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Differential and integral proportional calculus: how to find a
primitive for f(x) = 1/

√
2πe−(1/2)x2
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ABSTRACT
We present a type of arithmetic called Proportional Arithmetic. The
main properties and objects that emerge with this way of operating
quantities are exposed. Finally, the antiderivative and the indefi-
nite integral are defined in order to calculate the primitive of f (x) =
1/

√
2πe−(1/2)x2 in the Proportional context.
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1. Introduction

The problem of finding the primitive g(x) of∫
1√
2π

e−(1/2)x2 dx, (1)

i.e. a function g(x) such that g′(x) = 1/
√
2πe−(1/2)x2 has been an interesting research topic

from mathematicians like Joseph Liouville ( 1809–1882). He created the theory necessary
to study this problem in a series of papers published between 1833 and 1841 (see Liou-
ville, 1833, 1834, 1837, 1838, 1840). Actually, this discipline is called integration in finite
elementary terms. He proved that it is impossible to find a primitive as an elementary func-
tion, meaning that it cannot be represented as a combination of polynomial, trigonomic
or exponential functions. In that case, we call to f (x) = 1/

√
2πe−(1/2)x2 , a non-elemental

function. This example is a particular case of the following fact: if p(x) is a polynomial of
degree ≥ 2, then the integral ∫

ep(x) dx

is non-elemental. For example, we can consider p(x) = −(x2/2). This type of integrals
occurs often in probability and statistics (Kasper, 1980; Ritt, 1948; Rosenlicht, 1972). Some
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other examples of non-elemental integrals are∫
ee

x
dx,

∫
log(log(x)) dx,

∫
ex log(x) dx,

∫
sin(x)
x

dx.

In order to find a primitive for (1), we will define a type of arithmetic called Proportional
Arithmetic. We consider the multiplication operation as a basic way to add and the quo-
tient as the natural way of comparing quantities. That is, if a, b ∈ R+

>0 (Set of real numbers
strictly greater than zero), we will say that

a = b ⇔ a
b

= 1.

From this point of view, we present a type of Non-Newtonian Calculus, called Propor-
tional Calculus (Campillay-Llanos & Pinto, 2013; Córdova-Lepe & Pinto, 2009). This work
presents the proportional algebra constructed considering the notion of bijection and the
traditional arithmetic.

Given a set X, the set of real numbers R and a bijection on f : X → Y ⊆ R, we say that
f defines an arithmetic if the following four operations are defined as follows:

x ⊕ y = f−1(f (x) + f (y)), (2)

x 
 y = f−1(f (x) − f (y)), (3)

x � y = f−1(f (x)f (y)), (4)

x � y = f−1(f (x)/f (y)). (5)

If f is considered as the identity function and X as the set of real numbers, Equations
(2)–(5) form the four operations studied at school, i.e. the traditional arithmetic. These
ideas can contribute to consolidate concepts and techniques of the traditional differential
and integral calculus courses.

2. Proportional algebra

In the case that f is defined as the natural logarithm function andX be the set of positive real
numbers, the defined arithmetic is called proportional arithmetic (Campillay-Llanos, 2007;
Córdova-Lepe, 2006), and the following operations hold:

x ⊕ y = xy,

x 
 y = x
y
,

x � y = xln(y),

x � y = x1/ln(y), y = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

With this new arithmetic, we can check the following properties of the operation � just
using its definition:

Proposition 2.1: Let a, b, c ∈ R+
>0
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• Commutativity:

a � b = aln(b) = aln(b)/ln(e) = a1/(ln(b)/ln(e)) = a1/logb e,

= blogb(a)/logb(e),

= bln(a),

= b � a.

• Associativity:

a � (b � c) = a � (bln(c)),

= aln(b)ln(c),

= (aln(b))ln(c),

= (a � b) � c.

• Neutral element for �: There exists a positive real number e such that for all positive real
number a we have a � e = a. this can be seen as follows:

a � x = a,

aln(x) = a, Injectivity of function ln(x)

ln(x) = 1, Definition of ln

x = e.

• Inverse element: For all positive real number a, there is a positive real number x such that
a � x = e

a � x = e, Definition of exponentiation

x � a = e, Commutativity

xln(a) = e, Definition of exponentiation

x = e1/ln(a). Applying ln to both members

Hence, we define the inverse of exponentiation of a as

a{−1} = e1/ln(a).

