
Expert Systems With Applications 148 (2020) 113262 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Applying Dempster–Shafer theory for developing a flexible, accurate 

and interpretable classifier 

Sergio Peñafiel a , ∗, Nelson Baloian 

a , Horacio Sanson 

b , José A. Pino 

a 

a Department of Computer Science, Universidad de Chile, Santiago, Chile 
b Allm Inc., Tokyo, Japan 

a r t i c l e i n f o 

Article history: 

Received 15 July 2019 

Revised 2 December 2019 

Accepted 29 January 2020 

Available online 30 January 2020 

Keywords: 

Supervised learning 

Expert systems 

Gradient descent 

Dempster-Shafer theory 

Interpretability 

a b s t r a c t 

Two approaches have traditionally been identified for developing artificial intelligence systems supporting 

decision-making: Machine Learning, which applies general techniques based on statistical analysis and 

optimization methods to extract information from a large amount of data looking for possible relations 

among them, and Expert Systems, which codify experts knowledge in rules, which are then applied to a 

specific situation. One of the main advantages of the first approach is its greater accuracy and wider gen- 

erality for the application of the methods developed which can be used in various scenarios. By contrast, 

expert systems are usually more restricted and often applicable only to the domain for which they were 

originally developed. However, the machine learning approach requires the availability of large chunks of 

data, and it is much more complicated to interpret the results of the statistical methods to obtain some 

explanation of why the system decides, classifies, or evaluates a situation in a certain way. This issue 

may become very important in areas such as medicine, where it is relevant to know why the system rec- 

ommends a certain treatment or diagnoses a certain illness. Likewise, in the financial sector, it might be 

legally required to explain that a decision to reject the granting of a mortgage loan to a person is not due 

to discriminatory causes such as gender or race. In order to be able to have interpretability and extract 

knowledge of available data we developed a classification method based on Dempster-Shafer’s Plausibil- 

ity Theory. Mass assignment functions (MAF) must be established to apply this theory and they assign 

a weight or probability to all subsets of the possible outcomes, given the presence of a certain fact on 

a decision scenario. Thus MAF assignments encode expert knowledge. The method learns optimal values 

for the weights of each MAF using the Gradient Descent method. The presented method allows combi- 

nation of MAF which have been generated by the method itself or defined by an expert with those that 

are derived from a set of available data. The developed method was first applied to controlled scenarios 

and traditional data sets to ensure that classifications and explanations are correct. Results show that the 

model can classify with an accuracy which is comparable to other statistical classification methods, being 

also able to extract the most important decision rules from the data. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The development of methods for classifying based on machine

earning techniques has been one of today’s most rapidly growing

echnical fields in artificial intelligence in the last years ( Jordan &

itchell, 2015 ). 

Two fundamental concepts associated with classifying instru-

ents are performance (also called accuracy for simplicity) and

nterpretability. Model performance is associated with the idea of

ow good a classification method works. This concept has sev-
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ral dimensions, and accordingly, several indicators have been

roposed. They are widely used today associated with this con-

ept. Some of these indicators are accuracy, sensitivity or recall,

pecificity or precision, area under the ROC curve, and F1 score

 Tharwat, 2018 ). 

The concept of interpretability relates to the possibility a hu-

an user of that instrument has for tracking the decisions it made

n order to classify a sample in one or another set. 

Although both characteristics are desirable in a classification

nstrument, experience has shown that they collide, i.e., we of-

en find limited or non-existent interpretability in most accurate

ethods and vice versa. As an example, Deep Learning meth-

ds based on multi-level Neural Networks are considered black-

ox algorithms. On the other hand, there are highly interpretable
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methods like Decision Trees, linear models, or rule-based models.

However, these latter methods have restrictions that do not allow

them to achieve high accuracy; for example, linear models cannot

learn non-linear relationships between attributes. Rule-based mod-

els and Decision Trees are constrained to have a reduced number

of rules or depth in the tree. Otherwise, the model increases its

complexity and makes it less interpretable. 

Sometimes the interpretability of results given by the method

may be more important than high accuracy in the prediction. As

an example, consider a physician who is trying to diagnose a pa-

tient’s disease based on his/her symptoms. For the physician, it is

more important to know which symptoms are related to a partic-

ular disease instead of having a machine predicting the disease

without any explanation ( Caruana et al., 2015 ) even in case the

machine predictions are very accurate. Giving these explanations

makes the users trust the system, and thus generating a helpful

tool to support decision-making. Moreover, in many situations, in-

terpretability goes beyond the trustworthiness of models because

explaining decisions is a required aspect for its application. For in-

stance, Chilean legislation on acceptance of customers’ mortgage

credit applications prohibits financial institutions from using cer-

tain variables to make their decision, such as ethnic group and skin

color. A client whose loan application was declined may appeal to

these institutions, and they must explain the cause of the credit

refusal. In order to satisfy this requirement, these institutions are

forced to use interpretable methods even if other models can pre-

dict better profitable potential clients; otherwise, they cannot give

the previously mentioned explanation. 

The exact definition of interpretability can vary depending on

the context in which the model is applied. For instance, for fuzzy

rule-based systems or traditional rule-based systems, interpretabil-

ity is highly related to the number of rules used and the complex-

ity of them ( García, Fernández, Luengo, & Herrera, 2009 ). For black-

box, machine learning techniques, and particularly neural network

methods, interpretability relates to the ability of the model for ex-

plaining every classified instance. These two definitions for inter-

pretability have drawbacks which make difficult its understandabil-

ity. 

For the case of rule-based systems, applying the rules must re-

sult in each record fitting into a class. This constraint may im-

ply the development of complicated rules, and thus, a less inter-

pretable model ( Casillas, Cordón, Herrera, & Magdalena, 2003 ). An-

other drawback is the lack of a standard procedure to deal with the

problem of missing values. If a rule relates to an attribute that is

missing, there is no clear way to continue with the classification,

e.g., taking the positive or negative branch or switch to another

rule. If the rule concerns many attributes and just one is missing,

the decision is still unclear. Missing values is a common problem

when working with real data. 

For the case of instance explanation of black-box methods, au-

thors have various definitions. Some of them only distinguish be-

tween useful attributes and non-useful attributes ( Štrumbelj &

Kononenko, 2014 ), and other explanation methods give a kind of

rules or human-readable statements for that instance. However,

the drawback is the fact that explanations change for each in-

stance, e.g., for a record, an attribute X could be necessary for clas-

sification, but, for another record, the same attribute X could be

useless. This change does not allow giving a clear explanation of

the whole model. Thus, the model is not interpretable since the

user cannot understand the decision of a completely new record

without tracking the whole classification process again. 

