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Magnon valley Hall effect in CrI3-based van der Waals heterostructures
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Magnonic excitations in the two-dimensional (2D) van der Waals (vdW) ferromagnet chromium triiodide
(CrI3) are studied. We find that bulk magnons exhibit a nontrivial topological band structure without the need
for Dzyaloshinskii-Moriya interaction. This is shown in vdW heterostructures, consisting of single-layer CrI3

on different 2D materials such as MoTe2, HfS2, and WSe2. We find numerically that the proposed substrates
substantially modify the out-of-plane magnetic anisotropy on each sublattice of the CrI3 subsystem. The induced
staggered anisotropy, combined with a proper band inversion, leads to the opening of a topological gap of the
magnon spectrum. Since the gap is opened nonsymmetrically at the K+ and K− points of the Brillouin zone,
an imbalance in the magnon population between these two valleys can be created under a driving force. This
phenomenon has a close analogy to the so-called valley Hall effect and is thus termed the magnon valley Hall
effect. In linear response to a temperature gradient, we quantify this effect by the evaluation of the temperature
dependence of the magnon thermal Hall effect. These findings open a different avenue by adding the valley
degrees of freedom besides the spin in the study of magnons.
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I. INTRODUCTION

Magnons, the low-energy spin excitations of magnets,
occupy a central place in the field of spintronics [1]. Since
magnons carry spin angular momentum and do not possess
electric charge, the understanding and control of their trans-
port properties are of paramount importance [2,3]. From a
practical perspective, the lack of charge transport, implying
the absence of energy loss in the form of heat via Joule
heating, is certainly attractive.

Research on topological matter inspired a plethora of
theoretical predictions about topological magnons systems in
recent years. Among the first proposals, it was shown that en-
gineered magnonic crystals develop topological bulk magnon
bands and hence host chiral edge states [4]. Other alternative
routes exploit mechanisms based on emergent gauge fields
induced by magnetic textures, e.g., Skyrmion crystals [5,6].
These magnetic phases provide a natural crystalline environ-
ment and shown that magnons inherit a topologically non-
trivial band structure [7–9]. Interestingly, topological features
are also present in specific lattice geometries, for example,
the honeycomb [10–13], Kitaev [14–16], and kagome lattice
[17–20] spin systems. In most of them, the Dzyaloshinskii-
Moriya interaction (DMI) is a key element [10,21] since it
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plays a role analogous to the spin-orbit coupling (SOC) in
the Kane-Mele model [22]. However, theoretical studies have
shown that magnonic bulk bands carry nontrivial Chern num-
bers under the presence of nearest-neighbor pseudodipolar
interaction [23–25] and without the need for DMI.

In this work, we show that van der Waals (vdW) het-
erostructures, consisting of CrI3 on different two-dimensional
(2D) materials with a hexagonal lattice, open a topological
gap in the magnon spectrum of the CrI3 subsystem. Unlike
previous schemes based on the DMI [10,21], our approach
closely resembles an electrically induced band gap in bi-
layer graphene [26–29]. Symmetry arguments can establish
the underlying mechanism that gives rise to this effect. The
honeycomb lattice of CrI3 has a sublattice symmetry, with two
identical but nonequivalent Cr atoms [see Fig. 1(a)]. If we
consider the heterostructure CrI3|MX 2, with MX2 being the
matched hexagonal material (e.g., a transition-metal dichalco-
genide), each Cr sublattice will have a different environment,
and thus, the sublattice symmetry is broken. Accordingly, the
octahedrons of I atoms, which wrap each Cr, are distorted
differently for each sublattice. Therefore, the magnetocrys-
talline anisotropy energy will be different for each sublattice.
It is worth commenting that this is independent of details
such as the actual minimum-energy configuration. It is worth
mentioning that the manipulation of the valley degree of
freedom in vdW heterostructures, consisting of transition-
metal dichalcogenides and magnetic substrates, such as the
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FIG. 1. (a) Top view of the unit cell of CrI3; Cr (I) atoms are the
big red (small purple) spheres. (b)–(d) Different lateral arrangements
of a heterostructure formed by a hexagonal lattice and CrI3. The
medium-sized atoms belong to different sublattices of the hexagonal
system: white, metal (e.g., Mo, W, and Hf) and green, chalcogen
(e.g., Te, Se, and S).

ones proposed here, has experienced a great deal of interest
in recent years [30–32]. Also, there exist theoretical studies
[33,34] and experimental realizations [35,36] of the specific
vdW heterostructures we are proposing for the magnon valley
Hall effect (MVHE).

