
Computer Physics Communications 251 (2020) 107080

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

PyProcar: A Python library for electronic structure
pre/post-processing✩,✩✩

Uthpala Herath a, Pedram Tavadze a, Xu He b, Eric Bousquet b, Sobhit Singh a,c,
Francisco Muñoz d,e, Aldo H. Romero a,∗

a Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26505-6315, USA
b Physique Théorique des Matériaux, CESAM, Université de Liège, B-4000 Sart-Tilman, Belgium
c Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
d Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
e Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile

a r t i c l e i n f o

Article history:
Received 14 June 2019
Received in revised form 7 November 2019
Accepted 18 November 2019
Available online 27 November 2019

Keywords:
DFT
Bandstructure
Electronic properties
Fermi-surface
Spin texture
Python
Condensed matter

a b s t r a c t

The PyProcar Python package plots the band structure and the Fermi surface as a function of site
and/or s,p,d,f - projected wavefunctions obtained for each k-point in the Brillouin zone and band in
an electronic structure calculation. This can be performed on top of any electronic structure code,
as long as the band and projection information is written in the PROCAR format, as done by the
VASP and ABINIT codes. PyProcar can be easily modified to read other formats as well. This package
is particularly suitable for understanding atomic effects into the band structure, Fermi surface, spin
texture, etc. PyProcar can be conveniently used in a command line mode, where each one of the
parameters define a plot property. In the case of Fermi surfaces, the package is able to plot the surface
with colors depending on other properties such as the electron velocity or spin projection. The mesh
used to calculate the property does not need to be the same as the one used to obtain the Fermi
surface. A file with a specific property evaluated for each k-point in a k−mesh and for each band
can be used to project other properties such as electron–phonon mean path, Fermi velocity, electron
effective mass, etc. Another existing feature refers to the band unfolding of supercell calculations into
predefined unit cells.
Program summary
Program Title: PyProcar
Program Files doi: http://dx.doi.org/10.17632/d4rrfy3dy4.1
Licensing provisions: GPLv3
Programming language: Python
Nature of problem: To automate, simplify and serialize the analysis of band structure and Fermi surface,
especially for high throughput calculations.
Solution method: Implementation of a Python library able to handle, combine, parse, extract, plot and
even repair data from density functional calculations. PyProcar uses color maps on the band structures
or Fermi surfaces to give a simple representation of the relevant characteristics of the electronic
structure.
Additional comments: Features: PyProcar can produce high-quality figures of band structures and Fermi
surfaces (2D and 3D), projection of atomic orbitals, atoms, and/or spin components.
Restrictions: Only the VASP package is currently fully supported, the latest version of Abinit is partially
supported (it will be fully supported in the Abinit versions 9.x). The PROCAR file format can easily be
implemented within any DFT code.

© 2019 Elsevier B.V. All rights reserved.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
✩✩ The review of this paper was arranged by Prof. D.P. Landau.

∗ Corresponding author.
E-mail address: alromero@mail.wvu.edu (A.H. Romero).

https://doi.org/10.1016/j.cpc.2019.107080
0010-4655/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2019.107080
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.107080&domain=pdf
http://dx.doi.org/10.17632/d4rrfy3dy4.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:alromero@mail.wvu.edu
https://doi.org/10.1016/j.cpc.2019.107080

2 U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080

1. Introduction

Density Functional Theory (DFT) is one of the most widely used methodologies for electronic structure calculations in materials
science [1–3]. Its very good quality/computational-cost ratio, together with the emergence of high performance computing, has reshaped
the field of computational materials research. Decades efforts in developing DFT for simulation programs have led to highly efficient
DFT codes which include, among others, Abinit [4], VASP [5,6], Siesta [7] or Quantum Espresso [8,9], which are capable of exploring
remarkable material properties. Thorough calculations with these DFT codes have already been done for a wide range of compounds
and the accumulated data can be publicly accessed from databases such as Materials Project [10], AFLOW [11], Materiae [12]. This
new approach to materials has had a large impact into condensed matter physics developing new paradigms such as the quantum
materials [13]. However, countless possibilities of exploring novel materials still exist and thus the necessity of efficient and reliable
DFT pre- and post-processing tools.

As computational capabilities increase, the size and complexity of the systems under study increase as well, hindering the analysis
and the capability of abstraction on key aspects of these systems. As physicists, we encountered this problem and realized that we
require a tool designed to gain insight from our calculations but spending less time on coding. In particular, we have three requirements
for such a tool: (i) the generation of a graphical representation of the quantity of interest – surface states, spin-texture, orbital projection,
etc. – should take only a single line of input. This approach also enables the scripting of similar analysis, a must for high throughput
calculations. (ii) We also realized the need of producing high-quality graphics, ideally using a vector format, suitable for further post-
processing. (iii) Finally, there are several issues preventing a straightforward analysis of electronic structure results, e.g., the size of
output data files generated by DFT codes can be extremely large, thus making the post-processing of data very slow by excessive
memory usage. In such a case, the post-processing tool, not the researcher, should be capable of taking care of large data files in a
smart way and enabling the user to extract essential information while ignoring less interesting information from a large data file.

This paper focuses on the presentation of PyProcar, a robust, open source Python library used for pre- and post-processing of the
electronic structure data coming from DFT calculations. PyProcar is capable of performing a multitude of tasks including plotting spin
non-polarized and spin/atom/orbital projected band structures and Fermi surfaces — both in 2D and 3D, Fermi-velocity plots, unfolding
bands of a supercell, comparing band structures from multiple DFT calculations and generating a k-path for a given crystal structure.
Our code has matured throughout the last decade and currently has over sixty users who are members of the PyProcar forum [14]. To
retrieve a reliable number of users of an open source code is a difficult task due to inconsistencies in keeping track of downloads or
installations, nevertheless, according to Google BigQuery [15] PyProcar has been downloaded almost 9000 times and PyPI Download
Stats [16] counts more than 100 installations of PyProcar per month based on the download analytics from the Python Packaging Index
(PyPI) [17]. Even though, PyProcar is written to parse the PROCAR file from the VASP package (and from a fork of Abinit, which will
be included in the next main production version), due to its object-oriented approach, PyProcar can be easily adapted to handle the
output from other DFT codes. In Section 2 we will briefly explain some basic aspects of PyProcar. Then in Section 3 we present some
examples illustrating the capabilities of the PyProcar code for analysis of the electronic structure.

2. Library overview

2.1. Electronic structure projection

The projection of the Kohn–Sham states over atomic orbitals and spins can give a large amount of essential information about the
calculated system. However, such amount of information needs to be post-processed to extract the physical insight. In the VASP code,
this information is written into the PROCAR file when LORBIT = 11 or 12 tag (to include phase projections of the wave functions) is
specified in the INCAR, which arranges the information of projections in blocks, as seen in Fig. 1 This block is repeated if calculations
are spin polarized and for noncollinear spin calculations, three additional such blocks are present which correspond to Sx, Sy and Sz spin
directions. There also exists, a special format of PROCAR file that includes the phase information of the wave function, as described in
Fig. 2, which is an important quantity required for band unfolding. The direction of the atomic orbitals (px, py, pz , etc.) is defined with
respect to the Cartesian coordinates x, y and z.

