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The analysis of network robustness tackles the problem of studying how a complex network behaves under adverse scenarios, such
as failures or attacks. In particular, the analysis of interdependent networks’ robustness focuses on the specific case of the
robustness of interacting networks and their emerging behaviors. This survey systematically reviews literature of frameworks that
analyze the robustness of interdependent networks published between 2005 and 2017. This review shows that there exists a broad
range of interdependent network models, robustness metrics, and studies that can be used to understand the behaviour of different
systems under failure or attack. Regarding models, we found that there is a focus on systems where a node in one layer interacts
with exactly one node at another layer. In studies, we observed a focus on the network percolation. While among the metrics, we
observed a focus on measures that count network elements. Finally, for the networks used to test the frameworks, we found that
the focus was on synthetic models, rather than analysis of real network systems. This review suggests opportunities in network
research, such as the study of robustness on interdependent networks with multiple interactions and/or spatially embedded

networks, and the use of interdependent network models in realistic network scenarios.

1. Introduction

To ensure the proper functioning of networks, such as
communication networks, electric networks, and trans-
portation networks, we need to have complete knowledge
about how these networks work, what their vulnerabilities
are, and how these vulnerabilities can be corrected. How-
ever, real-world networks do not exist in isolation, but rather
interact with other networks. This can be seen on power grid
networks interacting with their control network [1], trans-
portation networks where the bus network interacts with the
subway network [2], interdependent cyber-physical supply
chain networks [3], etc. Thus, to study interactions between
different network systems is of special interest, as network
vulnerabilities depend on the interactions that the network
studied has with other systems, and these dependencies can
induce new vulnerabilities not present in single networks

[4]. Indeed, big failures due to the interactions of networks
have already occurred in the past, such as the Italy blackout
of 2003, where a large portion of the country lost power
supply, generating further degradation of services such as
the railway networks, communication networks, and
healthcare systems [5].

In the complex network field, the interdependent network
area studies the interactions among different networks, while
the ability of a network to resist disturbances or failures is
referred to as the robustness of the network. Thus, to study
network robustness from an interdependent network sys-
tem’s perspective, we need to define what it means to be
a robust interdependent network system and, given the
nature of the system, how the robustness should be mea-
sured. To answer these questions, we look at the existing
frameworks to study the robustness of interdependent
networks.
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Several frameworks have been developed to study the
robustness of interdependent network systems to better
understand complex networks’ vulnerabilities. These
frameworks may present different interdependent network
system models, with different kinds of elements and in-
teractions. For example, the kind of interaction between two
networks can be between nodes, edges, or both. These in-
teractions can differ among different interdependent net-
works, given the networks” behaviour and the way in which
these networks interact with one another. A common ex-
ample is given by the power grid paired with its control
network system [1, 4]. Here, we have nodes within the
communication network that require energy to properly
function, and thus they depend on power grid nodes.
Conversely, depending on the model used, some nodes in
the power grid depend on the communication network
nodes to access the necessary data to the their proper
functioning.

These frameworks must also present a way to measure
the robustness of the system. The robustness of a network
can be measured using one or more robustness metrics that
focus on aspects or characteristics relevant to assess the
robustness of the system. A robustness measure may be
centered on the size of the largest or giant connected
component [6-8], the percolation threshold [9], etc.

Besides the robustness measure, frameworks usually
perform a variety of studies to better understand the tested
scenarios. To perform these studies, the framework tests
different model parameters of the interdependent system
being studied and measures the effect of these changes over
the interdependent network robustness. Some parameters
that can be used to perform studies are the kind of failure
[10], the node capacity [2], the attack radius [11], etc.

The development of frameworks to study the robustness
of interdependent networks is relatively new, starting in 2010
with Buldyrev et al. [4], and has slowly grown over the past
few years. In recent years, several types of frameworks have
appeared, going from simple and general frameworks, to
more complex and specific ones.

It is important to have specific frameworks for the in-
terdependent network case, as they allow us to describe
scenarios that would not occur when studying the robust-
ness of single networks. Frameworks also allow us to sim-
plify the analysis process, as they provide a systematic way to
study the robustness of interdependent networks.

Currently, there is no easy way to order and classify the
methods used to assess the robustness of interdependent
network systems. Surveys in the complex network area have
not focused on the robustness of interdependent networks.
Also, most of the information regarding the study of in-
terdependent networks’ robustness has not been unified.
This situation has led to the usage of several different names
for the same metrics, models, and studies among the lit-
erature, or even the lack of names for widely used measures,
models, and studies. In this work, we present an approach to
solve these problems by surveying frameworks to study the
robustness of interdependent networks.

This survey gathers and classifies through a taxonomy
the existing frameworks to study the robustness of
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interdependent networks. The articles collected for this
survey must present frameworks to study the robustness of
interdependent networks. It was considered that an article
presented a framework to study the robustness of in-
terdependent networks if it explicitly analyzed the robust-
ness of two or more interacting networks that depend on one
another. The articles included in this survey must also test
the proposed framework using real and/or simulated data.
For this survey, we only considered articles published be-
tween 2005 and 2017 on at least one of the following li-
braries: APS, Elsevier, PLOS ONE, Nature, ACM Digital
Library, and IEEE Xplore (see more details in Section 2).
Articles that did not explicitly use a known robustness
measure or specify that the measures studied could be
interpreted as robustness measures were not considered. To
classify the information about the frameworks, the following
aspects were studied: the way in which the interdependent
networks are modeled, how the robustness is measured, the
studies performed to further understand the scenario, and
the type of networks used to test the framework.