As a further step, we study the low-energy magnetic fluc-
tuations of the effective spin system. We focus on magnonic
excitations around the collinear ferromagnetic (FM) ground
state, where the substrate effects appear as a staggered on-
site energy added to the magnon Hamiltonian. Concretely,
we construct the magnonic analog of the valley Hall effect
in graphene by breaking the inversion symmetry. In order
to discuss the experimental accessibility of the predicted
phenomena, we study magnon transport in linear response
to a thermal bias. The nontrivial Berry curvature leads to
the magnon thermal Hall effect, which is determined by the
calculation of the transverse thermal conductivity at finite
temperature.

This paper is outlined as follows. In Sec. II we describe
the numerical methods employed in this work. In Sec. III
we first determine the most energetically favorable crystalline
configuration between the CrI3 layer and each of the proposed
substrates. In Sec. IV we obtain all the relevant magnetic
constants for the CrI3 subsystem based on the previously

derived magnetic Hamiltonian. The magnon valley Hall effect
and its effects on the transverse thermal conductivity (via the
magnon thermal Hall effect) are computed. We conclude in
Sec. V with a discussion of our results.

II. NUMERICAL METHODS

In this section we explain our approach for density func-
tional theory (DFT) calculations. We use the VASP package
[37–40]. The kinetic energy cutoff is set to 250 eV. We
tested the effect of a larger cutoff, up to 550 eV, and the
change in the magnetic anisotropies was less than a few μeV.
The k-point grid is 11 × 11. For the exchange-correlation
term, we use the Strongly-Constrained and Appropriately-
Normed (SCAN) meta-generalized gradient approximation
(GGA) [41] (the details of the vdW functional are below).
At least 12 Å of empty vacuum space are added to avoid
spurious self-interactions along the nonperiodic direction. To
account for the Coulomb repulsion of Cr d electrons, we use
the DFT+U formulation [42] with parameters U = 2.7 eV
and J = 0.6 eV [43]; nevertheless, the values of magnetic
constants are practically unaffected by these parameters (as
long as the system remains insulating). The PYPROCAR code
is employed for the analysis of eigenvalues [44]. We use
projector augmented-wave pseudopotentials [45]. The SOC is
included in all calculations, except phonons.

The calculation for the parameters of the magnetic Hamil-
tonian [see Eq. (2)] closely follows the procedure of Lado
and Fernández-Rossier [43]. We will summarize it after in-
troducing the spin Hamiltonian. However, the calculation of
the magnetocrystalline anisotropies is more involved, and
it is convenient to elaborate here the technical aspects of
its calculation. The calculation of the individual anisotropy
of each sublattice needs a noncollinear orientation of the
magnetic moments around each Cr atom in order to explicitly
break the sublattice symmetry (and hence have sublattice split
anisotropies). This breaking is possible by adding an extra
penalty to the energy [46]:

�Eε = ε{[ma − ẑ(ma · ẑ)]2 + [mb − x̂(mb · x̂)]2}, (1)

with mα being the magnetic moment around a Cr ion of
the sublattice α = {a, b}, i.e., mα = ∫

Rα
m(r)dr3 for some

suitable radius Rα . The x̂ and ẑ axes refer to the in-plane and
out-of-plane directions, respectively.

The parameter ε is a factor scaling related to the strength
of the penalty. If ε is large enough, the system’s ground
state will be the minimum in Eq. (1); that is, ma is along
ẑ and mb is along x̂. By systematically decreasing the value
of ε, the above configuration will remain pinned, as a local
minimum of energy, which can be arbitrarily shallow. Once
the energy due to �Eε is much smaller than all the other
relevant energy scales, it should not affect their value. To
avoid any spurious effect, we varied ε until �Eε is less than
1 μeV. To get the actual anisotropies, we need an additional
magnetic configuration obtained by swapping the sublattices
a ↔ b in Eq. (1). By subtracting the total DFT energy of both
calculations, we get the difference of both site anisotropies,
Da − Db [see Eq. (2)]. Since the magnetic coupling of Cr ions
is weak (e.g., its Curie temperature is just 45 K [47]) and the
spurious energy of �Eε mostly cancels out by subtracting the
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total DFT energies, the convergence of the magnetocrystalline
anisotropy energies with ε was almost immediate. A value of
ε = 10 gave almost the same anisotropies as ε = 0.01, but to
be sure we used the previous, more stringent criterion.