The site projected wave function in the PROCAR file is calculated by projecting the Kohn–Sham wave functions onto spherical
harmonics that are non-zero within spheres of a Wigner–Seitz radius around each ion by:

|⟨Y αlm|φnk⟩|
2

where, Y αlm are the spherical harmonics centered at ion index α with angular moment l and magnetic quantum number m, and φnk are
the Kohn–Sham wave functions. In general, for a non-collinear electronic structure calculation the same equation is generalized to:

1
2

2∑
α,β=1

σ i
α,β⟨ψ

α
n,k|Y

α
lm⟩⟨Y βlm|ψ

β

n,k⟩

where σ i are the Pauli matrices with i = x, y, z and the spinor/ spin polarized wavefunction φnk is now defined as

φnk =

[
ψ

↑

nk

ψ
↓

nk

]
This projection is performed for every k-point used in the DFT calculation, for every energy band and every atom in the unit cell. Output
files can be stored as the absolute value of the projections, as it is usually needed for the band analysis or by also including the complex
nature of the projections, which are used for the electron band folding. The raw data written on the PROCAR file captures most of the
details that are essential to investigate interesting materials properties. But on the downside, these files are often too big to be analyzed
without any additional computational support. For instance, a spin-polarized calculation involving 10 atoms, with 100 bands and 100
k-points gives almost 106 entries in the PROCAR file, and the file size grows with the number of atoms as O(n2). Therefore, it is essential
to reduce the PROCAR file size in an efficient way without losing the key information stored in the file. The PyProcar parser can be
used to manipulate, reduce, filter, and comprehend the information stored in the PROCAR file.

U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080 3

Fig. 1. Example of a PROCAR file structure for a spin non-polarized calculation. For spin polarized or noncollinear calculations there are additional blocks for each
spin component. The PROCAR stores the real projections of the Kohn–Sham orbitals over the atomic orbitals in different blocks for each spin direction (x, y, z), as
well as the total spin at each k-point in the Brillouin zone and for each electron band.

Fig. 2. Example of a PROCAR file structure for a spin non-polarized calculation with a phase factor. This includes an additional block containing real and complex
projections of the Kohn–Sham orbitals over the atomic orbitals.

2.2. PyProcar design

PyProcar is an object-oriented code, and despite its name, only the file-related classes (mostly the parsing) are related to the VASP’s
PROCAR and OUTCAR. The OUTCAR gives a summary of the calculation including information about the electronic steps, eigenvalues,
Fermi energy, forces on the atoms, etc. PyProcar code parses the OUTCAR file and stores the Fermi energy, which is later used to shift
the Fermi level to zero in band structure plots. The reciprocal lattice vectors are also parsed from OUTCAR. PyProcar is currently capable
of parsing the outputs from a recent version of Abinit and given the code’s flexibility, the extension to other codes is trivial. Once the
data is stored in memory, PyProcar can be used regardless of the employed DFT code. PyProcar consists of several classes and functions,
as mentioned below. The functions provide a high-level interaction with the user, allowing the relevant task to get done with minimum
instructions. For convenience, and to allow an easy scripting, all these functions are fully decoupled. Also, the manipulation of the data
can be saved/exported as a new file on the disk.

The low level work is carried by classes, each handling one specific task or sub-task, they are fairly complex and no interaction with
the user is expected unless a new feature is needed. By design, the classes are as loosely connected as possible. Each class uses the
logging module to provide a user-defined level of verbosity, which is very useful for debugging.

Fig. 3 displays an overview of the PyProcar library. PyProcar can be used to generate files required for DFT calculations such as a
suitable KPOINTS file for both self-consistent and non self-consistent DFT calculations. The structures can be generated manually, or
from one of many databases publicly available such as Materials Project [10], AFLOW [11], etc. Once the DFT calculation is complete,
PyProcar uses the VASP generated outputs, PROCAR and OUTCAR, for further post-processing.

The core classes within PyProcar consist of Procarparser, Utilsprocar and Procarselect which parses the PROCAR data and
stores them in organized arrays for later calculations or analysis. These core classes are explained briefly below.

1. Utilsprocar: This class contains modules to parse the OUTCAR file from a DFT calculation. It reads and stores the Fermi
energy and the reciprocal lattice vectors. The Fermi energy is used to shift the Fermi level to zero in band structure calculations.
The availability of the reciprocal lattice vectors enable Utilsprocar to convert the k-mesh grid between direct and Cartesian
coordinates. The Fermi energy and reciprocal lattice vectors could also be provided manually through command-line inputs.

4 U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080

Fig. 3. A structural overview of the PyProcar library.

2. ProcarParser: As the name suggests, this class contains modules required to parse the PROCAR file. It reads information related
to bands, k-points and orbitals, and saves the data in the memory. It is designed to be somewhat resilient to errors derived from
the fixed-format of the PROCAR file (i.e., missing blank spaces, use of *** characters as an index, etc.)

3. ProcarSelect After the PROCAR file is parsed and stored in memory, this class manipulates the required orbital(s), atom(s)
and/or spin information separately.

2.3. Installation

The latest stable version of PyProcar, version 4.0.0 at the time of writing this paper, can be installed using the Python Packaging
Index (pip) using the following command:

pip i n s t a l l pyprocar

The project’s GitHub repository is located at https://github.com/romerogroup/pyprocar. An easy to follow documentation with examples
can be found at https://romerogroup.github.io/pyprocar/. PyProcar is supported by both Python 2.x and 3.x.

3. Examples: MgB2, BiSb, TaSb, and SrVO3

3.1. The MgB2, BiSb, TaSb, and SrVO3 crystal structures

In this section, we choose four example systems, namely MgB2, BiSb, TaSb, and SrVO3, to illustrate the capabilities of the PyProcar
code. Fig. 4 shows the crystal structure of these systems. The DFT calculations were performed using the Vienna Ab Initio Simulation
Package (VASP) version 5.4.4. Similar calculations can be performed using the forthcoming version of Abinit, version 9.x, where the
keyword prtprocar needs to be added in the input. The examples are available in the github repository.

For the strongly correlated cubic perovskite SrVO3 (crystal symmetry Pm3̄m and lattice constant 3.84 Å), the plain and projected band
structures were evaluated within the generalized gradient approximation (GGA) using PBE functional [18]. An 8 × 8 × 8 Monkhorst–
Pack [19] k-mesh and an energy cutoff of 600 eV were required for electron wavefunction convergence. We considered 10 valence
electrons of Sr (3s23p64s2), 5 valence electrons of V (3d34s2) and 6 valence electrons of O (2s22p4) in the PAW pseudopotential.

The superconducting material MgB2 of the crystal symmetry P6/mmm and lattice parameters 3.07 Å and 3.53 Å for a and c ,
respectively, was used to showcase the Fermi surface plotting and band unfolding capabilities of PyProcar. For the former, we used
a 10 × 10 × 10 Monkhorst–Pack grid with an energy cut-off of 700 eV within the GGA with the PBE exchange–correlation function.
The latter was done with a 5 × 5 × 5 Monkhorst–Pack grid with an energy cut-off of 500 eV within the GGA with the PBEsol exchange–
correlation function [20]. Both of these calculations were done with 2 valence electrons of Mg (3s2) and 3 valence electrons of B (2s22p1)
in the PAW pseudopotential.

To demonstrate the 2D spin texture plotting capability of PyProcar we use the Rashba semiconductor BiSb monolayer which belongs
to the space group P3m1 with lattice parameters a = b = 4.26Å. The calculation, which included spin–orbit coupling (SOC) was
performed with a k-mesh grid of 10 × 10 × 1 and an energy cut-off of 650 eV with PBE using 15 valence electrons of Bi (5d106s26p3)
and 5 valence electrons of Sb (5s25p3) in the PAW pseudopotential.