As a consequence, it is important to note that a = 1 has no inverse associated with the �
operation. In other words, a = 1 is the traditional ‘zero’ for the proportional calculus.

We can also obtain the following properties of the proportional product �:

Proposition 2.2: Let a, b ∈ R+
>0. Then:

(1) a � b{−1} = a � b.
(2) (a{−1}){−1} = a.
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(3) ln(a � b) = ln(a) ln(b).
(4) (a � b){−1} = a{−1} � e1/ln(b) = a{−1} � b{−1}.

Proof: (1) a � b{−1} = a � e1/ln(b) = a1/ln(b) = a � b.
(2) (a{−1}){−1} = (e1/ln(a))−1 = e1/(ln(e1/ln(a))) = eln(a) = a.
(4) ln(a � b) = ln(aln(b)) = ln(b) ln(a) = ln(a) ln(b).

Recall that the logarithm transforms a product into a sum. In the proportional context,
the logarithm transforms a product into a multiplication.

(5) (a � b){−1} = e1/ln(a�b) = e1/ln(a) ln(b) = (e1/ln(a))1/ln(b) = a{−1} � e1/ln(b) =
a{−1} � b{−1}.

�

Based on the properties shown above, it is possible to prove the following result:

Theorem 2.3: (R+
>0,⊕,�) is a field.

Proof: The proof is left as an exercise and it is strongly based on the properties showed
before. �

Example 2.4: As an example, we will solve the following proportional lineal equation x �
a = c:

x � a = c,

(x � a) � a{−1} = c � a{−1}, Applying inverse

x � (a � a{−1}) = c � a{−1}, Associating

x � e = c � a{−1} Inverse and Neutral

x = c � a{−1},

x = c1/ln(a).

Note that, in the traditional arithmetic, the equivalent equation is xa = c, where the
solution can be expressed in the following terms

x = c
a

= ca−1.

Example 2.5: We will solve the proportional equation (a � x)b = c in order to show the
algebraic techniques underlying this way of operating:

(x � a)b = c, Commutativity of �
(x � a) = b−1, Applying multiplicative inverse of b
x � (a � a{−1}) = Applying the proportional product

(cb−1) � a{−1}, with a{−1} and associating
x � e = (cb−1) � a{−1}, Neutral proportional product and property 1
x = (cb−1) � a.
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Now, we are going to define the proportional powers of a positive number:

Definition 2.6: Let n ∈ N and a>0. The expression

a � a � . . . � a︸ ︷︷ ︸
n times

is defined as the nth power of a and it will be denoted as a{n}.

Next, the following properties are stated:

• a{1} = a
• a � a{−1} = e
• a{1} � a{−1} = e = a{1−1} = a{0}.

As an application of the properties presented before, we give the proportional square
binomial:

(ab){2} = (ab) � (ab),

= (ab)ln(ab),

= (ab)ln(a)+ln(b),

= (ab)ln(a)(abln(b)),

= aln(a)bln(a)aln(b)bln(b),

= a{2}(b � a)(a � b)b{2},

= a{2}(a � b)2b{2}.

Thus the proportional square binomial corresponds to the product of the proportional
square of a, the square of the proportional product of a and b and the proportional square
of b.

We can express the correspondence between the usual and the proportional arithmetic
as follows:

Next, we give the following notable proportional product:

Proposition 2.7: Let a, b ∈ R+
>0. Then:

(1) a � b−1 = a−1 � b = (a � b)−1.
(2) c � (ab) = (c � a)(c � b).
(3) (a/b){2} = a{2}(a � b)−2b2.
(4) (xa) � (xb) = x{2}((ab) � x)(a � b).
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(5) (abc){2} = a{2}b{2}c{2}((a � b)(a � c)(b � c))2.
(6) (ab) � (ab−1) = (a � a)(a � b−1)(b � a)(b � b−1) = a{2}(b{2})−1.

Proof: The proof is left to the reader. �

2.1. Formalizing theway ofmeasuringwith proportional arithmetic

In the following, we present the function that represents the absolute value in the propor-
tional sense:
Definition 2.8: Let x ∈ R+ the relative value of x, denoted by [[x]], it is defined as

[[x]] =
⎧⎨
⎩
x if x ≥ 1,
1
x

if x < 1.

