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Inverse problems in elastography and displacement-flow MRI

In the context of medical imaging, we present a new method for the reconstruction of the
following parameters of interest: the velocity of blood in vessels via magnetic resonance
imaging (MRI) and the displacements of tissues under a harmonic regime via MRI. The
method has been called Optimal Dual-Venc due its least squares approach using two VENCs
(a key parameter in the standard velocity reconstructions via MRI) and its advantage is that
we can measure, with respect to other methods, a wider range of velocities-displacements
while keeping a low noise in the images.

In addition, in the context of elasticity imaging, we study the inverse problem of the
recovery of the shear modulus (an elastic feature that characterizes a tissue) under the fol-
lowing models: linear elasticity (small displacements) with internal measurements of elastic
energy density, assuming an incompressible displacement field, in dimension two, and the
(nonlinear) Saint-Venant model of elasticity with internal measurements of the displacement
field (as in the case of magnetic resonance elastography), in dimension two and three. We
obtain as a result of our study the feasibility of a recovery of the shear modulus in a unique
and stable way. Techniques in this part are mainly in the context of hybrid inverse prob-
lems, elliptic systems of PDEs, pseudodifferential operators, Douglis-Nirenberg numbers and
Lopatinskii condition.
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Inverse problems in elastography and displacement-flow MRI

En el contexto de imágenes médicas, presentamos un nuevo método para la reconstrucción
de los siguientes parámetros de interés: la velocidad sangúınea en los vasos v́ıa imágenes de
resonancia magnética (MRI) y el desplazamiento de tejidos bajo un régimen armónico v́ıa
MRI. El método ha sido llamado Optimal Dual-Venc debido a su enfoque de mı́nimos cuadra-
dos usando dos VENCs (un parámetro clave en las reconstrucciones estándar de velocidad
v́ıa MRI) y su ventaja es que podemos medir, con respecto a otros métodos, un rango más
amplio de velocidades-desplazamientos mientras las imágenes mantienen un ruido bajo.

Además, en el contexto de imágenes de elasticidad, estudiamos el problema inverso de la
reconstrucción del módulo de corte (un parámetro elástico que caracteriza un tejido) bajo los
siguientes modelos: elasticidad lineal (pequeños desplazamientos) con mediciones internas
de densidad de enerǵıa elástica, asumiendo un campo de desplazamientos incompresible, en
dimensión dos, y el modelo de elasticidad (no-lineal) de Saint-Venant con mediciones internas
del campo de desplazamientos (como en el caso de resonancia magnética de elastograf́ıa), en
dimensión dos y tres. Obtenemos como resultado de nuestro estudio la factibilidad de la
recuperación del módulo de corte de manera única y estable. Las técnicas en esta parte
se sitúan principalmente en el contexto de problemas inversos h́ıbridos, sistemas eĺıpticos
de EDPs, operadores pseudodiferenciales, números de Douglis-Nirenberg y la condición de
Lopatinskii.
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Inverse problems in elastography and displacement-flow MRI

In de context van medische beeldvorming presenteren we een nieuwe methode voor de
reconstructie van de volgende interessante parameters: de snelheid van bloed in bloedvaten
via magnetische resonantiebeeldvorming (MRI) en de verplaatsingen van weefsels onder een
harmonisch regime via MRI. De methode is Optimal Dual-Venc genoemd vanwege de kleinste-
kwadraten benadering met twee VENC’s (een belangrijke parameter in de standaard snelhei-
dsreconstructies via MRI) en het voordeel is dat we, ten opzichte van andere methoden, een
breder bereik van snelheden en verplaatsingen kunnen meten met behoud van weinig ruis in
de afbeeldingen.

Bovendien bestuderen we in de context van elasticiteitsbeeldvorming het inverse probleem
van het bepalen van de schuifmodulus (een elastische eigenschap die een weefsel kenmerkt) in
de volgende modellen: lineaire elasticiteit (kleine verplaatsingen) met interne metingen van
elastische energiedichtheid, uitgaande van een niet-samendrukbaar verplaatsingsveld, in twee
dimensies, en het (niet-lineaire) Saint-Venant-elasticiteitsmodel met interne metingen van
het verplaatsingsveld (zoals in het geval van magnetische resonantie-elastografie), in twee en
drie ruimtelijke dimensies. Als resultaat van onze studie verkrijgen we dat het bepalen van
de afschuifmodulus op een unieke en stabiele manier haalbaar is. Technieken in dit deel zijn
voornamelijk in de context van hybride inverse-problemen, elliptische systemen van PDE’s,
pseudo-differentiële operatoren, Douglis-Nirenberg-getallen en Lopatinski-conditie.
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Chapter 1

Introduction

1.1 Motivation
In this thesis we study some inverse problems in MRI and in elasticity imaging. A problem
is called inverse if its formulation involves the solution of other problem, called direct. In
science, the direct problem comes from fundamental laws, such as energy conservation; the
inverse problem consists in the determination of the parameters of the equations governing
the direct problem, from the knowledge of the solution entirely or a part of it. In other
words, by solving an inverse problem, parameter values that cannot be obtained directly can
be found.

Magnetic resonance imaging (MRI) is a noninvasive biomedical imaging technique. Its
development comes from the study of the nuclear magnetic resonance by Felix Bloch and
Edward Purcell [Blo46] and later the development of the tomographic technique by Paul
Lauterbur and Peter Mansfield [Lau+73; Man82]. MRI has potential advantages over other
techniques: lack of ionizing radiation, free choice of imaging planes, high resolution, capa-
bility for tissue characterization, etc. The characterization of tissues can be anatomical and
qualitative or even quantitative giving a map of a specific parameter which can be obtained
from the MRI technique, such as: proton density, magnetic relaxation times, water diffusiv-
ity, velocity and displacement. Each of the parameters mentioned above has the capability
of characterizing a biological tissue, in order to detect any disease, see for example [JBP+05;
CJ05; MBV06; GME12].

In this thesis we are interested in the recovery of the following parameters from magneti-
zation measurements in MRI: the velocity of blood flowing in vessels and the displacements
of tissues under a harmonic regime. Both velocity and displacement imaging is achieved
by the so-called Phase-Contrast MRI (PC-MRI), that is, the derivation of the quantity of
interest is performed by the substraction (modulo 2π) of two measured phases of the complex
transverse magnetization in MRI.

Imaging the velocity of blood flow finds its main application in the research into car-
diovascular diseases, since heart failure is a major cause of death in Western societies and
will become even more prevalent with increasing life expectancy [MBV06]. Blood velocity
measurements can also lead to the recovery of further mechanical information like relative
pressures [Yan+96; Ber+18; NB19; Nol+19] and wall shear stress [Sot+12; Sot+16].

Imaging the harmonic displacements in tissues finds its motivation in elastography, that
is, two-step techniques consisting in measuring the displacements of a tissue and then recov-
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CHAPTER 1. INTRODUCTION

ering some elastic parameter of it. Examples of elastography techniques are ultrasound and
magnetic resonance elastography (MRE). Several diseases involve changes in the mechanical
properties of tissue and normal function of tissue, like skeletal muscle, heart, lungs, gut, etc.
The changes in mechanical properties are not best seen precisely in the displacement map,
but the best contrast is seen in the spatial distribution of any elastic parameter [HSB17].
These elastic parameters can be then reconstructed from the knowledge of the displacement
map, using the elasticity equations.

Mathematically, elasticity imaging techniques have given rise to many problems which
are challenging in many branches of mathematics. Our focus will be on partial differential
equations, studying nonlinear models for elasticity and the measurements. In the literature,
inverse problems in elasticity are most studied for linear models, however those models do
not describe accurately some phenomena, but nonlinear elasticity models do it.

1.2 Research objectives
The topics presented in this thesis are:

1. The proposal of a new method for the recovery of the velocity of blood from MRI
measurements. The proposed method is more robust, meaning less affected by noise
and able to measure a wider range of velocities than the usual methods. This method
is motivated, proposed and tested in Chapter 2. In addition, in Chapter 3 the natural
extension to MRE is discussed.