Our research contributes with a novel approach as an
interdependent network survey, focusing specifically on
robustness studies. Although there are surveys and reviews
of the interdependent network, multilayer network, and
multiplex network area, none of these has focused on how to
study the robustness of these systems [12-14]. In this survey,
we propose a taxonomy that allows the reader to identify
many different possible frameworks, based on the main
aspects defining an interdependent network’s robustness
framework. The presented taxonomy takes into account the
different reoccurring themes identified during the in-depth
review of each article considered in this survey.

In this research, we found that studies of robustness of
interdependent networks still mainly focus on rather ab-
stract models that can be used in several types of scenarios if
real-world constraints are relaxed. Here, we found that the
most commonly used models are those of the “one to one
like” family, while the most commonly used metrics are
those that count the amount of functional nodes after
a cascading failure has occurred. We also found that studies
of the size of the giant connected component were the most
widely performed and that most of the frameworks were
tested using purely simulated data.

The rest of the article is organized as follows. Section 2
explains the methodology used for the article collection, and
how we proceeded to determine which papers would be
considered in the final taxonomy. Section 3 presents the
findings of this survey as a taxonomy. Section 4 summarizes
our findings, Section 5 presents the discussion, and Section 6
presents our conclusions and thoughts about future work. In
Supplementary Materials (available here), we present
a summary of each article reviewed according to the tax-
onomy proposed and summary tables of articles reviewed
and the classifications of our taxonomy.

2. Method

To collect the articles that we used in this survey, we opted
for a systematic review approach. This systematic review was



Complexity

performed using Kitchenham’s protocol [15] as guideline. In
the following sections we present a detailed explanation of
the collection, selection, and data extraction process fol-
lowed for this survey.

2.1. Background and Objective. Given the problem of ana-
lyzing the robustness of interdependent networks, we would
like to answer the following question: what frameworks exist
to study the robustness of interdependent networks? As far as
we know there are no systematic reviews or surveys tackling
this question.

This systematic review has as objectives to identify and
describe frameworks to study the robustness of in-
terdependent networks and to generate a detailed charac-
terization of these frameworks regarding the usage of
models, techniques, and metrics, among other aspects that
were to be found relevant for framework characterization.

2.2. Research Questions. In this section, we list the research
questions that drive this review. These questions were ap-
plied to each article studied. For the proper data analysis,
each of the following questions was further broke down into
subquestions; this is further explained in Section 2.8.

(i) RQ1: which networks’ aspects are studied by the
framework?

(ii) RQ2: how is the model used by the framework?
(iii) RQ3: how was the framework validated?

2.3. Data Collection Strategy. The articles used in this review
were collected on the following repositories: APS, Elsevier,
PLOS ONE, Nature, ACM Digital Library, and IEEE Xplore.
These repositories were selected with the intention of cov-
ering most of the publications in the complex network area.

On each repository, the same base query was made to
collect the papers considered in this review. We show the
query in Figure 1. Here, the logical operators AND, OR, and
NOT are used to show the structure of the search query.
This query was specifically made over article’s titles and
abstracts.

This query can be understood as “to search articles that
refer to robustness and interdependent networks and that do
not refer to neural networks.” The actual queries used on
each library are listed in Table A.4 in the Supplementary
Materials (available here).

With this query, we are considering the definition of
interdependent networks to be “systems composed of two or
more interacting networks; two networks are said to be
interacting with one another if they have some type of
dependency between node pairs where each node belongs to
a different network.” Thus, we considered the following
keywords and keyphrases on their title or abstract for the
initial collection: “interdependent network(s),” “multilayer
network(s),” “multi-layer network(s),” “cascading failures,”
and “network of networks.” Here, the keyphrase “cascading
failures” was added in hopes to find articles that did refer to
interdependent networks without explicitly using any of the

other keyphrases as cascading failures do appear on in-
terdependent networks.

We consider that an article discusses the robustness topic
if it refers to the behaviour of a network under adverse
scenarios. Thus, we considered the following keywords on
their title or abstract for the initial collection: “percolation,”
“robustness,” and “resilience.”

Finally, we observed that the keyword “neural networks”
tend to appear when searching for the abovementioned
keywords and keyphrases; however, these articles do not
discuss interdependent networks as we have defined here, we
opted for excluding articles that refer to neural networks.
Thus, we discarded when possible articles with the keyword
“neural” appeared on their title or abstract.