In a vdW system, it is crucial to have a good description
of the dispersive forces. The SCAN+rVV10 approach [48],
coupling the SCAN meta-GGA to the revised Vydrov and Van
Voorhis energy functional [49,50], gives an accurate descrip-
tion of binding energies and lattice parameters of vdW mate-
rials [51]. Our criterion for stopping the structural relaxation
is 0.01 eV/Å as the largest force. Our electronic convergence
criterion is 10−10 eV. For the calculation of phonons, we used
a different approach, the empirical refined density functional
dispersion correction method [52]. It reproduces very well our
relaxed heterostructure but is much faster. We employed the
PHONOPY package [53].

III. vdW HETEROSTRUCTURES
AND SPIN HAMILTONIAN

In this section, we review the CrI3 lattice. We present
the geometry of the proposed heterostructures and how it
translates in a Heisenberg-like Hamiltonian. The driving force
behind the MVHE is the change in symmetry at the atomic
level due to the heterostructure.

CrI3 has a honeycomb lattice; hence, two identical sublat-
tices are formed by the Cr ions. Each Cr ion is surrounded
by an octahedron formed by six iodine atoms [see Fig. 1(a)].
For the magnetic description (Heisenberg Hamiltonian), the
iodine atoms can be ignored since they are nonmagnetic.
However, the consequences of altering the iodine octahedron
will be present in the magnetic parameters. The lattice param-
eter of CrI3 is a = 6.95 Å. If it forms a heterostructure with
a 2D hexagonal system with a lattice parameter a/2, there is
only one arrangement that preserves the sublattice symmetry
of CrI3. However, most hexagonal 2D materials have at least
two different sublattices (e.g., with different elements), and it
is impossible to preserve the sublattice symmetry of CrI3 in
the composed system. The effects of this mechanism on the
electronic structure of CrI3 are small. It is a vdW interaction
but noticeable on their magnetic properties.

Among the materials whose lattice parameter a′ is nearly
one half of the CrI3 lattice parameter, a′ ≈ a/2, we can name
several transition-metal dichalcogenides (by using the unit
formula MX2, where M is a transition metal and X is a
chalcogen atom) such as molybdenum ditelluride (MoTe2,
a′ ≈ 3.5 Å [54]), hafnium disulfide (HfS2, a′ ≈ 3.6 Å [55]),
titanium diselenide (TiSe2, a′ ≈ 3.5 Å [56,57]), tungsten dis-
elenide (WSe2, a′ ≈ 3.3 Å [58]), tungsten ditelluride (WTe2,
a′ ≈ 3.5 Å [59]), etc. Other 2D materials also fit: gallium
sulfide (GaS, a′ ≈ 3.6 Å [60]) and tin sulfide (SnS2, ≈3.6 Å
[61]). It may seem surprising that several 2D materials have
a lattice parameter that is almost a/2. However, the bonding
distance in several dichalcogenides ranges from 2.7 to 2.8 Å,
which coincides with the Cr-I bonding distance, 2.75 Å.
Another way to understand why the lattice parameter of CrI3

practically doubles the value found in several hexagonal 2D
materials is to consider minimal hexagonal and honeycomb
lattices, ignoring all the atomic detail and keeping only the
nodes. If the nodes in both lattices are at the same distance,

TABLE I. Relative binding energy of CrI3 in the different MX2

systems (see Fig. 1). The energy is in meV per unit cell. The lowest-
energy arrangement for each system is taken as the reference, i.e.,
0 eV.

Arrangement

B C D

CrI3|MoTe2 4.8 43.5 0.0
CrI3|HfS2 18.0 108.9 0.0
CrI3|WSe2 19.9 65.8 0.0

the lattice parameter of the honeycomb is the double of the
hexagonal lattice.

In the following, we restrict our study to heterostructures of
CrI3 over MoTe2, HfS2, and WSe2; see the three arrangements
shown in Figs. 1(b)–1(d). Even though these materials have
the same lattice and have very similar compositions (metal
dichalcogenide), they produce different effects on the mag-
netic properties of CrI3. The relative energies among these
arrangements, i.e., taking the lowest-energy conformation as
a reference, are given in Table I. In general, the stablest
position is when a chalcogen atom is below a Cr atom and the
metals are in bridge positions (arrangement D). To confirm the
stability of the heterostructures in at least one case, we made
a phonon calculation of the ground state of CrI3|MoTe2 (see
Fig 2).