PyProcar can also be used to investigate the band degeneracy and Dirac/Weyl points in topological materials. We use the material
TaSb belonging to the space group P 6̄m2 with lattice parameters a = b = 3.58 Å, c = 3.81 Å to demonstrate this feature. An energy

https://github.com/romerogroup/pyprocar
https://romerogroup.github.io/pyprocar/

U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080 5

Fig. 4. (a) Crystal structure of a phase of BiSb with rhombohedral symmetry, the primitive cell is enclosed by red lines. (b) Hexagonal lattice of MgB2 . (c) First
Brillouin zone of a hexagonal lattice. (d) Cubic lattice of SrVO3 . (e) Hexagonal lattice of TaSb. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

cut-off of 600 eV and k-mesh grid of 10 × 10 × 10 along with PBE and SOC were used for the calculation considering 5 valence electrons
of Ta (5d36s2) and 5 valence electrons of Sb (5s25p3) in the PAW pseudopotential.

3.2. Generating a k-path

In order to plot a band structure, one must define a set of k-points following a desired k-path in momentum space. A common
option is to employ the AFLOW software framework [11], the SeeK-path module in Materials Cloud [21] or the Bilbao Crystallographic
Server [22–24] to generate the k-path. However, PyProcar’s k-path generation utility enables the user to automatically generate a
suitable and sufficient k-path given the crystal structure, typically read from the POSCAR file. The k-path is then automatically written to
a KPOINTS file. The k-path generation utility within PyProcar is based on the Python library seekpath developed by Hinuma et al. [25].
The red line in Fig. 4(c) depicts such a k-path of a hexagonal lattice generated using the algorithms of seekpath.

General format:

pyprocar . kpath (i n f i l e , gr id_s ize , with_time_reversal , recipe , threshhold , symprec , angle_tolerence)

Usage:

pyprocar . kpath (‘ POSCAR’ , 40 , True , ‘ hpkot ’ , 1 e−07,1e−05,−1.0)

More details regarding these parameters can be found in Ref. [26].

3.3. Repair

This utility is used to repair the ill-formatting of the PROCAR file due to the erroneous file handling in Fortran, particularly in
a VASP calculation. This prevents issues arising from the lack of white space between a number and a negative sign, for instance
0.000000–0.5000000. Typically, pyprocar.repair() is recommended to be applied before using any other utility.

Usage:

pyprocar . repair (‘PROCAR ’ , ‘ PROCAR−repaired ’)

3.4. k-mesh generator

This utility can be used to generate a 2D k-mesh centered at a given k-point and in a given k-plane. The mesh is then automatically
written to a KPOINTS file. This is particularly useful in computing 2D spin-textures and plotting 2D Fermi surfaces. For example, the
following command creates a 2D kx − ky mesh centered at the Γ point (kz = 0) ranging from coordinates (−0.5, −0.5, 0.0) to (0.5, 0.5,
0.0) with 5 grids in the x direction and 7 grids in the y direction:

General format:

pyprocar . generate2dkmesh (x1 , y1 , x2 , y2 , z , num_grids_x , num_grids_y)

Usage:

pyprocar . generate2dkmesh (−0.5 , −0.5 ,0 .5 ,0 .5 ,0 ,5 ,7)

6 U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080

Fig. 5. (a) plain band structure (b) collinear spin projected (c) V atom projected (d) eg orbital projected band structure of SrVO3 . In the projected plots, the color
intensity corresponds to the degree of contribution of that particular orbital, spin or atom type. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

3.5. Band structure

PyProcar goes beyond the conventional plain band structure to plot the projected bands that carry even more information, which
will be described shortly. The projected bands are color coded in an informative manner to portray fine details. PyProcar is capable of
labeling the k-path names automatically, however, the user can manually input them as desired. This will be showcased in the next
section.

1. No projection
This is the most basic type of band structure. No projection information is contained here. See Fig. 5(a) for a plain band structure of
SrVO3. In order to use the plain mode one sets mode = ‘plain’. elimit sets the energy window limits. outcar specifies the OUTCAR
file. For Abinit calculations, abinit_output is used instead. color lets the user use any color available in the matplotlib [27]
package.

Usage:
pyprocar . bandsplot (‘PROCAR−repaired ’ , outcar = ‘OUTCAR’ , e l imit =[−2 ,2] ,mode= ‘ plain ’ , color = ‘ blue ’)

2. Spin projection
For collinear spin polarized and noncollinear spin calculations of DFT codes, PyProcar is able to plot the bands of each spin channel
or direction separately. An example for a collinear spin polarized calculation is given in Fig. 5(b) where blue corresponds to spin
down channel and red to spin up channel. For this case setting spin = 0 plots the unpolarized spin density and spin = 1 plots
the spin channels separately.

Usage:
pyprocar . bandsplot (‘ PROCAR_repaired ’ , outcar = ‘OUTCAR’ , e l imit =[−5 ,5] , k t i cks =[0 ,39 ,79 ,119 ,159] ,knames=[‘G’ , ‘ X ’ , ‘M’ , ‘ G ’ , ‘ R ’] ,

cmap= ‘ seismic ’ ,
mode= ‘ parametric ’ , spin =1)

For noncollinear spin calculations, spin = 1, 2, 3 corresponds to spins oriented in Sx, Sy and Sz directions respectively. Setting
spin = ‘st’ plots the spin texture perpendicular in the plane (kx, ky) to each (kx,ky) vector. This is useful for Rashba-like states
in surfaces. For parametric plots such as spin, atom and orbitals, the user should set mode = ‘parametric’. knames and kticks
corresponds to the labels and the number of grid points between the high symmetry points in the k-path used for the band
structure calculation. At the end of this section we explain how to retrieve this automatically. LATEXentries, such as r‘\Gamma’
also can be used. cmap refers to the matplotlib color map used for the parametric plotting and can be modified by using the
same color maps used in matplotlib. If spin-up and spin-down bands are to be plot separately, one may use the pyprocar.filter()
function to create two PROCAR’s for each case and plot them individually. Refer to the user manual for more information.

U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080 7

3. Atom projection
The projection of atoms onto bands can provide information such as which atoms contribute to the electronic states near the
Fermi level. PyProcar counts each row of ions in the PROCAR file, starting from zero. In the example of a five atom SrVO3, the
indexes of atoms for Sr, V and the three O atoms would be 1, 2 and 3, 4, 5 respectively. It is also possible to include more than
one type of atom. See Fig. 5(c) for an example of V atom projected bands in SrVO3.