2. Analysis of nonlinear inverse problems in elasticity, in two cases: assuming the mea-
surements or the elasticity model being nonlinear. This analysis motivates techniques
for the reconstruction of an elasticity parameter. Examples will be presented. This
topic is developed in Chapter 4.

In the following two sections we will provide the reader the fundamentals of MRI for the
comprehension of velocity and displacement recovery, and also fundamentals of hybrid inverse
problems and elasticity equations.

1.3 Magnetic Resonance Imaging

1.3.1 Generalities of MRI
The nuclear magnetic resonance phenomenon is modeled by the Bloch equation of the mag-
netization M = [M1,M2,M3]ᵀ of protons in position X(t) at time t under the influence of a
magnetic field B [Abr61; Sli13]:

dM

dt
= γM ×B + 1

T1
(M0 −M3)e3 −

1
T2
M⊥ (1.1)

where T1 and T2 are relaxation times, M0 is the magnetization at equilibrium, M⊥ = M1e1 +
M2e2 and (e1, e2, e3) are the basis vectors of the frame of reference.
The Bloch equation represents the conservation of angular momentum of the spin of the

2



CHAPTER 1. INTRODUCTION

protons, including quantum effects.
By components, this is:

dM1

dt
= γ(B3M2 −B2M3)− M1

T2
, (1.2)

dM2

dt
= γ(−B3M1 −B1M3)− M2

T2
, (1.3)

dM3

dt
= γ(B2M1 −B1M2)− M3 −M0

T1
. (1.4)

The main steps in MRI are defined by different stages of the “controlled” magnetic field B:

• Initially, B = B0e3, where B0 has a much larger magnitude compared with all the
other fields described below. The field B0e3 is constant in time and space and it is
present in all the experiment. Under this equilibrium condition, M1 = M2 = 0.

• The application of a radiofrequency pulse (rf pulse) causes the resonance in spins, that
pulse is generated by adding a time-harmonic field B1(t)e1 for a very short period of
time. This creates the transversal magnetization to tip towards the transversal plane,
i.e. M1 6= 0,M2 6= 0.

• When the rf pulse is released, the problem is studied only using equations (1.2)-(1.3),
and a non-zero initial condition, because the measurements that the scanner gives us
are Mxy = M1 + iM2.

• In order to recover the desired physical quantity, we modify the component B3. The
description for velocity and displacement recovery is given in the remaining of this
section.

For our purposes, we will also consider the relaxation time T2 large enough for neglecting
the term M⊥

T2
. Therefore, from equations (1.2)-(1.3), we see that Mxy satisfies the following

equation:
dMxy

dt
= −iγB3Mxy. (1.5)

Hence
Mxy(X(t), t) = Mxy(t0) exp

(
− iγ

∫ t

t0
B3(X(t′), t′)dt′

)
.

We can fix Mxy(t0) ∈ R, and then we can write

Mxy(t) = Mxy(t0)eiϕ(X(t),t)

where the phase

ϕ(X(t), t) = −γ
∫ t

t0
B3(X(t′), t′)dt′ (1.6)

is the key quantity in this work.

3



CHAPTER 1. INTRODUCTION

1.3.2 Velocity Encoding
We now assume that the spins are moving “locally” following the equation

X(t) = x+ tu (1.7)

where x,u are time-constant vectors. In particular, x corresponds to the original position
of the spins at t = 0, and X(t) to the position of the spins at time t. In addition, let us
consider the component B3 with the form

B3(X(t), t) = B0 +X(t) ·G(t)

where G(t) is a constant-in-space vector. Then, equation (1.6) becomes, at the time of
measurement TE, and passing the dependence from X(TE) to x and u due (1.7):

ϕ(X(TE), TE) = ϕ(x,u, TE) = −
(
γB0TE + γx ·m0(G) + γu ·m1(G)

)

where
m0 =

∫ TE

0
G(t′)dt′, m1 =

∫ TE

0
t′G(t′)dt′

are known as the zeroth and first moments, respectively [KJH18]. It is usual in MRI practice
to consider a waveform G(t) such that m0(G) = 0 in order to remove it from the velocity
reconstruction problem. Then the model of the phase ϕ = ϕ(x,u, TE) reads:

ϕ = ϕ0 + γum1(G) , ϕ0 := γB0TE, (1.8)

with v the component of the velocity in direction of G, and G the magnitude of the vector
G.

Since ϕ0 is not fully known due to inhomogeneities in the magnetic field B0, we cannot
obtain v directly from equation (1.8). So, for each x we consider two measurements ϕG0 and
ϕG1 satisfying (1.8) with waveforms G0 and G1 respectively, so that we can obtain u via the
formula

u = ϕG0 − ϕG1

γ(m1(G0)−m1(G1)) . (1.9)

In practice, the user controls indirectly the strength of the magnetic fields by setting the
velocity encoding parameter, VENC, defined by:

VENC(G0, G1) = π

γ(m1(G0)−m1(G1)) ,

which has the dimension of velocity. According to equation (1.9), the velocity can be deter-
mined by:

u = ϕG0 − ϕG1

π
VENC(G0, G1). (1.10)

This is the standard phase contrast MRI technique for velocity recovery (PC-MRI). Note
that u = u(x).

4



CHAPTER 1. INTRODUCTION

1.3.3 Magnetic Resonance Elastography (MRE)
Instead of assuming that the motion is modelled by (1.7), we adopt the following model
[Man+01; HSB17]:

X(x, t) = x+U(x, t) (1.11)

where the displacement U (x, t) is given by

U(x, t) = Re
(
uc(x)eiωt

)
. (1.12)

This motion is caused by some periodic external force, where uc(x) ∈ Cd describes a complex
steady-state behavior.

The waveform G(t), called motion encoding gradient (MEG) in this context, is zeroth
moment nulling. Typically, the MEG G(t) is set either as:

• symmetric, that is G(t) = G(−t), or

• antisymmetric, that is G(t) = −G(−t),

where we set t = 0 at the middle of the time of the application of the MEG,that is the MEG
is assumed to be applied for t ∈

[
− T

2 ,
T
2

]
, where T = 2π

ω
.

Then the equation (1.6) for the phase of the spins moving under this model and under
this gradient field is given by

ϕ(x) = ϕ0 + γ
∫ T/2

−T/2
G(t) ·X(x, t)dt

where G is the magnitude of the vector G and X is the component of X in direction of G.
We will denote by uc the component of uc in the direction of G. The phase ϕ0 is static and
it can be measured by a null MEG, so we are interested only in the dynamic phase:

ϑ(x) = γ
∫ T/2

−T/2
G(t) ·X(x, t)dt

We have:

ϑ(x) = γ
∫ T/2

−T/2
G(t)

(
x+ Re(uc(x)eiωt)

)
dt

= γx
∫ T/2

−T/2
G(t)dt+ γRe

(
uc(x)

∫ T/2

−T/2
G(t)eiωtdt

)

= γRe
(
uc(x)

∫ T/2

−T/2
G(t)eiωtdt

)

= γ
(

Re(uc)
∫ T

2

−T2
G(t) cos(ωt)dt− Im(uc)

∫ T
2

−T2
G(t) sin(ωt)dt

)

5



CHAPTER 1. INTRODUCTION

where we use the fact that G(t) is zeroth moment nulling, so the term γx
∫ T/2

−T/2
G(t)dt in the

second line is null. Therefore we obtain:

ϑ(x)
ξ(ω, T ) =


Re(uc(x)) for G symmetric, ξ(ω, T ) = γ

∫ T
2

−T2
G(t) cos(ωt)dt

Im(uc(x)) for G antisymmetric, ξ(ω, T ) = −γ
∫ T

2

−T2
G(t) sin(ωt)dt

where ξ(ω, T ) is known as the encoding efficiency. This is a key controlled parameter in
MRE.

