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The Burrows-Wheeler Transform (BWT) has become since its introduction a key tool 
for representing large text collections in compressed space while supporting indexed 
searching: on a text of length n over an alphabet of size σ , it requires O (n lgσ) bits of 
space, instead of the O (n lgn) bits required by classical indexes. A challenge for its adoption 
is to build it within O (n lgσ) bits as well. There are some sequential algorithms building it 
within this space, but no such a parallel algorithm. In this paper we present a PRAM CREW 
algorithm to build the BWT using O (n

√
lg n) work, O (lg3 n/ lgσ) depth, and O (n lgσ) bits.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Since its introduction, the Burrows-Wheeler Transform (BWT) [2] has become the core of several data structures for text 
compression and indexing, with applications to bioinformatics and text searching [3–7]. For example, it is the kernel com-
ponent of widely used bioinformatics software like BowTie1 and BWA.2

A classical index supporting various searches on a sequence S[1..n] is the suffix array SA[1..n] [8], which stores the 
pointers to the n suffixes S[i..n] in ascending lexicographic order. The BWT B[1..n] of S is then defined as B[i] = S[SA[i] −1], 
assuming S[0] = S[n]. Note that, on an alphabet of size σ , both S and B can be stored in n lgσ bits each (lg is the logarithm 
with base 2 by default), whereas SA requires n lgn bits in plain form. Compact text indexes use B as a replacement of both 
S and SA, thus significantly reducing space requirements. This permits, in particular, using the BWT to index large text 
collections in main memory, in situations where the SA would require resorting to the much slower secondary storage.

It is easy to compute the BWT from its definition by first building SA, which can be done in linear time and space, and 
efficiently in practice (e.g., [9]). However, this requires at least n lg n bits of intermediate space to end up with a smaller 
data structure, whose main advantage is, precisely, that it can fit in main memory whenever the n lg n bits of SA do not. In 
this article we aim at compact space constructions, that is, using working space proportional to the final BWT, O (n lgσ) bits.
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Several algorithms exist for the direct computation of the BWT, without building SA as an intermediate structure. 
Kärkkäinen [10] showed how to build it in O (n lg n +√

vn) average time (O (n lg n + vn) in the worst case) and O (n lg n/
√

v)

bits of space in addition to S , for any v ∈ [3, n2/3]. Hon et al. [11] built it in O (n lg n) time and within O (n lgσ) bits of 
space; the time was later improved to O (n lg lgσ) [12]. Okanohara and Sadakane [13] obtained linear time O (n), yet using 
slightly more space, O (n lgσ lg lgσ n) bits. Belazzougui [14] obtained O (n) randomized time within O (n lgσ) bits of space, 
making the time linear worst-case in the extended version [15]. The recent work of Munro et al. [16] also achieves linear 
O (n) worst-case time within O (n lgσ) bits of space.

In the parallel computation scenario, however, there are no space-efficient algorithms for the computation of the BWT. 
Edwards and Vishkin [17] introduced a parallel algorithm based on the computation of the suffix tree. Using the parallel 
suffix tree algorithm of Sahinalp and Vishkin [18], the algorithm of Edwards and Vishkin is a CRCW PRAM algorithm with 
O (n + σ 2 lg∗ n) work, O (lg2 n) depth, and O (n2 + σ 2 lg∗ n) bits of working space. If instead, the algorithm of Hariharan [19]
is used to compute the suffix tree, the algorithm of Edwards and Vishkin is a CREW PRAM algorithm with O (n lg σ) work, 
O (lg4 n) depth, and O (n lg n) bits of working space. Hayashi and Taura [20] presented an algorithm with O (n lg3 n) work, 
O (lgσ lg5 n) depth and O (n lgσ +n lg lgn) bits of working space in the CREW PRAM model. Alternatively, parallel algorithms 
for the computation of the SA spending O (n lg n) bits can be used, and then compute the BWT in O (n) further work 
and O (1) depth. In this context, the CREW PRAM algorithm of Labeit et al. [21] computes the SA in O (n) work and 
O (σ 2 lgn + σ lg2 n) depth, for σ ≤ √

n/ lg n. The algorithm of Kärkkäinen et al. [9] can compute the SA in O (n
√

lg n) work 
and O (lg2 n) depth under the EREW PRAM model, and in O (n) randomized work and O (lg2 n) depth under the priority 
CRCW PRAM model for constant-size alphabets.

The design of space-efficient parallel algorithms for the construction of compact data structures is challenging. Common 
design patterns for parallel algorithms must store much temporary data simultaneously, which increases the working space. 
In general, reducing such temporary space implies reducing the degree of parallelism. Further, accessing several items com-
pacted in a single machine word outrules EREW models of computation. In this work, we show that the space-efficient BWT

construction algorithm of Munro et al. [16] is amenable to parallelization. Our main contribution is summarized as follows.

Theorem 1. There exists a CREW PRAM algorithm to compute the BWT of a sequence S[1..n] over alphabet [1..σ ] with O (n
√

lg n)

work and O (lg3 n/ lgσ) depth, using O (n lgσ) bits of working space.

We note that O (n
√

lg n) is the best known work of a parallel sorting algorithm [22].3 Since sorting (with σ = n) can 
be reduced to a BWT computation, improving the work of our solution requires an improvement in parallel sorting. It is, 
however, possible to do less work for smaller values of σ . For example, the algorithm of Edwards and Vishkin [17] (using 
Hariharan [19] to compute the suffix tree so as to avoid using quadratic space), does O (n lg σ) work. Our solution, however, 
has lower depth and, what is the point in this article, does not require �(n lg n) bits of working space.

The algorithm of Hayashi and Taura [20] is the only previous one that uses o(n lg n) bits when lgσ = o(lgn). Still, it uses 
more than O (n lgσ) bits on very small alphabets, lgσ = o(lg lg n), and its work and depth are much higher than those of 
our algorithm.

Notice that our algorithm is interesting for the case lgσ = o(lgn). Otherwise, no algorithm can use o(n lg n) bits of space, 
and in this scenario the EREW SA construction algorithm of Kärkkäinen et al. [9] (as we modify it in this article) is a better 
alternative. This algorithm does the same O (n

√
lg n) work as ours, but its depth is just O (lg2 n). Our depth, O (lg3 n/ lgσ), 

smoothly approaches O (lg2 n) as σ increases and reaches nε for a constant ε.
Finally, we show that our construction can be practical. We implement a simplified version of our algorithm in the 

dynamic multithreading model [24], and evaluate it experimentally on a dataset of randomly generated sequences over 
alphabets of various sizes, comparing it with other implemented parallel and sequential BWT construction algorithms. The 
results show that our implementation is indeed the one using the least space, while being competitive in time.

2. Preliminaries

Let S = S[1..n] be a sequence of length |S| = n over an alphabet � = [1..σ ], σ ≤ n. We use the notation 
S[1], S[2], . . . , S[n] to represent the symbols of S; S[i.. j] defines the subsequence S[i], S[i + 1], . . . , S[ j]. This is a prefix of 
S if i = 1 and a suffix if j = n. We use the same notation for arrays.

Given a sequence S , operation rankc(S, i) reports the number of times symbol c occurs in the prefix S[1..i], selectc(S, i)
gives the position of the ith occurrence of c in S , and insertc(S, i) moves all the symbols in the suffix S[i..n] one position 
to the right and inserts c at S[i].

The suffix array SA[1..n] of a sequence S[1..n] is a permutation of [1..n] so that, for all 1 ≤ i < n, S[SA[i]..n] < S[SA[i +
1]..n] in lexicographic order [8]. To make lexicographic comparison of suffixes well defined, it is assumed that S ends with a 
special terminator character S[n] = $ that is smaller than all the others. The BWT B[1..n] of S is a reordering of the symbols 
of S defined as B[i] = S[SA[i] − 1], taking S[0] = S[n].

3 It is possible to sort with O (n) work, but then the depth is O (nε) for some constant 0 < ε < 1 [23, Thm. 6.1]. We are interested in polylogarithmic 
depths in this work.
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For the analysis of our algorithm, we use the RAM model of computation, with a machine word of �(lg n) bits supporting 
the typical operations.