Usage:

pyprocar . bandsplot (‘ PROCAR_repaired ’ , outcar = ‘OUTCAR’ , e l imit =[−5 ,5] , k t i cks =[0 ,39 ,79 ,119 ,159] ,knames=[‘G’ , ‘ X ’ , ‘M’ , ‘ G ’ , ‘ R ’] ,
cmap= ‘ seismic ’ , mode= ‘ parametric ’ , atoms=[1])

4. Orbital projection
The projection of atomic orbitals onto bands is also useful to identify the contribution of orbitals to bands. For instance, to identify
correlated d or f orbitals in a strongly correlated material near the Fermi level. It is possible to include more than one type of
orbital projection. Fig. 5(d) displays an orbital projected band structure of SrVO3. The mapping of the index of orbitals to be used
in orbitals is as follows (this is the same order from the PROCAR file, see Fig. 2).

s py pz px dxy dyz dz2 dxz dx2−y2 fy(3x2−y2) fxyz fyz2 fz3 fxz2 fz(x2−y2) fx(x2−3y2)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Usage: To project all five d-orbitals:

pyprocar . bandsplot (‘ PROCAR_repaired ’ , outcar = ‘OUTCAR’ , e l imit =[−5 ,5] , k t i cks =[0 ,39 ,79 ,119 ,159] ,knames=[‘G’ , ‘ X ’ , ‘M’ , ‘ G ’ , ‘ R ’] ,
cmap= ‘ seismic ’ ,mode= ‘ parametric ’ , o rb i t a l s = [4 ,5 ,6 ,7 ,8])

If a KPOINTS file from a VASP calculation is present, PyProcar automatically retrieves kticks and knames and labels the band structure
plots accordingly for any of the above cases and also for the bandscompare() function in Section 3.10. For example:

pyprocar . bandsplot (‘ PROCAR_repaired ’ , outcar = ‘OUTCAR’ ,mode= ’ plain ’ , kpo in t s f i l e = ‘KPOINTS ’)

One or many of the above can be combined together to allow the user to probe into more specific queries such as a collinear spin
projection of a certain orbital of a certain atom.

Different modes of band structures are useful for obtaining information for different cases. The four modes available within PyProcar
are plain, scatter, parametric and atomic. The plain bands contain no projection information. The scatter mode creates a
scatter plot of points. The parametric mode interpolates between points to create bands which are also projectable. Finally, the
atomic mode is useful to plot energy levels for atoms.

These projected band structures play a vital role in revealing the physics of a system. For instance, the V4+ projected bands displayed
in Fig. 5(c) correctly captures the contribution from the V−3d electrons with O−2p states from −6 eV to −1 eV . Furthermore, in Fig. 5(d)
where eg states are projected, one can clearly notice the octahedral crystal field splitting in SrVO3 where t2g states exist below eg states,
as expected.

3.6. 3D Fermi surface

PyProcar’s 3D Fermi surface utility is able to generate Fermi surface plots projected over spin, atoms and orbitals or a combination
of one or many of each. This utility is also capable of projecting external properties that are provided on a mesh grid in momentum
space. This feature is useful when one wants to project properties that are not provided in a PROCAR file such as Fermi velocity,
electron–phonon coupling and electron effective mass. We divide this section into three sub sections, plain Fermi surface, projection
of properties from PROCAR and projection of properties from external file.

1. Plain Fermi surface
The ProcarParser class provides eigenvalues on a momentum space mesh grid. In all of the 3D Fermi surface functions in
PyProcar the eigenvalues are interpolated using Fourier transform. This type of interpolation is suitable for eigenvalues as they
are periodic in nature. The points in the mesh grid is generated in reduced space and some of the points sampled by VASP might
not be in the first Brillouin Zone (BZ). The points outside of the first BZ can be returned to the first BZ using the reciprocal lattice
vectors. As transforming the points to the first BZ will cause the distortion in the shape of the iso-surface, it is better to add the
points missing from the first BZ then remove the points lying in the second BZ. In order to identify these points, we first create
the boundaries of the first BZ by creating the Wigner–Seitz cell from the reciprocal lattice vectors. The BZ is a convex hull created
by the points located at the corner of the BZ. To figure out if a point is inside the first BZ or outside the following procedure is
performed on each point. A point is added to the collection of the points on the BZ corners and a new convex hull is created, if
the convex hull is the same as the original BZ, the point is located inside, and if the BZ is different, the point is located outside of
the first BZ. Since this operation can be slow in a scripting language like Python, we use data parallelism. This task is offloaded
to a number of worker processes, which can be defined by the user. After obtaining enough points we use Lewiner marching
cubes algorithm provided by scikit-image package [28]. This function provides vertices and faces required to create the Fermi
surface. The last step that is needed is to transform the coordinates of the vertices from the reduced coordinates to the Cartesian
coordinates. To visualize the Fermi surface, we have provided four different plotting packages, mayavi [29], matplotlib [30],
plotly [31] and ipyvolume [32] which can be chosen by the user. The figures shown here are produced using mayavi.

Usage:

pyprocar . fermi3D (procar , outcar , bands , sca le =1 ,mode= ‘ plain ’ , s t =False ,∗∗kwargs)

8 U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080

Fig. 6. (a) Plain 3D Fermi surface of MgB2 , (b) Plain 3D Fermi surface of MgB2 with face_colors specified. Note that the face colors have to be provided in tuples
of (r, g, b) normalized to 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) The projection of pz orbitals of Boron atoms on Fermi surface of MgB2 (b) Projection of px , py orbitals of Boron atoms on Fermi surface of MgB2 . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The main arguments in this function are procar, outcar, bands, scale, mode and st, where procar and outcar are the names of
the input PROCAR and OUTCAR files respectively, bands is an array of the bands that are desired to be plotted. Note if bands =

−1, the function will try to plot all the bands provided in the PROCAR file. The k-mesh will be interpolated by a factor of scale
in each direction. The st tag controls the spin-texture plotting, and mode determines the type of projection of colors. There are
additional keyword arguments that can be accessed in the help section of this function, such as face_color, cmap, atoms, orbitals,
energy, transparent, nprocess etc. Fig. 6 shows the Fermi surface of MgB2 generated using ‘plain’ mode of this function.

2. Surface coloring based on properties from PROCAR
Similar to the bandsplot section one can choose to project the contribution of different properties provided in the PROCAR file,
such as atom, orbital and spin contributions. The projection can be represented by different color mapping schemes chosen by
the user. The projection is not restricted to only one property at a time, so it can be chosen from all the provided properties. For
example, one might want to see the contribution of the orbitals px, py, pz from specific atoms, this function will parse the desired
contributions and projects the sum of contributions on each face. To do so, we perform an interpolation on the data provided by
the DFT package and evaluate the function at the center of each face created in the previous section. To use this functionality one
has to change the mode from ‘plain’ to ‘parametric’ and choose the atoms, orbitals, spin that are desired to be projected.
As an example, we project the different contribution of different p orbitals of Boron atom in Fig. 7. The results show the middle
cylinder is mostly comprised of px and py orbitals while the bands closer to the edges of BZ are pz orbitals. This is in agreement
with the calculations performed using the SIESTA DFT package [33].
For noncolinear calculations, this function is able to plot arrows in the direction of the spinors provided in the PROCAR file. To
turn this functionality on the one can set st = True to turn the spin-texture ON. The user can choose between coloring all the
arrows originated from one band with a specific color, or project the contribution of that arrow in a specific Cartesian direction.
We plot two examples to demonstrate this functionality in Fig. 8, the spin-texture of BiSb at 0.60 eV above the Fermi level and
the spin-texture of SrVO3. To better represent the spin-texture we use the key argument transparent = True which changes
the opacity of the Fermi surface to zero.

U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080 9

Fig. 8. (a) The spin-texture of BiSb calculated above the Fermi-level at E = EF + 0.60 eV. One can clearly notice Rashba-type spin-splitting of conduction band
electrons by analyzing spin-texture at k and −k wave vectors. (b) Spin texture of SrVO3 . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3. Surface coloring based on properties obtained from an external file
Similar to the previous section, this function is able to read an external file, containing information about a scalar or a vector
field in BZ and project the field on the Fermi surface. This file does not need to have the same mesh grid as the PROCAR file as
long as the mesh sampling is fine enough. This function performs an interpolation on the provided data and evaluates functions
at the center of each face on the Fermi surface. The external file should have the following format.

band = <band number>
<kx1> <ky1> <kz1> <color1>
<kx2> <ky2> <kz2> <color2>
<kx3> <ky3> <kz3> <color3>
...

band = <band number>
...