2.4. Selection Criteria. After the data collection, we must
select which articles will be reviewed in the final systematic
review. In order to do this, the following inclusion and
exclusion criteria were applied:

(i) Inclusion criteria

(a) The paper is written in English

(b) The paper is a primary study

(c) The paper was published between January 2005
and December 2017

(d) The paper studies the robustness on in-
terdependent networks

(e) The paper presents conclusions about the
framework

(ii) Exclusion criteria

(a) The paper is not available online

(b) The paper does not study the robustness on
interdependent networks

(c) The paper is nonconclusive

(d) The paper does not test the framework using real
or simulated data

(e) The paper is a survey

2.5. Selection Process. Once the initial collection of articles
was done, another selection process is performed in order
to ensure that the articles considered in the final taxon-
omy actually meet the previously stated requirements. For
this next selection process, two researchers have to apply
the inclusion and exclusion criteria over each article
found. This is done by reading the title and abstract of each
article and determining if they meet the selection criteria.
If there was to be a tie on the inclusion or exclusion
decision for an article, a third researcher has to read and
apply the selection criteria over that article. An article
passes to the data extraction stage if at least two re-
searchers agree that the article passes the selection
criteria.

Table 1 shows the amount of articles initially found on
each repository and how many articles were finally con-
sidered for this survey. It is worth noting that no article
appeared on more than one repository.
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Interdependent Network of
network (s) networks Neural
Percolation Resilience Multilayer Cascading
network (s) failures
Robustness Multi-layer
network (s)
FIGURE 1: Query diagram.
TaBLE 1: Number of papers by repository and stage.
Repository Number of articles on the initial collection Number of articles on the final survey
Elsevier 221 28
PLOS One 24 3
ACM 18 2
Nature 151 19
IEEE Xplore 95 27
APS 44 24
Total 553 103

2.6. Quality Assessment. To ensure the articles’ quality, the
following questions have to be positively answered by each
article found. If an article passes the first selection process
but fails to meet the minimum quality determined by the
quality assessment process then it is discarded, and thus it is
not considered on the final survey.

(i) Is the paper topic properly described?
(ii) Is the framework described in detail?

(iii) Is the model used by the framework properly
described?

(iv) Does the paper show results and conclusions?

(v) Are the results shown by the paper concrete and
complete?

2.7. Data Extraction. In this stage, we collected data that can
be extracted without having to analyze in depth the article’s
content. From each article, we extracted the following data:
library, authors and their affiliation, year of publication, type
of publication (journal or proceedings), and abstract.

2.8. Data Analysis. In contrast with the last step, here an in-
depth reading and analysis has to be performed in order to
fully understand the contents of the article under revision.
Using the information obtained from this in-depth analysis,
the final classification or taxonomy emerges. We must note
that to the best of the authors’ knowledge, there is no
previously proposed taxonomy for the area dedicated to the
study of robustness of interdependent networks.

In order to perform an exhaustive data analysis, the
following research question breakdown was used as
a guideline (see Table 2).

3. Taxonomy

After analyzing the literature studying the robustness of
interdependent networks, a thorough study of it was per-
formed. From that study we identified relevant framework
aspects. In Supplementary Tables A.5, and A.6, we have
a summary of the model, metric, studies, and networks
tested classifications. The details of each aspect are presented
in the corresponding sections.

In Section 3.1, frameworks are classified by the kind of
model used by such a framework. In Section 3.2, frameworks
are classified by the kind of robustness measure used by such
a framework. In Section 3.3, frameworks are classified by the
kind of studies performed by the framework. Finally, in
Section 3.4, frameworks are classified by the kind of net-
works used to test the framework.

3.1. Interdependent Network Model. Each framework must
use an interdependent network model, in which the in-
teractions between nodes are defined. The interactions de-
fined by the model may be between nodes within the same
network, or from different networks, and these interactions
can determine the behaviour and characteristics of nodes
and edges. The model used by a specific framework reflects
the kind of networks that it studies. Some models will be
applicable to more general networks, while some others will
be applicable to more specific networks. According to the
papers studied for this review, 11 classifications of
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TABLE 2: Research question breakdown (the research questions (RQ) are presented in Section 2.2).

RQ Question Possible answer
RQ1.1 What studies does the framework perform? Study name

Study description
RQI1.2 What robustness measures are used? Robustness measure name

RQ1.3 What network parameters does the framework measure?
RQ1.4 What assumptions does the framework do?
RQ2.1 The framework proposes a model or uses an existing one?

RQ2.2 How is the model studied?

RQ2.3 Does the model describe especial nodes and edges?
RQ2.4 How are the interactions described by the model?
RQ3.1 What data were used to obtain the results?

Interpretation of the robustness measure values
Set of parameter used by the measure
List of assumptions made by the framework
{ proposes a model, uses an existing one}
Name of the model
Model description
{ yes, no}

Kind of nodes and description

Kind of edge and description

{ directed, nondirected, both}

Description of the interactions between nodes within a network
Description of the interactions of the nodes between different
networks
{ simulated, real, both}

