dichotomy of scalar differential equation: From now on, the diagonal 
terms of the upper triangular matrix Di described in (17) will be denoted by 

{
d
(i)
rr

}ni

r=1
, where i is a fixed 

element of {1, . . . ,m}. Now, by Proposition 5, we have
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ni⋃
r=1

Σ(d(i)
rr ) ⊂ Σ(Di).

By Proposition 3, for any δ > 0 there exists Mδ = δ
m > 0 such that the scalar differential equation

ẋ =
[
d(i)
rr (t) − (ai −Mδ)

]
x (18)

has a nonuniform exponential dichotomy on R+
0 with projector P (t) = 0 and

ẋ =
[
d(i)
rr (t) − (bi + Mδ)

]
x (19)

has a nonuniform exponential dichotomy on R+
0 with projector P (t) = 1. In consequence, there exist β ≥ 1, 

α > 0, ε ≥ 0 and in this case we need the condition α > ε, such that
{

| exp(Φ(t, s))| ≤ β exp(α(t− s) + εs) (t ≤ s),
| exp(Ψ(t, s))| ≤ β exp(−α(t− s) + εs) (t ≥ s),

(20)

where

exp(Φ(t, s)) = exp

⎛
⎝ t∫

s

(d(i)
rr (τ) − (ai −Mδ))dτ

⎞
⎠ ,

and

exp(Ψ(t, s)) = exp

⎛
⎝ t∫

s

(d(i)
rr (τ) − (bi + Mδ))dτ

⎞
⎠ ,

are the evolution operators of (18) and (19) respectively.
Step 3): Upper and lower bounds for (20): For any fixed i ∈ {1, . . . ,m}, there exist two functions c(i)r and 

λ
(i)
r such that

ai ≤ c(i)r (t) ≤ bi and |λ(i)
r (t)| ≤ Mδ for any t ∈ R+

0 (21)

and there exist Δ̄, υ ≥ 0 verifying
∣∣∣∣∣∣

t∫
0

[d(i)
rr (τ) − (c(i)r (τ) + λ(i)

r (τ))]dτ

∣∣∣∣∣∣ ≤ Δ̄ + υt, if t ≥ 0 (22)

for any r ∈ {1, . . . , ni}.
We will construct a strictly increasing and unbounded sequence of real numbers 

{
T

(i)
l

}+∞

l=0
satisfying 

T
(i)
0 = 0 such that the function c(i)r , λ(i)

r : R+
0 → R defined by:

c(i)r (t) =
{

ai if t ∈ [T (i)
q , T

(i)
q+1) (q = 0, 2, 4, . . . )

bi if t ∈ [T (i)
q+1, T

(i)
q+2)

and
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λ(i)
r (t) =

{
−Mδ if t ∈ [T (i)

q , T
(i)
q+1) (q = 0, 2, 4, . . . )

Mδ if t ∈ [T (i)
q+1, T

(i)
q+2)

satisfy properties (21) and (22) on R+
0 .

It is straightforward to see that (21) is always satisfied. In order to verify (22), we interchange t by s in 
the first inequality of (20), then we have:

{
Φ(t, s) ≥ α(t− s) − εt− ln(β) (t ≥ s),

Ψ(t, s) ≤ −α(t− s) + εs + ln(β) (t ≥ s).
(23)

By using induction, we will verify that there exists a sequence 
{
T

(i)
l

}+∞

l=0
satisfying (22). In order to 

start, by the Proposition 2 combined with the fact that

exp

⎛
⎝ t∫

s

d(i)
rr (τ)dτ

⎞
⎠ ≤ ‖ΦDi

(t, s)‖ ,

where ΦDi
(t, s) is the evolution operator of the system (17), there exist constants ā ≥ 0, ε̄ ≥ 0 and K ≥ 1

such that the following inequality is satisfied

t∫
s

d(i)
rr (τ)dτ ≤ ā|t− s| + ε̄s + ln(K). (24)

Then, by using the equation (24) we have that

Φ(t, s) ≤ ā(t− s) + ε̄s + ln(K) + |ai|(t− s) + Mδ(t− s). (25)

