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Identification and categorization of geological, geotechnical, or geometallurgical domains is a common practice
in the modeling of mineral deposits, in order to account for the controls exerted by categorical variables (ore
type, rock type or facies) on the quantitative variables of interest. The definition of a suitable geostatistical
model for spatial prediction or simulation is commonly based on a contact analysis, aimed at determining
whether or not these quantitative variables are spatially continuous across the domain boundaries. In this paper,
we present several tools such as cross-to-direct variogram ratios, cross-correlograms, pseudo cross-variograms

and lagged scatter plots that are useful for such an analysis and discuss their strengths and weaknesses. The tools
are illustrated with applications to synthetic case studies.

1. Introduction

In the analysis of regionalized data, the statistical and spatial dis-
tribution of quantitative variables is commonly controlled by catego-
rical variables. For instance, in the modeling of mineral deposits, geo-
logical variables such as the metal grades, geotechnical variables such
as the rock quality designation (RQD) or the rock mass rating (RMR), or
geometallurgical variables such as the metal recovery or crushability
and grindability indices (work indices), can depend on categories de-
fined by the rock type or the ore type; likewise, in oil reservoir and
aquifer modeling, petrophysical variables such as the porosity or the
permeability are typically controlled by lithofacies or hydrofacies
(Dubrule, 1993; Yarus and Chambers, 1994; Dowd, 1994, 1997; Sinclair
and Blackwell, 2002; Armstrong et al., 2011; Rossi and Deutsch, 2014;
Talebi et al., 2019).

The fact that the distribution of the quantitative variables of interest
varies according to the rock type or the ore type influences the choice of
the most appropriate strategy to be used for modeling these variables
and for spatial prediction or simulation. The usual practice consists in
partitioning the subsurface into domains (referred to as geological,
geotechnical or geometallurgical units) and to separately model the
quantitative variables within each domain, i.e., a hierarchical or two-
stage approach is adopted, where the quantitative variables are sub-
ordinated to the partition into domains. Such an approach commonly
assumes the absence of spatial correlation of the quantitative variables
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across the boundary between two domains and, when so assumed,
produces clear-cut discontinuities in the predicted or simulated quan-
titative variables across a boundary (“hard” geological boundaries)
(Duke and Hanna, 2001; Glacken and Snowden, 2001). Some im-
provements can be considered, for instance, by assigning each target
location a probability to belong to each domain (Emery and Gonzalez,
2007; Séguret, 2013) or by introducing cross-correlations across the
domain boundaries (Larrondo et al., 2004; Vargas-Guzman, 2008; Mery
et al., 2017); also, the definition of the domains may not be the same for
all the quantitative variables, which allows accounting for different
geological controls exerted over these variables (Mery et al., 2017).
An alternative to the above hierarchical approach is a joint ap-
proach, in which the domains are considered as covariates for modeling
the quantitative variables. For example, for spatial prediction, one can
cokrige the quantitative variables together with the domain indicators
(Dowd, 1993) or define transition zones in order to account for sam-
pling data of adjacent domains in addition to the data of the target
domain (Glacken and Snowden, 2001). For uncertainty quantification,
one can develop models to jointly simulate the quantitative and cate-
gorical variables, based on combinations of the multi-Gaussian, trun-
cated Gaussian and plurigaussian models (Freulon et al., 1990; Dowd,
1994, 1997; Bahar and Kelkar, 2000; Emery and Silva, 2009; Maleki
and Emery, 2015, 2017; Talebi et al., 2017). In such a situation, the
interpolation of quantitative variables resulting from cokriging or si-
mulation does not exhibit discontinuities near the domain boundaries,
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thus producing “soft” geological boundaries.

To decide which approach is the most suitable, one can perform a
“contact analysis”, to determine whether or not the quantitative vari-
ables vary continuously across a geological boundary. In particular, one
may look at the variation of the mean values as a function of the dis-
tance to the boundary, or at the spatial correlation across the boundary
(Wilde and Deutsch, 2012; Séguret, 2013; Rossi and Deutsch, 2014;
Maleki and Emery, 2015, 2017; Tolosana-Delgado et al., 2016). This
exploratory stage is critical in the decision of which strategy (hier-
archical or joint modeling) to adopt for spatial prediction or uncertainty
quantification.

In this context, the main objective of this paper is to review existing
tools and to provide complementary tools that can be used for contact
analysis, and to demonstrate the strengths and weaknesses of these
tools through synthetic case studies. The outline is the following:
Sections 2 and 3 provide details on the synthetic case studies and on the
geostatistical model that is used for illustrating the proposed contact
analysis tools (Section 4). A discussion and conclusions follow in
Sections 5 and 6.