interdependent network models were identified. Here, we
list each classification, and between parenthesis we show the
amount of articles within each one of them: “one to one like”
(49), “geometric or spatially embedded” (12), “multiple
dependencies” (15), “coupled power grid” (9), “load transfer
among networks” (6), “mixed interactions” (6), “mapping” (2),
“directed support-dependency” (2), “contagion or influence”
(2), “supply-chain” (1), and “defined by probabilities” (2).
The “one to one like” classification contains the models
whose main characteristic is that the interactions among
networks are one to one with bidirectional dependencies,
that is, each node can be connected to exactly one other node
in the other network, through a nondirected interlink. If
a node fails, then its dependent node will also fail and vice
versa. The models within this classification usually present
two interacting networks. They do not present interactions
between nodes of the same network, and each node on both
networks is interconnected through an interlink [4, 10,
16-42]. However, some models do study the case in which
there are more than two interacting networks [43-45], or
present variations on the behaviour within the network.
Among these, we find models that have loads and capacities
that can trigger further failure if the load of a node or edge
exceeds its capacity due to load redistribution in case of
failure [46-51], models where the distances from a node to
a control node is relevant to establish connections [52], or
models that explore the “average lifetime” of a node after
which the node fails [53]. Following a similar idea, Stip-
pinger et al. [54] introduced the concept of “recovery” on
a one to one like model. Here, nodes have a probability of
reestablishing their connections after losing them. Radicchi
et al. [55] used a model with edge weights that affect the
percolation phase transition of the system. There are also one
to one like models where each node can be connected to at
most one other node in the other network [16, 18, 45, 56-61].
Liu et al. [62] presented a case where if a node fails, then its
counterpart may lose its edges with some probability. Here,
the worst case scenario is the one where all the edges are lost,
which is equivalent to the original one to one like model. It is

worth noting that in this classification, we also consider
multiplex networks whose main characteristic is to be
multiplex networks where the failure of a node in any layer
means that the node fails in each network [28, 51].

“Geometric or spatially embedded” models are charac-
terized for representing an environment with a “spatial
context,” meaning that nodes can have a relative or absolute
position in space, and this position in space influences
whether a pair of nodes get to be connected or not
[11, 29, 63-66]. A common model among this classification
is the one built using two lattices and one to one like in-
teractions with spatial restrictions to connect two nodes on
different networks [11, 29, 63-65, 67]. There are some
variations to this last model, such as a model that allows
more than two networks to be interconnected [68], a model
that considers network “lifetime” [69], a model that uses
lattices with an arbitrary number of dimensions [70], or
systems where nodes have states that can be propagated over
the networks [71]. In the work presented by Kornbluth et al.
[66], networks are topologically identical, and two nodes
from different networks can be connected if the path length
between the topological counterparts of both nodes within
a network meets the length restriction. Finally, in the work of
Wang et al. [72], nodes from all networks are located within
a Euclidean space, and two nodes from different networks
are connected if they meet the spatial restrictions.

One main characteristic of “multiple dependencies”
models is that the nodes can be interconnected to multiple
nodes on other networks. Among these models, we find
those with directed support-dependency relations among
networks, where a node remains functional if at least one of
its supporting nodes in other networks remains functional
[16,73-77], and directed support-dependency relations with
node states where a node must also be on an “active” state to
remain functional [78]. In this classification, we can find
models where the support-dependency relations between
nodes from different networks are undirected. Here, just as
the directed case, a node remains functional if at least one of
its supporting nodes in other networks is functional, but in



this case, supporting nodes are supported by their dependent
nodes [18, 79-82]. Among these kinds of models, we find
variations such as models that have loads and capacities
within the networks [75, 76], models that represent supply-
demand dynamics [83], and models where each node re-
quires a specific amount of supporting nodes [84, 85].

For the “coupled power grid” classification, we have
models that represent the power grid network coupled to
some other network. Most of the models within this
classification represent the power grid coupled with its
control network. For the “power grid-control network”
pairs, the models contain a representation of the power
grid and a representation of the control network that
supervises the proper functioning of the power grid
network (control network or supervisory control and data
acquisition). The control network model usually distin-
guishes between the nodes that represent information
sources and the nodes that distribute this information.
Among the models that represent the “power grid-control
network” pair, there are those whose nodes and edges have
loads and capacities, which can get damaged due to
overload failures [6, 7, 86-88] and those that do not have
loads and capacities [1, 89, 90]. Only one model was found
to represent the power grid coupled to another kind of
network in the work of Ouyang et al. [91]. Here, the power
grid is coupled to the gas distribution network, which
depends on the electric supply of the power grid to
properly function.

On the “load transfer among networks” classification,
a total of 6 articles were found [2, 92-96]. The main
characteristic of these models is that the nodes and/or edges
have a capacity and a load, where if a node fails, then the load
of that node is redistributed within and among networks. It
is interesting to notice that a real-world application of these
models is presented by Zhao et al. [2], where the system is
comprised of the bus network and the subway network,
while the passengers represent the network load.

For the “mixed interactions” classification, six articles
were found [97-102]. The main characteristic of these
models is that there may be more than one type of in-
teraction among them [97, 98, 100, 102] or within them
[101]. In this type of model, there are different types of edges,
and the type of edge defines what happens to the neighbors
of a node when it fails. For the interactions, we may have
connectivity and dependency edges [97-99, 101, 102] or
dependent and antagonist edges [100]. In this context, an
antagonistic relationship between nodes means that losing
the antagonistic counterpart has a positive effect over the
nodes.

The “mapping” classification contains models that
represent network pairs where one network must be
“mapped” or “routed” onto other networks [103, 104].
Thus, the mapped network depends on the structure of
the other network and the way in which the mapping is
done.

On the “directed support-dependency” classification,
we find models whose main characteristic is to have
support-dependency relations between network pairs.
Here, it is clear which node offers support and which node
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is dependent [105, 106]. If the support node fails, then the
dependent node will necessarily fail. However, if the de-
pendent node fails, then the support node will not nec-
essarily fail.