On the other hand, by (23) we obtain

t∫
s

d(i)
rr (τ)dτ ≥ α(t− s) − εt + ai(t− s) −Mδ(t− s) − ln(β), (26)

and by using the last expression we deduce that

Ψ(t, s) ≥ (−α− (bi − ai) − 2Mδ)(t− s) − εt− ln(β). (27)

By the equations (23), (25) and (27) we have the following estimates
{

Φ(t, s) ≥ (α− ε)(t− s) − εs− ln(β) (t ≥ s),

Φ(t, s) ≤ (ā + |ai| + Mδ + ε̄)(t− s) + ε̄s + ln(K) (t ≥ s),
(28)

and {
Ψ(t, s) ≤ −(α− ε)(t− s) + εs + ln(β) (t ≥ s),
Ψ(t, s) ≥ (−ε− (bi − ai) − 2Mδ)(t− s) − εs− ln(β) (t ≥ s).

(29)

Now we will introduce constants and conditions that allow us to obtain the desired result (these conditions
are inherent in the nonuniform framework).

Let N, ξ, p, ξ̄, p̄ ∈ R constants that satisfy:
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(C1) 0 < N < min {α− ε, ā + |ai| + Mδ + ε̄}.
(C2) max {ln(K), ln(β)} < p = −p̄.
(C3) 0 ≤ max {ε̄, ε} ≤ −ξ̄ ≤ ξ.

If s = 0 in the first inequality of (28), then we obtain

Φ(t, 0) ≥ (α− ε)t− ln(β), t ≥ 0,

which implies that Φ(t, 0) is unbounded in R+
0 . In consequence, given N, ξ, p ∈ R, there exists T (i)

1 > 0 such 
that {

Φ(T (i)
1 , 0) = N(T (i)

1 − 0) + ξ0 + p,

Φ(t, 0) < N(t− 0) + ξ0 + p (0 ≤ t < T
(i)
1 ).

(30)

Now we consider the value ξ̄T (i)
1 + p̄ and

T
(i)
2 = min

{
ω ∈ R+

0 : Ψ(ω, T (i)
1 ) = −N(T (i)

1 − 0) − ξ0 − p
}
,

with T (i)
2 > T

(i)
1 . Consequently we will calculate the slope of the straight line that joins the points ξ̄T (i)

r1 + p̄

and −N(T (i)
r1 −0) −ξ0 −p, which we will denote by N̄ . Moreover, N̄ satisfies the following technical condition:

(C4) max {−(α− ε),−(ε + (bi − ai) + 2Mδ)} < N̄ .

Therefore we have that the calculation of slope of the line N̄ is as follows

N̄ = (−N(T (i)
1 − 0) − ξ0 − p) − (ξ̄T (i)

1 + p̄)
T

(i)
2 − T

(i)
1

,

N̄ = −N(T (i)
1 − 0) − ξ0) − ξ̄T

(i)
1

T
(i)
2 − T

(i)
1

.

Due to the conditions (C1) and (C3), we have that N̄ ≤ 0. In this way, we consider the straight line 
N̄(t − T

(i)
1 ) + ξ̄T1 + p̄.

Based on the above and the equation (29), if s = T
(i)
1 , then there exists T (i)

2 > T
(i)
1 such that

{
Ψ(T (i)

2 , T
(i)
1 ) = N̄(T (i)

2 − T
(i)
1 ) + ξ̄T1 + p̄,

Ψ(t, T (i)
1 ) > N̄(t− T

(i)
1 ) + ξ̄T

(i)
1 + p̄ (T (i)

1 ≤ t < T
(i)
2 ).

(31)

By (28) and (30) we obtain that for t ∈ [0, T (i)
1 )

−εt− ln(β) −Nt− ξt− p ≤
t∫

0

(d(i)
rr (τ) − (c(i)r (τ) + λ(i)

r (τ)))dτ ≤ −N̄t− ξ̄t− p̄.

In fact, we have

εt− ln(β) − (−N̄t− ξ̄t− p̄) ≤ −εt− ln(β),

also by the equation (28) we have
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−εt− ln(β) ≤
t∫

0

(d(i)
rr (τ) − (ai −Mδ))dτ,

then by the equation (30) we can see that

t∫
0

(d(i)
rr (τ) − (ai −Mδ))dτ < N(t− 0) + ξ0 + p

and finally,

N(t− 0) + ξ0 + p ≤ Nt + ξt + p.