The function matches information about the first band present in the file to the first band requested to be plotted, second band
present in the file to the second band requested to be plotted, and so on. As an example, we have plotted the Fermi velocity of
MgB2 calculated by numerically evaluating the energy gradient from the PROCAR file in Fig. 9. Of course, one can acquire more
accurate Fermi velocity by means of the Wannier interpolation method [34], however the following plot shows close enough
accuracy for an example designed to represent the capabilities of this functional mode.

3.7. Handling big files: filtering the selected data and reducing the memory requirement for post-processing

A simpler version of a PROCAR file containing only a subset of information from the original dataset can be generated with this
utility. This feature is very useful when there are many bands in the PROCAR file (e.g. in heterostructures or supercells calculations)
making the file size enormously large for post-processing while only bands near the Fermi-level are needed for analysis. In this case,
one can filter data of selected bands near the Fermi-level. This considerably reduces the file size and makes the post-processing of data
faster. For instance, in graphene/MoS2 (5:4) heterostructures [35,36] the size of a VASP generated PROCAR file is 1.49 GB (98 atoms,
584 electrons, 804 bands in total, 63 k-points, and spin–orbit coupling included). However, by filtering only 30 bands above and below
the Fermi-level (i.e. band indexes 554–614), the file size reduces to 108 MB and data processing becomes much faster. In the same
way, one could use the filter utility to filter the PROCAR file to extract information regarding particular spins, atoms, or orbitals in
a relatively smaller PROCAR-new file.

The following example extracts information of bands ranging from index 50 to 70 from a PROCAR-repaired file (Fermi-level is
near band #60) while ignoring all other bands located far from the Fermi-level, and stores resulting dataset in a new file named
PROCAR-repaired-band50-70. Now the new PROCAR-repaired-band50-70 file can be used for further post-processing of data at
relatively low memory requirements.

Usage:

pyprocar . f i l t e r (‘PROCAR−repaired ’ , ‘ PROCAR−repaired−band50−70 ’ ,bands=[50 ,70])

3.8. 2D spin-texture

This module can be utilized to visualize the constant energy surface spin textures in a given system. This feature is particularly
useful in identifying Rashba and Dresselhaus type spin-splitting effects, analyzing the topology of Fermi surface, and examining Lifshitz

10 U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080

Fig. 9. Fermi velocity of MgB2 projected on the Fermi surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

transitions, as demonstrated in Refs. [36–42]. To plot 2D spin texture, we require a 2D k-grid centered a certain special k-point in
Brillouin zone near which we want to examine the spin-texture in k-space (see Section 3.4 regarding generation of 2D k-mesh).

Usage: To plot Sx spin component at a constant energy surface E = EF + 0.60 eV (spin = 1, 2, 3 for Sx, Sy, Sz , respectively)

pyprocar . fermi2D (‘PROCAR−repaired ’ , outcar = ‘OUTCAR’ , s t =True , energy =0.60 , noarrow=True , spin =1)

For example, in Fig. 10 we plot Sx, Sy, and Sz spin projections on the 2D spin texture of BiSb monolayer, which is a Rashba
semiconductor (Rashba spin-splitting takes place the Γ point of BZ), computed in a kx − ky mesh centered at the Γ point. Fig. 10(a)
shows spin-texture calculated above Fermi-energy (EF) at constant energy value E = EF + 0.60 eV (conduction bands), and Fig. 10(a)
shows the spin-texture calculated below Fermi surface at constant energy value E = EF −0.90 eV (valence bands). One can notice linear
in k Rashba spin-splitting effects in Fig. 10(a), and additional warping effects in Fig. 10(b) appearing due to the higher order k3 terms
in lower energy valence bands.

One could also plot spin texture using arrows instead of a heat map, as shown in Fig. 11. This can be done by setting tag: noarrow
= False.

To set maximum and minimum energy values for color map, one could use vmin and vmax tags. For example, vmin = −0.5, vmax
= 0.5 in Figs. 10 and 11.

3.9. Identification of Weyl points

Weyl points appear in the momentum space when two spin non-degenerate electronic bands (one valence and one conduction)
linearly cross or touch each other near the Fermi-level forming a topologically non-trivial gapless point in the energy–momentum
space. Depending upon the dispersion of valence and conduction bands, Weyl points can be categorized into two types: (i) Type-I, when
Weyl cone is not titled and the crossing bands have opposite Fermi-velocity [43–45], and (ii) type-II, when Weyl cone is titled such
that Weyl points appear at the touching point of an electron and a hole pocket. In the later case, the crossing bands have unidirectional
Fermi-velocity with different magnitudes. When such band crossing occurs between spin degenerate bands, thus formed gapless points
are referred as Dirac points. Analogous to Weyl points, Dirac points can also be classified into two type-I and type-II categories.

We can use the PyProcar code to check the spin degeneracy of electronic bands near the crossing points and determine the type of
gapless point by analyzing the dispersion of bands in the vicinity of the crossing point. Fig. 12 shows the spin projected bandstructure
of TaSb, which is a topological metal hosting both type-I and type-II Weyl points. For more details regarding the topological properties
of TaSb and other similar topological metals, we refer the reader to Refs. [45,46].

3.10. Compare bands

This module is useful to compare different bands from different materials on the same band plot (Fig. 13). The bands are plotted
for the same k-path in order to have a meaningful comparison but they do not need to have the same number of k-points in each
interval. The bandscompare() function contains all the parameters that are used in the bandsplot() along with an added feature
of displaying a legend to help differentiate between the two different band structures. Different marker styles can be used as well.

Usage:

U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080 11

Fig. 10. Spin texture in BiSb monolayer, calculated at a constant energy surface, above and below the Fermi-level, respectively, at (a) E = EF + 0.60 eV, and (b)
E = EF − 0.90 eV in a kx − ky plane centered at the Γ point [40]. Color depicts the spin projection. 2D spin texture plots reveal the presence of a Rashba type
spin-splitting (linear in k) of electronic bands near the Γ point in BiSb monolayer. Warping effects arising due to the k3 terms in the lower energy valence bands
can also be noticed in Fig. 10(b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Projection of Sx spin component shown using arrows instead of heat map as in Fig. 10. Spin texture computed at a constant energy surface (a) E = EF +0.60 eV,
and (b) E = EF − 0.90 eV. All other details are same as in Fig. 10. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 12. Projection of one of the spin components (Sx) on the bandstructure of TaSb near the type-I (a) and type-II (b) Weyl points [46]. Spin non-degenerate bands
with linear dispersion forming a gapless point near the Fermi-level can be observed. Color depicts the spin projection on electronic bands. Direct coordinates of k1 ,
k2 , k3 , and k4 are (0.5, −0.25, 0.0421), (0.430, −0.215, 0.0421), (−0.040, −0.040, 0.357), and (0.000, 0.000, 0.357), respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

12 U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080

Fig. 13. The comparison of energy bands for two systems of SrVO3 with a shift in their Fermi energy. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

pyprocar . bandscompare (‘PROCAR1 ’ , ‘ PROCAR2 ’ , outcar = ‘OUTCAR1 ’ , outcar2 = ‘OUTCAR2 ’ , cmap= ‘ seismic ’ ,mode= ‘ parametric ’ , marker = ‘∗ ’ ,marker2
= ‘ − . ’ , e l imit =[−5 ,5] , kpo in t s f i l e = ‘KPOINTS ’ , legend = ‘PRO1 ’ , legend2 = ‘PRO2 ’)

3.11. Concatenating multiple calculations

Multiple PROCAR files from multiple DFT calculations can be combined with this utility. For instance, performing DFT calculations
for MgB2 supercells are very computationally expensive to do in a single run. This utility is particularly useful in such cases of large
systems, where one can split the bandstructure calculations along different high-symmetry directions in BZ, and then concatenate the
PROCAR files for each separate k-paths, and finally plot the full bandstructure in a single plot. The following command concatenates
the PROCAR files obtained from three separate bandstructure calculations done along Γ -K, K-M, and M-Γ k-path in hexagonal Brillouin
zone.