Our parallel algorithm is analyzed in the work-depth model [25], where work W is the total number of operations of the 
parallel computation, or equivalently, the total running time using only one processor, and depth D is the number of time 
steps needed to complete the parallel computation. The measure of depth can be interpreted as the best running time we 
can obtain, no matter the number of available processors. Using an optimal scheduling algorithm, such as the algorithm of 
Brent [26], the running time using P processors on a PRAM machine can be bounded by O (W /P + D). In this work we 
assume a shared memory model with concurrent reads and exclusive writes (PRAM CREW).

3. The sequential algorithm

Our parallel algorithm corresponds to a parallelization of the sequential space-efficient algorithm of Munro et al. [16]. 
The sequential algorithm divides the input sequence S into subsequences of size � = �lgσ n�, constructing the BWT B in �
steps. They add enough $ symbols to make n divisible by �. For the first and second steps, the algorithm concatenates the 
sequences S1 and S2, where S j is obtained by rotating S j symbols to the right. The concatenation S1 ◦ S2 is represented 
as a sequence of 2n/� meta-symbols over a meta-alphabet of size σ� , by grouping � consecutive symbols of S1 ◦ S2. Then, 
the algorithm computes the suffix array of S1 ◦ S2 in linear time and space using the algorithm of Kärkkäinen et al. [9]. 
The resulting suffix array is equivalent to the suffix array of the suffixes of S starting at positions i� and i� − 1, with 
1 ≤ i ≤ n/�. Considering the ordering in the suffix array, the symbols at positions i� − 1 and i� − 2 are inserted in B . Two 
additional arrays, W and Acc, are needed to store some tracking information. The array W stores the position of the suffixes 
i� −1 in B (i� − j +1, in the jth step) and Acc[a] stores the number of occurrences of symbols c < a in B . For the remaining 
steps j = 3, 4, . . . , � of the algorithm, the symbols S[i� − j] are inserted at positions pi = Acc[a] +ranka(B, W [i]) +ci , where 
a = S[i� − j + 1] and ci corresponds to the number of S1 suffixes appearing before the suffix S[i� − j + 1..n] in the suffix 
array of S1 ◦ S j . On each step, n/� new symbols are inserted in B . In order to obtain linear time, the batches of n/� rank
and insert operations are done in O (n/�) time, spending O (1) amortized time per operation. For σ < lg4 n, this is achieved 
easily by using the dynamic multiary wavelet tree of Navarro and Nekrich [27], with arity �(lgε n), 0 < ε < 1. For σ ≥ lg4 n, 
a more sophisticated solution is used (see Section 6). At the end of each step, the arrays W and Acc are updated considering 
the new inserted symbols. Once the �th step is completed, array B is the BWT of S .

Fig. 1 shows the execution of the algorithm for the DNA sequence S = G AT C A AT G AGGT GG AC ACC AG AGGC GGT G . In 
this particular example, n = 30, σ = 5 (including the final $ symbol) and � = �lg5 30� = 3. In the figure, the indexes of the 
suffixes of S2 and S3 are underlined in SA(S1 ◦ S2) and SA(S1 ◦ S3), respectively.

4. The parallel algorithm

We use the following notation in the description of our parallel algorithm. Given a meta-symbol M , operations getLm(M)

and getRm(M) obtain the leftmost and rightmost character of M , respectively. These operations can be computed in con-
stant time using standard bit-wise operations. For example, for the meta-symbol G AC , we have getLm(G AC) = G and
getRm(G AC) = C .

Algorithm 1 shows the general idea of our parallel algorithm. Like the sequential algorithm, the parallel algorithm pro-
ceeds in � = �lgσ n� steps, and in each step it inserts nms = �n/�� new symbols to the BWT B . The algorithm allocates 
two arrays, W [1..nms] and Acc[1..σ ] (lines 3 and 4). W is an array of pairs, where the first and second components are re-
ferred to as W [i]. f and W [i].s, respectively. Given the ith meta-symbol Mi at step j ≥ 3, W [i]. f stores the position where
getRm(Mi) was inserted in B in step j − 1, and W [i].s = i. During the execution of our algorithm, W will be sorted by 
the first component in order to perform the batches of rank and insert operations, and by the second component to restore 
the order among the meta-symbols. Acc[a] stores the number of occurrences of symbols c < a in B . At the beginning, we 
allocate the n lgσ bits of the output BWT B (line 5). To simplify the notation, we use S1 ◦ S j to represent the concatenation 
of the rotations S1 and S j , yet such rotations are not stored explicitly. Instead, any rotation of S can be simulated, and all 
the extra space needed is that to prepend the last � symbols of S at its beginning, that is, � lgσ extra bits. Thus, at any 
step j, we can recover the ith meta-symbol of S j by reading � consecutive symbols of S starting at position (i − 1)� − j, 
with 1 ≤ i ≤ n

�
and 1 ≤ j ≤ �.

Steps 1 and 2 are processed together (lines 6–15). First we reduce the meta-alphabet of size σ� to an alphabet of size 
2n
�

(line 6). With that aim, we store a temporary array R[1.. 2n
�

] of O ( n
�

lg n
�

) bits, with R[i] = i, to represent the indexes 
of the concatenation. Instead of sorting an array of meta-symbols, we sort the indexes representing them in R , using the 
meta-symbols only for the comparisons. The sorting can be done in parallel with O (W sort(

n
�

)) work and O (Dsort(
n
�

)) depth, 
taking as input the array R and the meta-symbols, and returning the sorted indexes of the array R . With the sorted indexes, 
we replace in parallel the meta-symbols by their new representations in the new alphabet, obtaining the sequence Tc . Each 
meta-symbol is replaced by the position of its index in the sorted array. In the case of indexes representing equal meta-
symbols, we take the smallest position among those indexes. For that, we perform a left-to-right scanning over the array R
propagating such positions through the range of indexes representing the same meta-symbol. The left-to-right scanning can 
be implemented in parallel using a parallel prefix sum algorithm [25] without extra space. Since the meta-symbols are not 
explicitly stored, we only use O ( n lg n ) extra bits to store the array R and the output sequence Tc . Thus, the new alphabet 
� �



126 J. Fuentes-Sepúlveda et al. / Theoretical Computer Science 812 (2020) 123–136
S = 1
G

2
A

3
T

4
C

5
A

6
A

7
T

8
G

9
A

10
G

11
G

12
T

13
G

14
G

15
A

16
C

17
A

18
C

19
C

20
A

21
G

22
A

23
G

24
G

25
C

26
G

27
G

28
T

29
G

30
$

� = {$, A, C, G, T } � = �lg5 30� = 3

Steps 1 and 2

S1 =
1

$G A
2

T C A
3

AT G
4

AGG
5

T GG
6

AC A
7

C C A
8

G AG
9

GC G
10

GT G
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G AG
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GT G
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G AC
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AC C
8

AG A
9

GGC
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SA(S1 ◦ S2) = 1, 13, 6, 17, 18, 4, 12, 3, 7, 11, 16, 8, 14, 9, 19, 20, 10, 15, 2, 5
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W [1] = 10 W [2] = 7 W [3] = 2 W [4] = 13 W [5] = 18

W [6] = 11 W [7] = 4 W [8] = 5 W [9] = 15 W [10] = 16

Acc[$] = 0 Acc[A] = 0 Acc[C] = 5 Acc[G] = 9 Acc[T ] = 18

Step 3

S3 =
1

T G$
2

G AT
3

C A A
4

T G A
5

GGT
6

GG A
7

C AC
8

C AG
9

AGG
10

C GG

SA(S1 ◦ S3) = 1, 6, 19, 4, 3, 13, 17, 18, 7, 20, 8, 12, 9, 16, 15, 10, 2, 11, 14, 5
c1 = 9, c2 = 6, c3 = 4, c4 = 9, c5 = 7, c6 = 7, c7 = 4, c8 = 4, c9 = 2, c10 = 5