On the other hand, from the equations (29) and (31), we have for t ∈ [T (i)
1 , T (i)

2 )

εt + ln(β) + Nt + ξt + p ≥
t∫

T
(i)
1

(d(i)
rr (τ) − (c(i)r (τ) + λ(i)

r (τ)))dτ ≥ −(−N̄t− ξ̄t− p̄).

Similarly to the previous estimations, we have that

εt + ln(β) + Nt + ξt + p ≥ εt + ln(β),

by the equation (29) we have

εt + ln(β) ≥
t∫

T
(i)
1

(d(i)
rr (τ) − (bi + Mδ))dτ,

and then by the equation (31)

t∫
T

(i)
1

(d(i)
rr (τ) − (bi + Mδ))dτ > N̄(t− T

(i)
1 ) + ξ̄T

(i)
1 + p̄ ≥ −(−N̄t− ξ̄t− p̄).

Thus for t ∈ [0, T (i)
2 )

∣∣∣∣∣∣
t∫

0

(d(i)
rr (τ) − (c(i)r (τ) + λ(i)

r (τ)))dτ

∣∣∣∣∣∣ ≤ 2εt + 2 ln(β) + 2 max
{
Nt + ξt + p,−N̄t− ξ̄t− p̄

}
.

As inductive hypothesis, we will assume that there exists 2m + 1 numbers

0 = T
(i)
0 < T

(i)
1 < T

(i)
2 < · · · < T

(i)
2m−1 < T

(i)
2m

such that (21) is satisfied and for t ∈ [0, T (i)
2m)

∣∣∣∣∣∣
t∫
(d(i)

rr (τ) − (c(i)r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣∣∣ ≤ 2εt + 2 ln(β) + 2 max
{
Nt + ξt + p,−N̄t− ξ̄t− p̄

}
.

0
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By using the first inequality of (28) and considering s = T
(i)
2m, we have that

Φ(t, T (i)
2m) ≥ (α− ε)(t− T

(i)
2m) − εT

(i)
2m − ln(β)

is unbounded for any t > T
(i)
2m. Then, there exists T (i)

2m+1 > T
(i)
2m such that

{
Φ(T (i)

2m+1, T
(i)
2m) = N(T (i)

2m+1 − T
(i)
2m) + ξT

(i)
2m + p,

Φ(t, T (i)
2m) < N(t− T

(i)
2m) + ξT

(i)
2m + p (T (i)

2m ≤ t < T
(i)
2m+1).

(32)

Now we consider the value ξ̄T (i)
2m+1 + p̄ and

T
(i)
2m+2 = min

{
ω ∈ R+

0 : Ψ(ω, T (i)
2m+1) = −N(T (i)

2m+1 − T
(i)
2m) − ξT

(i)
2m − p

}
,

with T (i)
2m+2 > T

(i)
2m+1. As before, let N̄ be the slope of the straight line joining the points

ξ̄T
(i)
2m+1 + p̄ and −N(T (i)

2m+1 − T
(i)
2m) − ξT

(i)
2m+1 − p.

By the conditions (C1), (C2) and (C3) we have N̄ ≤ 0. In this way, we consider the straight line

N̄(t− T
(i)
2m+1) + ξ̄T

(i)
2m+1 + p̄.

Combining the above straight line together with the equation (29), we can see that if s = T
(i)
2m+1, then 

there exists T (i)
2m+2 > T

(i)
2m+1 such that

{
Ψ(T (i)

2m+2, T
(i)
2m+1) = N̄(T (i)

2m+2 − T
(i)
2m+1) + ξ̄T2m+1 + p̄,

Ψ(t, T (i)
2m+1) > N̄(t− T

(i)
2m+1) + ξ̄T

(i)
2m+1 + p̄,

(33)

for T (i)
2m+1 ≤ t < T

(i)
2m+2.

Now we will prove that for t ∈ [0, T (i)
2m+2) we obtain

∣∣∣∣∣∣
t∫

0

(d(i)
rr (τ) − (c(i)r (τ) + λ(i)

r (τ)))dτ

∣∣∣∣∣∣ ≤ 2εt + 2 ln(β) + 2 max
{
Nt + ξt + p,−N̄t− ξ̄t− p̄

}
.