Several measurements and the discrete Fourier transform in time

To identify displacements at different states of the wave given by (1.12), we consider

Uc(x, τ) = uc(x)eiωτ

where τ is the time corresponding to the displacement observed by the MRI experiment, which
corresponds to the complex displacement at the time of the rf pulse, here uc corresponds to
the complex displacement of maximum amplitude. Then

U(x, τ, t) = Re
(
Uc(x, τ)eiωt

)
is the displacement occurring at time t after the rf pulse. Following the analysis done before,
we can obtain by PC-MRI either Re(uc(x)eiωτ ) or Im(uc(x)eiωτ ) in the direction of the MEG
G(t).

For reconstructing any elastic parameter, it would be better to have a displacement field
suitable in a time independent equation (see next section). For achieving that, let n =
0, . . . , N − 1, and consider the set of N displacements as follows:

• Considering the harmonic regime as above, let un(x) be the PC-MRI measurement of
the displacement of the spins having its position in x at a certain time τn. That is, we
assume the model:

un(x) =


Re
(
uc(x)eiωτn

)
if G is symmetric,

Im
(
uc(x)eiωτn

)
if G is antisymmetric,

(1.13)

where each un is obtained from the measurement ϑn:

un = ϑn
ξ(ω, T ) . (1.14)

• We apply the following discrete Fourier transform for {un}N−1
n=0 :

uFT =
N−1∑
n=0

une
−i 2πn

N

and we choose τn = Tn

N
.

6



CHAPTER 1. INTRODUCTION

• If G(t) is symmetric, then we have:

un(x) = Re
(
uc(x)ei 2πn

N

)
and then

usFT =
N−1∑
n=0

Re
(
uc(x)ei 2πn

N

)
e−i

2πn
N

=
N−1∑
n=0

[
Re(uc)cos

(2πn
N

)
−Im(uc) sin

(2πn
N

)][
cos
(2πn
N

)
−i sin

(2πn
N

)]

=
N−1∑
n=0

[
Re(uc) cos2

(2πn
N

)
− Im(uc) sin

(2πn
N

)
cos

(2πn
N

)]

+i
[
− Re(uc) cos

(2πn
N

)
sin

(2πn
N

)
+ Im(uc) sin2

(2πn
N

)]

= N

2 uc
since

N−1∑
n=0

cos2
(2πn
N

)
=

N−1∑
n=0

sin2
(2πn
N

)
= N

2
and

N−1∑
n=0

cos
(2πn
N

)
sin

(2πn
N

)
= 0.

• Similarly, we obtain for the case G antisymmetric:

uaFT = i
N

2 uc

Therefore,

uc =



2
N
usFT if G is symmetric,

2i
N
uaFT if G is antisymmetric.

(1.15)

Now that we have obtain uc is we can recover completely the model (1.12) in order to
characterize the viscoelastic properties of a tissue [HSB17], and also we can use algorithms
for recovering the shear modulus from a time independent elasticity equation, see for example
[AWZ15].

1.4 Hybrid Inverse Problems in Elasticity

1.4.1 Hybrid Inverse Problems
Hybrid inverse problems are inverse problems that describe coupled-physics phenomena in
order to reconstruct a parameter of interest. The main idea of hybrid inverse problems is
given in two steps:

7
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• First, a high-resolution inverse problem is solved to provide internal information in-
volving solutions and parameters of a differential equation.

• Next, the obtained internal information, also called internal functional, is used to re-
construct with high-contrast the parameter of interest of the inverse problem.

In some settings, a single modality gives a reconstruction with either high contrast or high
resolution, but not both at the same time. Under convenient conditions, the physical cou-
pling defining a hybrid inverse problem result in a reconstruction with a high contrast and
resolution.

Hybrid inverse problems are useful in, for example, medical and geophysical imaging.
Several examples of physical couplings defining hybrid inverse problems are described in
[Bal13], for example: the photo-acoustic effect, the ultrasound modulation effect, transient
elastography, current density imaging.

The mathematical analysis of many hybrid inverse problems falls within the context of
linear and nonlinear equations or systems of equations. In particular, in this thesis, the study
of the second step is given by the theory of redundant systems of elliptic partial differential
equations, coupling system {

Lv = f in Ω,
Bv = g on ∂Ω,

with the functionals related with the measurements

Mv = H in Ω,

where v = (γ, u), γ is the set of parameters to reconstruct, u is the solution of the direct
problem, L,B,M are operators acting on v, Ω is an open bounded subset of Rd with smooth
boundary.

A main tool in our study of hybrid inverse problems is the symbol of a differential operator,
since it will provide important properties of equations. We use the definition of symbol given
in [Esk11] and we present it here.

Definition 1.1. If A(x,D) (with D = −i ∂
∂x

) is a differential operator having the form

A(x,D)u =
m∑
|k|=0

ak(x)
(
− i ∂

∂x

)k
u,

then the symbol of A(x,D) is the polynomial A(x, ξ) defined by

A(x, ξ) =
m∑
|k|=0

ak(x)ξk

and its principal symbol is the polynomial A0(x, ξ) defined by

A0(x, ξ) =
∑
|k|=m

ak(x)ξk.

Note that the definition is related with the following well-known Fourier transform prop-
erty for partial derivatives

F [Dku](ξ) = ξkF [u](ξ)
where we can see that he symbol of the differential operator Dk is ξk.

8
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1.4.2 Linear Elasticity Equations
We consider elastic deformations that are given by [Amm+15]:

ρUtt −∇ · S[U ] = F (1.16)

where U(x, t) is the displacement field, F (x, t) is the excitation force density, and S is the
Cauchy stress tensor which in case of linear elasticity is given by

S[U ] = 2µε[U ] + λ(tr(ε[U ])Id

where
ε[U ] = 1

2(∇U +∇U ᵀ) = ∇SU

is the infinitesimal strain tensor.
As in section 1.3.3, if the force is periodic in time with frequency ω, the resulting dis-

placements will be perodic in time as well. After applying a Fourier transform in time in
equation (1.16), we obtain:

ω2u+ 2∇ · µ∇Su+∇(λ∇ · u) = 0 (1.17)

where u = u(x, ω) is the Fourier transform of U(x, t) in the variable t, evaluated in the
frequency ω.

1.5 Thesis Overview
The main contributions of this thesis are new methods for the reconstruction of the following
parameters of interest: the velocity of blood in vessels via magnetic resonance imaging (MRI),
the displacements of tissues under a harmonic regime via MRI, and the shear modulus from
different models of hybrid imaging.

Inverse problems in MRI.
Imaging velocity fields by phase-contast MRI has limitations, some of them are:

• Since the phase is a number in the interval ] − π, π], a wrong choice of the VENC
parameter causes aliasing, that is, there are pixels corresponding to jumps with respect
to the true velocity. This is because the PC-MRI velocity satisfies |upc| ≤ |VENC|, so
the true velocity has to be less than |VENC| to avoid aliasing.

• The usual way to reduce the above limitation is to increase the VENC, but this adds
noise to the image, since VENC∝VNR (veloticty-to-noise ratio).

In Chapter 2 a method (Optimal Dual-VENC, ODV) for tackling these limitations is pro-
posed, in order to augment the range of velocities measured while keeping a low noise level.
The approach uses dual-VENC measurements combined with appropriate cost function op-
timization having the form:

J(u) = 1
2

2∑
j=1
|eiϑ̂

Gj − eiϑ
Gj (u)|2

9
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where for j = 1, 2, ϑ̂Gj = ϕ̂Gj − ϕ̂G0 is the “measured” velocity dependent phase and ϑGj(u)
its model depending on the velocity u. The VENCs involved are defined from the pairs
(G0, G1) and (G0, G2), respectively. Experiments are performed with a phantom and with
volunteers in order to verify the theoretical results.

Main Result: The global minimum of J in a “reasonable domain” (explained in
Section 2.2.6) gives a new recovered velocity uODV which is not aliased even if the VENC’s
involved are less than the true velocity, keeping a low noise.