Insert S[27] = G at position Acc[T ] + rankT (B, W [1]) + c1 = 18 + 1 + 9 = 28
Insert S[30] = $ at position Acc[G] + rankG (B, W [2]) + c2 = 9 + 4 + 6 = 19
Insert S[3] = T at position Acc[C] + rankC (B, W [3]) + c3 = 5 + 1 + 4 = 10
Insert S[6] = A at position Acc[T ] + rankT (B, W [4]) + c4 = 18 + 2 + 9 = 29
Insert S[9] = A at position Acc[G] + rankG (B, W [5]) + c5 = 9 + 8 + 7 = 24
Insert S[12] = T at position Acc[G] + rankG (B, W [6]) + c6 = 9 + 5 + 7 = 21
Insert S[15] = A at position Acc[C] + rankC (B, W [7]) + c7 = 5 + 2 + 4 = 11
Insert S[18] = C at position Acc[C] + rankC (B, W [8]) + c8 = 5 + 3 + 4 = 12
Insert S[21] = G at position Acc[A] + rankA(B, W [9]) + c9 = 0 + 4 + 2 = 6
Insert S[24] = G at position Acc[C] + rankC (B, W [10]) + c10 = 5 + 4 + 5 = 14
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W [1] = 28 W [2] = 19 W [3] = 10 W [4] = 29 W [5] = 24

W [6] = 21 W [7] = 11 W [8] = 12 W [9] = 6 W [10] = 14

Acc[$] = 0 Acc[A] = 1 Acc[C] = 9 Acc[G] = 14 Acc[T ] = 26

Fig. 1. Execution of the algorithm of Munro et al. [16] on the sequence S = G AT C A AT G AGGT GG AC AC C AG AGGC GGT G .

can be computed in O (W sort(
n
�

)) work and O (Dsort(
n
�

)) depth, since the parallel sorting is the most costly operation. We 
then compute the suffix array of Tc (line 7) and insert the first 2nms symbols in B by extracting the rightmost symbol of 
each meta-symbol. More precisely, the rightmost symbol of the meta-symbol Tc[SA[i] − 1] is written in B[i], 1 ≤ i ≤ 2nms

(line 11). Special cases are managed in line 10. The position of the symbols coming from S2 are stored in W (lines 12–14). 
Note that the meta-symbols of Tc can be processed independently. The array Acc is filled with the accumulated frequency 
of the symbols (line 15). This can be done in parallel by performing a parallel sorting over a temporary copy of B and then 
scanning the sorted array, using a parallel prefix sum algorithm, to find the ranges of equal symbols. Thus, steps 1 and 2 
take O (W sort(

n
�

) + W S A( n
�

)) work and O (Dsort(
n
�

) + D S A( n
�

)) depth, where W S A( n
�

) and D S A( n
�

) correspond to the work 
and depth of the parallel suffix array algorithm used in line 7.

In the remaining � − 3 steps, the algorithm computes the position in B of nms new symbols (lines 16–28). Let j be 
the current step and S j[k] be the kth meta-symbol of the rotation S j . The position of the symbol getRm(S j[k − 1]) is 
Acc[a] + ranka(B, W [k]) + ck , where a =getLm(S j[k]) and ck is the number of suffixes of S1 appearing before the suffix 
starting at S j[k] in the suffix array of S1 ◦ S j . Acc[a] is already stored. The values ranka(B, W [k]) and ck , for all 1 ≤ k ≤ nms , 
are computed in lines 18 and 22–24, respectively. For the computation of the rank operations, we first sort them by their 
indexes (line 17), and then we use algorithm BatchRank from Sections 5 and 6 to answer the batch of n

�
rank operations 

(line 18). To save space, the answer of each rank is stored in the first component of the array W . In lines 19–21, the 
outputs of the rank queries are added to the corresponding values of Acc. To compute the ck values, the corresponding 
alphabet of S1 ◦ S j and the equivalent sequence Tc are computed, in the same way as for steps 1 and 2 (line 22). Then, 
in line 23, the suffix array of Tc is computed. Finally, a parallel prefix sum is performed over the suffix array counting 
only the suffixes of S1 (line 24). The outputs are added to the output of the rank queries using the first component of 
W . Once the first positions of W contain the final positions of the new symbols, W is sorted again by first position 
W [·]. f (line 25) and then inserted in B using algorithm BatchInsert from Sections 5 and 6 (line 26). The frequency array 
Acc is updated after all the symbols are inserted (line 27), by performing a parallel sorting over the new symbols, as 
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Algorithm 1: Parallel computation of the BWT.
Input : Sequence S of length n and alphabet size σ
Output : Burrows-Wheeler Transform B of S

1 � ← lgσ n
2 nms ← �n/��
3 W [1..nms] is an array of pairs
4 Acc[1..σ ] is an array of integers
5 B[1..n] is the output BWT

// Steps 1 and 2
6 Tc ← contAlphabet(S1 ◦ S2)

7 SA ← SA(Tc )
8 parfor i ← 1 to 2nms do
9 j ← SA[i] − 1

// To avoid special cases, assume that Tc behaves as a circular sequence
10 if SA[i] = 1 or SA[i] = nms + 1 then j ← j + nms

11 B[i] ← getRm(Tc[ j])
12 if SA[i] > nms then
13 W [SA[i] − nms]. f ← i
14 W [SA[i] − nms].s ← SA[i] − nms

15 countSymbols(B, Acc)

// Steps 3 until �
16 for j ← 3 to � do
17 pSort1(W)

18 batchRank(B, W) // Writes the output in W [·]. f
19 parfor i ← 1 to nms do
20 s ← getLm(S j[W [i].s])
21 W [i]. f ← W [i]. f + Acc[s]
22 Tc ← contAlphabet(S1 ◦ S j )

23 SA ← SA(Tc )
24 countS1(SA, W)

25 pSort1(W)

26 batchInsert(B, S j , W)

27 updateAcc(Acc)

28 pSort2(W)

29 return B

done in the steps 1 and 2 of the algorithm. Finally, the new symbols and their positions are restored to their original 
positions, according to the ordering of the meta-symbols in S j . To do that, the algorithm sorts the entries of W by their 
second component (line 28). This last sorting is necessary to maintain the relative order of the meta-symbols across all 
the steps. Thus, each of the remaining � − 2 steps takes O (W sort(

n
�

) + Wrank(
n
�

) + W S A( n
�

) + W ins(
n
�

) + n
�

) work and 
O (Dsort(

n
�

) + Drank(
n
�

) + D S A( n
�

) + Dins(
n
�

) + lg n
�

) depth, where Wrank(
n
�

) and Drank(
n
�

) are the work and depth of the 
algorithm BatchRank, and W ins(

n
�

) and Dins(
n
�

) are the work and depth of the algorithm BatchInsert. The n
�

and lg n
�

terms of the work and depth corresponds to the work and depth of the algorithm countS1.

Analysis. Our parallel algorithm has O (�(W sort(
n
�

) + Wrank(
n
�

) + W S A( n
�

) + W ins(
n
�

)) + n) work and O (�(Dsort(
n
�

) +
Drank(

n
�

) + D S A( n
�

) + Dins(
n
�

)) + � lg n
�

) depth. For the parallel sorting we can use the EREW PRAM algorithm of Han and 
Shen [22], which yields W sort(

n
�

) = O ((n/�)
√

lg n) and Dsort(
n
�

) = O (lg n). Over the � steps, we spend O (n
√

lg n) work 
and O (lg2 n/ lgσ) depth. For the computation of the suffix array, we can use the algorithm of Kärkkäinen et al. [9]. The 
algorithm runs in O ((n/�)

√
lg n) work and O (lg2 n) depth in EREW PRAM, if we use the sorting algorithm of Han and 

Shen [22] as an internal subroutine. Over the � steps, the SA constructions take O (n
√

lg n) work and O (lg3 n/ lgσ) depth. 
In Sections 5 and 6, we present data structures to support batches of rank and insert operations, for all the � − 2 steps, in 
O (n

√
lg n) work and O (lg2 n) depth. All the solutions of Sections 5 and 6 are CREW PRAM.