By inductive hypothesis, we have proved the case in which t ∈ [0, T (i)
2m). If t ∈ [T (i)

2m, T (i)
2m+1) we have

∣∣∣∣∣∣
t∫

0

(d(i)
rr (τ) − (c(i)r (τ) + λ(i)

r (τ)))dτ

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
t∫

T
(i)
2m

(d(i)
rr (τ) − (c(i)r (τ) + λ(i)

r (τ)))dτ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
t∫

T
(i)
2m

(d(i)
rr (τ) − (ai −Mδ))dτ

∣∣∣∣∣∣∣ .

By the equations (28) and (32), as before we obtain that for t ∈ [T (i)
2m, T (i)

2m+1)

−εt− ln(β) −Nt− ξt− p ≤
t∫

(i)

(d(i)
rr (τ) − (ai −Mδ))dτ ≤ −N̄t− ξ̄t− p̄.
Tr2m
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In the case t ∈ [T (i)
2m+1, T

(i)
2m+2), we have

∣∣∣∫ t

0 (d(i)
rr (τ) − (c(i)r (τ) + λ

(i)
r (τ)))dτ

∣∣∣ =
∣∣∣N(T (i)

2m+1 − T
(i)
2m) + ξT

(i)
2m + p

+
t∫

T
(i)
2m+1

(d(i)
rr (τ) − (bi + Mδ))dτ

∣∣∣∣∣∣∣∣
.

Therefore by the equations (29) and (33), we have that for t ∈ [T (i)
2m+1, T

(i)
2m+2) it follows that

εt + ln(β) + Nt + ξt + p ≥ N(T (i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p

+
t∫

T
(i)
2m+1

(d(i)
rr (τ) − (bi + Mδ))dτ

≥ −(−N̄t− ξ̄t− p̄).

In fact, (29) and (33) imply that

εt + ln(β) ≥
t∫

T
(i)
2m+1

(d(i)
rr (τ) − (bi + Mδ))dτ ≥ N̄(t− T

(i)
2m+1) + ξ̄T

(i)
2m+1 + p̄. (34)

Now considering the two previous inequalities separately in (34), we obtain

εt + ln(β) + N(T (i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p ≥

t∫
0

(d(i)
rr (τ) − (bi + Mδ))dτ

and

t∫
0

(d(i)
rr (τ) − (bi + Mδ))dτ ≥ N̄(t− T

(i)
2m+1) + ξ̄T

(i)
2m+1 + p̄ + N(T (i)

2m+1 − T
(i)
2m) + ξT

(i)
2m + p.

Then by the above first inequality, we have

εt + ln(β) + Nt + ξt + p ≥ εt + ln(β) + N(T (i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p

and by above second inequality, we obtain

N̄(t− T
(i)
2m+1) + ξ̄T

(i)
2m+1 + p̄ + N(T (i)

2m+1 − T
(i)
2m) + ξT

(i)
2m + p ≥ −(−N̄t− ξ̄t− p̄).

Therefore, for t ∈ [0, T (i)
2m+2) it follows that

∣∣∣∣∣∣
t∫
(d(i)

rr (τ) − (c(i)r (τ) + λ(i)
r (τ)))dτ

∣∣∣∣∣∣ ≤ 2εt + 2 ln(β) + 2 max
{
Nt + ξt + p,−N̄t− ξ̄t− p̄

}
.

0
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Finally, we will prove that T (i)
m → +∞ as m → +∞. First, we have by the equations (28) and (32):

N(T (i)
2m+1 − T

(i)
2m) + ξT

(i)
2m + p =

T
(i)
2m+1∫

T
(i)
2m

(d(i)
rr (τ) − (ai −Mδ))dτ

≤ (ā + |ai| + Mδ + ε̄)(T (i)
2m+1 − T

(i)
2m) + ε̄T

(i)
2m + ln(K),

which implies

(ξ − ε̄)T (i)
2m + p− ln(K) ≤ (ā + |ai| + Mδ + ε̄−N)(T (i)

2m+1 − T
(i)
2m).