2. Synthetic case studies

Three synthetic case studies were generated, with one quantitative
variable (say, a metal grade) and three domains (say, rock type do-
mains). In each case, a ground truth is known over a two-dimensional
grid with 2000 nodes along each direction and regular spacing of 1 x 1.
The differences between one case and the other stem from the differ-
ences in the grade behavior close to the domain boundaries.

2.1. Case study #1: no geological boundary

In this case, the grade was simulated as the exponential of a sta-
tionary Gaussian random field defined over the entire grid, whereas the
rock type was simulated as an independent stationary plurigaussian
random field with three categories exhibiting regular boundaries
(Fig. 1). Accordingly, up to statistical fluctuations, there is no difference
in the distribution and spatial behavior of the grade in the three rock
type domains and no discontinuity across the domain boundaries.

2.2. Case study #2: hard geological boundaries

Here, three rock type domains were first constructed with a plur-
igaussian simulation, then an independent lognormal random field was
simulated within each domain to represent the metal grade (Fig. 2).
Abrupt changes in the distribution and spatial continuity of the grade
occur in the rock type boundaries, and grades do not correlate across
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the boundaries. The mean grades were set to 2.3, 3.0 and 3.8 for do-
mains 1, 2 and 3, whereas the variances were set to 0.4, 0.7 and 1.0,
respectively.

2.3. Case study #3: soft geological boundaries

This last case study was constructed in a way similar to case #1,
except that the random fields representing the grade and rock type were
no longer independent. Specifically, two correlated stationary Gaussian
random fields were simulated; the first random field was transformed
into a lognormal grade by applying an exponential function, whereas
the second random field was truncated in order to yield the rock type
(Fig. 3). Here, the rock type boundaries are irregular and there is a
spatial ordering between the rock type domains: rock type 2 (medium
average grade) separates rock type 1 (low average grade) from rock
type 3 (high average grade).

3. Geostatistical modeling
3.1. Notation

Let d be the workspace dimension and D;... D, non-overlapping
open subsets of R4 (i.e., each subset does not contain its boundary) such
that the union of their closures is equal to R<. Also, let J and K be two
disjoint subsets of {1,..., n},i.e, JNK = @ and JUK C {1,..., n}, and
denote by D; and D the associated groups of domains:

D] = U DjandDK = U Dk
jer kek (€]

It is of interest to study the behavior of a quantitative variable
(metal grade), represented by a random field Z defined in the union of
the open domains (D,U...UD,), near the boundary between two do-
mains (D; and Dy) or, more generally, between two groups of domains
(D; and Dg). Note that the random field Z is left undefined on the do-
main boundary, in order to avoid any ambiguity in its values in case
that it is discontinuous across a domain boundary. Provided that the
domains D;... D, are not too irregular, the measure of their boundaries
is negligible, so that the random field Z is defined almost everywhere.

Following Séguret (2011, 2013), to ease the analysis of the behavior
of Z near the boundary between D; and D, we introduce the “partial
grade” Z; , defined only in the union of these two domains, as:

Z(x) ifx € Dy

V x € D; U D, Z = .
* d > Z.k (%) {0 ifx € Dx 2

Likewise, let us introduce the indicator I;x defined in the union of
D; and Dy as:
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Fig. 1. Simulated lognormal grade (A) and rock type domains (B) for case study #1.
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Fig. 2. Simulated piecewise lognormal grade (A) and rock type domains (B) for case study #2.
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Fig. 3. Simulated lognormal grade (A) and rock type domains (B) for case study #3.

lifx € Dy

v Dy UDg, I =
X € Dy U Dg, I; x (%) {OifxeDK 3)

When J U K = {1,..., n}, i.e., the closures of D; and Dg cover the
entire space R%, we may simplify the previous notation and write I,
instead of I k.

3.2. Various types of geological boundaries

Two different characteristics may be helpful to describe the spatial
behavior of a quantitative variable near a geological boundary:

1) the continuity of the variable across the boundary;
2) the variations of its mean value as a function of the distance to the
boundary.

The first characteristics defines whether the boundary is hard, if the
variable exhibits a clear-cut discontinuity, or soft, if it remains con-
tinuous across the boundary (Duke and Hanna, 2001; Glacken and
Snowden, 2001). In contrast, the second characteristics defines the
presence of a border effect or edge effect, if the mean value varies de-
pending on the distance to the boundary, or the absence of it if, on each
side of the boundary, the mean value remains constant, irrespective of
the distance to the boundary (Rivoirard, 1993, 1994; Séguret, 2013).

Both characteristics are not exclusive and one can find hard boundaries
with and without edge effects (see Discussion section hereafter).