A new meaning of interpretability we propose is having sim-

ple rules concerning all possible attributes of a sample and then

discovering which rules are essential to the process of deciding

to which class a sample belongs. In other words, each rule has a

weight that indicates how important is that rule in order to decide
hether or not a sample belongs to a particular class. This prop-

rty defines an interpretability score for every rule instead of for a

pecific record or the whole model like previous approaches. Even-

ually, the model can drop the lightest rules to have fewer rules

hus obtaining a simpler model if needed. 

One advantage of this latter interpretability approach, which ex-

sting ones cannot handle, is that rules are independent of each

ther. This property means that every single rule is simple, under-

tandable and applies evenly to all data records without needing

o make any previous assumption. Another advantage is that the

odel allows the user to test custom rules. This ability is a desir-

ble feature for developing expert knowledge because it helps to

alidate a hypothesis and measure its importance to explain the

tudied system. 

In this work, we present the development of a classification

ethod that can be applied to a wide range of decision-making

cenarios. The proposed model achieves accuracy comparable to

hose based on Artificial Neural Networks. At the same time, the

odel is highly interpretable according to the definition we pro-

osed above, thus inheriting all the mentioned advantages. In ad-

ition, this method allows classifying samples for which attributes

alues may be missing. 

The key idea to achieve this goal is to develop a rule-based clas-

ifier based on the Dempster–Shafer Theory ( Shafer et al., 1976 ).

his theory is a generalization of Bayesian theory allowing to as-

ign uncertainty directly. Mass assignment functions (MAF) are the

lements that encode knowledge in this theory which, given the

resence of a particular fact on a decision scenario (e.g., the level

f humidity) assigns a weight or probability for all subsets of the

ossible outcomes (heavy rain, light rain, no rain). The theory also

efines the Dempster Rule ( Shafer, 2016 ), which indicates how to

ombine different MAFs (e.g., temperature, air pressure, and hu-

idity) for obtaining a single result (probability of heavy, light or

o rain). The use of uncertainty allows us to develop a more so-

histicated rule-based model that can express complex scenarios

ithout losing the simplicity of rules. 

The model developed in this work includes a novel way to op-

imize mass assignment functions based on gradient descent tech-

iques from the evidence provided by the training data. Moreover,

e show how to extract explanations for classifications once the

odel is trained. This process is done by generating and optimiz-

ng meaningful rules automatically using the training data, which

akes the model interpretable. 

. Related work 

.1. Interpretable methods 

Some of the methods mentioned above are interpretable, i.e.,

hat they can give an explanation about the decision they make

hen doing classifications. The most remarkable interpretable

ethods are described below. 

.1.1. Decision trees and random forest 

A Decision Tree ( Olshen & Stone, 1984 ) is a method for classifi-

ation and regression based on simple relations among attributes.

he method builds a binary tree, where each inner node represents

 simple rule of an attribute, for example X 1 > 4. The branches are

he results of the rules, a left branch means the above condition

as false and a right branch means that it was true. Leaf nodes

re the predicted classes. The method tries to find the rules that

eparate most the classes. 

This method is clearly interpretable since we can descend in

he decision tree with our data and know why the method gives a

esponse. 
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A Decision Trees drawback is that they cannot handle com-

lex data rules, and then the accuracy is lower compared to

ther methods. An extension of Decision Trees are Random Forests

 Breiman, 2001 ) which is another method of classification that

ses a collection of decision trees. Each tree in the forest is built

sing a variation of the data and restrictions are applied in order

o ensure that trees with different characteristics will be obtained.

he outcome of applying a Random Forest to a classification prob-

em is the output node, which was chosen by the highest number

f trees belonging to the forest. 

.1.2. Bayesian derived methods 

Naive Bayes ( Domingos & Pazzani, 1997 ) is a method that uses

he Bayes’ Theorem to find the class that gives the most posterior

robability according to the data. This method makes the assump-

ion that the probability of a class given an attribute is indepen-

ent from the other attributes. Another similar method is Bayesian

etworks ( Friedman, Geiger, & Goldszmidt, 1997 ), which is a di-

ected graph that models a certain problem. In this graph, each

ode is a variable or an attribute of the problem and each edge

orresponds to the dependency or conditionality of these variables.

n this method interpretability comes directly by the structure of

he graph because it encodes all the knowledge about relation-

hips among variables. However, the structure of the graph has to

e set beforehand, therefore this method does not allow to find

ew knowledge, but to validate it. 

As we can see from these methods, when interpretability is

learly present in these models the accuracy is lower, and when

he model gets better accuracy it becomes more complex and in-

erpretability is weaken. 

.2. Interpretability indicators in Fuzzy rule based systems 

Several authors have proposed indicators to measure the

nterpretability of a system. Generally, these indicators are

pplied to fuzzy rule-based systems (FRBS). For example,

arcía et al. (2009) propose a methodology to measure the

erformance and interpretability of rule-based genetics models.

or performance measuring, they used indicators such as accuracy,

rue positive rate, and Cohen’s kappa indicator, and for inter-

retability, they use two measurements the size of the rule set

nd the average of the number of antecedents. Let s i to be a rule

tatement, s i can be written as c 1 ∧ c 2 ∧ · · · ∧ c k , then the number

f antecedents for this rule ant i is k . For example, a rule with

 statement “BMI ≥ 35” has only one antecedent. The average

umber of antecedents (ANT) is defined as: 

NT = 

1 

r 

r ∑ 

i =1 

ant i (1) 

Where r is the number of rules. These two indicators are widely

sed in FRBS. As another example, ( Ishibuchi & Nojima, 2007 ) use

he number of rules as an interpretability metric and the error of

lassification ( 1 − Accuracy ) as an accuracy metric to test several

onfigurations of a model and they find the Pareto-optimal config-

ration for these two variables. 

However, the above metrics for interpretability heavily depend

n the problem and the data they used. For example, datasets

hat have few attributes will tend to have much fewer rules than

atasets with many attributes. To address this problem, a re-

ormulation of these indicators was proposed by ( Gorzałczany &

udzi ́nski, 2017 ) the main change is that now the indicators are

ormalized and thus they can be comparable to performance indi-

ators and comparable with other problems and datasets. In their

ork, the proposed indicator is the average of another three nor-
alized indicators defined below: 

 RAT R = 

1 

r 

∑ 

r i ∈ RS 

ant i − 1 

m − 1 

Q AT R = 

ANT − 1 

m − 1 

Q F S = 

n F S − 1 ∑ m 

i =1 a i − 1 

(2) 

Where m is the number of attributes, ant i is the number of an-

ecedents of the i th rule, ANT is the average number of antecedents

efined above, n FS is the average number of active fuzzy sets, and

 i is the number of rules concerning the i th attribute. 

Note that Q RATR , Q ATR , and Q FS are in the range [0,1], being 0

he best value for high interpretability and 1 the worst. For Q RATR 

nd Q ATR , a value of 0 means that the model uses simple rules that

oncern only to one attribute per rule, and a value of 1 means that

he rules use all the attributes. For Q FS , a value of 0 means that

he model select only one rule to perform the classification, and a

alue of 1 means that they select all the rules. 