The spin Hamiltonian of these heterostructures is a slight
variation of the one proposed by Lado and Fernández-Rossier
[43]:

H = −
∑

iα

Dα

(
Sz

iα

)2 −
∑

〈iα, jβ〉

[
J

2
�Siα · �S jβ + λ

2
Sz

iαSz
jβ

]
, (2)

where 〈·, ·〉 stands for summation over next-nearest-neighbor
lattice sites. The indexes i, j run over each unit cell, and α, β

run over the sublattices {a, b}. The value of the spin |�Siα| is 3/2
(3μB per Cr atom). The first term is the magnetocrystalline
anisotropy energy, where Dα depends only on the sublattice. A

FIG. 2. Phonon dispersion of the ground-state conformation of
the CrI3|MoTe2 heterostructure. We confirm its structural stability.
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positive value of Dα implies an out-of-plane ground state. The
second term is a Heisenberg Hamiltonian, with J being the
exchange constant (J > 0 for FM interactions), and λ is the
exchange anisotropy. According to Lado [43], λ is the main
parameter responsible for the magnetic order of CrI3.

In order to find J, λ, Da, and Db, we need to obtain
the DFT energy of several conformations. The DFT energy
can be regarded as EDFT = H + H0, with H0 representing
all the contributions not captured by the spin Hamiltonian.
Restricting the system to the CrI3 unit cell (and using periodic
boundary conditions), Eq. (2) has only two variables, the
directions of the two nonequivalent spins, Ŝa and Ŝb. Given
the spin Hamiltonian H (Ŝa, Ŝb), the energy for the relevant
configurations is

H (ẑ, ẑ) = −
(

Da + Db + 3J + 3λ

2

)
S2 = E1 − H0, (3)

H (x̂, x̂) = −3
J

2
S2 = E2 − H0, (4)

H (ẑ,−ẑ) = −
(

Da + Db − 3J + 3λ

2

)
S2 = E3 − H0, (5)

H (x̂,−x̂) = 3
J

2
S2 = E4 − H0, (6)

H (x̂, ẑ) = −DbS2 = E5 − H0, (7)

H (ẑ, x̂) = −DaS2 = E6 − H0, (8)

from these equations and the DFT energies (Ei with i =
1, . . . , 6), we can obtain the parameters of the spin Hamilto-
nian; for instance, subtracting Eqs. (4)–(6) gives the exchange
constant J . Subtracting Eqs. (3)–(5) gives J + λ. Da + Db can
be obtained from (3), (5), (4), and (6). Finally from Eqs. (7)
and (8), we can obtain Da − Db. The DFT energy correspond-
ing to Eqs. (3)–(6) can be obtained directly. The procedure to
calculate H (x̂, ẑ) and H (ẑ, x̂) with DFT is explained in Sec. II.

Recently, a generalization of Eq. (2) was proposed, includ-
ing off-diagonal exchange coupling, but their value (in the
μeV scale) is too small to be of interest here [62]. For the sake
of completeness, we want to mention a recent study focused
on the relevant orbitals [63] (i.e., like in a simplified tight
binding), which is very useful to understand the mechanism
behind the magnetism of CrI3, but it is not as direct as a
Heisenberg Hamiltonian to find the magnon spectrum.

The distortion due to the heterostructure also can in-
duce different Cr-I-Cr paths, which in turn can induce a
Dzyaloshinskii-Moriya coupling. We calculated the DMI vec-
tor following the scheme used by Liu et al. [64] for the ground
state of the CrI3|MoTe2 heterostructure. As the geometry is
similar for the other 2D materials, the order of magnitude
found should also be similar. The values of the z component
of the DMI vector that we obtained are smaller than 0.01 meV.
Therefore, we will discard the contribution of the DMI to the
magnetic Hamiltonian. Even in schemes specifically targeted
to enhance DMI, its magnitude is often very small [65].
Another source of DMI comes from the contributions of
higher-order neighbors, which should be quite small due to
the large interatomic distances. In bulk CrI3, with magnetic
atoms breaking the inversion symmetry at the neighbor layer,
DMI can be large enough to be experimentally observed [66].

