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1. Introduction and main results

In this short note, we give a new characterization of inverses M -matrices, inverses of 
row diagonally dominant M -matrices and inverses of row and column diagonally domi-
nant M -matrices. This is done in terms of a certain inner product to be nonnegative (see 
(1.5), (1.6) and (1.4), respectively). These characterizations are stable under limits, that 
is, if an operator U can be approximated by a sequence of matrices (Uk)k in such a way 
that also the corresponding inner products converge (for example in L2) then the limit 
operator will satisfy the same type of inequality. This is critical to show, for example, 
that U is the 0-potential of a Markov resolvent or a Markov semigroup because as we 
will see this inequality implies a strong principle called Complete Maximum Principle in 
Potential Theory (see for example [22], chapter 4). In the matrix case, this corresponds 
to the inverse of a row diagonally dominant M -matrix (see Theorem 2.1 below).

We continue with the formal definition of a potential matrix.

Definition 1.1. A nonnegative, nonsingular matrix U is called a potential if its inverse 
M = U−1 is a row diagonally dominant M -matrix, that is,

∀i �= j Mij ≤ 0; (1.1)

∀i Mii > 0; (1.2)

∀i |Mii| ≥
∑
j �=i

|Mij |. (1.3)

Also, U is called a double potential if U and U t are potentials.

We point out that conditions (1.1) and (1.3) imply condition (1.2). Indeed, notice that 
these two conditions imply that |Mii| ≥ 0, but if Mii = 0, then for all j we would have 
Mij = 0, which is not possible because we assume that M is nonsingular. Finally, Mii

cannot be negative, otherwise 1 =
∑

j MijUji ≤ 0, which is not possible. We also notice 
that if U is a symmetric potential, then clearly it is a double potential.

In what follows for a vector x, we denote by x+ its positive part, which is given by 
(x+)i = (xi)+. Similarly, x− denotes the negative part of x, so x = x+ + x−. Also, we 
denote by 〈 , 〉, the standard Euclidean inner product, and 1 is the vector whose entries 
are all ones. We are in a position to state our main result.

Theorem 1.1. Assume that U is a nonsingular nonnegative matrix of size n.
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(i) If U satisfies the following inequality: for all x ∈ Rn

〈(Ux− 1)+, x〉 ≥ 0 (1.4)

then U is a potential.
(ii) Reciprocally, if U is a double potential then it satisfies (1.4).

In particular, if U is a nonnegative nonsingular symmetric matrix, then U is a potential 
iff it satisfies (1.4).

Example. Here is an example of a potential matrix U , for which (1.4) does not hold. 
Consider

U =
(

2 100
1 100

)
,

whose inverse is M = U−1

M =
(

1 −1
−1/100 1/50

)
= I −

(
0 1

1/100 49/50

)

a row diagonally dominant M -matrix. Nevertheless,

〈(Uv − 1)+, v〉 = (2x + 100y − 1)+x + (x + 100y − 1)+y = −5.3,

for x = −0.5, y = 0.2. Notice that U t is not a potential because its inverse, although it 
is an M -matrix, it fails to be row diagonally dominant.

To generalize Theorem 1.1 to include all inverse M -matrices we consider the following 
two diagonal matrices D, E. Here, we assume that U is a nonnegative nonsingular matrix, 
or more general, it is enough to assume that U is nonnegative and it has at least one 
positive element per row and column. Let us define D as the diagonal matrix given by, 
for all i

Dii =

⎛
⎝∑

j

Uij

⎞
⎠

−1

,

as the reciprocal of the i-th row sum. Similarly, consider E the diagonal matrix given 
by, for all i

Eii =

⎛
⎝∑

j

Uji

⎞
⎠

−1

,
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the reciprocal of the i-th column sum. We point out that matrices D, E are computed 
directly from U .

Theorem 1.2. Assume that U is a nonsingular nonnegative matrix of size n.