The authors proposed to average these three indicators to mea-

ure the complexity of the model Q CPLX , and then the interpretabil-

ty Q INT is the complement value of the complexity. 

 CPLX = 

Q RAT R + Q AT R + Q F S 

3 

Q INT = 1 − Q CPLX (3) 

.3. Interpretability in other methods 

Another approach that gained interest over recent years is to

xplain and interpret the results of a non-interpretable method for

oth specific instances and the whole model. Many strategies have

een proposed to extract interpretability. Some of them are dis-

ussed and examples are presented below. 

The first approach to understanding black-box methods is to

nalyze them formally by comparing or reducing them to inter-

retable methods. For example, Gal (2016) analyzed the formulas

sed to optimize the stochastic regularization techniques of an ar-

ificial neural network with dropout; the author proves that the

ormula obtained is equivalent to the optimization of a Bayesian

etwork. Although this kind of techniques seems to be correct for

nding interpretability, the intermediate steps to build the equiva-

ence could be as complex as the original model. Then even if we

ave a new representation in an interpretable model, this does not

ecessarily mean that we can extract interpretable results from it. 

Another approach is to use a strategy similar to sensitivity anal-

sis to find the features that contribute most to classifications

 Olden & Jackson, 2002; Štrumbelj & Kononenko, 2014 ). In the case

f artificial neural networks (ANN), which are known to be one

f the least interpretable methods, there are efforts to understand

he relations between inputs and network computations using this

echnique. Olden and Jackson (2002) present four methods for un-

erstanding the mechanics of ANNs. The mentioned methods are

ased on testing with small random variations of the data and

omparing the outputs differences. A drawback of this kind of ap-

roaches is that the output of the model has to be recomputed

or every perturbation the method includes in the input; for large

nputs or large ANNs, this method cannot perform. 

Recent studies about interpretability instead of trying to un-

erstand the model itself, they only focus on the results of the

odel. For a model these techniques build an explanation model

hat uses the results of the original model trying to find inter-

retable relationships among attributes that are related to the re-

ults of the model. Some of these models can even use a differ-

nt representation for the data than the original model embedding,
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and then they can obtain interpretability from this new representa-

tion, which is often simpler and more understandable ( Bach et al.,

2015; Datta, Sen, & Zick, 2016; Lipovetsky & Conklin, 2001; Ribeiro,

Singh, & Guestrin, 2016a; Shrikumar, Greenside, & Kundaje, 2017 ). 

For example, Ribeiro, Singh, and Guestrin (2016b) present Local

Interpretable Model-Agnostic Explanations (LIME) as a technique to

generate explanations for the results of any classifier. LIME model

tries to find the local linear separation for an instance using a cus-

tom representation, but using the original model classifications for

this instance. LIME has been tested in text based datasets, image

datasets and tabular data showing that it can get interpretable re-

sults independent of the representation of the data. Also, LIME text

results were validated with humans who had to decide which ex-

planation of a method fits better in a real scenario showing that

the interpretations the model produces are the best results. 

Another example of explanation methods for artificial neural

networks is DeepLift presented by Shrikumar et al. (2017) . In their

work they present a process that can be applied to a trained neural

network when receiving an input. This process is similar to back-

propagation, but with computing gradients for convenient func-

tions that are directly related to the importance of features. The

output of this process is weighted by each attribute indicating the

contribution of these features to the classification. 

Using these various models for extracting interpretable results,

there are now current works that propose to combine them. For

example, Lundberg and Lee (2017) present a method to unify the

results of several explanation models to provide a measure of fea-

ture importance by adding the interpretability evidence that the

different methods provide. 

2.4. Dempster–Shafer theory 

The Dempster–Shafer Theory (DST) ( Shafer et al., 1976 ), also

called the theory of belief functions, is a generalization of the

Bayesian theory that is more expressive than classical Bayesian

models since it allows to assign “masses” to multiple outcomes

measuring the degree of uncertainty of the process. 

Let X be the set of all states of a system called frame of discern-

ment. A mass assignment function m is a function that satisfies: 

m : 2 

X → [0 , 1] , m (φ) = 0 , 
∑ 

A ⊆X 

m (A ) = 1 (4)

Where A is a subset of X and φ is the empty set. The term

m ( A ) can be interpreted as the probability of getting exactly the

outcomes of the set A , and not a subset of A . 

The belief metric is presented as the total evidence to support

an outcome, and it is given by the following expression: 

Bel m 

(A ) = 

∑ 

B ⊆A 

m (B ) (5)

The plausibility metric is defined as the total amount of evi-

dence that can support an outcome. This formulation is the fol-

lowing: 

P l m 

(A ) = 

∑ 

B ∩ A 	 = φ
m (B ) (6)

Multiple evidence sources expressed by their mass assignment

functions of the same frame of discernment can be combined us-

ing the Dempster Rule (DR) ( Shafer, 2016 ). Given two mass assign-

ment functions m 1 and m 2 , a new mass assignment function m c 

can be constructed by the combination of the other two using the

following formula: 

m c (A ) = m 1 (A ) � m 2 (A ) 

= 

1 

1 − K 

∑ 

B ∩ C= A 	 = φ
m 1 (B ) m 2 (C) (7)
Where K is a constant representing the degree of conflict be-

ween m 1 and m 2 and it is given by the following expression: 

 = 

∑ 

B ∩ C= φ
m 1 (B ) m 2 (C) . (8)

.5. DST Applications in supervised learning 

Several models using Dempster–Shafer Theory to solve super-

ised learning tasks have been proposed and they can be divided

nto two groups: Dempster-Shaffer supporting post-processing of

ther classifiers, which are often called data fusion methods in the

iterature; and methods which use DST as part of the classification

rocess. Both approaches are described in the Table 1 . 

. Proposed model 

This section describes the implementation details of the clas-

ifier. The classifier is based on the previous work about stroke

isk detection ( Peñafiel et al., 2018 ), where a framework for using

ST as a classifier was presented, introducing the concept of rule

nd interpretable decisions. In this work we generalize the model

o handle multi-class classification problems, and also we present

 new way to obtain the mass values based on gradient descent

ithout losing interpretability. 

.1. Dempster shafer implementation 

In this work, we use the elements of the Dempster-Shafer The-

ry to implement a classification model; the main features of the

odel are listed below: 

Let K = { a 1 , . . . , a k } to be set of all possible classes of a classi-

cation task. Mass assignment functions (MAF) are represented as

ectors with k + 1 values, where k is the number of classes. The

ector contains one value for each singleton class and another one

or the complete set. Mass of null set is omitted because it is al-

ays 0, and masses for the other combinations are also omitted. 