3.3. Piecewise random field modeling

We assume that there exists a set of n random fields Z,..., Z,, defined
in R? such that, within each open domain D;, j € {1,..., n}, Z coincides
with Z;:

VX €D U..UDy, Z(x) = ), Z(X) (%)
j=1 (4)

with I; the indicator of domain D; (Eq. (3)). One therefore obtains a
piecewise model defined in the union of the domains under study and
undefined on the domain boundaries. Such a model combines two
sources of randomness that account for geological uncertainty: on the
one hand, the domain indicators I,..., I, (binary random fields); on the
other hand, the continuous random fields Z.,..., Z,.

Let us now assume that (Iy,..., I, Z1,..., Z,) are jointly stationary,
i.e., their finite-dimensional distributions (in particular, their means,
variances, direct and cross-covariance functions and variograms) are
invariant by a translation in space. As a consequence, the piecewise
random field Z (Eq. (4)) is also stationary, as a combination of sta-
tionary random fields.

The assumption of stationarity is useful to ensure that the global



M. Maleki and X. Emery
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Prior and posterior (conditional) mean values of Z(x) (E indicates the expectation operator). All these mean values are independent of x owing to the stationarity

assumption.

Random variable Conditioning information

Expected value Mathematical definition

Z(x) None
Z(x) x €Dy
Z(x) x€Ds,x + h¢gD;y
Z(x) x€Ds,x + heDg

m E{Z(x)}

my E{Zx)|x € D;}

my(h) E{Zx)|x € D;,x + h¢ Dy}
my x(h) E{ZX)|x € Dj,x + h e Dy}

statistics are invariant under translation and can be estimated by the
associated experimental statistics calculated from sampling information
on the quantitative variable and domains. The pertinence of this as-
sumption is discussed further in Section 5.3.

Apart from global statistics, one can also define conditional statistics
on Z that will be helpful to describe the nature of the geological
boundaries. Some examples are indicated in Table 1. The conditioning
information modifies the prior statistics, so that the conditional mean
values defined in Table 1 are likely to be different from the prior mean
(overall average of Z over the entire space).

One can now formalize the previous concepts related to the nature
of a geological boundary:

o If Z; and Z; are the same random field and are continuous (without
nugget effect), then no discontinuity is observed across the
boundary between D; and Dy, which turns out to be a soft boundary.
In contrast, if Z; and Z; are two different random fields, then the
boundary between D; and D will be hard.

e If Z; is independent of I;, then there is no edge effect within D;.
Indeed, the expected value at a given location x within D; does not
depend on whether or not another location x + h lies outside D;,
i.e., it does not depend on whether x is close to the boundary of D; or
not:

m;(h) E{Z(x)Ix € D;, x + h & D}
E{Z®)I[(x) =1, [;(x + h) = 0}

- E{Z69} = m ®)

On the contrary, if Z; and I; are dependent, then the conditional
mean value m;(h) may differ from m; and one may therefore observe an
edge effect within D;. The magnitude of such an edge effect can be di-
rection-dependent if the cross-covariance between Z; and I; is aniso-
tropic; it can also not be the same in one direction and in the opposite
direction if the cross-covariance between Z; and I; is not an even func-
tion.

In summary, the proposed piecewise random field is suited to the
modeling of both soft and hard boundaries, as well as to the modeling of
edge effects or the absence of them. The three synthetic case studies
presented in Section 2 are particular representations of this piecewise
model.

4. Tools for contact analysis
4.1. First tool: mean grade variation

The first tool proposed for contact analysis is the conditional mean
my(h) defined in Table 1, which represents the expected grade at a lo-
cation x given that x belongs to D; and x + h does not belong to this
domain. Based on Rivoirard (1993, 1994) and on an assumption of
spatial symmetry, Séguret (2013) proved that this conditional mean

coincides with the following cross-to-direct variogram ratio:
Yz 51,0
VheRY my(h) = 220
¥, (h) (6)

where J denotes the complement of J in {1,..., n}: JnJ =g and
JuJ = {1, ..,n}. The numerator in (6) is the cross-variogram between

the partial grade Z; ; and the indicator I;, whereas the denominator is
the direct variogram of I;. The ratio depends only on the separation
vector (h) because of the stationarity assumption. It indicates how the
local mean grade in D, varies in the vicinity of (small |h|) or far from
(large |h|) the domain boundary.

One can get more detailed information on the mean grade variation
near a domain boundary by considering the conditional mean m, x(h),
as defined in Table 1, which indicates how the local mean grade in D,
varies in the vicinity of (small |h|) or far from (large |h|) the boundary
with Dg. It can be shown (Appendix A) that this conditional mean also
coincides with a partial grade-indicator cross-to-direct variogram ratio:

yZJ,K Ik (h)

VheRY mg(h) =
v (B) Yk (h) (@]

This tool actually yields the same information as the contact plots
presented by Wilde and Deutsch (2012), Rossi and Deutsch (2014),
Maleki and Emery (2015) or Mery et al. (2017). Analogous tools can be
designed in order to characterize the gradient of grade across a geolo-
gical boundary (Appendix B).