Let x, y, z positive real numbers. The following properties are simple to prove:

• [[x/y]] ≥ 1.
• [[x/y]] = 1 if only if x = y.
• [[x/y]] = [[y/x]].
• [[x/z]] ≤ [[x/y]] � [[y/z]].

In order to show the operability of the proportional absolute value, the following
examples are presented:
Example 2.9:

• Let x ∈ R+. Find the x such that, [[x]] ≤ 3.
We have two cases:
° If x ≥ 1, then 1 ≤ x ≤ 3.
° If x<1, we have 1/x ≤ 3. Then 1

3 ≤ x < 1
Hence, we conclude that 1

3 ≤ x ≤ 3.
• Let x ∈ R+. Find the x such that, [[x]] ≥ 2.

Again, we have two cases:
° If x ≥ 1, we have to x ≥ 2.
° If 0< x<1, then 0 < x ≤ 1

2 .
Thus, we conclude that x ≥ 2 or 0 < x ≤ 1

2 .
1

3. Proportional geometry

3.1. Proportional lines

Also, in this arithmetic we can define the concepts of proportional line and slope as follows:

Definition 3.1: Consider two different points on a proportional line: P1 = (x1, y1) and
P2 = (x2, y2). We can form the following system of equations:

y1 = bxr1 = bx1 � er = bx1 � m,

y2 = bxr2 = bx2 � er = bx2 � m.
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Figure 1. Proportional lines with 1
4 ,

3
2 , 5 from left to right.

Figure 2. Proportional Circumferences of radius e, 1.5 and 4 from left to right.

We considerm = er. Then, operating with last equations we can see that:

y1
y2

= bx1
bx2

� m performing the quotient between y1 and y2
y1
y2

=
(
x1
x2

)
� m simplifying and associating

y1
y2

= m �
(
x1
x2

)
commutativity of �(

y1
y2

)
�

(
x1
x2

){−1}
= m proportional product inverse

y1
y2

� x1
x2

= m by definition.

Hence, we have the following result:

Theorem 3.2: The slope m of the proportional line is the � ratio proportional y1/y2, given
by the variations of the y-coordinates and x1/x2, given by the variations of the x-coordinates.

Figure 1 shows proportional line graphs for different slope values.

3.2. Proportional conics

According to this notion of distance, a question arises: is it possible to imagine the alge-
braic equation of the proportional circumference? (Campillay-Llanos & Guevara-Morales,
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Figure 3. Proportional conics: circle, ellipse, parabola and hyperbola, respectively.

2015, 2018). If we represent the Cartesian circumference centred at the origin with radius
1, i.e.

x2 + y2 = 1,

then it turns out to

x{2}y{2} = (x � x)(y � y) = xln(x)yln(y) = e (see Figure 2).

Let a, b positive real numbers not equal to 1. The classic conics are shown in Figure 3.
Using a computer program you can verify its graphs, also noting the modifications of the
figures by varying the values of a and b:

• Proportional circle: x{2}y{2} = a{2},
• Proportional ellipse: (x{2} � a{2})(y{2} � b{2}) = e,
• Proportional parabola y{2} = e4 � x � a,
• Proportional hyperbola: (x{2} � a{2})/(y{2} � b{2}) = e.

4. Proportional calculus

In the following, we give the definitions for the proportional calculus using the propor-
tional arithmetic defined before.

4.1. Basic calculus definitions in the proportional sense

Definition 4.1 (Proportional limit): We say that limx→x0 f (x) = L, where L ∈ R+, if only
if for all ε > 1 there exists δ > 1 such that 1 < [[x/x0]] < δ, then [[f (x)/L]] < ε.

As usual, the next step is to define the notion of continuity in the proportional sense.

Definition 4.2 (Proportional continuity): We say that f is Proportionally continuous at x0
or limx→x0 f (x) = f (x0), if and only if for all ε > 1 there exists δ > 1 such that if [[x/x0]] <

δ, then [[f (x)/f (x0)]] < ε.

In order to show this definition, we show the following example:



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 9

Example 4.3: The function f (x) = x{2} is proportionally continuous at a, i.e.

lim
x→a

f (x) = lim
x→a

x{2} = a{2} = f (a), where a > 0.

Actually, if f (x) = x{2}, for the definition of the 2nd-power of a, we have that

ln(f (x)) = (ln(x))2.

Now, by the continuity of the logarithm, we know that

lim
x→a

ln(f (x)) = ln
(
lim
x→a

f (x)
)
.