Our algorithm reuses the space during its � steps, so its memory usage is the peak of memory consumption in one step. 
This peak occurs in the line 23 of Algorithm 1, where the arrays W , Acc and Tc are present, and the memory peak of the SA

construction occurs at the same time. The size of W is n
�

lgn = O (n lgσ) bits, the size of Acc is O (σ lgn) ⊆ O (n lgσ) bits, 
the size of Tc is 2n

�
lg n = O (n lgσ) bits, and the memory peak of the SA construction of Kärkkäinen et al. [9] is O (n lgσ)

bits, since in the worst case it performs lg3/2 n recursive calls, allocating two arrays of 2( 2
3 )i n

�
lg n bits in the ith recursive 

call. The sorting algorithm of Han and Shen, used as a subroutine of the SA algorithm and in lines 15 and 27 of Algorithm 1, 
assumes keys of �(lg n) bits. When the sorting keys are symbols of lg σ bits, we can expand each symbol to use lg n bits, 
and still have a peak of memory consumption of O (n lg σ) bits, since at most n values are sorted.
�
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The complexities of our algorithm are summarized in Theorem 1. The difficult part is the implementation of the opera-
tions BatchRank and BatchInsert, which is considered in the next sections.

5. Parallel processing of batches of rank/insert operations

In this section we show how to construct a data structure to support batches of m = �(n/�) rank and insert operations 
using O (n lgσ) bits, on a sequence B of length n and alphabet [1..σ ]. The structure is first built in steps 1 and 2 of 
Algorithm 1, over 2n/� symbols. The batches of rank and insert operations are then used in the remaining � − 2 steps. In 
this section we show how to handle the case of small alphabets, that is, σ < 2

√
lg n . The solution for the case σ ≥ 2

√
lg n is 

more complex and is deferred to Section 6. In all cases, the work for the whole BWT construction is O (n
√

lg n), the depth 
is O (lg2 n), and the space usage is O (n lgσ) bits. Our solution for small alphabets corresponds to a wavelet tree [28] where 
each operation, such as rank, takes O (lgσ) time. Thus, this solution is suitable only for σ = 2O (

√
lg n) , so that the O (n)

rank operations of Algorithm 1 require work O (n lgσ) = O (n
√

lg n), as desired. On the other hand, our solution for large 
alphabets obtains O (n lgσ n) work, which is the desired O (n

√
lg n) when the alphabet size is σ = 2�(

√
lg n) .

5.1. Batches of rank/insert operations on binary sequences

Our base case are bitvectors (i.e., σ = 2). We show how a structure of o(�) bits on top of a bitvector B[1..�] supports m
rank operations in O (m) work and O (lg �) depth. It can also support m insertions in O (m + �/ lg(� + m)) work and O (lg n)

depth, where � + m ≤ n on a �(lg n)-bits word RAM machine.

Construction. Shun [29] showed how to build the described structure on top of a bitvector B[1..�] in O (�/ lg �) work and 
O (lg �) depth on a CREW PRAM.4

Batch of rank operations. The data structure supports rank operations in constant time. Thus, m rank operations can be 
processed independently in O (m) total work and O (1) depth, on a CREW PRAM.

Batch of insertions. To perform the batch of insertions Q = {insertb1 (B, i1), . . . , insertbm (B, im)} in B[1..�] we allocate space 
for the resulting sequence, B ′[1..� + m]. The insertions come sorted by increasing index ik and refer to the final positions 
after the insertions are made. These indices define ranges of entries in B to be copied to B ′ . In particular, the range 
B[im − m + 1..�] is copied to B ′[im + 1..� + m] and the ranges B[ik−1 − k + 2..ik − k] are copied to B ′[ik−1 + 1..ik − 1], for 
m ≥ k ≥ 2. Since the ranges do not overlap, we can make all the copies independently. Notice that several ranges may be 
copied into the same machine word of B ′ , however. To avoid copying conflicts, we detect such special cases beforehand. 
Thus, the copying process has two stages: First, all the machine words of B ′ without copying conflicts are filled. Then, 
machine words with copying conflicts are filled, using one processor per word, so as to avoid concurrent writing. Since 
we know in advance the final position of the ranges of B in B ′ , the detection of the words with copying conflicts is 
straightforward. Thus, the copying process is done with O (�/ lg n) work and O (lg n) depth, since each machine word has 
�(lg n) bits. After copying, we set B ′[ik] = bk , for 1 ≤ k ≤ m, which takes O (m) work and O (1) depth. Finally, the rank data 
structure of Shun [29] is rebuilt from scratch over B ′ in O ((� + m)/ lg(� + m)) work and O (lg(� + m)) depth. The peak of 
memory consumption is O (� + m) bits, dominated by the space of B ′ .

5.2. Batches of rank/insert operations for σ < 2
√

lg n

We represent B using a wavelet tree [28]. This structure supports m ranks in O (m lgσ) ⊆ O (m
√

lg n) work and O (lgσ) ⊆
O (

√
lg n) depth, and m insertions in O (m lgσ) ⊆ O (m

√
lg n) work and O (lg n lgσ) ⊆ O (lg3/2 n) depth. The total impact in 

our BWT construction is O (n
√

lg n) work and O (lg2 n) depth.

Construction. We represent B with a static binary wavelet tree [28]. The root of this tree stores a bitvector Broot with the 
highest bits of the symbols of B . Its left(right) child, Bleft(Bright) represents the subsequence of B formed by the symbols 
whose highest bits is a 0(1). Each child is, recursively, the root of a wavelet tree representing that subsequence, which is 
in turn partitioned according to the next highest bit, and so on. The wavelet tree then has height lg σ , and it constitutes 
a representation of B . Accessing any symbol B[i] or computing a rank on B translates into lgσ accesses and ranks over 
the bitvectors B v associated with the wavelet tree nodes, one per level. For example, to compute rankc(B, i), we check the 
highest bit of c. If it is a 0, then we continue on Bleft with position i ← rank0(Broot, i), otherwise we continue of Bright with 
position i ← rank1(Broot, i). When we reach a leaf, the answer is the value of i.

We represent the bitvectors B v as described in Section 5.1. Shun [29] showed how to construct the whole wavelet tree 
of B[1..�] with O (W sort(�)�lgσ/

√
lg ��) work, O (Dsort(�)�lgσ/

√
lg �� + lg� lgσ) depth, and O (� lg n) bits, where W sort(�)

4 The algorithm needs concurrent reads because it uses lookup tables.
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and Dsort(�) are the work and depth of sorting � integers, respectively. The algorithm uses O (� lg n) bits since the sorting 
algorithms needs keys of the size of a machine word, �(lg n) bits. Thus, each symbol of lgσ bits must be expanded to a 
machine word of lg n bits. Using the O (�

√
lg �)-work and O (lg �)-depth EREW PRAM integer sorting algorithm of Han and 

Shen [22], we obtain an O (� lgσ) work and O (lg � lgσ) depth CREW PRAM construction algorithm for the wavelet tree of a 
sequence of length �.

For technical reasons, we need that all the bitvectors B v at the same depth d are stored as a single concatenated 
bitvector Bd[1..�], into which the nodes v point to identify the start position O v of their corresponding subsequence B v . An 
operation rankb(B v , i) then translates into the subtraction of two rank operations, rankb(Bd, i + O v − 1) − rankb(Bd, O v − 1), 
which preserves the constant time. It is not hard to modify the construction of Shun [29] to build such a concatenated 
sequence, but it is simpler to explain how we can postprocess his original algorithm. At each wavelet tree level, a prefix 
sum over the lengths of the bitvectors B v yields the starting positions O v in Bd . Then all the bitvectors B v are copied 
onto Bd[O v ..O v + |B v | − 1], analogously as the way we support m insertions in Section 5.1. Finally, the structure for binary 
sequences of Section 5.1 is rebuilt on Bd . Since there may be O (σ ) wavelet tree nodes in a level (especially in the deeper 
ones), this requires O (σ + �/ lg n) ⊆ O (�) work and O (lg�) depth per level, which preserves the total construction work 
and depth we already have.

We first construct the wavelet tree on the 2n/� symbols of steps 1 and 2 of Algorithm 1. For σ < 2
√

lg n , this takes 
O ( n

�
lgσ) = O (n lg2 σ

lg n ) ⊆ O (n) work, O (lg n
�

lgσ) ⊆ O (lg3/2 n) depth, and O ( n
�

lg n) = O (n lgσ) bits of space.