This decision means that our model supports only general un-

ertainty, instead of specific uncertainty as the theory indicates.

he main reason for this choice is that power set grows exponen-

ially with the number of classes, which implies that all compu-

ations would involve exponential-length vectors, and then their

omplexity would have been exponential too. We propose a trade-

ff solution, which includes the complete set mass value where

ncertainty can be measured, but keeping the length of the vec-

or linear with the number of different classes of the problem. 

 : (m 1 , m 2 , . . . , m k , m U ) (9)

The terms m 1 , . . . m U represent the scalar values mass function

 assign to each singleton and to the complete set respectively. 

To illustrate this solution, consider a disease detection problem

here a model has to determine if a certain disease is present (P)

r absent (A) in a patient. In this problem there are two classes

 and A, and then a MAF m over this frame of discernment, as-

igns values to the P singleton, A singleton and the complete set,

or example if m assigns these values 

 (φ) = 0 , m ({ P } ) = 0 . 5 

 ({ A } ) = 0 . 2 , m ({ P, A } ) = 0 . 3 

(10)

The corresponding vector to represent m is the following one:

 : (0 . 5 , 0 . 2 , 0 . 3) (11)

Methods to compute belief and plausibility for each outcome

iven a mass assignment function are implemented in the model

sing the formulas presented in 5 and 6 . Note that for a single

utcome the belief is just the mass of the singleton, therefore
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Table 1 

Summary of DST applications. 

Work Description Limitations 

Mulyani, Rahman, 

Riza et al. (2016) 

The model combines Dempster-Shafer Theory and Naive Bayes 

classifier. They applied an expert system based on medical surveys to 

estimate the values of the mass assignment functions for several 

diseases from their symptoms and then the model predicts an 

outcome. If there is more than one outcome predicted by DST then 

the Naive Bayes classifier is applied. 

In many cases, the model only uses the result of Naive 

Bayes without considering the knowledge of DST. In this 

work, we propose a new classifier without any 

dependency on other classifiers. 

Denoeux (1995) The author proposed a variation of KNN classifier which instead of 

using a neighbor’s votes, neighbors support evidence for the 

corresponding class. Nearest neighbors support more certainty than 

the farthest ones. The decision is then made by the application of 

the Dempster Rule instead of using vote counting. 

The method does not provide explanations in addition to 

the predicted classes. Our proposed model will cover 

interpretable classification. 

Fixsen and 

Mahler (1997) 

A modified version of the Dempster-Shafer theory that includes prior 

knowledge about the possible outcomes is proposed. This prior 

knowledge is built using the training data. Then the process of 

classification is explained using a custom distance function for the 

evidence and computations using DST and Dempster Rule. 

The prior discovered knowledge can be considered 

interpretable. However, the custom distance function 

adds a complex operation that impedes further analysis 

on interpretability. 

Denoeux (2000) A model based on a modification of an RBF artificial neural network 

architecture which behaves similar to a Multilayer Perceptron. The 

model uses the weights of neuron links as evidence input for the 

Dempster-Shafer theory as well as the Dempster Rule for pooling. 

Similar as before, the method does not perform 

interpretable classification since it is based on ANNs, 

which are black-box models. 

Q. 

Chen, Whitbrook, 

Aickelin, and 

Roadknight (2014) 

A classifier that examines the most important features. A mass is 

assigned according to the training values and finally the predicted 

class is obtained by the application of the combination rule. This 

classifier was tested in three traditional datasets and compared to 

other classifiers. The obtained accuracy is in most cases comparable 

to the other methods. 

Although the method uses procedures to obtain relevant 

features, there is no direct discussion about 

interpretability. 

Peñafiel et al. (2018) 

A system based on Dempster-Shafer Theory to predict the risk of a 

patient having a heart attack or stroke based on past medical 

checkup data. The model is based on rules, which are statements 

that can be tested to be true according to data. Using these rules the 

system builds the mass assignment functions their values are 

established by defined formulas computed with the training data. 

The model gets a 61% accuracy when predicting stroke occurrences 

for patients within next year. An important output of this model is 

the identification of the rules that most contribute to a positive 

classification of a patient that has a stroke. 

The drawback of this approach is that the model reaches 

low levels of accuracy. In the proposed model, this will 

be improved using gradient descent optimization 

techniques. 
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o computation is needed to obtain this value. The plausibility is

omputed just as the sum of the mass value of the singleton for

he class ( m i ) and the mass for the complete set ( m U ), since our

ethod does not consider subsets that are combinations of out-

omes except for the complete set. 

 a i ∈ K Bel m 

({ a i } ) = m i 

∀ a i ∈ K P l m 

({ a i } ) = m i + m U (12) 

In our example, the belief and plausibility for each class

s Bel m 

({ P } ) = 0 . 5 , Bel m 

({ A } ) = 0 . 2 , P l m 

({ P } ) = 0 . 5 + 0 . 3 = 0 . 8 and

 l m 

({ A } ) = 0 . 2 + 0 . 3 = 0 . 5 . 

A method for computing the Dempster rule between 2 mass as-

ignment functions m A and m B is provided by the model using the

empster Rule formula 7 . 

Note that, due to the representation of mass assignment func-

ions, the sum of the Dempster Rule formula has at most k + 1 el-

ments. For each singleton this expression is the sum of each sin-

leton of one MAF with the uncertainty of the other MAF, and the

roduct between singleton masses. The result mass for the uncer-

ainty of the combined MAF is simply the product of the uncer-

ainty of each MAF. The formula is presented below: 

m A = (m A 1 , m A 2 , . . . , m Ak , m AU ) 
m B = (m B 1 , m B 2 , . . . , m Bk , m BU ) 

 A � m B = K 

′ (m A 1 m B 1 + m A 1 m BU + m AU m B 1 , 

. . . 
m Ak m Bk + m Ak m BU + m AU m Bk , 

m AU m BU ) 

(13) 
(  
Where K 

′ is the normalization term in Dempster Rule. Note that

 

′ can be computed afterwards as the reciprocal of the sum of the

ector elements. 

For example if we have m A : (0.5, 0.2, 0.3) and m B : (0, 0.3, 0.7)

hen the combination of these MAFs is the following: 

 A � m B = K(0 . 5 ∗ 0 + 0 . 5 ∗ 0 . 7 + 0 . 3 ∗ 0 , 

0 . 2 ∗ 0 . 3 + 0 . 2 ∗ 0 . 7 + 0 . 3 ∗ 0 . 3 , 

0 . 3 ∗ 0 . 7) 
= K(0 . 35 , 0 . 29 , 0 . 21) 
= (0 . 412 , 0 . 341 , 0 . 247) 

(14) 

.2. Rules and generators 

Dempster-Shafer Theory is often applied in the design of expert

ystems because it is a good method to combine knowledge origi-

ated from various sources which may not be related to each other

nd even contradictory (for examples, from various stakeholders

articipating in a complex decision making process ( Baloian, Frez,

ino, & Zurita, 2018 )). These systems usually use rules or hypothe-

es to express conditions for the evidence of the problem. For ex-

mple, in disease detection problems a rule could be “if a pa-

ient has high blood pressure then she/he is more likely to have

 stroke”; in this case the condition is to have high blood pressure

nd the evidence is to be more likely to have a stroke. 

Concerning the classification process for the model, in a general

ase a classifier tries to find the category to which an observation

elongs. The observation encodes information in the form of a vec-

or X , often called the feature vector. For example, in disease detec-

ion problems observations could contain age, blood pressure, past

iseases, etc. Then, a rule can be mathematically defined as a pair

 m , s ) that relates a mass assignment function m , with a predicate
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or boolean function (i.e. a function that evaluates to true or false)

s with domain in the feature space. 

Using this new representation, rules defined by experts are still

possible to be defined and used in this context. However, the aim

of this model is to perform automatic classification based on evi-

dence presented by suitable data. Then rules should be generated

by machine. In order to do it, an algorithm to generate rules from

the available data is required; this method, called rule generator,

creates rules using only training data and defined parameters. 

The current model provides rule generators for single-attribute

rules based on statistical ranges, i.e., for each continuous attribute

in the feature vector, mean μ and standard deviation σ are com-

puted for the attribute using the training data. Using these values

the domain of the variable is partitioned in several ranges, e.g., if

we set 3 ranges, these will be: values lower than μ − σ, values

between μ − σ and μ + σ, and values greater than μ + σ . For the

case of categorical attributes it is possible to create a rule for each

outcome of the attribute, i.e., if possible values are k 1 , k 2 , . . . k n 
then there will be a rule stating that the value is equal to k 1 , an-

other for values equal to k 2 and so on. 

These rule generators define the conditions for the rules. How-

ever we need to set the initial values for MAFs as well. A possi-

ble strategy to set these values is to use prior knowledge about

the problem. Again this knowledge can be obtained from experts

or automatically, e.g., by using statistics measures of the training

set ( Peñafiel et al., 2018 ). Since these values will be optimized af-

terwards, another valid strategy is to consider that at the begin-

ning we do not know anything about the problem, and then MAFs

should have a high uncertainty. In fact we can set the value 1 for

the complete set and 0 for the rest and then this assignment ex-

presses full uncertainty. However, using this full uncertainty MAF

as initial state is useless because the model cannot distinguish the

classes (all of them have the same values) and this is required to

perform the first classification. Alternatively, a better solution is to

assign a high value for the complete set, e.g., 0.9 and the remaining

0.1 is distributed among the other singletons randomly. In our dis-

ease detection problem a MAF with values (0.04, 0.06, 0.9) could

be a possible initial MAF for a rule. 

3.3. Classification 

The model operates using a rule set RS defining the knowledge,

regardless of the source (experts or automatically), and the input

feature vector x describing the features of the sample we want to

classify. The model performs the following tasks to obtain the pre-

dicted class. 

1. Apply the predicate of each rule in the rule set using the

feature vector x as input. Filter out the rules that do not sat-

isfy the predicate. 

2. Combine the mass assignment function of the selected rules

using Dempster Rule, obtaining a combined mass assign-

ment function. 

3. Compute the belief for each class from the combined mass

assignment function. The predicted class will be the class

with the maximum belief. 

Mathematically if RS represents the rule set and x the input, the

mass set for x, M x , and the predicted outcome ȳ can be defined as

follows: 

M x = { m | (m , p) ∈ RS ∧ p(x ) } 
m f = 

⊕ 

m ∈ M x 

m 

ȳ = argmax Bel ( m f ) (15)

class 

t

.4. Optimization via gradient descent 

In order to get the best results for the model, it is necessary to

t the mass values of each rule according to the training data. 

To do this task, a loss function and a method of optimization

hould be used to update mass values. Loss functions measure the

rror a model obtains in classifications comparing the predicted

lasses with the actual outcomes. During the optimization prob-

em the aim of the model is to minimize the error computed by

he loss function, and an algorithm of optimization is used to ac-

omplish it. The existing literature reports on various optimization

ethods that can be applied depending on the nature and struc-

ure of the problem. In our case, we opted for the gradient descent

s optimization method because it has been widely used success-

ully in other machine learning methods like artificial neural net-

orks. 

The model implements two loss functions Mean Squared Error

MSE) and Cross Entropy (CE) ( De Boer, Kroese, Mannor, & Rubin-

tein, 2005 ). Both functions are normally used as loss functions

n other classifiers. Also, both functions are differentiables, so they

an be used as target functions in gradient based optimization. 

The gradient descent algorithm is an iterative algorithm that

ptimizes variable values in order to minimize or maximize the

alue of a target function. 

Mathematically, given the target function J which depends on

he variable x t and our goal is to minimize the value of J the up-

ated value for x t called x t+1 is given by the following formula:

 t+1 = x t − α
∂ J 

∂x 
(16)

Where the value α is called the learning rate. This algorithm

ives us a sequence of values for x 0 , . . . , x k that minimize J . Initial

alue for x (i.e x 0 ) is usually selected randomly. 

In our case, the target function is any of the mentioned loss

unctions and the variables to be optimized are the mass values for

ach rule. The next formula shows the optimization for the mass

 

( i ) 

 

(i ) 
t+1 

= m 

(i ) 
t − α

∂ Loss 

∂m 

(i ) 
(17)

Besides normal gradient descent, the model supports any vari-

tion of gradient descent methods such as Stochastic Gradient De-

cent (SGD) and Adam ( Kingma & Ba, 2014 ). 

Recalling the restrictions of mass assignment functions from the

efinition 4 , the method of gradient descent presented above can-

ot be used because after updating the values, these may not sat-

sfy the restrictions. For example, after updating, some mass values

ould become negative or the sum of the masses could exceed 1. 

To solve this problem, it is important to notice that our op-

imization task is not unrestricted. For optimization with restric-

ion an equivalent method to gradient descent is presented by

orrea and Lemaréchal (1993) , called projected gradient descent.

t basically consists of the same idea of gradient descent, but pro-

ecting the values on the domain where variables are defined after

pdating. The same work proves that this method converges to the

ptimum for the restricted problem. Therefore, the correct formula

or updating the mass values is the following: 

 

(i ) 
t+1 

= πC 

(
m 

(i ) 
t − α

∂ Loss 

∂m 

(i ) 

)
(18)

Where π is the orthogonal projection function and C is the set

f masses that satisfy Dempster-Shafer constraints. 