The “contagion or influence” classification contains
models whose objective is to model an influence or con-
tagion process within an interdependent networks system.
In this revision, two articles were found [107, 108].

Finally, the models classified into the “defined by
probabilities” classification are those whose behaviour
(dependencies, failures, recoveries, etc.) is defined through
probabilities. Two articles were found within this classifi-
cation [109, 110].

The “supply-chain” classification contains models whose
main characteristic is to represent supply chain networks
systems. Within this classification, we found a model
composed of a physical supply chain network (supplier,
distributor, etc.) and a cyber network that represents the
digital control system of the supply chain [3].

3.2. Kind of Robustness Metric Used. Frameworks can use
a variety of metrics to study the robustness of a network. A
framework may use one or more metrics to measure the
interdependent networks robustness. The metrics used by
a framework to measure robustness determine which aspects
are relevant for the framework when defining what a robust
network is. In this study, 8 metric classifications were
identified. Here, we list each classification, and between
parenthesis we show the amount of articles within each one
of them: “counting elements” (77), “breaking point” (44),
“time” (14), “probability” (13), “rate” (3), “cost” (3), “path
length” (4), and “performance” (1).

“Counting elements” metrics measure the amount of
elements relevant for the robustness, such as the amount
of nodes on the largest connected component. In this
classification, we also include metrics that extract a value
from the amount of elements being counted, such as the
average amount of neighbors of a node. Within these
metrics, we distinguish between those who measure the
amount of nodes that remain functional after a failure or
attack (and subsequent cascading failure)
[3,6,7,10, 16-21, 23-26, 28, 30, 34-48, 51, 54, 56, 58, 60,
62, 63, 66-68, 71, 72, 77-84, 89, 90-92, 102, 105, 106],
those who measure the amount of functional nodes on
a recovery process [22, 57], and those that measure the
amount of redundant paths of a network onto the network
it was mapped on [104] (see Section 3.1).

The “breaking point” classification considers metrics that
measure the point at which the interdependent system will
collapse. These metrics, for example, could measure the
amount of nodes or edges to be removed in order for the
networks to collapse, the expected lifetime before collapse,
etc. For interdependent networks, the collapse of the system
is abrupt once the “breaking point” is reached. Within this
classification, we have metrics that measure the amount of
nodes that can be removed Dbefore collapse
[4,11, 19, 21, 24, 25, 43, 44, 62, 65-67, 73, 79, 80, 83, 84, 97-
99, 105, 1, 31, 38, 39, 41, 45, 54, 55, 61, 68, 70, 71, 77, 78, 106],
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metrics that measure the critical amount of edges to dis-
connect [1, 32], metrics that measure how strongly coupled
the interdependent networks can be [68, 73, 105], metrics
that measure the expected time before collapse [53, 69], and
metrics that measures the threshold at which an infection
will persist on the networks for a long time [108].

The “time” classification contains metrics that measure
the time that a process takes, where this process is relevant
for the robustness. Here, the duration of these processes
determines how robust (or fragile) the network is under
adverse scenarios. Among the reviewed articles, there are
metrics that measure the amount of iterations that a cas-
cading failure takes [19, 20, 24, 29, 40-43, 61, 64, 65, 68, 73],
the time before a user loses access to the service provided by
the interdependent network system [103], and the average
delay time of the system [104].

Within the “probability” classification, we have met-
rics that measure robustness according to how likely that
an event is to occur, where this event is relevant for the
robustness of the system. Some of these metrics measure
how likely it is that a giant mutually connected component
exists within the interdependent networks system
[4, 23, 29]; others measure how likely it is that a node is
still connected to the largest connected component
[27, 31], that two nodes are connected with one another
[33, 42, 52], how likely a node is to survive a contagion
[107], or the probability that more than half of the original
nodes survive [88]. Other metrics measure the distribu-
tion function of the largest connected cluster size [70] or
the distribution function of the load shedding [86], while
others measure how reliable the interdependent networks
are, given the probability distribution of the cascading
failure size [110].

The “rate” classification contains metrics that measure
how a specific characteristic behaves in relation to some
other characteristic, such as growing rates or derivatives.
Here, we found a metric that measures the amount of failed
nodes per iteration of the cascading failure [63], a metric that
measures the increase rate of failed nodes between con-
secutive iterations [40], and a metric that is the derivative of
the size of the largest connected component respect to the
fraction of nodes removed of one of the networks of the
interdependent network system [72].

Metrics on the “cost” classification measure how ex-
pensive it is to increase the robustness of the system
[75, 76, 104]. This can be attained by adding nodes or edges,
by changing node dependencies, etc.

On the “path length,” metrics measure how well con-
nected the networks are, given the path lengths between
nodes [2, 10, 22, 59]. Here, the shorter the path lengths, the
more robust the system is considered to be.

Finally, the “performance” classification, as its name
suggests, contains metrics that measure the performance of
the interdependent network system. Here, the performances
must be measured in comparison to an ideal system. In
particular, what an ideal performance is will depend on the
nature of the interdependent system. Only one metric was
found for this classification [91].