Batch of rank operations. Each rank operation in the wavelet tree takes O (lgσ) time, as it reduces to performing lgσ
constant-time rank operations on bitvectors. Thus, processing independently and in parallel each rank operation, we obtain 
O (m lgσ) ⊆ O (m

√
lg n) work and O (lgσ) ⊆ O (

√
lg n) depth to process a batch of m rank operations. Added over the � − 2

steps of the BWT construction, this yields a total work of O (n
√

lg n) and a depth of O (lg n).

Batch of insertions. To support a batch of m insertions Q = {insertc1 (B, i1), . . . , insertcm (B, im)} in the wavelet tree of 
B , we first extract the highest bits b1, . . . , bm of c1, . . . , cm in O (m) work and O (1) depth, and execute Q root =
{insertb1 (Broot, i1), . . . , insertbm (Broot, im)} in O (m + �/ lg(m + �)) work and O (lg n) depth, using the result of Section 5.1. 
Note that, since m = �(n/�) and � ≤ n, the total work is O (m).

We then distribute the operations of Q among the two children of the root, so that the left(right) child will handle the 
set Q left(Q right) of operations where bk = 0(1), preserving their original relative order. The separation into Q left and Q right is 
easily done with two parallel prefix sums, in O (m) work and O (lg m) depth. The new insertion positions in either child are 
computed with ik ← rankbk (Broot, ik), all of which are also computed using the result of Section 5.1 with O (m) work and 
O (1) depth.

Thus, after O (m) work and O (lg n) depth, we have updated Broot and distributed the operations to be performed recur-
sively on the children of the root. This continues in the same way to deeper levels. All the nodes at each level are solved 
independently in parallel.

To preserve the complexity in deeper levels, however, we require that all the m insertions in each level are performed 
together, on the concatenated bitvector Bd[1..�]. This is achieved by shifting the set of insertion positions ik in the set Q v

corresponding to each node v in the level d by the offset O v − 1, and then concatenating all the sets Q v . This requires a 
parallel prefix sum on the sizes |Q v |, and takes in total O (m) work and O (lg m) depth. The concatenated set of insertions 
Q ′ can then be applied on Bd using the method of Section 5.1 with O (m + �/ lg(m + �)) = O (m) work and O (lg n) depth.

At each level of the wavelet tree, the total work adds up to O (m) and the depth is O (lg n), so the total work is O (m lgσ)

and the depth is O (lg n lgσ). Our BWT construction repeats this process � − 2 times, which yields O (n lgσ) ⊆ O (n
√

lg n)

total work and O (lg2 n) depth.

6. Batches of rank/insert operations on large alphabets

We now show how to handle batch operations when σ ≥ 2
√

lg n , obtaining total work O (n
√

lg n) and depth O (lg2 n/ lgσ). 
We consider only values σ ≤ n1/2 because, as explained, by the time we reach lgσ = �(lg n), compact constructions become 
indistinguishable from classical ones using O (n lg n) bits.

We build on a parallelization of a sequential data structure [16, App. A.3]. We first simplify the structure and then 
parallelize its construction and usage.

6.1. The data structure

We distribute S[1..n] into a linked list of �n/σ � chunks C g of length σ . For every symbol 1 ≤ c ≤ σ , a bitvector Mc =
01d1 01d2 0 . . . 1d�n/σ � with select support is stored, where dg is the number of occurrences of the symbol c in the chunk 
C g (cf. [30]). The sequences Mc add up to n + �n/σ �σ < 2n + σ bits, and enable rank and insert operations at the chunk 
granularity.
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S = 1
A

2
F

3
A

4
A

5
D

6
F

7
D

8
E

9
H

10
G

11
A

12
A

13
B

14
C

15
C

16
C

17
E

18
E

19
G

20
H

21
A

22
C

23
B

24
B

� = {A, B, C, D, E, F , G, H} σ = 8

Construction of the bitvectors Mx, x ∈ �

S = 1
A

2
F

3
A

4
A

5
D

6
F

7
D

8
E︸ ︷︷ ︸

Chunk C1

9
H

10
G

11
A

12
A

13
B

14
C

15
C

16
C︸ ︷︷ ︸

Chunk C2

17
E

18
E

19
G

20
H

21
A

22
C

23
B

24
B︸ ︷︷ ︸

Chunk C3

M A = 011101101 MB = 001011 MC = 0011101

MD = 01100 ME = 010011 M F = 01100

MG = 00101 MH = 00101

Construction of the R sequences of each chunk

Chunk C1

R = (A,1,1)(A,3,2)(A,4,3)︸ ︷︷ ︸
R A

(D,5,1)(D,7,2)︸ ︷︷ ︸
R D

(E,8,1)︸ ︷︷ ︸
R E

(F ,2,1)(F ,6,2)︸ ︷︷ ︸
R F

Chunk C2

R = (A,3,1)(A,4,2)︸ ︷︷ ︸
R A

(B,5,1)︸ ︷︷ ︸
R B

(C,6,1)(C,7,2)(C,8,3)︸ ︷︷ ︸
RC

(G,2,1)︸ ︷︷ ︸
RG

(H,1,1)︸ ︷︷ ︸
R H

Chunk C3

R = (A,5,1)︸ ︷︷ ︸
R A

(B,7,1)(B,8,2)︸ ︷︷ ︸
R B

(C,6,1)︸ ︷︷ ︸
RC

(E,1,1)(E,2,2)︸ ︷︷ ︸
R E

(G,3,1)︸ ︷︷ ︸
RG

(H,4,1)︸ ︷︷ ︸
R H

Fig. 2. Instance of the data structure of Section 6 for the sequence S = A F A AD F D E HG A ABC C C E EG H AC B B .

To support rank/insert operations inside each chunk C , its symbols C[i] = c are represented as a sequence R of triples 
(c, i, rankc(C, i)), requiring O (lgσ) bits per symbol of C . The triples are sorted by symbol in R , breaking ties with their 
position i. Let us call Rc the range of R of the triples with symbol c.

Fig. 2 shows an instance of the data structure for the sequence S = A F A AD F D E HG A ABCCC E EG H AC B B , with σ = 8.

6.2. Construction

To build the structure on a chunk C[1..σ ], we represent it as the sequence R of triples (C[i], i, 0). We then sort R , first 
by symbol and then by position, in O (W sort(σ )) work and O (Dsort(σ )) depth. We then find the start positions rc of the 
ranges Rc , by looking where two consecutive triples of R differ in their symbols and using a parallel prefix sum, in O (σ )

work and O (lgσ) depth. Finally, we fill the third component of each triple R[ j] = (c, i, 0) with j − rc + 1.
Therefore, we construct the internal data structures of a chunk of �(σ) symbols in O (W sort(σ ) + σ) work and 

O (Dsort(σ ) + lgσ) depth. For the whole sequence of length �, this adds up to O ( �
σ W sort(σ ) +�) work and O (Dsort(σ ) + lgσ)

depth, since all the chunks can be processed at the same time. Using the integer sorting algorithm of Han and Shen [22], we 
obtain a CREW PRAM algorithm with O (�

√
lgσ) work and O (lgσ) depth. Thus, the internal data structures of the chunks 

for the first 2n/� symbols (after steps 1 and 2 of Algorithm 1) can be constructed in O ( n
�

√
lgσ) work and O (lgσ) depth.

After the construction of the internal data structures, we build the global bitvectors Mc , 1 ≤ c ≤ σ . We allocate arrays 
Pc[1..��/σ �], where we initially write in Pc[g] the frequency of c in the chunk g , rc+1 − rc . We then apply a parallel prefix 
sum over each array Pc simultaneously, and allocate Pc[��/σ �] + ��/σ � bits for Mc , initially filled with 1s. Finally, we set 
Mc[ j] = 0, for j = 1 and j = Pc[g] + g , 1 ≤ g < ��/σ �. This takes, overall O (�) work and O (lg(�/σ )) depth. The select data 
structure for all bitvectors Mc is constructed in O (�) work and O (lg��/σ �) depth [29].

The construction of Mc uses O (� lg �) bits on a sequence of length �, but it will be used on the � = 2n/� symbols of 
steps 1 and 2 of Algorithm 1, where it will take O (n/�) work, O (lg(n/(�σ)) depth, and O ( n

�
lg n

�
) = O (n lgσ) bits.