The model processes the complete training set several times

epochs) in order to adjust correctly the mass values ( Fig. 1 ). The

ext step is to define a condition to stop iteration, so we can state

hat the model has converged. 
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Fig. 1. Classification Process in DS Model. Starting from a feature vector x and a 

rule set, the model selects the rules that satisfy the predicate, the MAF of these 

rules are combined using Dempster Rule, and then the predicted class is the one 

with maximum belief. Finally the loss is computed using the real value y and the 

mass values are updated using gradient descent. 
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The condition used in the model consists of evaluating the dif-

erence between the loss in two adjacent epochs; if this difference

n absolute value is smaller than a threshold ε then it is said that

he model has converged and it stops iterating. Mathematically, it

s defined by: 

 Loss t − Loss t−1 | ≤ ε (19) 

.5. Interpretability 

Let us recall that one of the main purposes of the classifier is to

e interpretable. In this section we will explain why interpretabil-

ty is a first class citizen of this model. 

Rules, as we defined in the implementation, are the combina-

ion of a mass assignment function and a predicate or statement,

fter the training and optimization phase, mass values for each

ule have changed, and they have converged to the optimal values

or classification. From an interpretability point of view, that means

hat the model “learned” how much a rule statement is contribut-

ng to the classification and which outcome the statement predicts;

ass values can be analyzed to distinguish informative rules from

edundant rules. 

For example, in the disease detection problem, if after train-

ng, a rule with predicate “if blood pressure is high”, ends up with

he following values using our representation m = (0 . 7 , 0 . 08 , 0 . 22) ,

hat implies the mass is 0.7 for the P singleton, it is 0.08 for the A

ingleton and it is 0.22 for the complete set. Then, this rule con-

ributes to predict that the disease is present, since mass of P sin-

leton is much greater than the corresponding one for the A sin-

leton. Also the mass of the complete set shows the uncertainty of

he rule so the value 0.22 tells that there is not much uncertainty

n this rule. We can then state that high blood pressure is related

o the presence of the disease. 

Therefore interpretability and knowledge discovery are directly

xtracted from the analysis of the mass values of a rule after train-

ng and its statement. 

.6. Model complexity 

In addition to the algorithm of the proposed model, we will

rovide a basic analysis about its theoretical complexity. 

Let X to be the set feature vectors with size n and m attributes

or each vector, let k to be the number of classes and let RS to be

he set of rules with length r . 

In order to predict all feature vectors of X then n single pre-

ictions must be performed. For a single prediction, first we need

o check which statements of all rules in RS should be applied, this

an be done in O ( r ). Then, Dempster Rule is applied to the selected

ules, which have a complexity proportional to the length of mass

ector, i.e. it is O ( k ), therefore applying r times the Dempster Rule

s O ( rk ). Finally, as this process is repeated n times the final com-

lexity for the prediction is O ( nrk ). 

The training process has an additional variable that is the num-

er of epochs, let E be this number. In one epoch, we perform n

ingle training processes, each of these single processes have a sin-

le prediction phase which is O ( rk ) as described above. Then, the

radients are computed and the values are updated, this is pro-

ortional to the number of mass values to be optimized which is

 ( rk ). Finally, the masses are projected to satisfy the constraints

hich again is O ( rk ). This training is repeated E times which im-

lies the complexity for the whole training process is O ( Enrk ). 

If the model uses only single-attribute generated rules, the

umber of rules r is proportional to the number of attributes m ,

hus, prediction and training are O ( nmk ) and O ( Enmk ) respectively.

his implies that the execution time of the model does not explode

ith the growth in the number of any of the parameters it uses. 
. Results and discussion 

We presented a new interpretable model for solving classifica-

ion problem, so two aspects should be tested: the correct classi-

cation power and the interpretability. In this work three kinds of

xperiments will be performed increasing their complexity. 

.1. 2-D Distributions 

The first experiment consists of testing the model using a 2-

ttribute fictional datasets as input. These datasets are generated

y known functions or distributions, representing the simplest

ontrolled scenarios for any classifier. The purpose of them is to

resent and visualize the first classifications and explanations of

he model. 

The first dataset (A1) contains 500 points which are random

niformly distributed in the rectangle [ −1 , 1] × [ −1 , 1] the class of

ach point is determined by the sign of the y component. A point

hat has y < 0 belongs to the “blue” class and the rest belong to

he “red” class. 

The second dataset (A2) contains 500 points which are gener-

ted by sampling two Gaussian distributions with mean in a ran-

om point within the rectangle [ −1 , 1] × [ −1 , 1] and an standard

eviation of 0.25. The class of each point corresponds to which dis-

ribution generates it. 

The model was tested on these two datasets using the follow-

ng configuration: The model uses the single-attribute rules gener-

tor with 3 breaks, a learning rate of 0.002, the threshold of con-

ergence is 0.0 0 01, the loss function is MSE and the optimizer is

dam. For validation, the dataset is split in a training set (70%)

nd a testing set (30%) for each dataset the model was tested three

imes using different splittings and the average of the accuracy is

resented. 

Fig. 2 shows the results of the model. The model achieves an

ccuracy of 0.982 for dataset A1, and an accuracy of 0.987 for

ataset A2. 

The final optimized rules the model obtains for the case of

atasets A1 and A2 are presented in Tables 2 and 3 respectively. 
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Fig. 2. Model results in controlled scenarios A1 (left) and A2 (right). Each dot is a dataset record, its color indicates the class, the background color is the predicted class of 

the model in that region, darker colors means more certainty in prediction. 

Table 2 

Resultant rules after model training for dataset A1. 

Rule Mass Blue Mass Red Uncertainty 

X ≤ −0 . 32 0.086 0.148 0.766 

−0 . 32 < X ≤ 0 . 04 0.136 0.077 0.787 

0.04 < X ≤ 0.41 0.000 0.000 1.000 

X > 0.41 0.000 0.018 0.982 

Y ≤ −0 . 34 0.662 0.030 0.308 

−0 . 34 < Y ≤ 0 . 04 0.529 0.059 0.412 

0.04 < Y ≤ 0.42 0.000 0.721 0.279 

Y > 0.42 0.000 0.723 0.277 

Table 3 

Resultant rules after model training for dataset A2. 

Rule Mass blue Mass red Uncertainty 

X ≤ −0 . 43 0.674 0.000 0.326 

−0 . 49 < X ≤ −0 . 22 0.504 0.000 0.496 

−0 . 22 < X ≤ 0 . 04 0.027 0.000 0.973 

X > 0.04 0.000 0.637 0.363 

Y ≤ −0 . 79 0.000 0.934 0.066 

−0 . 79 < Y ≤ −0 . 44 0.000 0.704 0.296 

−0 . 44 < Y ≤ −0 . 08 0.180 0.141 0.680 

Y > −0 . 08 0.264 0.072 0.665 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Results of controlled scenarios. 