So, we have

lim
x→a

ln(f (x)) = lim
x→a

ln2(x) = ln2(a) = ln
(
aln(a)

)
= ln

(
a{2}

)
.

Hence,

ln
(
lim
x→a

f (x)
)

= ln
(
a{2}

)
,

so

lim
x→a

f (x) = a{2}.

This is equivalent to

lim
x→a

f (x)
a{2} = 1.

As a corollary, in general we have x, x{2} , . . . , x{n} are proportionally continuous, and
therefore every proportional polynomial is also continuous in this sense. For example, the
polynomial of degree 3, p(x) = (4 � x{3})(7 � x{2})(5 � x) � 9, is continuous.

4.2. Proportional differentiation

With this arithmetic, the derivative of a function is presented in the following terms:

Definition 4.4 (Proportional derivative): A function f is Proportionally differentiable at
x0 if and only if

lim
x→x0

f (x)
f (x0)

� x
x0

= lim
x→x0

(
f (x)
f (x0)

)1/(ln(x/x0))
,

this limit exists. In this case, that limit is designated by f̃ (x0) and receives the name Pro-
portional derivative of f at x0. Also, we say that f is proportionally differentiable, if f is
differentiable at x0 for all x0 in the domain of f.
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Note that if f is derivable at x0, then it is continuous at x0, since the following equality
holds:

lim
x→x0

f (x)
f (x0)

= lim
x→x0

[
f (x)
f (x0)

� x
x0

]
�

[
x
x0

]
,

= lim
x→x0

[
f (x)
f (x0)

� x
x0

]
� lim

x→x0

[
x
x0

]
,

= f̃ (x0) � lim
x→x0

[
x
x0

]
,

= 1.

Hence, limx→x0 f (x) = f (x0). To use this definition we present the following example:

Example 4.5: Consider f : R+
>0 → R+

>0, where f (x) = x. Then f̃ (x) = e :

lim
x→x0

f (x)
f (x0)

� x
x0

= lim
x→x0

x
x0

� x
x0

= lim
x→x0

e = e.

Example 4.6: Consider the function f : R+
>0 → R+

>0, which represents the power law
f (x) = bx � m. The slope of this line is

lim
x→x0

bx � m
bx0 � m

� x
x0

= lim
x→x0

((
x
x0

)
� m

)
� x

x0
,

= m � lim
x→x0

x
x0

� x
x0
,

= m � lim
x→x0

e,

= m � e,

= m.

This coincides with the calculation made in the previous section. Using the proportional
derivative again, we can approximate the function f (x) = ex around x = 2 with a propor-
tional line y = bx � m. It’s not hard to get that ẽx|x=2 = e2, and b are obtained by solving
the equation e2 = b2 � e2, then b = 1.8473. This approach is presented in Figure 4. Note
that this approximation is better than the linear approximation.

The following properties can be found in Campillay-Llanos (2007), Córdova-
Lepe (2006) and Córdova-Lepe and Pinto (2009):

Proposition 4.7: If f is a constant function, then f̃ (x0) = 1.

Remark 4.1: The proportional non-variation is associated with 1 (see Proposition 2.1).

In the following property, we have the student’s first intuition of the derivative of the
product of two functions, that is the product of the derivatives of such functions:
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Figure 4. Approximation of the exponential function with a proportional line around x = 2. In blue,
f (x) = ex . In green, proportional line y = 1.8473x2 and in red, the linear approach, y = 7.3891x −
7.3891.

Proposition 4.8: Let f , g : R+
>0 → R+

>0, be functions such that the derivatives f̃ (x0) and
g̃(x0) exist for some x0 ∈ R+

>0, then

f̃g(x0) = f̃ (x0)̃g(x0).

It has greater similarity with the rule of the exposition of functions and the derivative
of a usual product of functions:

Proposition 4.9: Let f , g : R+
>0 → R+

>0, be functions such that the derivatives f̃ (x0) and
g̃(x0) exist for some x0 ∈ R+

>0, then

f̃ � g(x0) = ((̃f ) � g)(x0)((̃g) � f )(x0).

Proposition 4.10: If f ′(x0) is the usual derivative, we have to

f ′(x0) = f (x0)
x0

log(̃f (x0)).

This is the bridge that combines the two ideas of variations.