On the other hand, the limitations described above are also present in imaging harmonic
displacements. The adaptation of the method presented in Chapter 2 is developed to deal
with harmonic displacements by MRI, and issues related with MRE are discussed. Exper-
iments with a phantom are performed in order to confirm the theoretical results. This is
presented in Chapter 3.

Inverse problems in elasticity.
Most of the inverse problems in elasticity have been mathematically studied in the frame of
linear elasticity with linear measurements. In Chapter 4 the inverse problem of the recovery
of the shear modulus µ is studied from the following models where Ω ⊂ Rd is a bounded
domain with smooth boundary, and uj is the displacement field corresponding to the j-th
measurement, where j = 1, . . . , J and J is the number of measurements:

• Linear elasticity in harmonic regime with frequency ω, with elastic energy density
measurements: that is, the model reads

ω2uj + 2∇ · µ∇Suj = −∇pj in Ω,
∇ · uj = 0 in Ω,

uj = gj on ∂Ω,

and is coupled to measurements given by:
µ

2 |∇
Suj|2 = Hj in Ω.

This problem is studied in dimension d = 2 assuming that the pressures pj are known.
In addition, a forcing term is added in the model equation, which is described by a
differential operator of order at most 1.

• Saint-Venant model with internal measurements of the displacements, that is, the model
becomes: {

(Lµ,λ +Nµ,λ)uj + ω2uj = 0 in Ω,
uj = g on ∂Ω,

where
Lµ,λuj = 2∇ · µ∇Suj +∇(λ∇ · uj),
Nµ,λuj = 2cτ∇ · (µ∇uᵀj∇uj) +∇(λ|∇uj|2)

and cτ is a constant in x. The measurements are given by:

uj = Hj in Ω.

10
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This problem is studied in dimension d = 2, 3. In addition, we study the case of linear
elasticity with the same model of measurements, which is useful for the analysis of
Saint-Venant model.

In each case, the ellipticity of the respective linearized system is studied, applying the curl
operator in the models coupled to internal displacements measurements. Then, the resulting
systems augmented with the respective measurements can be written by:{

Lv = f in Ω,
Bv = g on ∂Ω,

where L,B are differential operators and v = (δµ, {δuj}Jj=1). Necessary definitions for the
development of the chapter are given in Sections 4.2 and 4.3.

Main Results: The following results are presented for each model:

• Ellipticity for the operator L(x,D), with J = 2 sets of measurements, that is, the
principal symbol P(x, ξ) is a full rank matrix ∀x ∈ Ω and ∀ξ ∈ Rd\{0}. The ellipticity
holds for certain conditions over the infinitesimal strain tensors ∇Suj, where j = 1, 2.
This is presented for the different models in Theorem 4.3, Corollary 4.1, Section 4.6.1
and Section 4.7.1.

• Lopatinskii condition for the operator A = (L,B), and then the existence of a
parametrix, wich gives a useful estimate in appropriate Sobolev spaces, showing in-
jectivity of A except for a finite dimensional kernel. This is presented for the different
models in Lemma 4.5, Theorem 4.4, Corollary 4.1, Section 4.6.2, and Section 4.7.2.

• A stability estimate which allows to show that the kernel mentioned above is trivial. As
a consecuence, it is possible to define the inverse of A. In the case of elastic energy
density, it is necessary a lower bound for the frequency ω. This is presented for the
different models in Theorem 4.5, Lemma 4.2, Section 4.6.3 and Section 4.7.2.

• The existence of A−1 allows to define an iterative algorithm for the recovery of µ, which
is presented and its convergence is shown. See Sections 4.4.5, 4.5.3 and 4.7.3
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Chapter 2

Optimal Dual-VENC (ODV)
Unwrapping in Phase-Contrast MRI

The content of this chapter was published in H. Carrillo, A. Osses, S. Uribe, C. Bertoglio.
“Optimal Dual-VENC (ODV) Unwrapping in Phase-Contrast MRI”. In: IEEE transactions
on medical imaging (2019) 38(5), 1263-1270. [Car+18]

2.1 Introduction
Velocity-encoded Phase-Contrast MRI (PC-MRI) is a well-established method for measuring
flow velocities, with several applications to quantitative analysis of cardiovascular pathologies
[Sri+09]. The velocity-encoding magnetic gradients are set by the choice of the velocity
encoding parameter, or VENC [Dyv+15]. It is well known that the velocity-to-noise-ratio
(VNR) worsens when increasing the VENC. However, if VENC is set lower than the true
velocity (which is unknown prior to the scan), velocity aliasing occurs. Moreover, even
for VENC values slightly larger than the true velocity, velocity aliasing may occur due to
measurement noise. These restrictions motivate in clinical practice to acquire images at
different VENCs, obligating the MRI operator to manually select the image for one specific
VENC, while the aliased images are ignored and the time spent is squandered.

Velocity aliasing is one of the main limitations for measuring complex features of blood
flows, particularly, when high and low velocities are present in the same image, such as in
heart, valvular and vascular malformations.

Then, VENC has to be set high, but as a consequence, low VNR is present in low velocity
regions, for instance in recirculation regions in aneurisma or false lumen in dissections, to
name a few. This leads to significant inaccuracies when further analysis of the flow is per-
formed [Cal+16]. Aliasing is also problematic in many PC-MRI techniques, like Tissue Phase
Mapping [Pet+06] and Elastography [HSB17], where the motion magnitudes vary across the
regions of interest.

In order to reduce aliasing artefacts, unwrapping algorithms have been developed by as-
suming that the velocity field is smooth in space and/or time, see e.g. [Loe+16] and references
therein. Nevertheless, they often fail when the aliased regions are large. Therefore, voxelwise
dual-VENC strategies have been proposed, i.e. without any assumption on smoothness of the
flow [LPP95; Net+12; Ha+16; Cal+16; Sch+17]. They have been based on unwrapping low-
VENC data by using the high-VENC reconstruction, which is assumed aliasing-free. While

13
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actual approaches allow to improve the VNR with respect to a single high-VENC acquisi-
tion, they fail when the high-VENC data is aliased. Also, there is a lack of mathematical
support for choosing the low- and high-VENCs. All of these issues limits the applicability of
dual-VENC techniques, particularly when the peak velocities are uncertain.

Therefore, the aim of this work is to provide a mathematical framework to obtain
aliasing-free velocity estimations from dual-VENC data, even when the both VENC
acquisitions are aliased. The key is the least-squares formulation of the PC-MRI problem,
whose mathematical properties allow to propose optimal combinations of VENCs to achieve
this goal. We also present a numerical algorithm for dual-VENC reconstructions, which is
successfully applied to numerical, experimental and volunteer data sets.

2.2 Theory

2.2.1 Classical PC-MRI
Assuming a constant velocity field, the usual starting point of classical PC-MRI is the model
for the phase of the transverse magnetization at the echo-time [LPP95]:

ϕG = ϕ0 + ϑG (2.1)

with ϕ0 ∈ [0, 2π) the reference phase, and

ϑG = ϑG(u) = γum1(G) (2.2)

the velocity dependent phase. Here, u ∈ R the flow velocity component parallel to the
velocity-encoding gradient G = G(t) ∈ R, with t the encoding time, and m1(G) ∈ R the
first-order moment of G(t). The constant γ > 0 is the giromagnetic ratio.

From now on, we deal with different gradients Gi with different amplitudes. Assuming
that we have measured two phases ϕG0 and ϕG1 with G0 6= G1, the phase-contrast velocity
is estimated by

upc := ϕG0 − ϕG1

π
VENC(G0, G1), (2.3)

with
VENC(G0, G1) = π

γ(m1(G0)−m1(G1)) .