As an illustration, let us apply the cross-to-direct variogram ratios to
the three synthetic case studies defined in Section 2 (Fig. 4). For the
first case study, the experimental estimate of m;(h) show that the local
mean grade in D; does not vary if one gets closer to the domain
boundary. However, the estimates of m; 5(h) and m; 3(h) suggest the
presence of an edge effect within D;, with the local mean grade in D
slightly increasing if one gets closer to the boundary with D, and
slightly decreasing if one gets closer to the boundary with D3 (Fig. 4A).
In the present case, such an edge effect is the result of statistical fluc-
tuations, insofar as the grade is, by construction, independent of the
domains. Comparing the estimates of mj o(h) and m,;(h) near the
origin (|h| — 0) (Fig. 4A, 4B) reveals the same local mean value on both
sides of the boundary between D, and D,. The same actually happens
with the estimates of m;(h) and my ;(h) for any pair (j,k) of indices in
{1,2,3}, indicating that the mean grade is continuous across the domain
boundaries, in agreement with the construction of the case study (the
grade is represented by a single continuous random field defined over
the entire space).

The continuity of the mean grade across the domain boundaries is
also observed in the third case study (Fig. 4G-4I) corresponding to a soft
boundary model, where the estimates of m;(h) and my j(h) tend to be
the same as |h| — 0. Here, these functions exhibit greater variations at
short scale (small values of |h|) than in the first case study, i.e., the
variations of mean grade in the vicinity of the domain boundaries are
more pronounced. This can be explained because the domains are
correlated with the grade, with D, having the lowest average grade and
D having the highest one, which implies the presence of edge effects.
Note that the estimate of my(h) does not reflect any variation in the
local mean grade of D5 in the vicinity of the boundary (Fig. 4H) because
the grade increase in the vicinity of D3 is compensated by the grade
decrease in the vicinity of D;. In this respect, m;(h) conveys less in-
formation than m;(h) on the grade behavior near the domain bound-
aries.

As for the second case study (Fig. 4D-4F), the existence of hard
boundaries is reflected by the fact that the estimates of m;(h) and my;
(h) do not tend to the same value as |h| — 0: crossing a domain
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Fig. 4. Estimates of m;(h) and m;(h) as functions of |h| for synthetic case studies #1 (A-C), #2 (D-F) and #3 (G-I), showing the variations in the mean grade in the

vicinity of or far from the domain boundaries.

boundary implies a discontinuity in the local mean grade and, a fortiori,
in the grade itself. The curves in Fig. 4D-4F also suggest the presence of
edge effects, which are actually produced by statistical fluctuations as
they have not been imposed by the construction of the case study.

4.2. Second tool: grade correlation across boundaries

The analysis of mean grade variations can be complemented by the
calculation of the cross-correlation between the grades in different
domains. In this line, Larrondo et al. (2004), Vargas-Guzman (2008)
and Mery et al. (2017) propose the use of cross-covariance functions for
grade prediction or simulation accounting for sampling data on both
sides of a geological boundary.

Instead of the cross-covariance, following Maleki and Emery (2015,
2017), we suggest the use of the cross-correlation function (cross-cor-
relogram). Under the stationarity assumption, this function provides a
normalized measure (between —1 and 1) of the linear dependence
relationship between the grades within different domains, as a function
of the separation vector:

VheRY, g (h) =corr{Z(x), Z(x + h)Ix € D;, x + h € D}
(8)

In the case of no boundary or of a soft boundary (synthetic case
studies #1 and #3), the experimental cross-correlation is high at short
distances, ideally tending to 1 as |h| tends to 0, and decreases at in-
creasing distances (Fig. 5A, 5C). On the contrary, in the presence of
hard boundaries without edge effects (synthetic case study #2), the
experimental cross-correlation is weak (close to zero) at short distances
(Fig. 5B).

4.3. Third tool: grade contrasts across boundaries

A third tool that can be used for contact analysis is the mean
squared difference between the grades observed in D; and Dg, which
reflects the grade contrast across the boundary between both domains:

VheRY 2my(h) = E{[Z(x) - Z(x + h)PIx e D, x+he D} (9)
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Fig. 5. Estimates of p; 3(h) as a function of |h| for synthetic case studies #1 (A), #2 (B) and #3 (C), showing the grade correlations across the boundaries of domain

D,

This tool depends only on h due to the joint stationarity of Z; and
Zk. It corresponds to the pseudo cross-variogram introduced by Clark
et al. (1989), applied here to contact analysis purposes, as suggested by
Ortiz and Emery (2006).