3.3. Studies Performed by the Framework. Another way to
characterize frameworks is by the type of studies that they
perform to further understand the robustness of the in-
terdependent network system. Besides the metrics used by
the framework, each framework can perform several studies.
These studies usually observe the impact of altering vari-
ables, over the robustness. From the articles reviewed, 8
main classifications were identified. Here we list each
classification, and between parenthesis we show the amount
of articles within each one of them: “size of the giant
connected component” (58), “coupling” (55), “percolation”
(47), “targeted attacks” (27), “load and capacity” (17),
“cascading time” (12), “length” (8), and “avalanche” (8). To
see the rest of the classifications found, see Supplementary
Table A.7.

On the “size of the giant connected component” clas-
sification, we have frameworks that studied the changes on
the size of the largest connected component under different
conditions. This type of study can be the main focus of the
framework or complementary information of the robustness
of the interdependent networks system. A total of 58 articles
performed this type of study [3, 4, 6, 10, 16-21, 23, 24, 26-28,
34-41, 44, 45, 46, 48, 51, 53, 54, 56, 58-62, 64, 69, 70, 72,
77-82, 84, 89, 92, 95, 96, 97, 98, 100, 101, 102, 106].

The “coupling” classification contains frameworks that
studied the effect that different types of couplings have over
the robustness of the system. In the interdependent network
context, the coupling refers to how are the networks coupled
with one another. Usually, these studies change the coupling
strength or the coupling criteria. The “coupling strength”
refers to the amount of interconnections that there are
between networks, while the “coupling criteria” refers to the
criteria used to determine when two nodes in different
networks are connected. Some coupling criteria examples
are as follows: to couple high degree nodes with low degree
node nodes, to couple nodes with the same degree, to couple
nodes at random, etc. A total of 54 articles performed
coupling studies [17, 18, 21-23, 26, 27, 43, 46, 57, 64, 65, 73,
79, 80, 84, 86, 87, 92, 97, 98, 105, 7, 32-34, 45, 58, 62, 67, 68,
71, 76-78, 81, 88, 90, 100, 101, 106, 35-37, 48-51, 59-61,
94-96].

It is considered that a framework performed “perco-
lation” studies if it studied the percolation threshold of the
system or if it studied measures based on percolation
theory [9]. In the context of percolation studies, 1 — p is
the probability that a node gets disconnected from its
network or fails. The percolation threshold, typically
denoted by p_, represents the critical value at which if
P < p., then it is not possible to identify a giant connected
component on the networks system. Here, the lower the p,
value, the more robust the system is considered to be, as
this implies a higher 1 - p. value. The robustness in-
terpretation of this metric is that a lower p, means that it is
possible to disconnect a higher amount of nodes before
reaching the system’s collapsing point. When studying the
percolation of an interdependent system, first- and sec-
ond-order phase transitions may occur. Second-order
phase transitions represent a continuous decay of the
system where no abrupt collapse can be detected. Second-
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TaBLE 3: Amount of papers published per year.
Year Amount % of papers published in journals % of papers published in proceedings Relative % of papers published
of papers published

2005 0 0 0 0

2006 0 0 0 0

2007 0 0 0 0

2008 0 0 0 0

2009 0 0 0 0

2010 2 100 0 1.9

2011 3 33.3 66.7 2.9

2012 3 100 0 2.9

2013 13 69.2 30.8 12.6

2014 14 85.7 14.3 13.6

2015 19 89.5 10.5 18.5

2016 25 84 16 24.3

2017 24 70.8 29.2.4 23.3

order phase transitions are characteristic of single or
isolated networks. First-order phase transitions represent
an abrupt collapse of the system as 1 — p increases. First-
order phase transitions usually appear on interdependent
networks systems. A total of 47 articles performed per-
colation studies [4, 6, 11, 19, 20, 23-25, 29-31, 34, 38-45,
54, 57, 58, 61, 62, 64-68, 70, 71, 73, 77-80, 83, 84, 89,
96-101, 105, 106].

The “targeted attacks” classification contains all the
frameworks that test the effect of targeted attacks over the
system’s robustness. In this context, a node or edge attack is
a targeted attack if a specific parameter is used to pick the
node or edge to be attacked. These attacks can pick nodes or
edges using centrality measures, system values such as loads
or capacities, etc. A total of 27 articles performed targeted
attacks [2, 10, 16, 18, 19, 25, 28, 33, 35, 36, 38, 42-43, 46,
48, 50, 52, 59, 60, 82, 87, 89, 92, 94, 95, 98, 102].

“Load and capacity” studies can be performed on
frameworks that consider models where at least one of the
system’s networks has loads (electric, traffic, passengers, etc).
These studies observe the effect of altering variables that define
the load capacity of the network’s nodes and edges over the
robustness. In this review, a total of 17 articles performed this
type of study [2, 3, 6, 46-48, 50, 51, 60, 75, 76, 86, 92-95, 103].

On the “cascading time” classification, we have frame-
works that study how the duration of cascading failures
varies under different conditions. This type of study was
performed by a total of 12 papers [19, 40-44, 64, 65, 68, 71,
73, 100, 109].

The “length” classification contains frameworks that
observe the effect of changing edge lengths over the ro-
bustness of the interdependent networks. Usually, these
studies are performed on articles that use models with spatial
restrictions. These restrictions can be used to determine if
two nodes can be connected or whether this is within the
same network or between two networks. Among the articles
reviewed, 9 performed length studies [2, 10, 22, 59, 66-68,
70, 72].

On the “avalanche” classification, we have frameworks
that study changes on the amount of nodes lost after an
initial attack or failure, under different scenarios. This study

may be performed as the main focus of the framework or as
complementary information. A total of 8 articles conducted
this type of study [29, 46, 47, 49, 50, 74, 87, 109].

3.4. Networks Used to Test the Framework. Given the re-
quirements that an article had to satisfy in order to be
considered in this survey, each article must test its frame-
work using real or simulated networks. From the articles
reviewed, only 2 classifications were identified. Here we list
each classification, and between parenthesis we show the
amount of articles within each one of them: “simulated” (75)
and “real and simulated” (28).

On the “simulated” classification, we have articles that
only used simulated networks to test their frameworks. Some
of the networks used within this category were ErdAds-
Renyi, Scale-Free, and Random-Regular. A total of 75 ar-
ticles used simulated networks only to test their frameworks
[3,4,6,11,16-21,23-30, 33, 35-48, 50, 53-55, 58, 59, 61-63,
65-71, 73-76, 78-80, 83, 84, 87, 90, 92, 94, 95, 97, 98,
100-102, 104, 105, 110].

Finally, on the “real and simulated” classification, we find
frameworks that used both real and simulated networks for
testing, that is, within the set of networks used for testing
there is at least one network that is real and one that is
simulated. In this case, real networks may be paired with
other real networks on the interdependent networks system,
as in the work of Zhao et al. [2] where the interconnected
public transportation network is used for testing, or with
simulated networks, as shown by Bashan et al. [64], where
the European power grid is coupled with a Random-Regular
network. A total of 28 articles were found to belong to this
classification [1, 2, 7, 10, 22, 31, 32, 34, 49, 51, 52, 56, 57, 60,
64, 72, 77, 81, 82, 85, 86, 88, 89, 91, 93, 96, 99, 103].

4. Summary

As we can see in Table 3, the use of frameworks to study the
robustness of interdependent network did not start until the
year 2010 with the work presented by Buldyrev et al. [4]. The
amount of papers published per year in the interdependent
network robustness area increased between 2010 and 2016,
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going from 13 articles published in 2013 to 25 in 2016. Papers
published in the area presented a small decrease between
2016 and 2017, going from 25 to 24 papers published each
year, respectively. It is interesting to note that each year since
2013, most of the papers (>50%) have been published in
journals rather than proceedings.

Among the model trends, we can see in Figure 2(a) that
the most commonly used classification is “one to one like”,
being used by 47.6% of the articles reviewed. In second place,
with less than third the amount of papers of the “one to one”
classification, we have the “multiple dependencies” classi-
fication with 14.6% of the articles reviewed. We must note
that the first article published in interdependent network
robustness area presented the “one to one model.” This
classification positioned itself as the most popular since the

beginning, and in 2015, 47.4% of the articles published that
year used or presented a “one to one like” model. The next
year, 48% for the papers published used or presented “one to
one like” models. And in 2017, it represented 50% of the
papers published that year. Between the years 2010 and 2014,
many types of models appeared; however, most of them did
not manage to become or stay popular. Such is the case for
“mapping,” “directed support-dependency,” and “contagion
or influence.” During 2015 and 2016, “mixed interactions,”
“load transfer among networks,” and “defined by proba-
bilities” models emerged and maintained themselves.
However, we can observe in Figure 2(b) that in 2017, most of
the models used were “one to one” and “multiple de-
pendencies” models, leaving far behind the models that
emerged between 2015 and 2016.
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In the metrics category, we can observe from Figure 3(a)
that “counting elements” metrics are the most used type of
metric with a 74.8% of use among all the articles reviewed.
From Figure 3(b), we can see that the use of “counting
elements” metrics has steadily grown, being used on 76% of
the papers published during 2016 and 75% of the papers
published during 2017. In second place, we have “breaking
point” metrics, which are used on 42.7% of the articles
reviewed. Other kinds of metrics fall far behind these two,
each being used in less than 15% of the articles. From the
Figure 3(b), we can see that some of these less used metrics,
such as “time,” “cost,” and “rate,” appeared between 2013

and 2014 but have not become more popular over time. A
similar behaviour can be seen on “breaking point” metrics,
whose popularity has stalled and decreased over time, going
from being used by 47.4% of the articles published in 2015 to
29.1% in 2017. As for “probability” metrics, we can observe
that their popularity has increased slowly since their first
appearance in 2014.