In the case that the true velocity |utrue| ≤ |VENC|, then upc = utrue. But if |utrue| >
|VENC|, the phase difference exceeds ±π and aliasing occurs, i.e. utrue 6= upc. However,
increasing the VENC decreases the VNR. Therefore, choosing the VENC parameter is an
iterative manual process trying to set it as small as possible to maximize VNR and at the
same time large enough to avoid aliasing.

2.2.2 Dual-VENC approaches
It is well known that for any VENC value, utrue belongs to the set of infinite but numerable
solutions of type

upc + 2kVENC(G0, G1), k ∈ Z. (2.4)
Therefore, it is natural to extend the velocity estimation problem such that k can be also
estimated using additional encoding gradient measurements.

14
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Assuming that now three measurements with gradients G0 = 0 < G1 < G2 are available,
two velocities at different VENC values can be reconstructed: the phase-contrast velocity u1
at VENC1 = VENC(G1, 0) and a set of velocities u2 + 2kVENC2 at VENC2 = VENC(G2, 0),
with VENC1 > VENC2, k ∈ Z, where u2 is obtained by phase-contrast at VENC2. Standard
dual-VENC unwrapping strategies, see e.g. [Sch+17; LPP95], aim to find the correct low-
VENC velocity from an un-aliased high-VENC velocity u1. Hence, an improved VNR should
be achieved. Here, we will compare our new dual-VENC approach against the one from
[Sch+17], which is defined as:

uSDV =


u2 + 2 · VENC2 if ε1 < D < ε2

u2 − 2 · VENC2 if − ε2 < D < −ε1
u2 + 4 · VENC2 if ε3 < D < ε4

u2 − 4 · VENC2 if − ε4 < D < −ε3

with D = u1 − u2; ε1 = 1.6 · VENC2; ε2 = 2.4 · VENC2;
ε3 = 3.2 · VENC2; ε4 = 4.8 · VENC2. In the reminder of this article, we will denote it as
standard dual-VENC (SDV).

Note that the SDV reconstruction will be aliased if |VENC1| < |utrue|. The new
dual-VENC method based on our analysis will overcome this issue by optimally choosing
both VENC1 and VENC2 based on a reformulation of the phase-contrast problem presented
next.

2.2.3 Least-squares formulation of the single-VENC problem
For a given velocity encoding gradient G let us denote the measured phase of transverse
magnetization by ϕ̂G.

Assume now that we have available two measurements: a reference one for G = 0, and
another for G 6= 0. We formulate the velocity reconstruction as a standard maximum-
likelihood estimation problem from the phase measurements, by means of the least-squares
function

JG(u) = 1
2 |e

iϑ̂G − eiϑG(u)|2

= 1
2

(
cos(ϑ̂G)− cos(ϑG(u))

)2

+1
2

(
sin(ϑ̂G)− sin(ϑG(u))

)2
(2.5)

=
(

1− cos
(
ϑ̂G − ϑG(u)

))
(2.6)

with ϑ̂G = ϕ̂G − ϕ̂0 the “measured” velocity dependent phase.
Least-squares formulations have also been recently applied in the context of unwrap-

ping methods using the information of contiguous voxels for various types of single- and
dual-VENC acquisitions [LE17]. However, no analysis of their properties or potential for
optimizing the VENC combinations was reported.

Figure 2.1 shows examples of the functions JG(u), for different gradients represented by
VENC(G, 0). The synthetic measurements were generated with a unitary magnitude and the
phases from Equation (2.1) using ϕ0 = γBtE with B = 1.5 T , γ = 267.513e3 rad/T/ms,
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tE = 5 ms, a velocity utrue = 1m/s. It can be appreciated that the functions are periodic,
with the period depending on the VENC, and also that the true velocity is a local minimum
independent on the VENC. The following propositions proof these observations.

2 1 0 1 2
Velocity/utrue

0

1

2

3

4

Fu
nc

tio
na

ls

utrue

venc = 0.9utrue

venc = 0.6utrue

Figure 2.1: cost functions JG(u) for utrue and two VENC values.

Proposition 2.1. JG(u) is a periodic function with period 2VENC(G, 0).

Proof. It suffices to see that the cosine and sine are 2π-periodic functions, and

ϑG(u+ 2VENC(G, 0)) = γ(u+ 2VENC(G, 0))m1(G)
= γum1(G) + 2π
= ϑG(u) + 2π

Proposition 2.2. The critical points uk of JG(u) are

uk = ϕ̂G − ϕ̂0

γm1(G) + kVENC(G, 0) , k ∈ Z (2.7)

Proof. From (2.6) we see that

∂JG
∂u

= −γm1(G) sin(ϑ̂G − ϑG). (2.8)

At the critical points we must then have:

sin(ϑ̂G − ϑG) = 0⇐⇒ ϑG(uk) = ϑ̂G + kπ, k ∈ Z. (2.9)

Finally, using Equation (2.2) we obtain

uk = ϕ̂G − ϕ̂0

γm1(G) + k
π

γm1(G) . (2.10)
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Proposition 2.3. At the critical points of JG(u), the second derivatives are given by

∂2JG
∂u2 (uk) = C · (−1)k, k ∈ Z, C > 0.

Proof. Taking the derivative in (2.8) we obtain:

∂2JG
∂u2 (uk) = γ2m1(G)2 cos(ϑ̂G(uk)− ϑGu ) = C · (−1)k (2.11)

where the last equality holds due to Equation (2.9).

In conclusion, we have just proved that Equation (2.4) corresponds to the local minima
of the cost function JG by taking k as an even number in Equation (2.11).

It is also straightforward to show that the true velocity utrue belongs to the set
of local minima of JG when the measurements are noise-free. Indeed, in that case
ϕ̂G = ϕ̂0 + γm1(G)utrue + 2kπ, and if we choose ϕG(utrue) = ϕ̂0 + γm1(G)utrue, then
JG(utrue) = 0 from Equation (2.6).

2.2.4 The dual-VENC least squares problem
We assume now that we have measured the magnetization vector with three encoding gra-
dients G0 = 0 < G1 < G2. We can then define the dual-VENC least squares sum function
as:

JΣ(u) = 1
2

2∑
j=1
|eiϑ̂

Gj − eiϑ
Gj (u)|2

=
2∑
j=1

(
1− cos

(
ϑ̂Gj − ϑGj(u)

))

Figure 2.2 shows the single- and dual-VENC least-squares functions for different VENC
combinations VENC1 > VENC2 = βVENC1, 0 < β < 1. Hence, the VENCs can be set in
terms of VENC1 and β. Note that VENC1 is set lower than utrue and is kept fixed in all
plots, while β is variable. We can first observe that in all cases local and global minima are
present in the dual-VENC functions JΣ(u). However, the true velocity is always a global
minimum since it is a local and global minimum for each VENC, as shown in the previous
section.

Remarkably, the periodicity of JΣ is now the least common multiplier (lcm) between
the periodicity of the single-VENC functions, i.e. LΣ := lcm(2VENC1, 2VENC2). As a
consequence, if β is carefully chosen, as in Figure 2.2(a) and 2.2(b), JΣ has a larger period
than the original single-VENC functions, namely LΣ > 2VENC1. Therefore, even though
VENC1,VENC2 < |utrue|, we can still distinguish utrue from the other global minima since
they have larger absolute values.

However, if we do not choose β well, e.g. as in Figures 2.2(c) and 2.2(d), then LΣ =
2VENC1 and the global minima with smallest absolute value will not be utrue if VENC1 <
utrue and velocity aliasing occurs. A general method for computing the aliasing limit is: for
β = α/α0, with α, α0 ∈ N the smallest possible values, then it is easy to verify that the
periodicity of JΣ is LΣ = α2VENC1, since

LΣ = k12VENC1 = k22βVENC1, k1, k2 ∈ Z
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Figure 2.2: Cost functions JG(u) and JΣ(u) for different VENC1,VENC2 = βVENC1.

leading to k1 = α, k2 = α0. Then, aliasing will occur when ||utrue| − LΣ/2| < |utrue|, i.e.
VENC1 < |utrue|/α.