(i) U is an inverse M -matrix iff DUE is a double potential, which is further equivalent 
to the following inequality: for all x ∈ Rn

〈(Ux−D−11)+, DE−1x〉 ≥ 0. (1.5)

(ii) U is a potential iff UE is a double potential, which is equivalent to the inequality: 
for all x ∈ Rn

〈(Ux− 1)+, E−1x〉 ≥ 0. (1.6)

Proof. (i) Assume that M = U−1 is an M -matrix. Then, W = DUE is a double 
potential. Indeed, it is clear that N = W−1 is an M -matrix. Now, consider μ = E−11, 
then

Wμ = DU1 = 1,

by the definition of D. This means that N1 = W−11 = μ ≥ 0, and so N is a row 
diagonally dominant matrix. Similarly, if we take ν = D−11, we have

νtW = 1tUE = 1t.

This proves that 1tN = νt ≥ 0 and therefore, we conclude that N is a column diagonally 
dominant matrix. In summary, W is a double potential. Conversely, if W is a double 
potential, in particular it is an inverse M -matrix, which implies that U is an inverse 
M -matrix.

Let us prove that U being an inverse M -matrix is equivalent to (1.5). We first assume 
W is a double potential, then from Theorem 1.1, we have for all x ∈ Rn

0 ≤ 〈(DUE x− 1)+, x〉 = 〈(DUy − 1)+, E−1y〉 = 〈(Uy −D−11)+, DE−1y〉,

which is condition (1.5). Here, we have used the straightforward to prove property that 
for a diagonal matrix, with positive diagonal elements, it holds (Dz)+ = Dz+.

Conversely, assume that U satisfies (1.5) then, we obtain that W satisfies (1.4) in 
Theorem (1.1) and therefore it is an inverse M -matrix. So, U is an inverse M -matrix, 
proving the desired equivalence.

(ii) This time we take W = UE. Since U is a potential, there exists a nonnegative 
vector μ, such that Uμ = 1, then UEE−1μ = 1 and W is a potential. On the other 
hand, 1tUE = 1t, and therefore W is a double potential. The rest follows similarly as in 
the proof of (i). �



186 C. Dellacherie et al. / Linear Algebra and its Applications 595 (2020) 182–191
The next theorem is a complement to Theorem 1.1. One way to approach this result 
is by making the change of variables y = Ux in (1.4).

Theorem 1.3. Assume M is a matrix of size n. Then

(i) If M satisfies the inequality, for all x ∈ Rn

〈(x− 1)+,Mx〉 ≥ 0, (1.7)

then M satisfies the following structural properties

∀i �= j Mij ≤ 0; (1.8)

∀i Mii ≥ 0; (1.9)

∀i Mii ≥
∑
j �=i

−Mij . (1.10)

That is, M is a Z-matrix, with nonnegative diagonal elements and it is a row 
diagonally dominant matrix.

(ii) If M is a Z-matrix, with nonnegative diagonal elements and it is a row and column 
diagonally dominant matrix, then it satisfies (1.7).

There is a vast literature on M -matrices and inverse M -matrices, the interested reader 
may consult the books by Horn and Johnson [13] and [14], among others. In particular 
for the inverse M -problem we refer to the pioneer work of [8], [11] and [28]. Some results 
in the topic can be seen in [1], [2], [5], [6], [9], [10], [12], [15], [16], [17], [18], and [27]. 
The special relation of this problem to ultrametric matrices in [4], [19], [20], [21], [23], 
[24], [25], [26]. Finally, for the relation between M -matrices and inverse M -matrices with 
Potential Theory see our book [7].

2. Proof of Theorem 1.1 and Theorem 1.3

The proof of Theorem 1.1 is based on what is called the Complete Maximum Principle
(CMP), which we recall for the sake of completeness.

Definition 2.1. A nonnegative matrix U of size n, is said to satisfy the CMP if for all 
x ∈ Rn it holds:

sup
i

(Ux)i ≤ sup
i:xi≥0

(Ux)i,

where by convention sup = 0.

∅
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The CMP says that if x has at least one nonnegative coordinate then the maximum 
value among the coordinates of y = Ux is attained at some coordinate i such that xi

is nonnegative. An alternative equivalent definition, which is the standard in Potential 
Theory reads as follows, U is a potential if for all x it holds: whenever (Ux)i ≤ 1 on the 
coordinates where xi ≥ 0, then Ux ≤ 1. The importance of this principle is given by the 
next result.

Theorem 2.1. Assume U is a nonnegative matrix.

(i) If U is nonsingular, then U satisfies the CMP iff U is a potential, that is, M = U−1

is a row diagonally dominant M -matrix.
(ii) U satisfies the CMP then for all a ≥ 0 the matrix U(a) = aI+U satisfies the CMP 

and for all a > 0 the matrix U(a) is nonsingular.

The proof of (i) in this theorem goes back to Choquet and Deny [3] (Theorem 6, page 
89). For a generalization of this result and a more matrix flavor of it, see Theorem 2.9 
in [7].

Assume that U is a nonnegative matrix and satisfies the CMP, if the diagonal of U is 
strictly positive, which happens when U is nonsingular, then there exists an equilibrium 
potential, that is, a nonnegative vector μ solution of the problem

Uμ = 1,

see for example (v) Lemma 2.7 in [7].
This vector μ plays an important role and it is related to the fact that U−1 is row 

diagonally dominant, when U is nonsingular. In fact, in this case μ = U−11 ≥ 0.
Now, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. (i) We shall prove that U satisfies the CMP. For that purpose 
consider x ∈ Rn, which has at least one nonnegative coordinate. If (Ux)i ≤ 1, for those 
coordinates i such that xi ≥ 0, then from condition (1.4) we conclude that

0 ≤ 〈(Ux− 1)+, x〉 = 〈(Ux− 1)+, x−〉,

which implies that ((Ux − 1)+)i = 0 if xi < 0, proving that U satisfies the CMP. Hence, 
from Theorem 2.1 we have that M = U−1 is a row diagonally dominant M -matrix.

(ii) Assume that U, U t are potential matrices of size n. Then M = U−1 is a column 
and row diagonally M -matrix, which is equivalent to have M = k(I − P ), for some 
constant k > 0 and a double substochastic matrix P , that is, P is a nonnegative matrix 
and for all i it holds 

∑
j Pij ≤ 1, 

∑
j Pji ≤ 1.
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We define μ = M1 ≥ 0 and ξ = U(x − μ) = Ux − 1 to get

〈(Ux− 1)+, x〉 = 〈(Ux− Uμ)+, x〉 = 〈ξ+,Mξ + μ〉 = 〈ξ+, kξ + μ〉 − k〈ξ+, P ξ〉

= k
(
〈ξ+, ξ+〉 − 〈ξ+, P ξ〉

)
+ 〈ξ+, μ〉.

Since P ≥ 0, we get

〈ξ+, P ξ〉 ≤ 〈ξ+, P ξ+〉 = 〈ξ+,
1
2(P + P t)ξ+〉 ≤ 〈ξ+, ξ+〉.

The last inequality holds because the nonnegative symmetric matrix 1
2 (P + P t) is sub-

stochastic and therefore its spectral radius is smaller than 1, which implies that for all 
z ∈ Rn it holds 〈z, 12 (P + P t)z〉 ≤ 〈z, z〉. We get the inequality

〈(Ux− 1)+, x〉 ≥ 〈(Ux− 1)+, μ〉 ≥ 0,

which shows the result. �
Proof of Theorem 1.3. The reader may consult [14] Theorem 2.5.3, for some properties 
about M -matrix that are needed in this proof.

(i). Assume that M is a matrix, of size n, that satisfies (1.7). In order to prove that 
condition (1.8) holds fix i ∈ {1, · · · , n} and consider a vector x such that xi > 1 and 
xk = 0, k �= i. Then (1.7) implies

0 ≤ 〈(x− 1)+,Mx〉 = (xi − 1)Miixi,

from where we deduce Mii ≥ 0, proving that (1.8) holds.
To prove (1.9) consider i �= j fixed and take a vector x such that xi > 1, xj < 0 and 

xk = 0, k �= i, j. Then

0 ≤ 〈(x− 1)+,Mx〉 = (xi − 1)(Miixi + Mijxj)

By taking xj a large negative number, we conclude that this inequality can hold only if 
Mij ≤ 0, proving (1.9).