Once the BWT construction algorithm terminates, we obtain the desired sequence from the triples of R of each chunk, 
by sorting them by position in total work O ( n

σ W sort(σ )) = O (n
√

lgσ) and depth O (Dsort(σ )) = O (lgσ) [22].

6.3. Batch of rank operations

Let Q = {rankc1 (B, i1), . . . , rankcm (B, im)} be the m rank queries to be solved, already sorted by index. The answer of 
each rank query has two components, rankck (B, ik) = rk,1 + rk,2. The first counts the number of cks preceding ik before its 
chunk, and the second the cks up to ik within its chunk.
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Batch of queries Q

Q = {rankA(S,3), rankA(S,11), rankC (S,14)}
Assignation per chunk

Q 1 = {(A,3,0)} Q 2 = {(A,3,0), (C,6,0)}
Chunk C1: Merge of the lists R and Q 1

merge(R, Q 1) = (A,1,1)(A,3,2)(A,3,0)(A,4,3)(D,5,1)(D,7,2)(E,8,1)(F ,2,1)(F ,6,2)

Chunk C2: Merge of the lists R and Q 2

merge(R, Q 2) = (A,3,1)(A,3,0)(A,4,2)(B,5,1)(C,6,1)(C,6,0)(C,7,2)(C,8,3)(G,2,1)(H,1,1)

Answer queries

rankA(S,3) = r1,1 + r1,2 = select0(M A ,1) − 1 + 2 = 1 − 1 + 2 = 2

rankA(S,11) = r2,1 + r2,2 = select0(M A ,2) − 2 + 1 = 5 − 2 + 1 = 4

rankC (S,14) = r3,1 + r3,2 = select0(MC ,2) − 2 + 1 = 2 − 2 + 1 = 1

Fig. 3. Execution of the batch of queries Q = {rankA(S,3), rankA(S,11), rankC (S,14)} on the sequence S = A F A AD F D E HG A ABC C C E EG H AC B B .

We first discover the index gk of the chunk where each index ik belongs. With this aim, we fill the chunk sizes in an 
array A[1..O (n/σ )], perform a parallel prefix sum on A, and then merge the indices ik of Q with A. A new parallel prefix 
sum counting the number of elements of A that precede each index ik gives the values gk − 1. Note that the space of A is 
O ((n/σ ) lg n) = o(n) bits. Note also that |Q | = m = �(n/�) and |A| = �n/σ � = o(m). Parallel prefixes and merging then take 
O (m + Wmerge(m)) work and O (lg m + Dmerge(m)) depth.

With the chunk index gk of each position ik we can already compute rk,1 = select0(Mc j , gk) − gk , in O (m) work and O (1)

depth. The second value is computed inside the chunk corresponding to each index. The chunks are obtained from the list 
of chunks by list ranking, in O (n/σ ) work and O (lg(n/σ )) depth.

Let Q g be the batch of t rank queries to be answered inside the gth chunk C . We represent the queries by triples 
(ck, ik, 0) and sort them by symbol and then position. The third component 0 is used to distinguish the triples of Q g from 
those of R , using the fact that the third component of the triples of R is greater than 0. We then merge Q g with the 
sequence R , with the same sorting keys. The sorting and merging can be done in O (W sort(t) + Wmerge(t + σ)) work and 
O (Dsort(t) + Dmerge(t + σ)) depth. By merging the sorted triples of Q g and the sorted triples of R we find, for each triple 
(ck, ik, 0), the rightmost triple (c j, i j, r j) of R with i j ≤ ik . Thus, we define rk,2 = r j . A left-to-right parallel scanning of 
O (t + σ) work and O (lg(t + σ)) depth is performed to find the index j for each k. The r j value of the triple (c j, i j, r j) is 
propagated to the right until the next triple of R , (c j+1, i j+1, r j+1), is found. During the scanning of the merged list of Q g

and R , if the l-th entry corresponds to the query (ck, ik, 0), we can compute the index k as l − j′ , where j′ is the position 
in the merged list of the last visited triple of R .

Therefore, across all the chunks, we can support m rank queries in O (m + W sort(m) + Wmerge(n)) work and O (lg m +
Dsort(m) + Dmerge(m + σ)) depth, using O ( n

σ lg n) = o(n lgσ) bits for the temporary array A. Using the merge algorithm of 
Kruskal [31] and the integer sorting algorithm of Han and Shen [22], we obtain work O (n + m

√
lg m) and depth O (lg m). 

After the � −2 steps of the BWT construction algorithm, with � = lgσ n, all the batched rank queries are done in O (n lgσ n +
n
√

lg m) ⊆ O (n
√

lg n) work and O (lg2 n/ lgσ) depth.
Fig. 3 shows the execution for the batch of queries Q = {rankA(S, 3), rankA(S, 11), rankC (S, 14)} over the sequence S of 

Fig. 2. In the top part of the figure, the queries are assigned to the corresponding chunk. In particular, Q is separated into 
two lists Q 1 = {(A, 3, 0)} and Q 2 = {(A, 3, 0), (C, 6, 0)}. Notice that the second component of each triple in Q 1 and Q 2
corresponds to the relative position of each query with respect to the beginning of the chunk. In the middle part of the 
figure, the lists Q 1 and Q 2 are merged with their respective lists R . The triples of Q 1 and Q 2 are underlined. Finally, in the 
bottom part of the figure, the rank queries are answered. In particular, the rightmost triple of R with respect to the query 
(A, 3, 0) is (A, 3, 2), for the query (A, 3, 0) is (A, 3, 1) and for the query (C, 6, 0) is (C, 6, 1).

6.4. Batch of insertions

The insertion of m new symbols is solved in two stages: first, the internal data structures of the updated chunks are 
modified, and then, the global binary sequences Mc are updated.

Let Q = {insertc1 (B, i1), . . . , insertcm (B, im)} be the m insert operations. These are already sorted by index and the indexes 
correspond to the final position of the new symbols. First, the insertions are assigned to the corresponding chunks gk , as 
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done for the batches of rank operations, in O (m + Wmerge(m)) work and O (lg m + Dmerge(m)) depth. The only difference is 
that we use the positions ik − k + 1 to find the current chunks where the insertions belong.

Let us now consider the operations Q g = {insertc1 (C, i1), . . . , insertct (C, it)} to be made on the gth chunk, C , giving final 
positions in the chunk.

We first allocate a temporary bitvector V [1..|C | + t] full of 1s, set all the positions ik to 0, and build a select data 
structure on it, with O (σ + t) work and O (lg(σ + t)) depth [29]. All the triples (c, i, r) in R are then updated to (c, i′, 0), 
with i′ = select1(V , i), in O (σ ) work and O (1) depth. The total temporary space for V over all chunks is O (n) bits.

We then regard Q g as a list of triples (ck, ik, 0), sort it by ck and then ik , and merge it with R , with O (W sort(t) +
Wmerge(t + σ)) work and O (Dsort(t) + Dmerge(t + σ)) depth. We then recompute the indices rc and the third components 
of the triples of R as done for the construction.

Summarizing, disregarding the possible overflows, updating the internal chunk structures upon m insertions requires 
O (n + W sort(m) + Wmerge(n)) work and O (lg n + Dsort(m) + Dmerge(n)) depth. Using the merge algorithm of Kruskal [31] and 
the integer sorting algorithm of Han and Shen [22], this is O (n + m

√
lg m) work and O (lg n) depth. Added over the � − 2

iterations of the BWTconstruction, this is O (n lgσ n + n
√

lg m) ⊆ O (n
√

lg n) work and O (lg2 n/ lgσ) depth.
Finally, we update the global bitvectors Mc , 1 ≤ c ≤ σ . With this aim, the bitvectors will be actually kept concatenated 

in M and we will know the starting position mc of each Mc inside M . Therefore each operation select0(Mc, p) is replaced by 
select0(M, (c − 1)h + p) − mc + 1, where h is the number of chunks, since there are exactly (c − 1)h 0s preceding Mc in M . 
With the numbers gk of the chunk where each insertion belongs, we compute the positions pk = select0(M, (ck − 1)h + gk)

after which the bit 1 corresponding to the insertion (ck, ik) must be inserted in M . These do not yet refer, however, to 
final positions: several insertions may fall right after the same 0. We finally sort the positions pk and execute the batched 
insertion Q M = {insert1(M, p1 + 1), . . . , insert1(M, pm + m)} using the algorithm of Section 5.1.