TABLE II. Magnetic constants of CrI3 on the different MX2

systems (ground-state arrangement). All values are in meV [see
Eq. (2)].

System J λ Da Db

CrI3 2.20 0.11 0.04 0.04
CrI3|MoTe2 2.43 0.04 −0.18 0.33
CrI3|HfS2 2.05 0.13 −0.04 −0.07
CrI3|WSe2 2.32 0.04 0.04 0.07

The values of the magnetic constants, in the ground-state
(atomic) configuration, are shown in Table II. The value of
J varies only about 10% since no fundamental change in the
electronic structure happens. The anisotropy λ is much more
affected, decreasing to ∼1/3 its value in CrI3|MoTe2 and
CrI3|WSe2. This reduction is explained by the distortion on
CrI3 once in contact with another material; for instance, both
Cr sublattices are no longer coplanar. Nevertheless, the value
of λ remains positive, indicating an FM easy axis. Finally,
the magnetocrystalline anisotropy suffers strong variations,
especially in MoTe2. The strong variations in the anisotropy
constants can be expected: alterations of the symmetry of the
local environment (even in vdW systems) can induce large
changes, even inducing an easy axis [67]. In some of the het-
erostructures studied, the change in Dα also includes a change
in its sign (Dα < 0). This variation does not mean a change
in easy axis since the exchange anisotropy λ dominates and is
positive in every heterostructure, i.e., |6λS2| > |Da − Db|S2

[see Eq. (9)].

IV. MAGNON VALLEY HALL EFFECT

In this section we study spin fluctuations in the limit of
small deviations (magnons) around the equilibrium FM state.
We consider the ground state to be collinear and parallel to
the z direction. Magnonic excitations are introduced by the
standard Holstein-Primakoff [68] transformation that quan-
tizes the spins in terms of bosons [69].

The spin Hamiltonian given by Eq. (2) can be expanded up
to second order in magnon operators resulting in H = H0 +
Hm. The zero-point energy is represented by H0, while the
nearest-neighbor tight-binding Hamiltonian for the magnonic
excitations is Hm = − JS

2

∑
〈i, j〉 (d†

i d j + H.c.) + �
∑

i d†
i di, in

the absence of substrates and where � = S[2D + 3(J + λ)].
The magnon operator di (d†

i ) corresponds to the annihila-
tion (creation) operator at the ith site. The Hamiltonian Hm

is similar to the electronic Hamiltonian of graphene, with
two Dirac points existing at K+ = (2π/

√
3a, 0) and K− =

(−2π/
√

3a, 0) in the Brillouin zone. In CrI3, a magnon gap
�0 = 3Sλ = 0.4 meV for the lower-energy band and critical
temperature of Tc = 85 K are found [43]. In the presence
of the proposed substrates, the Cr environment changes the
magnetocrystalline anisotropy energy in each sublattice. The
effect of the Hamiltonian Hm is readily captured by mapping
the magnon operators into the sublattice-magnon basis,

Hm = −JS

2

∑
〈i, j〉

(a†
i b j + H.c.) + �a

∑
i

a†
i ai + �b

∑
i

b†
i bi,

(9)
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where a† and b† represent magnon creation operators on
sublattices a and b, respectively. Also, we defined �α =
[2DαS + 3S(J + λ)]. The induced effect by substrates on the
magnon bands can be readily captured in the momentum
representation. In the Fourier space, the magnon Hamiltonian
reads Hm = ∑

k 	
†
k [�̄I + hk · τ]	k, where 	k = (ak, bk)

[	†
k = (ak, bk)†] is the spinor of the Fourier transformed

annihilation (creation) operators, �̄ = (�a + �b)/2, and τ is
the Pauli matrix vector. hk = ∑

j ( − JS cos(k · v j ), JS sin(k ·
u j ),�) is a field with � = (�a − �b)/2. The eigenenergies
of the upper and lower magnon bands are given by ε±

k = �̄ ±
|hk|. In the limit �a = �b, both bands become degenerate at
the Dirac points K+ and K−, with a Dirac-type dispersion
around these points. In the presence of the substrates, the
magnetic anisotropy becomes different on each sublattice, and
a band gap is open at K+ (K−) with a value of 2�. It is worth
noticing that the gaps open differently since ε±