Table 2.1 gives examples of VENC1 such that the global minimum of JΣ with lowest
magnitude corresponds to utrue depending on β.

β 0.95 0.9 0.75 0.7 0.66 0.55 0.5
α 19 9 3 7 2 11 1

Table 2.1: Examples of aliasing limits for decreasing values of β. ODV method allows
aliasing-free estimation if VENC1 > |utrue|/α.

2.2.5 Choice of β
As shown in Table 2.1, in the case without any measurement noise, to maximize the period-
icity of JΣ one should choose VENC2 ≈ VENC1, making the aliasing velocity very small, or
for instance β = 0.7 or β = 0.55 as indicated in Table 2.1.

However, the presence of noise deforms the dual-VENC functions, see Figure 2.3, since
the noise is independent for each VENC. Therefore, local minima from both single-VENC
cost functions that are not necessarily utrue can get close to each other. Hence, there is an
increased risk for utrue not being global minima when α is large. In order to maximize the
robustness to noise, the local minima of both single-VENC functions should be separated
as much as possible. As shown in Figure 2.2(b), this is indeed the case for β = 0.66. For
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β = 0.75 this separation is less pronounced, however β = 0.75 would allow to lower the
aliasing velocity if noise is low. In general, the optimal choice of β should be optimized to
the SNR of the specific MRI scanner, but β = 0.66 is always the most robust to noise due
to the largest separation between minima. In the experiments, we will use these two values,
β = 0.66 and β = 0.75. Additionally, in the experiments with numerical data, we will show
the poor performance of β = 0.7 when noise is present.
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Figure 2.3: Cost functions JG(u) for different pair of values of VENC and the sum cost
function JΣ with noisy magnetization measurements (standard deviation 20% of magnitude).

2.2.6 The optimal dual-VENC (ODV) algorithm
Based on the considerations above, we now detail the ODV velocity estimation algorithm.
For the given user-defined parameters VENC1 and VENC2 = βVENC1, 0 < β < 1:

1. Measure phases ϕ̂Gi for three gradients: G0 = 0 and G1, G2 such that VENC(G1, 0) =
VENC1 and VENC(G2, 0) = VENC2.

2. Find the global minima u∗k, k ∈ Z:

u∗k = argmin
u ∈ [−umax, umax]

JΣ(u),

with umax = lcm(2VENC1, 2VENC2)/2. The estimated dual-VENC velocity corre-
sponds to u∗k with smallest absolute value.
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2.3 Methods
This section summarizes setups with three types of data: synthetic, phantom and volunteer.
In all cases we applied the formula (2.3) for single-VENC and dual-VENC with both standard
[Sch+17] (SDV) and new ODV methods. For the ODV algorithm, the global minima was
found using a sampling of the cost function JΣ with uniform spacing of the velocity of
VENC2 ·10−3, which was found to be small enough to avoid numerical artefacts in the global
optimization.

2.3.1 Synthetic data
The reference phase is defined as ϕ0 = γB0TE with B0 = 1.5 T , γ = 267.513e3 rad/T/ms,
TE = 5 ms. For the phases of the non-zero flow encoding gradients, we consider ϕG1,2 =
ϕ0 + utrueπ/VENC1,2, with utrue = 1m/s. Using these phases, reference magnetization mea-
surements were built assuming a unitary magnitude. The estimation is shown in terms of
VENC1 and VENC2 = βVENC1, with β = {0.66, 0.7, 0.75}.

We also compute estimations using magnetization measurements perturbed with an
additive Gaussian noise with zero-mean and standard deviation of 20% of the magnitude.
We express these results in terms of mean estimated velocity for 2000 realizations of the
noise and twice the standard deviation.

2.3.2 Phantom data
In order to preliminarily assess the ODV we used a flow phantom that consisted of a rigid
straight hose of 15mm internal diameter, 25mm external diameter. The hose was connected to
a MRI-compatible flow pump (CardioFlow 5000 MR, Shelley Medical Imaging Technologies,
London, ON, Canada) with a constant flow rate of 200 mL/s. The system was filled with
a blood-mimicking fluid (40% distilled H2O, 60% Glycerol) and the set up was similar as
in [Urb+16; Mon+17]. The MRI data sets were acquired on a clinical 1.5T Philips Achieva
scanner (Philips, Best, The Netherlands). The protocol consisted of through-plane PC-
MRI sequence with a single cardiac phase due to constant flow rate. The scan parameters
were: in-plane resolution was 1x1 mm with a slice thickness of 8 mm, 1 prospective cardiac
phase, FA = 12o, TR=9.2 ms, TE=4.9 ms, matrix size = (256,256). The data was acquired
using non-symmetric pairs of encoding gradients with VENC = 150, 100, 70 cm/s with one
surface coil. The acquisitions were performed using single-VENC protocols and the dual-
VENC reconstructions were computed using only one of the zero-encoding gradients of the
corresponding dual-VENC pair.

2.3.3 Volunteer data
Eight healthy volunteers underwent MRI in the same 1.5T Achieva scanner using a 5 elements
cardiac coil. The protocol consisted of through-plane PC-MRI sequence perpendicular to the
ascending aorta just above the valsalva sinus. We used several VENC values: 33.3, 37.5, 50,
66.7, 75, 100 and 150cm/s. These choices allow to generate dual-VENC reconstructions with
both values of β = 0.66 and β = 0.75. The raw data was obtained and the reconstruction of
each bipolar gradient was performed offline using matlab. Data from the multiple coils were
combined using the method proposed in [Ber+94]. The data was acquired using the following
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scan parameters: in-plane resolution was 1x1 mm with a slice thickness of 8 mm, 25 cardiac
phases using prospective ECG triggering, FA = 15o, TR=5.5 ms, TE=3.7 ms, matrix size =
(320, 232). Temporal resolution depended on the heart rate of the patients, varying between
35ms to 48 ms.

As in the panthom, the acquisitions were performed using single-VENC protocols. One
issue with this approach is that the TE may be different depending in the scan setting,
particularly may increase for low VENCs [BSP92]. Since we use only the reference phase of
VENC1, the value of the reference phase used in the dual-VENC reconstructions for VENC2
was scaled by T (2)

E /T
(1)
E , with T (1)

E and T (2)
E the echo times given by acquisitions with VENC1

and VENC2, respectively. This is justify simply by the knowledge about the reference phase
being proportional to TE [Bro+14].

2.4 Results

2.4.1 Synthetic data
Figure 2.4 shows the estimated velocity against VENC1 without noise, confirming the un-
wrapping properties of both dual-VENC approaches: for SDV aliasing occurs when VENC1 <
utrue, and for ODV when VENC1 < utrue/2, VENC1 < utrue/7 and VENC1 < utrue/3 with
β = 0.66, β = 0.7 and β = 0.75, respectively.

Similar results for noisy measurements are presented in Figure 2.5, now including the
aforementioned confidence interval. As one expects, the spread of the estimations are lower
for β = 0.66. Moreover, in the single-VENC cases we confirm that aliasing starts even before
the theoretical value due to the noise. This is also evident for SDV, while ODV is clearly
more robust. We can also see that for ODV and β = 0.7 the confidence interval does not
decrease uniformly with VENC1 due to the nondesirable effect of overlapping of the single-
VENC least squares functions mentioned in Section 2.2.5. A similar, but less pronounced
effect, occurs with β = 0.75. Therefore, in the real data acquisitions we continue using only
β = 0.66 and β = 0.75.

2.4.2 Phantom data
The results for the phantom experiments are presented in Figure 2.6. The peak velocity
in the tube is about 120 cm/s, what can be inferred from the single-VENC image with
VENC1 = 150. The wall of the tube can be distinguish as the noise ring separating the
flow and the surrounding zero-velocity fluid. We first show the single-VENC PC-MRI, where
aliasing for the two smaller VENCs can be clearly appreciated. We also confirm that SDV
cannot handle the aliasing when both VENC values are lower than the true velocity, while
ODV is able to sucessfully reconstruct un-aliased images from two aliased ones.