Experiment Informative Random Redundant Accuracy 

B1 2 2 0 1.000 

B2 2 0 2 1.000 

B3 2 2 2 1.000 
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Results of Fig. 2 show that the proposed model can operate

correctly as a classifier because the accuracy obtained was greater

than 98% which means only few cases were classified wrong. 

Evaluating the interpretability of the proposed model by the

analysis of Tables 2 and 3 , we found that the model was able

to discover the most contributory rules correctly. For the case of

dataset A1, all rules regarding X variable have a high value for un-

certainty showing that they are not important for classification. On

the other hand, rules regarding Y variable have much lower uncer-

tainty, the rules which Y takes negative values assign high mass to

blue outcome, while the ones that Y take positive values assign to

red outcome which is correct according to the dataset A1 construc-

tion. For the case of dataset A2, the construction is more complex

but the model can also distinguish the rules that contribute to the

classification of each class correctly. 
.2. Multiple kinds of attributes 

The second experiment will be similar to the previous one but

e will use more attributes and they will have certain informa-

ion. For example, if we build a dataset with four attributes, where

nly two of them are informative (i.e these two have a correla-

ion with the instance class) and the other two attributes are ran-

om noise, the model should learn that the informative attributes

re the most important to make classifications. Following this idea,

nother experiment is to have redundant attributes, i.e. attributes

hat are correlated with other attributes of the dataset, for example

hey could be linear combinations of them. 

We present three experiments varying these kinds of attributes.

ataset B1 has 2 informative attributes and 2 random attributes;

ataset B2 has 2 informative and 2 redundant attributes and

ataset B3 has 2 of all kinds. 

Table 4 presents the results for the model using the same con-

guration as in the previous case for the scenarios B1, B2, and

3. From the table is possible to note that in all cases the model

chieves perfect accuracy. 

The results of Table 4 show that the model can perform correct

lassifications when informative attributes are present in datasets.

lso we showed that this feature is not affected by the presence of

oisy or redundant attributes. 

.3. Traditional datasets 

Besides the controlled scenarios mentioned above, the model

as been tested in several traditional datasets. These datasets are

he ones that appear in machine learning books and courses as ex-

mple datasets to start using classification models, and they define

ommon experiments to compare them. 
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Table 5 

Results in traditional datasets. 

Dataset N. Attr. Size Classes Rules Acc. DSGD Acc. RF Acc. NB Acc. KNN 

Iris 4 150 3 28 0.959 0.943 0.971 0.971 

Breast Cancer 9 700 2 108 0.962 0.947 0.820 0.608 

Wine quality 13 6497 2 50 0.959 0.995 0.974 0.938 

Heart Disease 9 462 2 34 0.727 0.667 0.727 0.673 

Digits 64 1796 10 168 0.878 0.950 0.799 0.974 

Gas Sensor 128 13,910 6 384 0.897 0.991 0.556 0.976 
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Specifically the datasets our model has tested are: Fischer Iris

ataset ( Fisher & Marshall, 1936 ), Wisconsin breast cancer, wine

uality, heart disease and handwritten digits from UCI repository

 Asuncion & Newman, 2007 ). 

For each of the experiments performed in this section, our re-

ults will be compared with the results of the following classifica-

ion algorithms: Random Forest (RF) with 100 trees, Naive Bayes

NB) and K-Nearest Neighbors (KNN) with k = 5 . 

The details of traditional datasets such as the number of at-

ributes (N. Attr.), the number of records (Size), and the number of

lasses are presented in Table 5 . This table also presents the num-

er of rules our model uses and the accuracy (Acc.) on the test set

or each model. 

The application of the model to traditional datasets helps vali-

ate the previous results about accuracy. Results from Fig. 5 show

hat in most cases accuracy is over 85%. Comparing the results

f the model with the other classification methods, our model

eaches results similar to them. For the case of Breast Cancer and

eart Disease datasets, the model outperform the other models.

n the other datasets tested the model has slightly lower accuracy.

he difference of accuracy between our model to the best model

s always lower than 10%. Another remarkable result is that the

odel performs well in multi-class classification tasks, from our

xperiments Iris and Digits are both multi-class datasets with 3

nd 10 classes respectively, the metrics show that the model can

lso handle these kinds of data. 

Gas drift array drifts dataset ( Vergara et al., 2012 ) corresponds

o a large dataset to test models, and it has 128 features and 13,910

ecords without missing values. The data comes from 16 chemical

ensors exposed to 6 gases at different concentration levels. The

oal is to predict the gas analyte according to the values of the

ensors. The proposed model achieves an accuracy of 89.7%, which

s a valid classification result. This result shows that our model can

perate with large datasets and having good results. 

Digits dataset presents an interesting case for the analysis of

nterpretability. This dataset contains handwritten digits in a 8x8

ixel box, the larger value means a mark is in the pixel, this infor-

ation is flatten into a 64-length vector and passed as input. Al-

hough for the model this is like any other dataset, we can extract

he importance of each rule and since rules are related to single

ttributes, we can know exactly which of these 64 pixels are con-

ributory for the model to predict a digit and this is presented in

ig. 3 . 

The results of Fig. 3 shows that for the case of 0 digit darkest

lue pixel, i.e. the ones that contribute most to the prediction of

his class, are distributed in the extreme of the image and they

end to form a circle; for the case of 1 digit the darkest blue pixels

ends to form a straight vertical line in the middle of the image. In

oth cases these results make sense with digit common drawings. 

Breast Cancer dataset also presents an attractive case to look

n detail. This dataset contains information about the cell nuclei

f healthy (benign) and cancerous (malignant) cells retrieved from

reast masses. This is the dataset that our model performs the

est among the traditional datasets tested, achieving an accuracy

f 96.2%. After training, the top 7 most important rules for the

t

alignant class (i.e., the one that has higher mass in malignant

ingleton) are presented in Table 6 . 

In order to show the importance of having interpretability re-

ults, we can compare the rules obtained with the medical knowl-

dge. From Table 6 , one of the essential rules is the value of ep-

thelial size, which appears in two of the most important rules.

or this variable, higher values are associated with malignant cells.

hecking this result with literature, Doyle et al. (2010) present a

tudy about the differentiation of normal and malignant breast

ells. They show that the malignant cells exhibit larger cell and ep-

thelial nucleus sizes as compared to the healthy cells. This state-

ent matches exactly the rules the model obtain from the inter-

retability, showing that it can verify this kind of knowledge. 

As our proposed model is also rule-based, we can adapt the

RBS indicators for interpretability presented in Section 2.2 to our

ase. Q RANT and Q ANT do not need adaptation since we can count

he number of antecedents directly from the statements. The indi-

ator Q FS needs to be re-interpreted to comply with our model. In

RBS n FS refers to the numbers of active fuzzy sets using linguistic

erms. We can note that fuzzy sets are similar to our definition of

ule. Thus the most straightforward way to define n FS in our case

s to count the average number of rules an instance uses when the

odel performs a classification. 