Now, we prove condition (1.10). For that purpose we consider i fixed and we take 
x ∈ Rn such that xi > 1 and xj = 1 for all j �= i. Then

0 ≤ 〈(x− 1)+,Mx〉 = (xi − 1)
(
xiMii +

∑
j �=i

Mij

)
.

This implies that xiMii+
∑
j �=i

Mij ≥ 0 holds for all xi ≥ 1 and therefore Mii+
∑
j �=i

Mij ≥ 0, 

proving that M satisfies (1.10).
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Part (ii) follows from Theorem 1.1 by considering a perturbation of M . For θ > 0 take 
M(θ) = θI + M . By hypothesis M(θ) is a strictly row and column dominant Z-matrix, 
proving that M(θ) is an M -matrix. Its inverse, U(θ) = (M(θ))−1, is a double potential 
and therefore it satisfies inequality (1.4). Take y ∈ Rn and consider x = x(θ) = M(θ)y
to obtain

0 ≤ 〈(U(θ)x− 1)+, x〉 = 〈(y − 1)+,My〉 + θ〈(y − 1)+, y〉.

The result follows by taking θ ↓ 0. �
3. Some complements

In Potential Theory, particularly when dealing with infinite dimensional spaces, most 
of the time a potential U is singular. According to Theorem 2.1, in case U is nonsingular, 
our definition of a potential matrix (see Definition 1.1) and the CMP are equivalent. The 
latter makes sense even for singular matrices and this should be the right definition for 
a matrix to be a potential. Notice that in (ii) Theorem 2.1 says that a potential in 
this sense, is the limit of nonsingular potential matrices, which also holds in infinite 
dimensional spaces.

Theorem 1.1 can be extended to include singular potential matrices as follows.

Theorem 3.1. Assume U is a nonnegative matrix.

(i) If U satisfies (1.4) then U satisfies the CMP.
(ii) Reciprocally, if U, U t satisfy the CMP, then U (and U t) satisfies (1.4).

That is, for a symmetric matrix U , condition (1.4) and CMP are equivalent.

Proof. The proof of (i) is identical to the one of Theorem 1.1 (i).
(ii). Consider as in Theorem 2.1 a perturbation of U , given by U(a) = aI + U , for 

a > 0. Since U(a), U t(a) are nonsingular potential matrices we can use Theorem 1.1 to 
conclude that for all a > 0 and x ∈ Rn one has

0 ≤ 〈(U(a)x− 1)+, x〉.

Now, it is enough to take the limit as a ↓ 0, to conclude the result. �
The question now is: is there a principle like CMP, that characterizes inverses M -

matrices? The answer is yes, and it is given by the following principle taken from Potential 
Theory.

Definition 3.1. A nonnegative matrix U is said to satisfy the domination principle (DP) 
if for any nonnegative vectors x, y it holds (Ux)i ≤ (Uy)i for those coordinates i such 
that xi > 0, then Ux ≤ Uy.
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Theorem 2.15 in [7] is exactly this characterization, which we copy here for the sake 
of completeness.

Theorem 3.2. Assume that U is a nonnegative nonsingular matrix. Then, U−1 is an 
M -matrix iff U satisfies DP.

It is interesting to know a relation between CMP and DP, which is given by 
Lemma 2.13 in [7].

Proposition 3.3. Assume that U is a nonnegative matrix with positive diagonal elements. 
Then, the following are equivalent

(i) U satisfies the CMP
(ii) U satisfies the DP and there exists a nonnegative vector μ solution to Uμ = 1.

Finally let us recall a simple algorithm to check when a nonnegative matrix that 
satisfies the CMP or DP is nonsingular (see Corollary 2.46 and Corollary 2.47 in [7]).

Proposition 3.4. Assume that U is a nonnegative matrix, that satisfies either CMP or 
DP, then the following are equivalent

(i) U is nonsingular
(ii) not two columns of U are proportional.

There is a lack of symmetry in this result from columns and rows, because CMP is 
not stable under transposition. On the other hand DP is stable under transposition, so 
in this case U is nonsingular iff no two rows are proportional.
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