2.4.3 Volunteers data
Figure 2.7 presents the velocity profiles on the descending aorta for the different VENC
combinations and different reconstruction methods for Volunteer 5. The figures for all the
volunteers can be found in the Supplementary Material 2.A.
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(c) β = 0.75

Figure 2.4: Synthetic data (noise-free): single- and dual-VENC.
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Figure 2.5: Synthetic data (20% noise): single- and dual-VENC.
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(a) PC 150 (b) PC 100 (c) PC 70

(d) SDV 150, 100 (e) SDV 150, 70 (f) SDV 100, 70

(g) ODV 150, 100 (h) ODV 150, 70 (i) ODV 100, 70

Figure 2.6: Phantom data: single- (PC) and dual-VENC.

In all our results in volunteers it is confirmed that ODV is the most robust method
when decreasing the VENC, allowing to reconstruct velocities using lower VENCs than the
true velocity, in contrast to SDV. Moreover, the theory is verified: aliasing is practically
inexistent for (VENC1,VENC2) = (50, 37.5) (β = 0.75), while aliasing always occurs at
(50, 33.3) (β = 0.66). Indeed, the peak velocity is approximately 130 cm/s, for β = 0.75,
VENC1 = 50 > 130/3 ≈ 40, hence no aliasing appears. For β = 0.66, VENC1 = 50 <
130/2 ≈ 65, hence aliasing appears. The actual noise level of the acquisition seems to not
affect the performance of the ODV with β = 0.75.

Figure 2.8 summarises the ODV results for all volunteers when varying the VENC. The
error is computed in terms of the `2-norm for the voxels inside the lumen, relative to the
`2-norm of the reference image (average of VENC 150 cm/s with 3 repetitions).

Finally, Figure 2.9 shows the standard deviation of the estimated velocities on a static
tissue (thoracic muscle) in terms of the VENC for all single- and dual-VENC methods.
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(a) PC 150 (b) PC 100 (c) PC 75 (d) PC 66.7 (e) PC 50 (f) PC 37.5

(g) SDV 100, 75 (h)SDV 100,66.7 (i) SDV 75, 50 (j) SDV 66.7, 50 (k) SDV 50, 37.5 (l) SDV 50, 33.3

(m)ODV 100, 75 (n)ODV 100,66.7 (o) ODV 75, 50 (p)ODV 66.7, 50 (q)ODV 50, 37.5 (r)ODV 50, 33.3

Figure 2.7: Volunteer 5. First row: single-VENC PC-MRI. Second row: SDV. Third row:
ODV. Velocities are colored as in Figure 2.6. Numbers indicate the VENC(s).
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Figure 2.8: Volunteers 1 to 8: (VENC1,VENC2) v/s relative error between ODV and refer-
ence.
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Analogous results are obtained for all volunteers (see Supplementary Material). Here, results
need to be carefully analyzed and interpreted. Therefore, we present two sets of dual-VENC
reconstructions: one with three encoding gradients as described above scaling the reference
phase with the echo times, and another using four encoding gradients, i.e., where the reference
phase of each VENC was used and therefore no scaling is needed.

First, we can see that noise decreases with VENC in the single-VENC reconstructions,
and that the standard deviation is larger for VENC1 than for VENC2, as expected. For the
both dual-VENC approaches, this is also the case for VENC2 > 50 cm/s. The ODV using
three gradients (ODV(3)) gives also a standard deviation close to VENC2. Also as expected,
the SDV using four gradients (SDV(4)) gives exactly the same results as VENC2.

For VENC2 ≤ 50, the standard deviation of both dual-VENC approaches shows jumps
when using three gradients, while it monotonically decreases when using four gradients. A
possible reason is the scaling of the reference phase for VENC2. Indeed, for VENC > 50 TE
stays fixed, hence no scaling is applied. But for VENC ≤ 50 the TE is automatically changed.
The differences in the curves for SDV(3) (i.e. with scaling) and SDV(4) (i.e. no scaling) are
more evidence pointing in this direction. Therefore, this problem is most likely to be related
to the acquired data but not to the ODV or SDV reconstruction methods. We are currently
working in dual-VENC acquisition protocols using only three gradients, which should avoid
this issue.
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Figure 2.9: Volunteer 5: (VENC1,VENC2) v/s standard deviation of estimated velocity in
static tissue.
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2.5 Discussion
In this work, we present a method for reconstructing velocities using dual-VENC images,
for the first time in the literature when both single-VENC images are aliased. The main
advantage of the method is that the true velocity does not need be known exactly in advance,
since aliasing is allowed for both VENCs. All previous works have proposed to unwrap low-
VENC images using high-VENC images without aliasing [LPP95; Net+12; Ha+16; Cal+16;
Sch+17]. The theoretical findings are confirmed in real data sets from an experimental
phantom and volunteers.

The choice of the VENC’s ratio β = 0.66 is the most robust to noise, independent on the
MRI scanner settings. However, for the volunteers scanned here, β = 0.75 works satisfactory
and therefore it allows lower aliasing limits for the ODV estimations than β = 0.66, as given
by the theory. Let us recall that β can be kept fixed (for instance, optimized once for typical
scan settings), while the scanner user only needs to choose VENC1 as in a single-VENC
acquisition.

Note that unwrapping methods using contiguous voxels - like the ones from [LE17] - can
be still applied after the estimation with ODV. The unwrapping would then probably perform
better due to the larger periods of the candidate solutions, e.g. LΣ = 6VENC1 for β = 0.75
and LΣ = 4VENC1 for β = 0.667.

Concerning the limitations of our study, the method was not assessed in patients, only
in volunteers. It is well known that dual-venc approaches (as any other cardiovascular MRI
sequences) are challenging due to variabilities during the experiment (not only measurment
noise) [LPP95], such as cardiac rhythm changes and subjects’ motion. However, this variabil-
ity will impact in similar manner the standard dual-VENC approach as well as the method
proposed here. Another limitation is that data acquisition was performed for the two VENCs
in a serial fashion, and therefore MRI scan protocols tailored to the ODV reconstructions
have to be developed yet. This could be also done by including k-space undersampling tech-
niques as in [Net+12], what would allow dual-VENC protocols comparable in scan time to
single-VENC ones, what is of high interest for the application of ODV to 4Dflow. Moreover,
as in standard PC-MRI, there is the implicit assumption that the velocity is constant in
space and time and therefore, neither the single- nor the dual-VENC approaches count for
effects like dephasing of spins and turbulence.

2.6 Conclusion
We present a robust method for estimating velocities from dual-VENC data in PC-MRI. The
main contribution of this work is that both a theoretical and an extensive empirical analysis
was carried out, turning out that there are high- and low-VENC combinations that can
considerably reduce the aliasing issues. For example, in the volunteer data the ODV allows
to choose the high-VENC up to a third of the maximal velocity. In clinical practice, the
scanner operator has only to choose a single expected velocity, as for standard single-VENC
PC-MRI. Then, the low-VENC value can be automatically fixed by the scanner in terms of
the high-VENC. Moreover, the reconstruction method is simple enough to be implemented
directly in the MRI scanner. Next steps are to assess the ODV in cases with high velocity
variability, like stenotic vessels or valves, and 4Dflow, and application to other phase-contrast
techniques, like elastography.
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Appendix

2.A Supplementary material
In this appendix of Chapter 2 we show the velocity profiles on the descending aorta for the
different VENC combinations and different reconstruction methods for eight volunteers. The
profiles are shown in Figures 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17.