Finally, we present an important tool, the proportional chain rule:

Proposition 4.11 (Proportional chain rule): Let f , g : R+
>0 → R+

>0, be functions such that
the derivatives f̃ (g(x0)) and g̃(x0) exist for some x0 ∈ R+

>0, then

f̃ ◦ g(x0) = (̃f ◦ g)(x0) � g̃(x0).



12 W. CAMPILLAY-LLANOS ET AL.

4.3. Proportional integration

In what follows, we introduce the notion of proportional antiderivative and proportional
indefinite integral.

Definition 4.12 (Proportional Antiderivative): The function F(x) is a Proportional
Antiderivative of the function f (x) on the interval I if F̃(x) = f (x) for all x ∈ I.

Definition 4.13 (Proportional indefinite Integral): The Proportional integral of f (x) is
the Proportional antiderivative of f (x).

∫̃
f (x) � ρx =

∫̃
f (x)ρx = CF(x),

where C is a constant.

As an exercise we propose to verify the following equalities:
In the following, C and K are constants. Then:

• ∫̃
1ρx = K.

• ∫̃
enρx = Cxn.

• ∫̃
eaxρx = Ceax.

• ∫̃
x{2}ρx = C(x{3})13.

• ∫̃
x{3}ρx = C(x{4})1/4.

• ∫̃
x{n}ρx = C(x{n+1})1/(n+1).

• ∫̃
e � xρx = ln(x).

4.3.1. Proportional integration of the Gaussian function: f(x) = 1/
√
2πe−(1/2)x2

Let ∫
1√
2π

e−(1/2)x2 dx, (6)

where the symbol
∫

represents the integral used in the traditional courses of calculus.
From elementary calculus, we know that it is impossible to find an antiderivative g that
satisfies (6).

In the next theorem, we will find such function g, in the proportional sense:

Proposition 4.14: The function f (x) = erx2 , where r ∈ R − {0}, admits a primitive in the
proportional sense. This primitive is given by

∫̃
erx

2
ρx = C(erx

2
)1/2.

Proof: Weconsidered h(x) = ex and s(x) = rx2, because f (x) = h ◦ s(x). Note that propo-
sitions (4.7) and (4.8) turn out that s̃(x) = e2. Then, applying the proportional chain rule
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to f = h ◦ s, Proposition 4.11, we have

f̃ (x) = h̃ ◦ s(x) = (̃h ◦ s)(x) � s̃(x) = erx
2 � e2 = (erx

2
)2.

We conclude that ∫̃
erx

2
ρx = C(erx

2
)1/2.

Hence f (x) = erx2 admits a primitive, in the proportional sense. In particular the Propor-
tional integral of e−(1/2)x2 is C(e−(1/2)x2)1/2. �

Proposition 4.15: The function f (x) = K, where K is constant admits a primitive in the
proportional sense. This primitive is given by∫̃

Kρx = C(K � x)

Proof: Properties 4.7, 4.8 and 4.9 we get the proportional derivative. Using ˜C(K � x) =
C̃(K̃ � x) = 1(K � e) = K. �

The basic way of adding quantities in the proportional calculation is through multipli-
cation, implies that integral is multiplicative.

Proposition 4.16: If f and g are positive, integrable functions in the proportional sense, then
fg is integrable and ∫̃

f (x)g(x)ρx =
∫̃
f (x)ρx

∫̃
g(x)ρx.

Finally, using propositions 4.14, 4.15 and 4.16, we conclude with the main result of this
work:

Theorem4.17: The function f (x) = 1/
√
2πe−(1/2)x2 admits a primitive in the proportional

sense. This primitive is given by∫̃
1√
2π

e−(1/2)x2ρx = C
(

1√
2π

)ln(x)
(e−(1/4)x2).

Proof: By propositions 4.14–4.16, we can see that∫̃
1√
2π

e−(1/2)x2ρx =
[∫̃

1√
2π

ρx

] [∫̃
e−(1/2)x2ρx

]

= C
(

1√
2π

� x
)

(e−(1/2)x2)1/2 = C
(

1√
2π

)ln(x)
(e−(1/4)x2).

�

The proportional calculus presented here is not only intended to expose another type of
arithmetic and its scope. This way of operating quantities presents new tools to represent
natural phenomena. The calculation of the integral of the Gaussian function is an example
that could be used in several areas of modern mathematics.
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Note

1. Note that in this arithmetic 0 represents −∞. (Think in the homeomorphism f (x) = ln(x).)
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