For illustration, this tool is applied to the three synthetic case stu-
dies (Fig. 6). In the first case study, the experimental pseudo cross-
variogram tends to O at short distances, reflecting that the grade is
continuous across the boundaries. In the second case study, it tends to a
positive value, indicating a discontinuity in the grade (hard geological
boundaries). In the third case study (soft boundaries), because the
grade is continuous across the boundary, one expects an experimental
pseudo cross-variogram tending to O at short distances, but this does not
happen so clearly in the case of the boundary between D; and D5
(Fig. 6C). This is explained because these two domains have little direct
contact (D; and D5 tend to be separated by D,), which makes the ex-
perimental statistics unrobust, and because of the presence of a strong
edge effect (D, exhibits low grades whereas D3 exhibits high grades,
according to the construction of the case study), making the local mean
grades in both domains being different as soon as they are calculated at
a non-zero distance to the boundary.

4.4. Fourth tool: lagged scatter plots

The last tool presented in this research is the lagged scatter plot or
h-scattergram. So far, this tool is mainly used for data cleaning and
detection of mixtures of populations in exploratory analyses and for
validating bivariate distribution models (Rivoirard, 1994; Goovaerts,
1997; Emery, 2005; Chilés and Delfiner, 2012). In the context of contact
analysis, the lagged scatter plot consists in comparing the grades at two
adjacent sampling locations separated by a given vector (up to some

tolerances on the vector norm and/or direction), subject to the fact that
both locations belong to different domains.

Examples of such plots for the three synthetic case studies under
consideration are presented in Fig. 7 for the contact between D; and Ds;
the chosen separation vector is oriented along the abscissa axis with a
norm of 10 units. The plots allow a comparison of the mean grades near
the boundary between D; and D3 and, at the same time, an analysis of
the correlation across this boundary. In the absence of boundary (case
study #1), the mean grade does not change (the gravity center of the
point cloud lies over the diagonal line) and the correlation is high
(0.89) (Fig. 7A). The opposite happens in the case of hard boundaries
without edge effects (case study #2): one observes a change in the mean
grade and a low correlation (Fig. 7B). The case study #3 with soft
boundaries exhibits a high correlation (0.91) across the boundaries,
with a slight change in the mean grade (Fig. 7C), again due to the strong
edge effect and the fact that the lagged scatter plot is calculated for a
non-zero distance.

5. Discussion
5.1. Strengths and weaknesses of the proposed tools

The four presented tools convey different levels of information on
the nature of a geological boundary. The cross-to-direct variogram ratio
provides information on the mean grade, but not on the grade corre-
lation across the boundary, whereas the reverse happens for the cross-
correlogram. One of these two tools alone may be insufficient to detect
the true nature of the boundary. For instance, one can imagine a hard
boundary for which the grades measured on both sides are independent
but such that the mean grade does not change, giving a false impression
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Fig. 6. Estimates of 2m; 3(h) as a function of |h| for synthetic case studies #1 (A), #2 (B) and #3 (C), showing the grade contrasts across the boundaries of domain D

of continuity if one looks at the cross-to-direct variogram ratios.
Another example is given by a hard boundary, on both sides of which
the mean grades are significantly different but correlated across the
boundary (e.g., if the grade locally increases on one side, it tends to
increase on the other side, due to alteration, impregnation or diffusion
processes). In this case, the cross-correlogram would indicate a spatial
correlation of the grade across the boundary; however, such a corre-
lation would not be the manifestation of a continuous behavior of the
grade (soft boundary), but rather of an edge effect.

In contrast, by calculating the mean squared difference between the
grades measured in two domains, the pseudo cross-variogram in-
corporates information on both the mean variations and the correlation
across the domain boundaries:

2mx(h) =var{Z(x) — Z(x + h)Ix € D;, x + h € D¢}
+EXZ(x) — Z(x + h)Ix € D;, x + h € D}
= var{Z(x)Ix € D;, x + h € Dg} + var{Zg (x + h)Ix
€ D, x + h € Dy}
- 2cov{Z (%), Zx (x + hZLX € D, x+ h € Dy}

cross - covariance

+ B} [Z(x) — Zg(x + h)Ix € D;, x + h € Dg]
mean variaggn (gradient) (1 0)

A drawback of the pseudo cross-variogram is its lack of standardi-
zation, unlike the cross-correlogram that is bounded between —1 and 1.
Likewise, as seen in the previous case studies, the lagged scatter plot
allows appraising the differences in local mean grade and, at the same
time, the correlation across a geological boundary. The experimental
cross-correlogram and pseudo-cross variogram for a given separation

vector h actually correspond to the correlation coefficient and to the
moment of inertia of the lagged scatter plot for this separation vector,
respectively.

It should also be mentioned that the cross-to-direct variogram ratio
is an even function and, unlike the other three tools, does not provide
information on oriented grade transitions, a feature observed in cyclic
depositional environments (Maleki et al., 2017; Le Blévec et al., 2018).
An assumption of symmetry in the joint spatial distribution of the grade
and domain indicators has to be made to give an interpretation to the
variogram ratio, or alternative tools based on cross-covariances instead
of cross-variograms have to be designed (Appendix C).

All in all, the authors advocate the use of the lagged scatter plot,
because it displays the values of all the data pairs situated across the
boundary, and not only average statistics calculated over these pairs; in
particular, this allows the identification and cleaning of outlying data.
However, one can argue that the experimental variogram ratios, cor-
relograms and pseudo cross-variograms display information for several
separation vectors simultaneously, and therefore provide richer in-
formation than a single lagged scatter plot. For small separation dis-
tances (|h| close to 0), the conveyed information reflects the grade
behavior close to the domain boundaries, insofar as the calculations
involve two nearby locations x and x + h situated in different domains.
However, for large separation distances, it is less evident that the ex-
perimental variogram ratios, cross-correlograms and pseudo cross-var-
iograms describe the grade behavior within the inner core of each do-
main, because their calculations involve locations situated at distances
that can vary between 0 and |h| from the domain boundary (Fig. 8). In
practice, this makes these tools more difficult to interpret at large dis-
tances.
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Fig. 7. Lagged scatter plots between the grades in domains D; and Dj, associated with a separation distance of 10 units, for synthetic case studies #1 (A), #2 (B) and
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5.2. Nature of geological boundaries boundary and imply the presence of an edge effect, as seen in the

third synthetic case study. From a mathematical point of view, this
is explained because the grade distribution conditioned to the do-
main indicator differs from the prior (non-conditional) grade dis-
tribution; in particular, the conditional mean grades my(h) or m, x
(h) defined in Table 1 are likely to vary with h. The spatial corre-
lation between grade and indicator can be of long (Fig. 9B) or short
(Fig. 9C) range.

(2) A hard boundary is characterized by a discontinuous variation of
grade across a domain boundary. The underlying geostatistical
model is that of two different random fields, each one associated
with one side of the boundary. These two random fields and the
domain indicator can be mutually independent (Fig. 9D) (no edge

Practitioners may distinguish more than two (hard/soft) types of
geological boundaries, introducing concepts such as semi-soft boundary
if the contact plot of the mean grade as a function of the distance to the
boundary shows a continuous transition on both sides at a short scale,
semi-hard boundary if the transition on both sides goes with a dis-
continuity, or one-way transparent boundary if the transition is observed
only on one side (Fig. 9C, 9E, 9F) (Glacken and Snowden, 2001). Ac-
tually, all these types of boundaries can be classified into either hard or
soft if one adopts the following definition:

(1) A soft boundary is characterized by a continuous grade variation

across a domain boundary. The underlying geostatistical model is
that of a single random field defined on both sides of the boundary.
Such a grade random field can be independent of the domain in-
dicator (Fig. 9A), meaning no influence of the domain on the grade
as if there were no boundary, or it can be correlated with it, which
is likely to modify the statistics of the grade in the vicinity of the

effect) or cross-correlated (presence of an edge effect); in turn, the
spatial cross-correlation functions can be symmetric (Fig. 9E) or
asymmetric (Fig. 9F).

Diagnosing whether a geological boundary is hard or soft is there-

fore essential to decide how many different random fields should be
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X1 > xi+h

X2 > x> +h

X3 > x3+h

X4 > xa+h

Fig. 8. Examples of pairs of locations situated on both sides of a domain
boundary.

used to represent the spatial variations of the grade: a single random
field is needed in domains with soft boundaries, whereas as many
random fields as domains are needed in case of hard boundaries. In the
presence of edge effects, this/these random field(s) may be cross-cor-
related with the domain indicators, which can be diagnosed at a sub-
sequent stage by examining the direct and cross-covariances or vario-
grams of the grade and domain indicators. Such cross-correlations
between grade and domain indicators, if they exist, can be used for
spatial prediction and simulation. An example of diagnosis and sub-
sequent modeling, involving both hard and soft boundaries, aimed at
simulating the copper grade in a porphyry copper deposit, is presented

Ore Geology Reviews 120 (2020) 103397

in Emery and Maleki (2019).

Arguably, from a practical point of view, the distinction between a
soft (Fig. 9B) or a hard boundary (Fig. 9E) based on a limited number of
sampling data may be unclear and left to the interpretation of the
geologist/geostatistician, mainly because the grade can exhibit a nugget
effect or short-scale variability, because of the presence of edge effects
and/or because of the sampling mesh that prevents calculating contact
plots for very small distances to the boundary. As an illustration, the
lagged scatter plot in the third case study (Fig. 7C) gives the impression
of a discontinuity in the local mean grade across the boundary between
D; and D3, hence a hard boundary, due to the presence of a strong edge
effect in both domains that makes paired data separated 10 units having
significantly different mean grades. The recommendation is therefore
not to focus on a single tool for contact analysis, but to jointly examine
the mean grade variations, grade correlation, grade contrasts and
lagged scatter plots in order to get an accurate interpretation of the
nature of a domain boundary (Table 2).

5.3. Back to the assumption of stationarity

A last point for discussion concerns the assumption of stationarity.
Observing that the mean grade locally varies in the vicinity of a domain
boundary is not incompatible with an assumption of stationarity.
Indeed, one has to distinguish between the prior distribution of the
random field under study (distribution prior to the knowledge of any
data on the random field) and its posterior distribution (conditioned to
sampling information). In particular, if there exists a spatial depen-
dence between the grade and the domain indicators, some domains are
likely to exhibit higher grades than others (Fig. 9B, 9C), a situation that
occurs in the third synthetic case study with soft boundaries, although,
by construction, the prior distribution of the grade in this case study is
stationary. An extreme situation, similar to this third case study, would
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Fig. 9. Examples of contact plots showing the mean grade as a signed function of the distance to the boundary, for soft (A, B, C) and hard (D, E, F) boundaries.
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Table 2
Summary of tools for contact analysis.

Ore Geology Reviews 120 (2020) 103397

Tool Observation

Diagnostic

Cross-to-direct variogram ratio
Cross-correlogram psx(h) does not tend to 1 as |h| tends to 0
psx(h) tends to 1 as |h| tends to O
Pseudo cross-variogram 75 x(h) tends to 0 as |h| tends to 0
7;,,(h) does not tend to 0 as |h| tends to 0
Lagged scatterplot

my x(h) and my,(h) tend to the same value as |h| tends to 0
my x(h) and my ,(h) do not tend to the same value as |h| tends to 0

Scatter plot concentrated along the diagonal line as |h| tends to 0
Scatter plot not concentrated along the diagonal line as |h| tends to 0

Soft boundary, or hard boundary with the same mean value on both sides
Hard boundary

Hard boundary

Soft boundary, or hard boundary with strong correlation across the
boundary

Soft boundary

Hard boundary

Soft boundary

Hard boundary

be the case of a stationary grade and domains defined by grade shells,
which could give a wrong impression of non-stationarity in the first-
and also in the second-order moments (Emery and Ortiz, 2005).

In summary, spatial variations in the mean grade near the domain
boundaries (edge effects) are compatible with the stationary piecewise
model defined in Eq. (4). The edge effects can be the manifestation of a
correlation between the grade and the domain indicators. The for-
malization of such edge effects can rely on the concept of mean grade
conditioned to sampling information (Emery and Robles, 2009).

Moreover, for exploratory analysis, one can, without further in-
convenience, weaken the strict stationarity assumption to second-order
stationarity (i.e., stationarity of the first- and second-order moments
only) or, by restricting the analysis to small separation distances, quasi-
stationarity (stationarity within a local neighborhood). The develop-
ment of models that do not rely on the assumption of stationarity for the
grade and/or the domain indicators (Patel et al., 1996; Larrondo and
Deutsch, 2005; Xu and Dowd, 2009) is of course feasible to describe
complex grade behaviors in the vicinity of domain boundaries, at the
price of a higher sophistication.

6. Conclusions

A preliminary stage in the modeling of mineral deposits is the
identification of geological, geotechnical and geometallurgical domains
such that the quantitative variables of interest (metal grades, rock mass
rating, metal recoveries, work indices, etc.) behave homogeneously
within each domain and differently in different domains. Contact ana-
lysis is essential to diagnose the nature of the geological boundary
between two domains with respect to a quantitative variable.
Essentially, one can distinguish between hard and soft boundaries,
depending on whether the variable exhibits a clear-cut discontinuity or
not across a geological boundary.

To perform such a contact analysis, four geostatistical tools that can
be easily inferred from sampling data have been presented, which are

Appendix A. Proof of Eq. (7)

aimed at examining the variations in the mean value (cross-to-direct
variogram ratios), the existence of a spatial correlation across a
boundary (cross-correlograms), or both features (pseudo cross-vario-
grams and lagged scatter plots). The latter tool is straightforward to
interpret, as shown in the synthetic case studies, whereas the three
former are more difficult to interpret at large separation distances. The
joint analysis of these four tools is nevertheless recommended in order
to avoid mistaking the diagnosis in complex situations, e.g., a hard
boundary with edge effects, for which one observes variations in the
mean values and/or a correlation of the grade across the boundary.