(a) PC 150 (b) PC 100 (c) PC 75 (d) PC 66.7 (e) PC 50 (f) PC 37.5

(g) SDV 100, 75 (h)SDV 100,66.7 (i) SDV 75, 50 (j) SDV 66.7, 50 (k) SDV 50, 37.5 (l) SDV 50, 33.3

(m)ODV 100, 75 (n)ODV 100,66.7 (o) ODV 75, 50 (p)ODV 66.7, 50 (q)ODV 50, 37.5 (r)ODV 50, 33.3

Figure 2.10: Volunteer 1. First row: single-VENC PC-MRI. Second row: SDV. Third row: ODV.
Velocities are colored as in Figure 2.6. Numbers indicate the VENC(s).
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(a) PC 150 (b) PC 100 (c) PC 75 (d) PC 66.7 (e) PC 50 (f) PC 37.5

(g) SDV 100, 75 (h)SDV 100,66.7 (i) SDV 75, 50 (j) SDV 66.7, 50 (k) SDV 50, 37.5 (l) SDV 50, 33.3

(m)ODV 100, 75 (n)ODV 100,66.7 (o) ODV 75, 50 (p)ODV 66.7, 50 (q)ODV 50, 37.5 (r)ODV 50, 33.3

Figure 2.11: Volunteer 2. First row: single-VENC PC-MRI. Second row: SDV. Third row: ODV.
Velocities are colored as in Figure 2.6. Numbers indicate the VENC(s).

(a) PC 150 (b) PC 100 (c) PC 75 (d) PC 66.7 (e) PC 50 (f) PC 37.5

(g) SDV 100, 75 (h)SDV 100,66.7 (i) SDV 75, 50 (j) SDV 66.7, 50 (k) SDV 50, 37.5 (l) SDV 50, 33.3

(m)ODV 100, 75 (n)ODV 100,66.7 (o) ODV 75, 50 (p)ODV 66.7, 50 (q)ODV 50, 37.5 (r)ODV 50, 33.3

Figure 2.12: Volunteer 3. First row: single-VENC PC-MRI. Second row: SDV. Third row: ODV.
Velocities are colored as in Figure 2.6. Numbers indicate the VENC(s).
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(a) PC 150 (b) PC 100 (c) PC 75 (d) PC 66.7 (e) PC 50 (f) PC 37.5

(g) SDV 100, 75 (h)SDV 100,66.7 (i) SDV 75, 50 (j) SDV 66.7, 50 (k) SDV 50, 37.5 (l) SDV 50, 33.3

(m)ODV 100, 75 (n)ODV 100,66.7 (o) ODV 75, 50 (p)ODV 66.7, 50 (q)ODV 50, 37.5 (r)ODV 50, 33.3

Figure 2.13: Volunteer 4. First row: single-VENC PC-MRI. Second row: SDV. Third row: ODV.
Velocities are colored as in Figure 2.6. Numbers indicate the VENC(s).

(a) PC 150 (b) PC 100 (c) PC 75 (d) PC 66.7 (e) PC 50 (f) PC 37.5

(g) SDV 100, 75 (h)SDV 100,66.7 (i) SDV 75, 50 (j) SDV 66.7, 50 (k) SDV 50, 37.5 (l) SDV 50, 33.3

(m)ODV 100, 75 (n)ODV 100,66.7 (o) ODV 75, 50 (p)ODV 66.7, 50 (q)ODV 50, 37.5 (r)ODV 50, 33.3

Figure 2.14: Volunteer 5. First row: single-VENC PC-MRI. Second row: SDV. Third row: ODV.
Velocities are colored as in Figure 2.6. Numbers indicate the VENC(s).
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(a) PC 150 (b) PC 100 (c) PC 75 (d) PC 66.7 (e) PC 50 (f) PC 37.5

(g) SDV 100, 75 (h)SDV 100,66.7 (i) SDV 75, 50 (j) SDV 66.7, 50 (k) SDV 50, 37.5 (l) SDV 50, 33.3

(m)ODV 100, 75 (n)ODV 100,66.7 (o) ODV 75, 50 (p)ODV 66.7, 50 (q)ODV 50, 37.5 (r)ODV 50, 33.3

Figure 2.15: Volunteer 6. First row: single-VENC PC-MRI. Second row: SDV. Third row: ODV.
Velocities are colored as in Figure 2.6. Numbers indicate the VENC(s).

(a) PC 150 (b) PC 100 (c) PC 75 (d) PC 66.7 (e) PC 50 (f) PC 37.5

(g) SDV 100, 75 (h)SDV 100,66.7 (i) SDV 75, 50 (j) SDV 66.7, 50 (k) SDV 50, 37.5 (l) SDV 50, 33.3

(m)ODV 100, 75 (n)ODV 100,66.7 (o) ODV 75, 50 (p)ODV 66.7, 50 (q)ODV 50, 37.5 (r)ODV 50, 33.3

Figure 2.16: Volunteer 7. First row: single-VENC PC-MRI. Second row: SDV. Third row: ODV.
Velocities are colored as in Figure 2.6. Numbers indicate the VENC(s).
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(a) PC 150 (b) PC 100 (c) PC 75 (d) PC 66.7 (e) PC 50 (f) PC 37.5

(g) SDV 100, 75 (h)SDV 100,66.7 (i) SDV 75, 50 (j) SDV 66.7, 50 (k) SDV 50, 37.5 (l) SDV 50, 33.3

(m)ODV 100, 75 (n)ODV 100,66.7 (o) ODV 75, 50 (p)ODV 66.7, 50 (q)ODV 50, 37.5 (r)ODV 50, 33.3

Figure 2.17: Volunteer 8. First row: single-VENC PC-MRI. Second row: SDV. Third row: ODV.
Velocities are colored as in Figure 2.6. Numbers indicate the VENC(s).
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Chapter 3

Dual-encoding for motion unwrapping
in harmonic MRE

The experimental data of this work was provided by Helge Hertum and Ingolf Sack, Elastog-
raphy Group, Charité University Hospital, Berlin, Germany. These results are the basis for
an article currently in preparation in collaboration with Charité.

3.1 Introduction
In this chapter we briefly present an extension of the work shown in Chapter 2 in the case
of magnetic resonance elastography, introduced in Chapter 1, section 1.3.3. Unwrapping in
MRE has been treated in the literature, as in MRI for velocity encoding, by smoothing with
respect to neighbor pixels or even the neighbor timesteps [Ito82; GP98; Fly97; Sac+09; SZ03;
Bar+15; JSD15], but since our technique will not follow the same idea, we will not compare
them. However, smoothing techniques can be used after applying the technique presented in
this chapter.

3.2 Theory

3.2.1 Harmonic displacement encoding (Henc)
Similar to the VENC idea, we define the harmonic displacement encoding, henc, by

henc = π

ξ(ω, T )
Then (1.14) can be re-written as follows:

ϑn(x) = π

henc
un(x)

From this equation we note that |henc| is the maximum possible displacement which is not
aliased, because |ϑn(x)| < π, which could be a problematic constraint in the application of
phase contrast for recovering the displacement.

In the rest of this chapter, we emphasize the dependence of ϑn on henc explicitly by
writing

ϑn(x;un, henc) = π

henc
un(x) (3.1)
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3.2.2 Cost Functionals
For each time τn with n = 0, 1, . . . , N−1, we will now reformulate the phase-contrast problem
like a least-squares estimator, as we did for the velocity encoding problem. We will denote
the true displacement ûn, and the phase measured for that displacement for a given henc as
ϑ̂n(x; ûn, henc).

For a fixed x, we consider the functionals

Jn(x;u, henc) = 1
2

∣∣∣∣eiϑ̂n(x; ûn, henc) − eiϑn(x;u, henc)
∣∣∣∣2 (3.2)

which is, after some calculations, equal to

Jn(x;u, henc) = 1− cos
(
ϑ̂n(x; ûn, henc)− ϑn(x;u, henc)

)
(3.3)

Observe that ϑ̂n(x; ûn, henc) = ϕ̂n(x; ûn, henc) − ϕ̂0(x), so we need to measure
ϕ̂n(x; ûn, henc) and ϕ̂0(x) by:

• ϕ̂n(x; ûn, henc) is acquired by considering the equations described in the previous sec-
tion, applying the gradient corresponding to the respective henc.

• ