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It is shown that the Schrödinger equation for a large family of pairs of two–dimensional quantum 
potentials possess wavefunctions for which the amplitude and the phase are interchangeable, producing 
two different solutions which are dual to each other. This is a property of solutions with vanishing 
Böhm potential. These solutions can be extended to three–dimensional systems. We explicitly calculate 
dual solutions for physical systems, such as the repulsive harmonic oscillator and the two–dimensional 
hydrogen atom. These dual wavefunctions are also solutions of an analogue optical system in the eikonal 
limit. In this case, the potential is related to the refractive index, allowing the study of this two–
dimensional dual wavefunction solutions with an optical (analogue) system.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Different aspects of quantum mechanical solutions are always 
worth to be considered, because they may bring new insights on 
old problems. In this manuscript, we study a set of wavefunctions 
for which their amplitudes and phases can be interchanged in or-
der to solve the same Schrödinger equation for a family of specific 
potentials. It will be shown that this happens in two–dimensional 
systems when the Böhm potential vanishes.

The Böhm potential is defined by

− h̄2

2m

∇2 A

A
, (1)

where A = √
ψ∗ψ , is the amplitude of the wavefunction ψ . This 

Böhm potential plays an important role in the quantum theory de-
scribed by Schrödinger equation

[
− h̄2

2m
∇2 + V − ih̄

∂

∂t

]
ψ = 0 , (2)
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with the potential V . If the wavefunction is written as ψ =
A exp(i S/h̄), with a phase S , then the Schrödinger equation may 
be written as two coupled equations [1,2]

1

2m
�∇ S · �∇ S − h̄2

2m

∇2 A

A
+ V + ∂ S

∂t
= 0 , (3)

1

m
�∇ · (A2 �∇ S) + ∂ A2

∂t
= 0 . (4)

These equations are called the Madelung–Böhm hydrodynamical 
version of quantum mechanics. The Böhm potential appears explic-
itly in Eq. (3). We can also see that equation (4) is the continuity 
(probability conservation) equation. The importance of describing 
quantum mechanics in this form is on the recognition of the first 
equation (3) as a modified version of the classical Hamilton–Jacobi 
equation for the potential V . The classical Hamilton–Jacobi equa-
tion is modified by the addition of the Böhm potential, which is 
the only term where Planck’s constant h̄ appears in this version of 
the Schrödinger equation. The theory described by Eqs. (3) and (4), 
is also called Quantum Hamilton–Jacobi theory, and has been ex-
tensively studied in the context of their differences with respect to 
Hamilton–Jacobi equations [2–10].

However, in this work we focus in a different feature of quan-
tum mechanics in two–dimensions. We prove that when Böhm 
potential vanishes, there exists a family of potentials for which the 
wavefunction solutions present a duality of interchangeability be-
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tween their amplitudes and phases. Below we find the conditions 
for potential where this feature be explicitly displayed in the solu-
tions. Furthermore, we show that those two–dimensional solutions 
correspond to an exact optical analogue (in the geometrical optics 
limit), for which the potential is closely related to a refractive in-
dex. Therefore, these particular solutions can be studied optically. 
We present some optical systems which are suitable for this pur-
pose.

2. Duality solutions in two dimensions

Let us consider a special family of two–dimensional quantum 
potentials V 1(x, y), such that if one wave–function ψu , given by

ψu ≡ A exp

(
i

h̄
S

)
, (5)

(with A, S ∈R) solves the Schrödinger equation[
− h̄2

2m
∇2 + V 1(x, y) − ih̄

∂

∂t

]
ψu = 0 , (6)

then, a different wave–function ψv , given by

ψv ≡ S exp

(
i

h̄
A

)
, (7)

solves the same Schrödinger equation (6). For that quantum poten-
tial, the duality of the wavefunction solutions of Eq. (6) correspond 
to the interchangeability between the amplitude and the phase in 
wavefunctions (5) and (7).

The family of potentials which allows this kind of wavefunction 
solutions is composed of couples of related potentials V 1(x, y) and 
V 2(x, y) [11], such that the general solutions to their respective 
Schrödinger equation (6) may be written in terms of the solutions 
to the other Schrödinger equation[
− h̄2

2m
∇2 + V 2(x, y) − ih̄

∂

∂t

]
ψu,v = 0, (8)

where V 1(x, y) [V 2(x, y)] is completely determined by V 2(x, y)

[V 1(x, y)]. The family of potentials V (x, y) that fulfill this condi-
tion is defined by [11]

∇2 log V (x, y) = 0 . (9)

In the following sections we prove the above statements, first 
for time–independent two dimensional quantum mechanics, to 
later extend this result for time-dependent solutions in three di-
mensions.