The cost of updating the bitvectors Mc is then O (m + n/ lg n + W sort(m)) work and O (lg n + Dsort(m)) depth, where the 
n/ lg n component of the work comes from the insertion algorithm of Section 5.1. Using the sorting algorithm of Han and 
Shen [22], we obtain O (m

√
lg m) work and O (lg n) depth. Added over the � − 2 iterations, this becomes O (n

√
lg n) work 

and O (lg2 n/ lgσ) depth.

Chunk overflows. If the t insertions in the chunk C make it longer than 2σ symbols, we split it into 
⌈ |C |+t

σ

⌉
new chunks 

of σ symbols (except the last one, which may be shorter). After generating the merged list R , but before recomputing its 
third component, we distribute it across the new chunks: the triple (c, i, 0) in R is distributed to the newly created chunk 
number f = �i/σ �, and its new local offset is i′ = i − ( f − 1)σ . We then sort R stably by component f , which effectively 
distributes it into the new chunks, and finally compute the indexes rc and third components inside each new chunk. The 
sorting is done in O ((t + σ)

√
lg(t + σ)) ⊆ O ((t + σ)

√
lg n) work and O (lg(t + σ)) depth [22]. In an amortized analysis, we 

can charge O (
√

lg n) work to each of the m inserted elements, since a block is created of size σ or less and it must receive 
at least other σ insertions to require a split and return to size σ or less. The total work incurred is then O (m

√
lg n), which 

added over the � − 2 iterations to build the BWT yields O (n
√

lg n); the depth adds up to O (lg2 n/ lgσ).
Note that the positions i of the triples (c, i, 0) in R occupy O (lg(t + σ)) bits before we divide the chunk. Let tg = |Q g |, 

then this adds up to O (
∑�n/σ �

g=1 (tg +σ) lg(tg +σ)) bits, where 
∑�n/σ �

g=1 tg = m. This is in O (
∑�n/σ �

g=1 (tg lg tg + tg lgσ +σ lg tg +
σ lgσ)) ⊆ O (m lgm + m lgσ + n lg(mσ/n) + n lgσ) = O (n lgσ), where we pessimistically maximized each term depending 
on its concavity.

After chunk C g overflows, we must also insert some 0s in M . For each new chunk 1 ≤ g′ < f we create (note we exclude 
the last), we use the starting positions rc of the subsequences Rc : starting at the 0 that represents the chunk g in Mc , 
we must skip rc 1s and insert a 0, consecutively for each new chunk g − 1 + g′ . To do this in parallel, after distributing 
the sequence R of the overflowing chunk, we work in parallel on each symbol c, doing a parallel prefix sum on the f − 1
values rc and collecting the sums in arrays qc[1.. f − 1]. We then generate f − 1 operations insert0(M, s + qc[g′] + g′), 
where s = select0(M, (c − 1)h + g), for all the new chunks g′ and the σ symbols simultaneously. This takes O (( f − 1)σ )

work and O (lg( f − 1)) depth. The ( f − 1)σ insertions created on M are then sorted in O (W sort(( f − 1)σ )) work and 
O (Dsort(( f − 1)σ )) depth, and carried out again using the algorithm of Section 5.1, in O (( f − 1)σ + n/ lg n) work and 
O (lg n) depth.

The total cost to update the bitvectors Mc upon overflows is then O (( f − 1)σ + W sort(( f − 1)σ ) + n/ lg n) work and 
O (Dsort(( f − 1)σ ) + lg n) depth. These can be made O (( f − 1)σ

√
lg n + n/ lg n) work and O (lg n) depth [22]. Since the sum 

of the f − 1 values across all the iterations is the final number of chunks, O (n/σ ), this adds up over the � − 2 iterations
to O (n

√
lg n) work and O (lg2 n/ lgσ) depth.

7. Implementation

In this section we validate the practicality of our construction by presenting an implementation of Algorithm 1 using 
multithreading, with p processors on a w-bit machine, and comparing it with other implemented parallel and sequential 
algorithms.
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7.1. A practical version of the algorithm

In order to obtain a practical solution with O (n lgσ) bits of working space, we made the following modifications to the 
Algorithm 1:

Parallel sorting. We used a parallel implementation of radix sort [32] to sort W (lines 17, 25 and 28 of Algorithm 1). The 
smallest alphabet of size 2n

�
was computed with a parallel quicksort, since the cost of radix sort increases linearly with 

�. This corresponds to the traditional recursive algorithm, where the two recursive calls are executed concurrently. For the 
split step of quicksort, the array is divided into p equal-size segments sharing a global pivot. Then, on each segment a 
sequential split function is applied. Finally, the outputs of the sequential split functions are merged into one array by using 
prefix sums to compute the position of each entry. To compare meta-symbols of � lg σ bits, the algorithm must read them 
by words of w bits, starting from the most significant bits. For large values of �, quicksort is faster than radix sort since 
it requires fewer memory accesses to decide which of two meta-symbols is smaller (reading the first word suffices most of 
the times). Radix sort, instead, would always execute �( �

lg n ) steps, so its time would not decrease with �. With p threads, 
quicksort takes O (( n

p�
+ lg p) lg n) parallel average time and 2p lg n

�
bits of space. The resulting average work is O ( n

�
lg n

�
)

and the depth is O (lg2 n
�

). Notice that the parallel algorithm needs O ( n
�

lgσ) bits to copy the elements at the end of the 
parallel split, but we can reuse one of the two arrays of the parallel suffix array algorithm (see next).

Suffix array on integers. After using the parallel quicksort to compute the new alphabet of the meta-symbols, we use the 
parallel range algorithm [32] to compute the suffix array of an array of meta-symbols. In its implementation, the parallel 
range algorithm uses two temporary integer arrays besides the input and output arrays, spending 2 n

�
lg n

�
bits of extra 

space, O ( n
�

lg n
�

) work and O (( n
�

)ε) depth, for 0 < ε < 1.

Rotations. In favor of reducing running time, we store explicitly the starting position of each meta-symbol in the input 
sequence. We store only the positions of the current rotation, since the first rotation S1 can be derived from the current 
one. This requires n

�
lg n further bits.

Steps 1 and 2. The new alphabet (line 6) is computed with parallel quicksort. The suffix array (line 7) is built using the 
parallel range algorithm. The for loop of lines 8–14 can be parallelized straightforwardly, since each new symbol can be 
processed independently, giving O (n/�) work, O (lg n

�
) depth and no extra space. Finally, for the frequency counting of line 

15, B is divided into p equal-sized segments, and the frequency counting is performed concurrently in all the segments. 
Then, the results of the segments are aggregated by performing σ parallel prefix sums, one for each symbol. The results of 
the prefix sums are stored in Acc. At this point, Acc stores the frequency of each symbol in B . A final prefix sum is performed 
over Acc in order to obtain the accumulated frequency. The space used by the arrays of each segment is O (pσ lg n

�
) bits. 

The work is O (n/�) and the depth is O (lg n
�

). This analysis is also valid for the counting of suffixes of S1 (lines 22–24).