From Figure 4(a), we can observe that “size of the giant
connected component,” “coupling,” and “percolation” are
the most popular studies performed, each appearing in over
45% of the articles reviewed. In Figure 4(b), we can observe
that the use of “coupling” studies has steadily increased since
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2013. This is not the case for “percolation” studies, whose use
has decreased among the articles reviewed, going from
appearing on 52.6% of the articles published in 2015 to
33.3% in 2017. A similar scenario can be observed for “size of
the giant connected component,” “targeted attack,” and
“load and capacity” studies whose use sharply dropped from
2016 to 2017. “Size of the giant connected component”
studies went from being performed on 68% of the papers
published in 2016 to 45.8% of the papers published in 2017.
“Targeted attacks” studies went from being performed in
36% of the papers published in 2016 to 20.8% of the papers
published in 2017. And “load and capacity” studies went
from being performed in 24% of the papers published in

2016 to 8.33% of the papers published in 2017. For “ava-
lanche” and “cascading time” studies we can observe that
although they have been used since they first appeared, these
kinds of studies have not gained much popularity over time.
We must note that only the 8 most used studies were dis-
cussed here; however, a total of 54 studies were identified
(see Supplementary Table A.7).

Finally, for the “networks tested” category, we can ob-
serve from Figure 5(a) that “simulated” networks are the
most commonly used type of network to test frameworks
with 72.8% of the articles using them. This is in contrast with
“real and simulated” networks, which are used by only 27.2%
of the articles reviewed. In Figure 5(b), we can see that this
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usage disparity has been present since 2010, and it has only
increased over time. Indeed, the amount of articles that used
“simulated” networks during 2017 almost tripled the amount
of articles that used “real and simulated networks.”

5. Discussion

In the past years (2010-2017), several frameworks to analyze
the robustness of interdependent networks have emerged.
The study of interdependent networks’ robustness has

remained mostly focused on simple interactions among
networks, which are not meant to thoroughly represent real-
world networks, but to represent in an abstract way their
behaviour and offer a broad spectrum of frameworks. We
can appreciate this in the fact that “one to one like” models,
“counting elements” metrics, “size of the giant connected
component” studies, and “simulated” networks to test the
frameworks are the most commonly used. These classifi-
cations do not present a high specificity regarding when or
where they should be used to represent interdependent
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networks, thus allowing them to be used in several different
scenarios. However, these abstract frameworks may not be
able to properly represent real-world scenarios.

During the first few years, there were attempts to rep-
resent real-world interdependent networks’ robustness in
a more realistic way. This can be seen by the use of “coupled
power grid” models and “cost” and “time” metrics. However,
most of these trends did not last. Although steps are being
taken towards more realistic approaches that are in between
the simple and general approaches and the more complex
and realistic approaches, the area has been mostly focused on
understanding abstract and general systems so far. The steps
towards a more realistic approach to study the robustness of
interdependent networks can be appreciated in the use of
“geometric or spatially embedded” models and “targeted
attacks” studies.

Even though we do not observe a great amount of more
realistic framework, the articles reviewed in this survey do
show a broad range of tools and methods to better un-
derstand the robustness of interdependent networks. Each of
the variants for models, robustness measures, and studies
has their own set of advantages and limitations that each
researcher will have to evaluate according to the system they
are studying. Thus, systems that might be accurately de-
scribed by “multiple dependencies” models may not be
properly described by using classic “one to one” models. The
same goes for robustness measures, where the suitability of
a measure will directly depend on how the researchers
describe the robustness of the system. Depending on the
hypothesis of the research being conducted, different studies
will be of more interest than others. Hence, a framework will
be more or less appropriate for a specific set of in-
terdependent networks depending on whether it is able to
capture the relevant characteristics of those networks as well
as the researchers’ concerns regarding the robustness of said
networks.

6. Conclusion

From this review, we can note that the interdependent
network robustness area is still young, having been around
for a bit less than 10 years. For the most part, there is still no
consensus regarding names, methods, and techniques in this
area. In this survey, we proposed a way of unifying
framework aspects through categories and classifications.
The objective of this survey is to serve as an interdependent
network robustness framework reference guide, to highlight
useful aspects to be considered while searching for
a framework, and to unify concepts.

As future work, we think the area should focus more on
applications to real-world scenarios of frameworks to study
the robustness of interdependent networks. This could also
include a more critical approach on the use of general
models and metrics to realistic scenarios, evaluating whether
or not these frameworks properly describe real-world in-
terdependent networks. Some other challenges include de-
veloping “realistic” datasets for testing purposes and
establishing name consensus to avoid the reinvention of
models and metrics.
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Considering the literature presented in this survey, we
see the future of this area progressively going from the
current more theoretical state to a more applied state. This
applied state should take into account the characteristics of
real interdependent networks and test the frameworks,
comparing the models with real data. The comparison be-
tween real data and the models is of great relevance as having
progressively more accurate frameworks would allow this
area to be used to predict with higher accuracy real-world
interdependent network robustness phenomena. This would
also allow to test the impact that major changes would have
over the robustness of real interdependent networks without
having to change the already existing real systems to fully
understand the effect that those modifications might have.
This increment on predictive power could lead to a gener-
ation of interdependent networks that are more robust and
efficient.
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We present in Section A.1 complementary tables mentioned
throughout this work. In Section A.2, we give a content
summary of each article reviewed in this survey with a de-
scription of its classification within the taxonomy. Finally in
Section A.3, we present a thorough summary of the contents
of this survey using tables. In Section A.3, we have sum-
marized the article references contained within each aspect
and we present a table showing all the “studies performed”
classifications that were not mentioned in Section 3 and
show summary tables that succinctly show the classifications
to which each article belongs to. (Supplementary Materials)
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