Usage:
pyprocar . cat ([‘ PROCAR_G−K ’ , ‘ PROCAR_K−M’ , ‘ PROCAR_M−G’] , ‘ PROCAR_merged ’)

To concatenate PROCAR’s generated from Abinit assuming the files are all in the same directory, use the following command:

Usage:
pyprocar . mergeabinit (‘ PROCAR_merged ’)

3.12. Band unfolding

Often times, we need to perform DFT calculations for a supercell geometry rather than the primitive cell. In such cases the band
structure becomes quite sophisticated due to the folding of the BZ, and it is difficult to compare the band structure of supercell with
that of the primitive cell. The purpose of the band unfolding scheme [47–50] is to represent the bands within the primitive cell BZ. By
calculating the unfolding weight function [50] and plotting the fat bands with the line width proportional to the weight, the unfolded
bands can be highlighted. Here we use a 2 × 2 × 2 MgB2 supercell as an example to show the unfolding of band structure. In the
bulk structure, where the primitive cell translation symmetry is preserved, the unfolded band is exactly the same as calculated from
primitive cell structure. In a structure with a B atom replaced by Al, the translation symmetry can be seen as approximated, and we
can still get an unfolded band, with some band smearing out. By comparing these two, we can clearly see the shifting and smearing of
the band. The ASE library [51] was employed to perform atomic and cell manipulations required for the unfolding (see Fig. 14).
Usage: First, calculate the band structure in the primitive cell BZ. The PROCAR should be produced with the phase factor included, by
setting LORBIT = 12 in VASP. Then the unfold module can be used to plot the unfolded band.
import numpy as np
pyprocar . unfold (

fname= ‘PROCAR ’ ,
poscar = ‘POSCAR ’ ,
outcar = ‘OUTCAR’ ,
supercel l_matrix=np . diag ([2 , 2 , 2]) ,
efermi=None ,
sh i f t_e fermi=True ,
e l imit =(−5, 15) ,
k t i cks =[0 , 36 , 54 , 86 , 110 , 147 , 165 , 199] ,
knames=[‘ $ \Gamma$’ , ‘K ’ , ‘M’ , ‘ $ \Gamma$’ , ‘A ’ , ‘H’ , ‘ L ’ , ‘A ’] ,
pr int_kpts=False ,
show_band=True ,
savef ig = ‘ unfolded_band . png ’)

U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080 13

Fig. 14. Band structure unfolded into primitive cell BZ of 2 × 2 × 2 supercell (a) MgB2 bulk structure, and (b) MgB2 with one B atom replaced by Al in a 2 × 2 × 2
supercell. The gray lines show the original bands. The width of the blue line denotes the weight of the unfolding. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

4. Conclusion

PyProcar is a user friendly, open source Python library that can be easily used for a variety of DFT pre- and post-processing
calculations. We have demonstrated its capability through providing examples for each functionality through a set of four materials
with unique characteristics. PyProcar’s main specialty lies in its ability to project spin, orbitals and atoms in band structures and 2D
and 3D Fermi and constant energy surfaces without involving lengthy, complex syntax. The code is freely available to download at
https://github.com/romerogroup/pyprocar, and via pip. A standalone version of the library, procar.py is located in the github repository.
An easy to follow user manual is available at https://romerogroup.github.io/pyprocar/. The PROCAR format is easy to implement in any
DFT code, rendering PyProcar accessible across a wide range of DFT codes. We hope this tool will be useful to computational materials
scientists in exploring state-of-the-art novel material which would in turn immensely impact the materials community.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work used the XSEDE which is supported by National Science Foundation, USA Grant Number ACI-1053575. XH and EB
acknowledge the ARC, USA project AIMED and the F.R.S-FNRS, Belgium PDR project MaRePeThe (GA 19528980). The authors also
acknowledge the support from the Texas Advances Computer Center (with the Stampede2 and Bridges supercomputers), the PRACE
project TheDeNoMo and on the CECI facilities funded by F.R.S-FNRS, Belgium (Grant No. 2.5020.1) and Tier-1 supercomputer of the
Fédération Wallonie-Bruxelles funded by the Walloon Region, Belgium (Grant No. 1117545). This work was supported by the DMREF-
National Science Foundation, USA 1434897, National Science Foundation, USA OAC-1740111 and DOE, USA DE-SC0016176 projects. We
acknowledge the West Virginia University supercomputing clusters; Spruce Knob and Thorny Flat which were used for the development
of the library. FM acknowledges the support from Fondecyt, Chile grants #1150806, #1191353, the Center for the Development of
Nanoscience and Nanotechnology CEDENNA FB-0807 and the supercomputing infrastructure of the NLHPC (ECM-02). A special thanks
goes to Dr. Guillermo Avendaño Franco for his invaluable support.

References

[1] N.M. Harrison, An Introduction to Density Functional Theory, 26.
[2] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133–A1138, http://dx.doi.org/10.1103/PhysRev.140.A1133, URL https://link.aps.org/doi/10.1103/PhysRev.140.A1133.
[3] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864–B871, http://dx.doi.org/10.1103/PhysRev.136.B864, URL https://link.aps.org/doi/10.1103/PhysRev.136.B864.
[4] X. Gonze, F. Jollet, F.A. Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, et al., Comput. Phys. Comm. 205 (2016)

106–131.
[5] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558–561, http://dx.doi.org/10.1103/PhysRevB.47.558, URL https://link.aps.org/doi/10.1103/PhysRevB.47.558.
[6] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1) (1996) 15–50, http://dx.doi.org/10.1016/0927-0256(96)00008-0, URL http://www.sciencedirect.com/science/

article/pii/0927025696000080.
[7] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14 (11) (2002) 2745–2779, http://dx.doi.org/10.

1088/0953-8984/14/11/302, URL https://doi.org/10.1088/0953-8984/14/11/302.
[8] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A.D. Corso,

S. de Gironcoli, P. Delugas, R.A. DiStasio Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura,
H.-Y. Ko, A. Kokalj, E.K. cükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca,
R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J. Phys.: Condens. Matter 29 (46)
(2017) 465901, URL http://stacks.iop.org/0953-8984/29/i=46/a=465901.

[9] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris,
G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L.
Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21 (39) (2009) 19, 395502.
URL http://www.quantum-espresso.org.

[10] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.a. Persson, APL Mater. 1 (1) (2013) 011002,
http://dx.doi.org/10.1063/1.4812323, URL http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi.

https://github.com/romerogroup/pyprocar
https://romerogroup.github.io/pyprocar/
http://dx.doi.org/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.136.B864
https://link.aps.org/doi/10.1103/PhysRev.136.B864
http://refhub.elsevier.com/S0010-4655(19)30393-5/sb4
http://refhub.elsevier.com/S0010-4655(19)30393-5/sb4
http://refhub.elsevier.com/S0010-4655(19)30393-5/sb4
http://dx.doi.org/10.1103/PhysRevB.47.558
https://link.aps.org/doi/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1088/0953-8984/14/11/302
https://doi.org/10.1088/0953-8984/14/11/302
http://stacks.iop.org/0953-8984/29/i=46/a=465901
http://www.quantum-espresso.org
http://dx.doi.org/10.1063/1.4812323
http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi

14 U. Herath, P. Tavadze, X. He et al. / Computer Physics Communications 251 (2020) 107080

[11] S. Curtarolo, W. Setyawan, G.L. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O. Demchenko, D. Morgan,
Comput. Mater. Sci. 58 (2012) 218–226, http://dx.doi.org/10.1016/j.commatsci.2012.02.005, URL https://linkinghub.elsevier.com/retrieve/i/S0927025612000717.

[12] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, C. Fang, Nature 566 (7745) (2019) 475–479, http://dx.doi.org/10.1038/s41586-019-0944-6, URL
http://www.nature.com/articles/s41586-019-0944-6.

[13] Editorial, Nat. Phys. 12 (2016) 105, http://dx.doi.org/10.1038/nphys3668, URL https://www.nature.com/articles/nphys3668.
[14] PyProcar - Google groups, URL https://groups.google.com/forum/#!forum/pyprocar.
[15] Google bigQuery, URL https://bigquery.cloud.google.com/results/consummate-web-210605:US.bquijob_75506e9f_16b045620cd?pli=1.
[16] PyPI download stats, URL https://pypistats.org/packages/pyprocar.
[17] PyPI – the Python package index PyPI, URL https://pypi.org/.
[18] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868, http://dx.doi.org/10.1103/PhysRevLett.77.3865, URL https://link.aps.org/doi/10.1103/

PhysRevLett.77.3865.
[19] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188–5192, http://dx.doi.org/10.1103/PhysRevB.13.5188, URL https://link.aps.org/doi/10.1103/PhysRevB.13.5188.
[20] G.I. Csonka, J.P. Perdew, A. Ruzsinszky, P.H. Philipsen, S. Lebègue, J. Paier, O.A. Vydrov, J.G. Ángyán, Phys. Rev. B 79 (15) (2009) 155107.
[21] Home, URL https://www.materialscloud.org/home#.
[22] M. Aroyo, J. Perez-Mato, D. Orobengoa, E. Tasci, G. De La Flor, A. Kirov, Bulg. Chem. Commun. 43 (2) (2011) 183–197, cited By 187, URL https://www.scopus.

com/inward/record.uri?eid=2-s2.0-80955140447&partnerID=40&md5=488772b9e21d2636a3952f66ae80ae84.
[23] M.I. Aroyo, A. Kirov, C. Capillas, J.M. Perez-Mato, H. Wondratschek, Acta Crystallogr. Sect. A 62 (2) (2006) 115–128, http://dx.doi.org/10.1107/S0108767305040286,

URL https://doi.org/10.1107/S0108767305040286.
[24] M. Aroyo, J. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Z. Kristallogr. 221 (2006) 15–27, http://dx.doi.org/10.

1524/zkri.2006.221.1.15.
[25] Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka, Comput. Mater. Sci. 128 (2017) 140–184, http://dx.doi.org/10.1016/j.commatsci.2016.10.015, URL http:

//www.sciencedirect.com/science/article/pii/S0927025616305110.
[26] Python modules documentation — seekpath 1.8.4 documentation, URL https://seekpath.readthedocs.io/en/latest/module_guide/index.html.
[27] J.D. Hunter, Comput. Sci. Eng. 9 (3) (2007) 90–95.
[28] S. van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, N. Yager, E. Gouillart, T. Yu, PeerJ 2 (2014) e453, http://dx.doi.org/10.7717/peerj.453,

URL https://doi.org/10.7717/peerj.453.
[29] P. Ramachandran, G. Varoquaux, Comput. Sci. Eng. 13 (2) (2011) 40–51.
[30] J.D. Hunter, Comput. Sci. Eng. 9 (3) (2007) 90–95, http://dx.doi.org/10.1109/MCSE.2007.55.
[31] P.T. Inc., Collaborative Data Science, Plotly Technologies Inc., Montreal, QC, 2015, URL https://plot.ly.
[32] maartenbreddels/ipyvolume: 3d plotting for Python in the Jupyter notebook based on IPython widgets using WebGL, URL https://github.com/maartenbreddels/

ipyvolume.
[33] J.A. Silva-Guillén, Y. Noat, T. Cren, W. Sacks, E. Canadell, P. Ordejón, Phys. Rev. B 92 (2015) 064514, http://dx.doi.org/10.1103/PhysRevB.92.064514, URL

https://link.aps.org/doi/10.1103/PhysRevB.92.064514.
[34] N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Rev. Modern Phys. 84 (4) (2012) 1419.
[35] S. Singh, C. Espejo, A.H. Romero, Phys. Rev. B 98 (2018) 155309, http://dx.doi.org/10.1103/PhysRevB.98.155309, URL https://link.aps.org/doi/10.1103/PhysRevB.

98.155309.
[36] S. Singh, A.M. Alsharari, S.E. Ulloa, A.H. Romero, Proximity-induced topological transition and strain-induced charge transfer in graphene/mos2 bilayer

heterostructures, 2018, arXiv preprint arXiv:1806.11469.
[37] S. Singh, W. Ibarra-Hernández, I. Valencia-Jaime, G. Avendaño-Franco, A.H. Romero, Phys. Chem. Chem. Phys. 18 (2016) 29771–29785, http://dx.doi.org/10.1039/

C6CP05401C, URL http://dx.doi.org/10.1039/C6CP05401C.
[38] S. Singh, A.C. Garcia-Castro, I. Valencia-Jaime, F. Muñoz, A.H. Romero, Phys. Rev. B 94 (2016) 161116, http://dx.doi.org/10.1103/PhysRevB.94.161116, URL

https://link.aps.org/doi/10.1103/PhysRevB.94.161116.
[39] A.C. Garcia-Castro, M.G. Vergniory, E. Bousquet, A.H. Romero, Phys. Rev. B 93 (2016) 045405, http://dx.doi.org/10.1103/PhysRevB.93.045405, URL https:

//link.aps.org/doi/10.1103/PhysRevB.93.045405.
[40] S. Singh, A.H. Romero, Phys. Rev. B 95 (2017) 165444, http://dx.doi.org/10.1103/PhysRevB.95.165444, URL https://link.aps.org/doi/10.1103/PhysRevB.95.165444.
[41] S.K. Singh, Structural Prediction and Theoretical Characterization of Bi-Sb Binaries: Spin-Orbit Coupling Effects (Ph.D. thesis), West Virginia University, 2018.
[42] S. Singh, Z. Zanolli, M. Amsler, B. Belhadji, J.O. Sofo, M.J. Verstraete, A.H. Romero, Low energy phases of bilayer bi predicted by structure search in two

dimensions, 2019, arXiv preprint:1901.05060.
[43] A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig, Nature 527 (2015) 495 EP – URL https://doi.org/10.1038/nature15768.
[44] B. Yan, C. Felser, Ann. Rev. Condens. Matter Phys. 8 (1) (2017) 337–354, http://dx.doi.org/10.1146/annurev-conmatphys-031016-025458, URL https://doi.org/10.