K+ = �̄ ± �

and ε±
K− = �̄ ∓ �. The Berry curvatures of the upper and the

lower magnon bands are largely concentrated and opposite in
sign around the corners of the Brillouin zone [70]. Thus, the
Chern number of each band is zero [25]. However, restricting
the integration zone to a single valley, around K±, the Chern
number is c±

n = ∫
�±

z dk2 = ±1 [70].
Although perpendicularly magnetized honeycomb lattices

with staggered anisotropy on each sublattice are topologically
trivial, this represents the basic ingredient to induce an MVHE
in a CrI3-based vdW heterostructure. Motivated by related
works on graphenelike structures [71], we consider an induced
band inversion as a second ingredient. It consists of a sign
change of the band gap obtained by, e.g., swapping the sub-
lattices a ↔ b, which in turn implies swapping the anisotropy
Da ↔ Db. The latter can be achieved by inducing a line defect
in the MX2 monolayer [see Fig. 3(b)]. This type of defect has
been extensively studied, the most common methods to induce
this inversion being those based on chalcogen defects [72–74]
(see Ref. [75] and references therein). Recently, a sublattice
inversion induced by irradiation was reported for MoTe2 [76].
Another method to create a postsynthesis sublattice inversion
is the incorporation of excess Mo atoms in MoTe2. These
extra Mo atoms induce a self-organization into highly ordered
one-dimensional (1D) patterns that reach a length of several
nanometers [77]. Another possibility to exchange the stag-
gered anisotropies is through lateral heterostructures, which
is a one-dimensional interface between two vdW materials
[78]. Lateral heterostructures open new possibilities, such as
a different decay length of the topological state on each side
of the material.

In general the topological order of the matter implies the
bulk-boundary correspondence [79]. When the topological
order is related to the valley degree of freedom, not every
border has topologically protected edge states. To illustrate
this point, we have calculated two types of edges: a simple
boundary (i.e., the edge of a wide nanoribbon) and a line
defect swapping the staggered anisotropies. Figures 3(c) and
3(e) illustrate, in a zigzag nanoribbon without line defect, that
the edges states are flat bands connecting the K+ and K− val-
leys. The band gap achieved by this vdW heterostructure goes
from 0.1 meV (CrI3|HfS2) to nearly 1.5 meV (CrI3|MoTe2).
Specifically, we used zigzag edges since they are among

FIG. 3. (a) The bulk honeycomb lattice is formed by the Cr
atoms. The colors mark the different on-site terms in Eq. (9). (b) A
1D domain wall swapping the sublattices (i.e., the on-site term in
the spin Hamiltonian). The topologically protected magnon states
will appear around this region. Magnon edge states (red lines)
and subbands (black lines) of a finite ribbon of CrI3|MoTe2 and
CrI3|HfS2 heterostructure, (c) and (e) without and (d) and (f) with
a domain wall. With the domain wall, the topological edge states
bridge the gap in both cases.

the nanoribbon terminations with low-energy surface states.
Depending on the actual nanoribbon termination, extra edges
states can appear [80]. In general, borders with nonbonding
atoms (in the chemical jargon) have these edges states, and
those without nonbonding atoms (such as the armchair termi-
nation) do not have low-energy edge states. See Ref. [81] for
a simple explanation, and Ref. [82] for a careful derivation of
the existence of these states.

When sublattice inversion is considered by introducing
a line defect [Fig. 3(b)] and the condition J/2 � |Db − Da|
is fulfilled, the MVHE is presented in the system (see the
Appendix). Two topologically protected states with opposite
velocities at the defect line appear, connecting the valence and
conduction bands [Figs. 3(d) and 3(f)]. Particularly, CrI3 with
all substrates meets the necessary condition to exhibit this
effect. These states at the defect line (see Fig. 4) have an ex-
ponential decay that depends on the band gap induced by the
substrate without the defect line. While the topological states
are localized, their penetration depth is strongly dependent
on the topological band gap. The localization of these states
has deep consequences in the presence of disorder, breaking
the sublattice symmetry (i.e., disorder in anisotropies). When
the edge state penetrates several sites, the atomic disorder
experienced by the localized state averages to zero, making
the edge state mostly unaffected even in the case of a very
large disorder [83].
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FIG. 4. Wave function of the topological protected states at de-
fect line near projection of the K+ point. The left panel shows the
CrI3|MoTe2 wave function (large band gap). The right panel illus-
trates the CrI3|HfS2 wave function (small band gap). The localization
length is much larger for systems with a smaller magnon band gap.