By the conditions (C1) and (C2), we have the following inequality

0 <
p− ln(K)

ā + |ai| + Mδ + ε̄−N
≤ T

(i)
2m+1 − T

(i)
2m.

On the other hand, in view of the equations (29) and (33), we have that

N̄(T (i)
2m+2 − T

(i)
2m+1) + ξ̄T

(i)
2m+1 + p̄ =

T
(i)
2m+2∫

T
(i)
2m+1

(d(i)
rr (τ) − (bi + Mδ))dτ

≥ (−ε− (bi − ai) − 2Mδ)(T (i)
2m+2 − T

(i)
2m+1)

−εT
(i)
2m+1 − ln(β),

which implies that

(ξ̄ + ε)T (i)
2m+1 + p̄ + ln(β) ≥ −(ε + (bi − ai) + 2Mδ + N̄)(T (i)

2m+2 − T
(i)
2m+1).

Similarly, the conditions (C2) and (C4) allow us to ensure that

0 <
−p̄− ln(β)

ε + (bi − ai) + 2Mδ + N̄
≤ T

(i)
2m+2 − T

(i)
2m+1.

Thus the above allows us to obtain the existence of c(i)r (t), λ(i)
r (t) defined on R+

0 verifying (21), and 
finally:

∣∣∣∣∣∣
t∫

0

(d(i)
rr (τ) − (c(i)r (τ) + λ(i)

r (τ)))dτ

∣∣∣∣∣∣ ≤ Δ + υt (t ∈ R+
0 ),

with Δ ≥ 0 and υ := υε defined by

υ = max
{
2(ε + N + ξ), 2(ε− N̄ − ξ̄)

}
. (35)

Due to the definition of c(i)r and λ(i)
r , we know that they are piecewise continuous. Consequently, there 

exist continuous functions c̄(i)r , λ̄(i)
r satisfying

ai ≤ c̄(i)r (t) ≤ bi and |λ̄(i)
r (t)| ≤ Mδ for any t ∈ R+

0 (36)
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and

t∫
0

∣∣∣(c(i)r (τ) + λ(i)
r (τ)) − (c̄(i)r (τ) + λ̄(i)

r (τ))dτ
∣∣∣ ≤ 1,

thus we deduce that ∣∣∣∣∣∣
t∫

0

[d(i)
rr (τ) − (c̄(i)r (τ) + λ̄(i)

r (τ))]dτ

∣∣∣∣∣∣ ≤ Δ̄ + υt

with Δ̄ = Δ + 1.
As a consequence of this result, we construct the ni × ni matrix:

Li(t) = Diag(μ1(t), . . . , μni
(t)),

where for any r ∈ {1, . . . , ni}, μr are defined by

μr(t) = exp

⎛
⎝ t∫

0

(d(i)
rr (τ) − (c̄(i)r (τ) + λ̄(i)

r (τ))dτ

⎞
⎠ ,

and we conclude that

‖Li(t)‖ ≤ Ω exp(υt) and
∥∥L−1

i (t)
∥∥ ≤ Ω exp(υt) for any t ∈ R+

0 ,

with Ω = exp(Δ̄).
Step 4): The systems (16) can be nonuniformly contracted to [ai, bi], for any i ∈ {1, . . . ,m}: The system 

(17) is nonuniformly kinematically similar to

żi = Λi(t)zi, (37)

with yi(t) = Li(t)zi(t), where Λi(t) = L−1
i (t)Di(t)Li(t) −L−1

i (t)L̇i(t) is a ni×ni matrix whose rs-coefficient 
is defined by

{Λi(t)}rs =

⎧⎪⎪⎨
⎪⎪⎩

c̄
(i)
r (t) + λ̄

(i)
r (t) if r = s,

μs(t)
μr(t)d

(i)
rs (t) if 1 ≤ r < s ≤ ni,

0 if 1 ≤ s < r ≤ ni.