2.1. Time–independent two–dimensional system

Consider a solution to a two–dimensional Schrödinger equa-
tion for a special potential V (x, y) written in terms of a two–
dimensional time–independent wavefunction

ψu(x, y) ≡ A(x, y) eiS(x,y)/h̄, (10)

where A(x, y) and S(x, y) are real functions of two variables x and 
y. The real and imaginary parts of the Schrödinger equation satisfy 
the two–dimensional version of Eqs. (3) and (4).

Now, consider the two–dimensional functions u(x, y) and 
v(x, y) as the real and imaginary parts of a holomorphic function 
f (z) respectively,

f (z) = u(x, y) + iv(x, y) , (11)
written in terms of a complex variable z

z = x + iy = r exp(iθ) , (12)

where r = √
x2 + y2, and θ = arctan (y/x). As f is holomorphic, 

the functions u(x, y) and v(x, y) satisfy the Cauchy–Riemann con-
ditions

∂u

∂x
= ∂v

∂ y
,

∂u

∂ y
= −∂v

∂x
. (13)

It is well known (and straightforward to prove using the Cauchy–
Riemann conditions) that these two–dimensional functions u(x, y)

and v(x, y) fulfill

∇2u = 0 = ∇2 v , (14)

0 = �∇u · �∇v , (15)

�∇u · �∇u = �∇v · �∇v . (16)

Consider now a (factorizable) family of potentials V (x, y) defined 
by Eq. (9). Any member of such family may be factorized as

−2mV (x, y) = g(z)ḡ(z̄) . (17)

Therefore, Eqs. (3) and (4) written for any member of the factor-
izable family in two–dimensions, are solved by the wavefunction 
(10) with A(x, y) = u(x, y) and S(x, y) = v(x, y), such that the 
holomorphic function g(z) is defined by

g(z) = df (z)

dz
(18)

because of (16).
Note that as a consequence Eqs. (14), and (15), the Böhm poten-

tial (1) vanishes and the continuity equation (4) is identically satis-
fied. Furthermore, of course, the wavefunction (10) with A(x, y) =
v(x, y) and S(x, y) = u(x, y) (which is dual to the previously con-
structed solution, with amplitude and phase interchanged) also 
satisfies Eqs. (3) and (4) for the same potential because of Eq. (16).

The time–independent dual solutions exhibited above, really 
apply to two–dimensional optics because the Hamilton–Jacobi 
equation for zero energy (recall that ∂ S/∂t = 0), is equivalent to 
the optical eikonal equation with a refractive index n(x, y) given 
by

n2(x, y) = −2mV (x, y) = g(z)ḡ(z̄). (19)

As a consequence, dual solutions are only found for negative po-
tentials given by (17).

2.2. A property of holomorphic functions

The above two–dimensional solution can be shown to emerge 
as a property of general holomorphic functions. Thus, this solution 
is a geometrical consequence of the two–dimensions in which the 
system is restricted to evolve. In terms of the general holomorphic 
function (11), the above proposed wavefunction solutions are writ-
ten as

ψu = f + f̄

2
exp

(
f − f̄

2h̄

)
,

ψv = f − f̄

2i
exp

(
i

f + f̄

2h̄

)
, (20)

as u = ( f + f̄ )/2 and v = ( f − f̄ )/2i. Then, we readily get
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∇2ψu,v = 4
∂2ψu,v

∂z∂ z̄
= 4

∂2ψu,v

∂ f ∂ f̄
g ḡ

= − 1

h̄2
g ḡ ψu,v , (21)

with g defined in (18). We have used the well–known result for a 
two–dimensional space ∇2 ≡ ∂2

x + ∂2
y = 4∂2

z,z̄ , in terms of complex 
variable (12).

Eq. (21) is equivalent to the Schrödinger equations Eqs. (6) and 
(8) for zero energy and potential (17). Therefore our result may 
also be understood as a general property of some functions (ψu
and ψv ) constructed from an arbitrary holomorphic function f (z)
and its complex conjugate f̄ (z̄). Note that the Bohm potential plays 
no role in this approach. This gives a geometrical explanation of 
the vanishing of Bohm potential when these dual functions are 
considered.

2.3. Time–dependent three dimensional extension

We can generalize the previous case to time–dependent sys-
tems in three–dimensions. Consider a wavefunction that propa-
gates in a ζ –direction (perpendicular to the previous ones), with 
energy E . It has the form

ψu(x, y, ζ, t) = u(x, y)exp

(
i

h̄

[
v(x, y) + kζ ζ − Et

])
, (22)

where kζ is the wavenumber associated to the ζ –direction. Wave-
function (22) solves Eqs. (3) and (4) for the same two–dimensional 
potential V (x, y), provided the energy is given by

E = k2
ζ

2m
. (23)

Due to the Cauchy–Riemann conditions, the same functions f (z)
and g(z) allow us to show that the dual wavefunction

ψv(x, y, ζ, t) = v(x, y)exp

(
i

h̄

[
u(x, y) + kζ ζ − Et

])
, (24)

also solves Eqs. (3) and (4).
A more complete solution can be found if the energy E has the 

form E = k2
ζ /(2m) + E , with a constant energy shift E , while the 

potential fulfill now

−2m [V (x, y) − E] = g(z)ḡ(z̄) . (25)

3. Solutions for dual wavefunctions

Based in the above two–dimensional system, with the dual 
wavefunction solutions, in this section we explore different ex-
amples of potentials whose Schrödinger equations may be solved 
exactly. We start from simple algebraic choices for the holomorphic 
function g , to finally solve specific physical models, also showing 
how they correspond to optical systems with different refractive 
indices in the following section.

3.1. A general solution

Let us consider the general two–dimensional potential given by

V (x, y) = −α rn , (26)

for α, n ∈R, with α > 0. For this potential, the solution of Eq. (17)
is given by

g(z) = √
2mα zn/2 , (27)

and by Eq. (18) we have
f (z) = 2
√

2mα

n + 2
z1+n/2 . (28)

Therefore, the dual solutions are given in general by

ψu(x, y) = 2
√

2mα

n + 2
r1+n/2 cos

[
(n + 2)θ

2

]

× exp

(
i

h̄

2
√

2mα

n + 2
r1+n/2 sin

[
(n + 2)θ

2

])
,

ψv(x, y) = 2
√

2mα

n + 2
r1+n/2 sin

[
(n + 2)θ

2

]

× exp

(
i

h̄

2
√

2mα

n + 2
r1+n/2 cos

[
(n + 2)θ

2

])
. (29)

Clearly, these solutions are valid for n �= −2. The case n = 2 is dis-
cussed below independently. Interestingly, it is straightforward to 
prove that wavefunctions (29) are single-valued for

θ → θ + 4π

n + 2
. (30)

In order to evaluate explicitly the above general solution, in the 
following sections we focus in particular cases for different n val-
ues, showing that these dual solutions can be relevant in standard 
quantum mechanical scenarios in two dimensions.

3.2. The simplest holomorphic function

Consider n = 0 in (26) for a constant potential. In this case, 
f = √

2mα z, and

ψu(x, y) = √
2mα x exp

(
i

h̄

√
2mαy

)
,

ψv(x, y) = √
2mα y exp

(
− i

h̄

√
2mαx

)
. (31)

The first solution corresponds to a function f = √
2mαz, whereas 

the second one is for f = −i
√

2mαz. It is straightforward to show 
by inspection that the dual wavefunctions (31) satisfy Schrödinger 
equation (6). These solutions are single–valued for θ → θ + 2π .

3.3. Repulsive harmonic oscillator in two dimensions

Consider n = 2 in potential (26), to get the repulsive harmonic 
oscillator

V = −α r2 . (32)

Thus, we find that

g(z) = √
2mα z , (33)

and similarly we find from (28) that

f (z) =
√

mα

2
z2 . (34)

Thereby, the dual wavefunctions

ψu(x, y) =
√

mα

2
r2 cos(2θ)exp

[
i

h̄

√
mα

2
r2 sin(2θ)

]
,

ψv(x, y) =
√

mα

2
r2 sin(2θ)exp

[
i

h̄

√
mα

2
r2 cos(2θ)

]
, (35)

are solutions of Schrödinger equation (6) for potential (32). These 
solutions are single–valued for θ → θ + π .
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3.4. Hydrogen atom in two dimensions

Let us consider n = −1 in (26). Thus we find the potential for a 
two–dimensional hydrogen atom

V = −α

r
. (36)

By using (27) we find

g(z) =
√

2mα

z
, (37)

and thus

f (z) = 2
√

2mαz . (38)

This allows us to find the solutions for the dual wavefunctions

ψu(x, y) = 2
√

2mα r cos

(
θ

2

)
exp

[
2i

√
2mαr

h̄
sin

(
θ

2

)]
,

ψv(x, y) = 2
√

2mα r sin

(
θ

2

)
exp

[
2i

√
2mαr

h̄
cos

(
θ

2

)]
.

(39)

Anew, the above wavefunctions are single–valued for θ → θ +
4π .

3.5. The exceptional potential for n = −2

For this case

V (x, y) = − α

r2
. (40)

This potential is remarkable in its own right because it constitutes 
one of the few known examples of anomalies in quantum mechan-
ics [12]. It is a simple matter to get

g(z) =
√

2mα

z
,

f (z) = √
2mα log(z) . (41)

And then, both dual wavefunctions are

ψu(x, y) = log r exp(iθ) ,

ψv(x, y) = θ exp(i log r) = θ ri . (42)

Notice here that solutions (29) do not apply. In fact, wavefunction 
ψu is single–valued for θ → θ + 2π , whereas ψv does not have 
such property.

4. Analogy with refractive indices

For any n ∈ R, solutions of potential (26) can be found. How-
ever, it is important to remark another feature of the dual solutions 
found here. The two-dimensional system can be studied as an ana-
logue model for lenses with specific refractive indices.

If we choose the refractive index n(x, y) to be real, then n2

is positive [recall Eq. (19)] which, in turn, means that a two–
dimensional dual quantum mechanics system can be made anal-
ogous to an optical model for negative potentials only, V < 0.

In the following sections, we present examples where refractive 
indices can be used to model dual quantum mechanical systems.
4.1. Eaton lens and hydrogen atom in two dimensions

An Eaton, lens with refraction angle of π , can be described by 
the refractive index [13–15]

n(x, y) =
√

2a

r
− 1 , (43)

where a is the radius of the lens, and r ≤ a.
Using Eq. (25), we find the associated potential

V (x, y) = − a

mr
, (44)

with an energy shift E = −1/2m. This potential corresponds to the 
choices α = a/m, and n = −1 in (26). Therefore, we are able to find 
the solution (37) for a hydrogen atom in two dimensions

g(z) =
√

2a

z
. (45)

In this form, an Eaton lens, with a refraction angle of π , is equiv-
alent to the dual quantum mechanical system of a hydrogen atom 
in two dimensions with energy E = (k2 − 1)/2m.

4.2. More general Eaton lens

For any refraction angle φ, an Eaton lens can be approximated 
as [13]

n(x, y) ≈
(

2a

r
− 1

)φ/(φ+π)

. (46)

Close to the center of the spherical lens (r � a), we have an ap-
proximate refractive index

n(x, y) ≈
(

2a

r

)φ/(φ+π)

, (47)

which allows us to find the potential

V (x, y) = − 1

2m

(
2a

r

)2φ/(φ+π)

, (48)

with E = 0. This corresponds to a general potential (26) with α =
(2a)φ/(φ+π)/2m, and n = −2φ/(φ +π). With Eqs. (27) and (28) we 
find

g(z) = (2a)φ/(φ+π)z−φ/(φ+π) ,

f (z) = (φ + π)

φ
(2a)φ/(φ+π)zπ/(φ+π) , (49)

from where the dual wavefunctions can be constructed.

4.3. General monomial refractive index

By using the general potential (26), we can construct the gen-
eral refractive index for an optical system be analogous to two-
dimensional dual quantum mechanics. This is

n(x, y) = √
2mα rn . (50)

This result implies that all the previous mentioned refractive 
indices can be studied optically, whereas some other ones, such as 
Lüneburg or Maxwell lenses [15], are excluded from this treatment 
of optical analogies.
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5. Conclusions

We have presented a large family of quantum mechanical (and 
their related optical) problems which possess a remarkable du-
ality property, in the sense that in some of their solutions am-
plitudes and phases are interchangeable. This implies that this 
kind of quantum mechanical systems affords solutions in which 
particles with the same energy move with different momenta. 
This can be proved by two alternative approaches, one based 
on the condition of vanishing Bohm potential, while the other 
is based on two–dimensional properties of arbitrary holomorphic 
functions.

These solutions with the duality properties, include interest-
ing physical systems. An example is the two–dimensional hydro-
gen atom solution described in Sec. 3.4. Solutions of the two–
dimensional hydrogen atom potential (36) are known [16,17], al-
though they have a non–vanishing Böhm potential, being different 
to ours.

On the other hand, the fact that quantum mechanical and opti-
cal problems may be treated in a unified way allows for the pos-
sibility of studying electron propagation in some potentials using 
analogous experiments with light propagation, which sometimes 
are easier to handle. This can be achieved in physical optical sys-
tems, as using Eaton lenses, for instance. This opens new types of 
quantum–mechanical experiments at classical level.

Lastly, the relation among wavefunctions associated to two–
dimensional potential (26), transformation (30), and anyon statis-
tics [18–20] is currently under research.
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