In order to connect the MVHE with experimentally ac-
cessible measurements, we consider magnon transport in
the vdW heterostructures in the presence of a thermal bias.
In the linear response, we compute the magnon thermal
Hall conductivity κxy [84] under a longitudinal tempera-
ture gradient. Following standard transport theory [85], we
compute the thermal conductivity given by the expression
κxy = −k2

BT/h2 ∑
n=±

∫
[c2(g(εnk )) − π2/3]�n

z (k)dk, where
the sum runs over both eigenvalues ε± and g(ε) is the Bose-
Einstein distribution. The function c2 [86] is a monotonous
function satisfying c2(0) → 0 and c2(∞) → π2/3. The value
of κxy integrated over the whole Brillouin zone is exactly
zero since both valleys have opposite Berry curvatures. If we
restrict the integral to a neighborhood around K+, we will get
the contribution of each valley to the Hall thermal conduc-
tivity. The valley effect of magnons arises when a defect line
swaps both sublattices, following the mechanism introduced
above. In Fig. 5, we show the temperature-dependent thermal
conductivity. The result of κxy for every vdW heterostructure
is in the range of 10−3 (W/Km), close to the thermal conduc-
tivity of other topological schemes [84]. Importantly, when
the temperature increases, we see a significant upturn of κxy

for CrI3|MoTe2, contrary to the other heterostructures due to

FIG. 5. Temperature-dependent magnon thermal Hall conductiv-
ity κxy for each of the proposed vdW heterostructures. A thickness
of 1 nm was used to normalizes κxy. The temperature range is
intentionally considered up to the critical temperature TC = 85 K.

their small gap. As expected, the thermal conductivity reaches
a maximum value roughly at a similar critical temperature,
then decays to zero for higher temperature.

V. CONCLUSIONS

In this paper, we proposed a mechanism to induce topo-
logically nontrivial states in the magnon spectrum of a single
layer of CrI3, in analogy with the valley Hall effect in the
electronic structure of bilayer graphene. The topological edge
states are achieved when (i) each sublattice has a different
magnetocrystalline anisotropy and (ii) there exists a region
where the magnetocrystalline anisotropies of both sublattices
swap. A sublattice-dependent magnetocrystalline anisotropy
is obtained by forming a vdW heterostructure with another
(nonmagnetic) hexagonal 2D material or substrate. The local
sublattice inversion requires a line defect in the CrI3 layer.
These defects, with an extension of several nanometers, can
be found naturally or can be artificially induced with great
accuracy. We quantified this effect by DFT calculations of
the heterostructures of CrI3 with MoTe2, HfS2, and WSe2.
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The topological band gap induced in the magnon spectrum
in the previous materials ranged between 0.1 and 1.5 meV.
Finally, we showed that the MVHE manifests itself in the form
of a magnon thermal Hall effect due to the nontrivial topology
of the band structure when a thermal gradient is applied along
the heterostructure. This effect is quantified by the evaluation
of the temperature-dependent transverse thermal conductivity.

ACKNOWLEDGMENTS

This work was partially funded by Fondecyt Grants
No. 1190036 (E.E.V.), No. 1191353 (F.M.), No. 11180557
(R.I.G.), No. 1200867 (S.A.), and No. 3200697(J.D.M.); Con-
icyt doctoral fellowship Grant No. 21151207 (J.D.M.); the
Center for the Development of Nanoscience and Nanotech-
nology CEDENNA AFB180001; the supercomputing infras-
tructure of the NLHPC (ECM-02); and Conicyt PIA/Anillo

ACT192023 (F.M.). R.E.T. acknowledges the support from
the European Union’s Horizon 2020 Research and Innovation
Programme under Grant No. DLV-737038 “TRANSPIRE”
and the Research Council of Norway through is Centres of
Excellence funding scheme, Project No. 262633, “QuSpin.”
The authors thank L. E. F. Foa Torres for fruitful discussion.

Note added: Recently, we became aware of another related
article [87] that study valley transport of magnons.

APPENDIX: MAXIMUM VALUE
OF STAGGERED ANISOTROPY

If the difference of the staggered anisotropy is larger than
the exchange constant, |Db − Da| > J/2, the defect states due
to the MVHE do not close the magnon band gap (see Fig. 6).
In this case, the hopping cannot overcome the gap due to the
anisotropies (the on-site term in tight binding).
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