We observe that |d(i)
rs (t)| ≤ K1 exp(κ1t) with K1 > 0, for 1 ≤ r < s ≤ ni and by the equation (35), we 

have μs(t)
μr(t) ≤ K2 exp(κ2t), with K2 > 1 and κ2 = 2υ with υ as in (35), then

|{Λi(t)}rs| ≤ K2K1 exp(κt), (38)

where κ = κε = κ1 + κ2.
Let us define the transformation

zi(t) = Ri(t)wi(t),

with
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Ri(t) = Diag(exp(−κMδKδt), η exp(−2κMδKδt), . . . , ηni−1 exp(−niκMδKδt)),

and we also define Kδ such that KδMδ ≥ 1 and

0 < η <
Mδ

Mδ + K1K2
. (39)

Now, we can see that (37) and (17) are δ-nonuniformly kinematically similar to

ẇi = Γi(t)wi,

where the rs-coefficient of Γi(t) is

{Γi(t)}rs =

⎧⎪⎪⎨
⎪⎪⎩

{Λi(t)}rs + rκMδKδ if r = s,

ηs−r {Λi(t)}rs exp(−(s− r)κMδKδt) if 1 ≤ r < s ≤ ni,

0 if 1 ≤ s < r ≤ ni.

Let us observe that Γi(t) can be written as follows:

Γi(t) = C̄i(t)I + B̄i(t),

where C̄i(t) = Diag(c̄1(t), . . . , ̄cni
(t)) and the rs-coefficient of B̄i(t) is defined by

{
B̄i(t)

}
rs

=

⎧⎪⎪⎨
⎪⎪⎩

{
λ̄r(t)

}
rs

+ rκMδKδ if r = s,

ηs−r μs(t)
μr(t)d

(i)
rs (t) exp(−(s− r)κMδKδt) if 1 ≤ r < s ≤ ni,

0 if 1 ≤ s < r ≤ ni.

By (36) and (38), we can verify that
∥∥B̄i(t)

∥∥ ≤ Mδ[1 + rκKδ] + K1K2[η + η2 + · · · + ηni ] ≤ Mδ[1 + niκKδ] + K1K2
η

1 − η
.

Recall that Mδ = δ
m and by using (39) it follows that 

∥∥B̄i(t)
∥∥ ≤ δ

mKδ,ε, where Kδ,ε = 2 + niκKδ.
Thus, for any i ∈ {1, . . . , m} the system (17) is δ̄-nonuniformly kinematically similar (with δ̄ = δ

m ) to

ẇi = [C̄i(t) + B̄i(t)]wi,

where

c̄j(t) ∈ [ai, bi] = Σ(Bi), j ∈ {1, . . . , ni} and
∥∥B̄i(t)

∥∥ ≤ δ

m
Kδ,ε.

Finally, (17) is nonuniformly contracted to Σ(Bi).
Step 5): The system (1) can be nonuniformly contracted to Σ(A): By using the previous result, we can 

see that (1) is δ-nonuniformly kinematically similar to

ẇ = [C(t) + B(t)]w,

where

C(t) = Diag(C̄1(t), . . . , C̄m(t)) and B(t) = Diag(B̄1(t), . . . , B̄m(t)).
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In consequence, note that

C(t) ⊂
m⋃
i=1

[ai, bi] = Σ(A) and ‖B(t)‖ ≤ δKδ,ε.

Finally, the system (1) is nonuniformly contracted to Σ(A). �
Remark 9. The inequalities (28) and (29) show that the functions Φ(t, s) and Ψ(t, s) are bounded by specific 
functions. This functions not necessarily cross to graph of functions Φ(t, s) and Ψ(t, s), thus the conditions
(C1)–(C4) allows us to find straight lines that cross it at least once. Moreover this procedure enables us to 

construct 
{
T

(i)
l

}+∞

l=0
, which is the sequence of first crossing times of the graph of the functions Φ(t, s) and 

Ψ(t, s) with those straight lines. We have proved that this sequence of crossing time has not accumulations 
points.

6. Application of the main result

In this section, we present two examples of scalar systems, with their respective spectra and, in addition, 
we will prove that there exists a Lyapunov transformation for each system, in order to each one of them can 
be nonuniformly contracted to its spectrum. Finally, we will present a diagonal planar example considering 
the previous scalar systems.

Example 1. By one hand, let us consider the scalar differential equation studied in [7, p. 547]:

ẋ = A1(t)x, with A1(t) = λ0 + at sin(t) and λ0 < a < 0. (40)

It is straightforward to verify that the example can be adapted to the case R+
0 and therefore the spectrum 

of (40) is Σ(A1) = [λ0 + a, λ0 − a].
We claim that (40) is nonuniformly contracted to Σ(A). Indeed, given a fixed δ > 0 and ε1 = 2|a|, we 

consider the matrix function t → S1(t) ∈ M1(R) defined by

S1(t) = exp
(ε1

2 t cos(t) − δ sin(t)
)
,

and we can verify that (40) is δ-nonuniformly kinematically similar to

ẏ = (C1(t) + B1(t))y, with C1(t) = λ0 and B1(t) = −δ cos(t)
(
1 + ε1

2δ
)
.

The result follows due to C1(t) ∈ [λ0 + a, λ0 − a] and ‖B1(t)‖ ≤ δKδ,ε1 , where Kδ,ε = 1 + ε1
2δ .

On the other hand, let us consider the scalar differential equation shown in [23]:

ẋ = A2(t)x, where A2(t) = λ1(sin(ln(t + 1)) + cos(ln(t + 1))) (41)

with λ1 �= 0. After calculations we can see that the spectrum of (41) is

Σ(A2) = [−|λ1|, |λ1|].

Now we show that (41) is nonuniformly contracted to Σ(A2). Indeed, given a fixed δ > 0 and ε2 = 2λ1, 
we consider the matrix function t → S2(t) ∈ M1(R) defined by

S2(t) = exp
(

1
δ[(t + 1) sin(ln(t + 1)) + (t + 1) cos(ln(t + 1))]

)
,
2
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and we can verify that (41) is δ-nonuniformly kinematically similar to

ẏ = (C2(t) + B2(t))y,

with C2(t) = λ1 sin(ln(t + 1)) and B2(t) = λ1 cos(ln(t + 1)) + δ cos(ln(t + 1)).
Finally, since C2(t) ∈ [−|λ1|, |λ1|] and ‖B2(t)‖ ≤ δKδ,ε2 , where Kδ,ε2 = 1 + ε2

2δ ; we obtain that (41) is 
nonuniformly contracted to Σ(A2).

Example 2. Consider the planar system defined on R+
0 as follows

ẋ = A(t)x, (42)

where

A(t) =
(
λ0 + at sin t 0

0 λ1(sin(ln(t + 1)) + cos(ln(t + 1)))

)

with the same conditions as in the Example 1 and also λ0 − a < −|λ1|. We can see that in view of the 
Lemma 1, the nonuniform spectrum of (42) is

Σ(A) = [λ0 + a, λ0 − a] ∪ [−|λ1|, |λ1|].

Now we claim that (42) is nonuniformly contracted to Σ(A). Indeed, given a fixed δ > 0 and choosing 
ε = max {ε1, ε2}, we consider the matrix function t → S(t) ∈ M2(R) defined by

S(t) =
(
S1(t) 0

0 S2(t)

)
,

where S1(t) and S2(t) are as in the previous examples. It is verified that (42) is δ-nonuniformly kinematically 
similar to

ẏ = (C(t) + B(t))y,

with

C(t) =
(
λ0 0
0 λ1 sin(ln(t + 1))

)

and

B(t) =
(
−δ cos(t)

(
1 + ε1

2δ
)

0
0 λ1 cos(ln(t + 1)) + δ cos(ln(t + 1))

)
.

The claim follows since C(t) ∈ Σ(A) and ‖B(t)‖ ≤ δKδ,ε, where

Kδ,ε = max {Kδ,ε1 ,Kδ,ε2} .

7. Conclusions

This paper can be seen as a progress report on nonuniform hyperbolicity and its associated spectrum. In 
particular, we have introduced the concepts of nonuniform almost reducibility and nonuniform contractibility 
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in order to prove that if a linear nonautonomous differential system verifies a subtle hypothesis of nonuniform 
hyperbolicity on the half line, then this system is nonuniformly contracted to the spectrum of nonuniform 
exponential dichotomy. Additionally, it is an advance in the subject of nonautonomous differential equations 
in terms of the obtain a simpler form for a linear system with nonuniform hyperbolicity.

We point out that in [11] it has used strongly the main result of this article in order to prove the topological 
equivalence in the half line between a linear system with nonuniform contraction and an unbounded nonlinear 
perturbation.
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