In order to test different configurations of our model, we can

nly use the top n rules that contribute most to each class (as ex-

lained in Section 3.5 ) for the classification, and all the other rules

an be dropped. Applying this procedure, we can obtain a simpler

odel but still accurate. Table 7 shows the results for accuracy and

nterpretability measures for different configurations of the model. 

Fig. 4 shows the values of Q CPLX and Error from the Table 7 . Blue

ots show configurations of the model. The red dot represents the

ore interpretable and accurate configuration, which corresponds

o take the top 6 rules of each class. The dashed line represents

ll configurations that are equally accurate and interpretable than

ed dot (assuming that they have the same importance). This line

s presented to compare with the other dots clearly. 

The best configuration for the model was obtained when us-

ng the top 6 rules for each class. From the chart, we can ob-

erve that the model can drop many rules and still getting good

ccuracy, note that the best configuration has only the 27% of

he rules of the original model. Comparing our results to the re-

ults presented by Gorzałczany and Rudzi ́nski (2017) , we can see

hat our results for the best configuration are comparable. Our

ethod has a slightly higher error of 0.0524 vs. 0.0365, but we

ave a slightly lower complexity of 0.0522 vs. 0.0568, thus better

nterpretability. 

.4. Stroke risk assessment 

The model has also been tested in a real case scenario.

eñafiel et al. (2018) tested a “weaker” version of the proposed

odel that does not include optimization of parameters using gra-

ient descent. The model (DS-Stat) only uses statistical indicators

o estimate the values of the mass assignment functions. 
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Fig. 3. Pixel importance for the classification of the classes 0 (left) and 1 (right) in the Digits dataset according to the interpretation of the rules. 

Table 6 

Most important rules for malignant class for breast cancer problem. 

Rule Mass benign Mass malignant Uncertainty 

Clump thickness > 6.34 0.000 0.702 0.298 

Bare nucleoli > 5.97 0.038 0.673 0.289 

3.2 < epithelial size < 4.71 0.000 0.687 0.313 

Size uniformity > 5.16 0.000 0.658 0.342 

Marginal adhesion > 4.74 0.000 0.608 0.392 

1.65 < mitoses < 2.84 0.002 0.597 0.401 

Epithelial size > 4.71 0.017 0.580 0.403 

Fig. 4. Complexity and classification error measures for breast cancer problem. 
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Table 7 

Interpretability and accuracy measures for Breast Cancer 

problem. 

Top n N. Rules Q CPLX Accuracy Error 

all 45 0.3672 96.2% 0.0382 

18 36 0.2195 96.2% 0.0382 

9 18 0.1062 95.2% 0.0476 

6 12 0.0522 94.8% 0.0524 

3 6 0.0363 92.4% 0.0762 

2 4 0.0155 89.1% 0.1095 

Fig. 5. Results for the stroke risk assessment problem. 
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B  
The data comes from electronic health records (EHR) of the

ospital of Tsuyoyama, Japan. The data contains information about

he patient demographics, disease history, and exam results. Unlike

he previous dataset, this is a private dataset provided for limited

esearch purposes which contains real information about patients

etween 2013 and 2016. The clinical events are stored, indicating

he date when they were collected, patient information, and re-

ults. Diseases are encoded using the ICD10 codification standard

 World Health Organization, 2001 ). The original data is a dump

rom the database of the hospital, there are more than 20 enti-

ies, and some tables have more than 100 attributes. The quality of

he data is poor because it lacks normalization, and many of the

ttributes are completely missing, and others are redundant. 

A pre-processing of this data was performed to have a better

epresentation of this information. The patients who have disease

istory and exam results that have more than ten missing values

exams or diseases) are excluded. There is a total of 27,876 patients

fter applying these filters, for each patient there are 37 different

eatures extracted. 

The problem to be addressed is the detection of stroke within

he next year based on the filtered EHR data of the patient for the

revious year. 

The original model showed acceptable results regarding the ac-

uracy with an area under the ROC curve of 61.2%. For the case

f interpretability, a similar procedure that the one described in

ection 3.5 was applied to obtain the most contributory rules for

he stroke classification, all of these rules were verified with med-

cal studies. 

The proposed model has also been tested in this scenario using

he same data. This experiment helps to verify the behavior of the

odel in a real case scenario, and it also helps to measure and

ompare the improvement in classification by adding the gradient

escent optimization. Fig. 5 shows a ROC curve for the result of
oth methods. From this result, we can see a significant increase

n the area under the curve. The new model achieves 81.6% of the

rea under the ROC curve, which is an improvement of a 33.3%

ith respect to the previous model. 

. Conclusion 

We proposed above a new classification model using the

empster–Shafer Theory of Belief Functions. The model adapts this

heory to apply it to expert systems, but using a novel approach to

ptimize values inspired by many machine learning techniques. 

The proposed model proved to be a valid classifier; it was able

o predict outcomes by adjusting rules from data in both controlled

nd traditional datasets. The results obtained in controlled scenar-

os were as expected, and in most cases the model performed per-

ect classifications. 

We showed that in all the tested cases, the model cannot only

ccurately predict outcomes but also explain them. This feature is

enerally absent in most traditional classifiers. 

One of the drawbacks of the current model is that data must be

iscretized which may result in less accuracy. This can be seen in

he experiments using traditional datasets, whose obtained scores

ere acceptable, but slightly lower than current state-of-the-art

lassifiers. 

As future work we aim to improve the proposed model in sev-

ral ways. The most obvious improvement is to use all the sub-

et to express uncertainty instead of just the complete set. An-

ther important one is to get rid of attributes discretization by

aving a score indicating the degree of belonging to a certain

ule; this score can be computed using the attribute value with-

ut any discretization. Another interesting possible improvement

s using plausibility as the estimator for the probability of the

lasses instead of the belief; unlike belief, plausibility considers

n its formula the uncertainty of components which means that

hese values will be optimized more precisely. Finally, another im-

rovement, which is especially important when working with large

atasets, is to drop rules that are not contributory to the predic-

ion of a class while the model is being trained. These rules can

e detected because they should have high uncertainty, and their

radients should be close to 0 in the initial iterations. This feature

ill help the model to be simpler, speeds up the training process,

nd prevent overfitting. 

Functions that are declared to be part of the model can be

f any type. In this work we only tested generated rules us-

ng statistical analysis. However, experts could state the rules ac-

ording to their knowledge, which can be even used along with

hose generated statistically and the rest of the process is still

he same, even the optimization of mass values. Urban crime

rediction could be a possible scenario to test the incorpora-

ion of expert knowledge. This scenario is particularly interest-

ng because, in a previous work we applied Dempster-Shafer and

xpert rules ( Baloian et al., 2017 ) but without any optimiza-

ion of the mass values nor making any interpretation of its

esults. 
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