Batch of rank operations. The batch of rank operations is sorted with parallel radix sort (line 17). The operations are sup-
ported by dividing the input sequence B into p subsequences of equal size. All the subsequences are concurrently traversed 
left-to-right using a global array F g and a local array Fl per subsequence. The global array F g stores the accumulated 
frequency in the subsequence, spending σ lgn bits, whereas the local array Fl stores the accumulated frequency in sub-
sequences of lg2 n symbols, spending 2σ lg lg n bits. Each subsequence is traversed left-to-right, counting in constant time 
the number of occurrences of all the symbols in lg n

2 consecutive bits, by using a lookup table of 2
√

nσ lg lg n = o(n) bits. 
With the symbol frequencies from the lookup table, we update Fl in time O (

σ lg lg n
lg n ), by adding various fields in parallel 

on a machine word of �(lg n) bits. After reading lg2 n consecutive symbols, we update the array F g by adding to it the 
accumulated frequencies of Fl , in time O (σ ), and then all the entries of Fl are set to zero. Thus, the total time used to 
update the arrays Fl and F g is O (

nσ lg σ lg lg n
lg2 n

). During the traversal of a subsequence B[ jn
p + 1 . . . ( j+1)n

p ], each operation 

ranks(B, i) with jn
p < i ≤ ( j+1)n

p is partially answered by counting the number of occurrences of the symbol s in the subse-

quence B[ jn
p + 1 . . . i]. After the traversal, the p arrays F g contain the frequency counts of the p subsequences. We apply 

σ parallel prefix sums over the F g arrays, and then correct the partial answers of the operations by adding the values of 
the F g arrays. For the operation ranks(B, i), we sum the occurrences of the symbol s in the (
 (i−1)p

n � + 1)-th F g array. The 
space usage is O (pσ lg n) bits for the F g and Fl arrays. The parallel time is O (

nσ lg σ lg lg n
p lg2 n

), plus O (σ ) for the partial sums 
(by using p/ lg p threads per partial sum and then summing σ/ lg p groups of lg p symbols in parallel). Multiplied by the �
rounds, this yields a work of O (

nσ lg σ lg lg n
lg2 n

) and O (σ�) depth. Note that the total cost is O ( n
�

) whenever σ = O (
lg n

lg lg n ).

Batches of insertions. To support a batch of insertions we can use the solution of Section 5.1 for any σ . However, to avoid in-
creasing the space, we chose to perform the insertions sequentially using a sequential version of the solution of Section 5.1.
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Fig. 4. Running time for the computation of the BWT.

Other notes. The for loop of lines 16–28 is carried out sequentially. Note, however, that the instructions of lines 17–21 and 
instructions of lines 22–23 can be executed concurrently, since they execute independent procedures. The update of Acc
(line 27) can be done in parallel, as well as the line 15, by storing the frequency counts of the recently inserted symbols in 
a temporary array of σ entries and then adding them to Acc in parallel for each symbol.

Complexity. The average complexity of our algorithm, with p threads, is then O ( n
p lg n

�
+ n�σ lg σ lg lg n

p lg2 n
+ �σ + polylog n), 

with an average work of O (n lg n
�

+ n�σ lg σ lg lg n
lg2 n

+ �σ). Note that we preserve a linear dependence on �. Such linear 

dependence will be evident later in our experimental study. The depth is O (�σ + �1−εnε). We exclude the batches of 
inserts, which are done sequentially to save space, adding O (

n� lg σ
lg n ) time, but they could be done in O (

n� lg σ
p lg n ) parallel 

time, O (
n� lg σ

lg n ) work, and O (� lg n
�

) depth.

The peak of space consumption is 9 n
�

lgn + o(n) bits, to which parallelization adds O (pσ lg n) bits. This extra space is 
negligible for practical values of p. The peak of space consumption occurs in line 23 of Algorithm 1, where the 2 n

�
lg n bits 

of W , the 2 n
�

lg n
�

bits of Tc , the 2 n
�

lg n
�

bits of the output SA, the 2 n
�

lg n
�

bits of the suffix array computation, the n
�

lgn
bits of the position of the meta-symbols in the current rotation, and the o(n) bits of Acc are allocated at the same time.

7.2. Experimental study

Setup. We implemented our algorithm in C++ and compiled with GCC 6.3 and option -O3. The implementation is available 
at https://github .com /jfuentess /bwt. We compare our implementation against those of Okanohara and Sadakane [13] (os), 
Kärkkäinen [10] (kar),5 the SA algorithm divSufSort implemented by Mori (dss), and the parallel SA algorithm of Labeit et 
al. [21] (pdss). We only consider one parallel algorithm, pdss, since it is the parallel version of dss and, as reported [21], it 
outperforms a parallel version of kar. A parallelization of os is far from trivial, since it exhibits several data dependencies. 
We could avoid such dependencies by storing temporary data during the computation, but that will increase the working 
space. All the baselines were compiled with their best optimization. We tried to include the algorithm of Hayashi and 
Taura [20], but had problems to compile it. Yet, according to them [20], os is more competitive both in space and time.

The experiments ran on a machine with two Intel® Xeon® Silver 4110 Processors with 16 physical cores clocked at 
2.1 GHz, with per-core L1 and L2 caches of 32 KB and 1 MB respectively, a per-processor L3 cache of 11 MB and 252 GB of 
DDR3 RAM memory (126 GB per NUMA node). Hyperthreading was enabled. Running time was measured with the functions 
in <time.h>. The memory consumption was measured using malloc_count (http://panthema .net /2013 /malloc _count). We 
report the median running time of 10 repetitions. Different values of n, σ and � were tested. In particular, we tested 
� = 
 2z

lg σ � symbols, for 6 ≤ z ≤ 12.

For the experiments, we use six random sequences gen-σ , with n = 230 and σ ∈ {3, 7, 15, 31, 63, 127}. Each dataset 
was generated with the random generator of Pizza&Chili, which distributes the symbols uniformly and independently. We 
remind that, during the computation of the BWT, a special symbol $ is inserted, which increases the alphabet size by one.

Results. Fig. 4a shows the space/time tradeoff for the gen-σ datasets. The reported running time of the two parallel 
algorithms, ours and pdss, considers 32 threads. Using � = 
 256

lg σ � symbols, our algorithm uses less memory than all the 
competitors for all values of σ . The algorithms pdss, dss and kar store each symbol of the input in an 8-bit variable, 
allowing a maximum alphabet of size 256. This is why they are not affected by the increasing values of σ . The algorithm
kar is slightly faster than ours, but still uses much space. The fastest of all the algorithms is pdss, but it is also the one 

5 We used the parameter v = 7. We tried increasing v to reduce space, but the time increases fast and makes it not competitive.

https://github.com/jfuentess/bwt
http://panthema.net/2013/malloc_count
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Fig. 5. Memory consumption.

with the highest memory consumption. For σ ≤ 30, our closer competitor is os. For those, our algorithm with � = 
 256
lg σ � is 

slower than os but it is the one using the least space. For σ > 30, our algorithm dominates os both in time and space.
Fig. 4b shows the scalability of our algorithm. For 16 threads, our algorithm shows an efficiency (speedup/number of 

threads) of 50%, decreasing to 30% for 32 threads. The reason is that our machine has 16 physical cores, increased to 32 
logical ones with hyperthreading. The speedup slightly decreases with �, which is in line with our analysis, where the 
depth increases with �.

Fig. 5 shows the effect of � and σ on the memory consumption of our algorithm. In the figure, the peak of memory does 
not consider the size of the output. The size of the arrays SA, Tc , W and rotation, and the memory usage of the suffix array 
algorithm, SA(), depend on � and σ . The segment other corresponds to additional arrays needed during the computation. 
The size of such arrays is negligible.

Since the main point is to limit the consumption of main memory, external memory constructions of the BWT and SA

are an interesting alternative to consider. We leave as future work a formal comparison against external memory algorithms, 
such as the recent work of Kärkkäinen et al. [33] and the parallel algorithm Kärkkäinen et al. [34]

8. Conclusions

We have presented the first parallel construction of the Burrows-Wheeler Transform (BWT) that works in compact space, 
that is, O (n lgσ) bits for a sequence of length n over alphabet [1..σ ]. Our construction, in the CREW PRAM model, uses 
O (n

√
lg n) work and O (lg3 n/ lgσ) depth. We have also implemented a simplified version of our construction in a multi-

threading scenario, showing that it uses the least amount of space among various state-of-the-art sequential and parallel 
alternatives, within competitive construction time.

An improvement in the work or depth of our algorithm that holds for any σ requires improvements in the more basic 
problems of parallel sorting or parallel suffix array construction, respectively. It is possible, however, that better complexities 
may be obtained for small values of σ .

An interesting challenge is to build in parallel and in compact space the other components of a compressed suffix tree 
[35]: the tree topology and the (permuted) longest common prefix array. These require O (n) further bits and can be built in 
O (n) sequential time and O (n lgσ) bits from the BWT [14,16]. Yet, current parallel suffix tree constructions require O (n lgn)

bits [18,19,36].
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