A hard boundary should be modeled by considering two different
random fields to represent the grade on each side of the boundary,
whereas a single random field should be used in case of a soft boundary.
Furthermore, this/these random field(s) can be cross-correlated with
the domain indicators in order to account for edge effects, which may
occur in the presence of both hard and soft boundaries.

In a nutshell, the geological domaining of a mineral deposit and the
subsequent diagnosis of whether or not there exist clear-cut dis-
continuities across the domain boundaries have a great impact on
modeling decisions and, therefore, on the prediction of properties re-
levant to the extraction or processing of the deposit. The presented
exploratory tools allow the geologists and modelers to refine such a
diagnostic on the basis of available sampling information and to avoid
misinterpreting the nature of geological boundaries.
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The cross-variogram between the indicator I; x and the associated partial grade Z; x is defined as

Yaxnx® = %IE{[ZJ,K ® - Zxx+ W] [Lx® — L&+ h)]}

(A1)

The increment I; x(x) — I; x(x + h) is zero unless x belongs to Dyand x + h to Dx or x + h belongs to D; and x to D. In any case, only one of the

two partial grades Z; x(x) and Z; x(x + h) is non-zero. It follows:
Vi e () = JP{x €Dy, x +h € DJE{Z®)Ix € Dy, x + h € Dy}
+3P{x € Dy, x + h € DJE{Z(x + h)lx € Dg, x + h € D}

(A2)

where P (A) stands for the probability of event A. Under the additional assumption that E{Z(x)|x € D;, x + h € Dg} = E{Z(x + h)|x € D,

x + h € Dy}, one obtains:

Pixe Dy, x+he Dy} + Pix € Dg,x+ h € Dy}
2

yZJ,K Ik (h) =

E{Z(x)Ix € Dy, x + h € D¢}

(A3)
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The same reasoning leads to
Vyxnx® = %[P {x e D;,x+ h € Dy}
+1P{x € Dy, x + h € Dj} »

Yz irg®

. n) =
The ratio my g (h) T 00

therefore takes the form given in Eq. (7).
Appendix B. Grade gradient across a boundary

Define §; as the cross-to-direct variogram ratio of the grade random field Z and the indicator I;:
)
5y = 21
¥y, (h) (B1)

The numerator is

Yo () = JE([Z(®) - Z(x + W] [ X) - L(x + h)]}

= P{xeD;,x+hgDJE{[Z(x) - Z(x + h)]Ix € D;, x + h & D}

+3P{x+heD,x¢gDIE{Z(x +h) - Z®]Ix +h € Dy, x ¢ Dy} (B2)

P{xe Dy x + h¢ D,y andP{x + h € D;, x & D,} are always the same (Lantuéjoul, 2002). Thus, if E{Z(x) — Z(x + h)|x € D;,x + h¢ D;} and
E{Z(x + h) — Z&®)|x + h € Dj, x ¢ D;} are equal, one has:

yZI](h) =P{xeD,x+h¢&DJE{[ZXx)—Z(x +h)]Ix€ D;,x + h & D;}
=y, (WE{[Zx) - Zx +h)]Ix€ D;,x +h & D} (B3)
One finally obtains the cross-to-direct variogram ratio as the expected gradient of the grade across the boundary of domain D;:
&) =E{[Zx) —Zx+h)]Ixe D;,x+h ¢ Dj} (B4)
In a similar fashion, by restricting the analysis to D; U Dg, one can analyze the gradient across the boundary between D; and Dg:

h
Tauour ™ _ E{[Z(x) — Z(x + h)]Ix € D;, x + h € D¢}

g xh) =
.k (h) T (0) ®5)

Appendix C. Directional mean grade variation

Consider the non-centered cross-covariance between the indicator Ix ; and the partial grade Z; x:
Ci sz x (M) = E{lx ;(x) Z g (x + h)} cn

The product of the partial grade and the indicator is zero unless x belongs to Dx and x + h belongs to D;. Accordingly:

CIK,JZJ,K(h) = [P{X (S DK, x+he D]}[E{Z],K(X + h)Ix (S DK, x+he D]} (C2)
Likewise,
CIK,JIJ,K(h) =P{x €Dk, x+h € Dj}. (C3)

One finds out the mean grade variation m; x(h) defined in Table 1 by dividing the two cross-covariances in Egs. (C2) and (C3), but without any
assumption of spatial symmetry.

Appendix D. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.oregeorev.2020.103397.
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