1146/annurev-conmatphys-031016-025458.
[45] G.W. Winkler, S. Singh, A.A. Soluyanov, Topology of triple-point metals, 2019, arXiv:1903.01269.
[46] S. Singh, Q. Wu, C. Yue, A.H. Romero, A.A. Soluyanov, Phys. Rev. Mater. 2 (2018) 114204, http://dx.doi.org/10.1103/PhysRevMaterials.2.114204, URL https:

//link.aps.org/doi/10.1103/PhysRevMaterials.2.114204.
[47] T.B. Boykin, G. Klimeck, Phys. Rev. B 71 (2005) 115215, http://dx.doi.org/10.1103/PhysRevB.71.115215, URL https://link.aps.org/doi/10.1103/PhysRevB.71.115215.
[48] W. Ku, T. Berlijn, C.-C. Lee, Phys. Rev. Lett. 104 (2010) 216401, http://dx.doi.org/10.1103/PhysRevLett.104.216401, URL https://link.aps.org/doi/10.1103/

PhysRevLett.104.216401.
[49] V. Popescu, A. Zunger, Phys. Rev. B 85 (2012) 085201, http://dx.doi.org/10.1103/PhysRevB.85.085201, URL https://link.aps.org/doi/10.1103/PhysRevB.85.085201.
[50] P.B. Allen, T. Berlijn, D.A. Casavant, J.M. Soler, Phys. Rev. B 87 (2013) 085322, http://dx.doi.org/10.1103/PhysRevB.87.085322, URL https://link.aps.org/doi/10.

1103/PhysRevB.87.085322.
[51] A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P.B.

Jensen, J. Kermode, J.R. Kitchin, E.L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J.B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard,
J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, J. Phys.: Condens. Matter 29 (27) (2017) 273002,
http://dx.doi.org/10.1088/1361-648x/aa680e, URL https://doi.org/10.1088/1361-648x/aa680e.

http://dx.doi.org/10.1016/j.commatsci.2012.02.005
https://linkinghub.elsevier.com/retrieve/i/S0927025612000717
http://dx.doi.org/10.1038/s41586-019-0944-6
http://www.nature.com/articles/s41586-019-0944-6
http://dx.doi.org/10.1038/nphys3668
https://www.nature.com/articles/nphys3668
https://groups.google.com/forum/#!forum/pyprocar
https://bigquery.cloud.google.com/results/consummate-web-210605:US.bquijob_75506e9f_16b045620cd?pli=1
https://pypistats.org/packages/pyprocar
https://pypi.org/
http://dx.doi.org/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.13.5188
https://link.aps.org/doi/10.1103/PhysRevB.13.5188
http://refhub.elsevier.com/S0010-4655(19)30393-5/sb20
https://www.materialscloud.org/home#
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80955140447&partnerID=40&md5=488772b9e21d2636a3952f66ae80ae84
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80955140447&partnerID=40&md5=488772b9e21d2636a3952f66ae80ae84
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80955140447&partnerID=40&md5=488772b9e21d2636a3952f66ae80ae84
http://dx.doi.org/10.1107/S0108767305040286
https://doi.org/10.1107/S0108767305040286
http://dx.doi.org/10.1524/zkri.2006.221.1.15
http://dx.doi.org/10.1524/zkri.2006.221.1.15
http://dx.doi.org/10.1524/zkri.2006.221.1.15
http://dx.doi.org/10.1016/j.commatsci.2016.10.015
http://www.sciencedirect.com/science/article/pii/S0927025616305110
http://www.sciencedirect.com/science/article/pii/S0927025616305110
http://www.sciencedirect.com/science/article/pii/S0927025616305110
https://seekpath.readthedocs.io/en/latest/module_guide/index.html
http://refhub.elsevier.com/S0010-4655(19)30393-5/sb27
http://dx.doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
http://refhub.elsevier.com/S0010-4655(19)30393-5/sb29
http://dx.doi.org/10.1109/MCSE.2007.55
https://plot.ly
https://github.com/maartenbreddels/ipyvolume
https://github.com/maartenbreddels/ipyvolume
https://github.com/maartenbreddels/ipyvolume
http://dx.doi.org/10.1103/PhysRevB.92.064514
https://link.aps.org/doi/10.1103/PhysRevB.92.064514
http://refhub.elsevier.com/S0010-4655(19)30393-5/sb34
http://dx.doi.org/10.1103/PhysRevB.98.155309
https://link.aps.org/doi/10.1103/PhysRevB.98.155309
https://link.aps.org/doi/10.1103/PhysRevB.98.155309
https://link.aps.org/doi/10.1103/PhysRevB.98.155309
http://arxiv.org/abs/1806.11469
http://dx.doi.org/10.1039/C6CP05401C
http://dx.doi.org/10.1039/C6CP05401C
http://dx.doi.org/10.1039/C6CP05401C
http://dx.doi.org/10.1039/C6CP05401C
http://dx.doi.org/10.1103/PhysRevB.94.161116
https://link.aps.org/doi/10.1103/PhysRevB.94.161116
http://dx.doi.org/10.1103/PhysRevB.93.045405
https://link.aps.org/doi/10.1103/PhysRevB.93.045405
https://link.aps.org/doi/10.1103/PhysRevB.93.045405
https://link.aps.org/doi/10.1103/PhysRevB.93.045405
http://dx.doi.org/10.1103/PhysRevB.95.165444
https://link.aps.org/doi/10.1103/PhysRevB.95.165444
http://refhub.elsevier.com/S0010-4655(19)30393-5/sb41
http://arxiv.org/abs/1901.05060
https://doi.org/10.1038/nature15768
http://dx.doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025458
http://arxiv.org/abs/1903.01269
http://dx.doi.org/10.1103/PhysRevMaterials.2.114204
https://link.aps.org/doi/10.1103/PhysRevMaterials.2.114204
https://link.aps.org/doi/10.1103/PhysRevMaterials.2.114204
https://link.aps.org/doi/10.1103/PhysRevMaterials.2.114204
http://dx.doi.org/10.1103/PhysRevB.71.115215
https://link.aps.org/doi/10.1103/PhysRevB.71.115215
http://dx.doi.org/10.1103/PhysRevLett.104.216401
https://link.aps.org/doi/10.1103/PhysRevLett.104.216401
https://link.aps.org/doi/10.1103/PhysRevLett.104.216401
https://link.aps.org/doi/10.1103/PhysRevLett.104.216401
http://dx.doi.org/10.1103/PhysRevB.85.085201
https://link.aps.org/doi/10.1103/PhysRevB.85.085201
http://dx.doi.org/10.1103/PhysRevB.87.085322
https://link.aps.org/doi/10.1103/PhysRevB.87.085322
https://link.aps.org/doi/10.1103/PhysRevB.87.085322
https://link.aps.org/doi/10.1103/PhysRevB.87.085322
http://dx.doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1088/1361-648x/aa680e

	PyProcar: A Python library for electronic structure pre/post-processing
	Introduction
	Library overview
	Electronic structure projection
	PyProcar design
	Installation

	Examples: MgB2, BiSb, TaSb, and SrVO3
	The MgB2, BiSb, TaSb, and SrVO3 crystal structures
	Generating a k-path
	Repair
	k-Mesh generator
	Band structure
	3D Fermi surface
	Handling big files: filtering the selected data and reducing the memory requirement for post-processing
	2D spin-texture
	Identification of Weyl points
	Compare bands
	Concatenating multiple calculations
	Band unfolding

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

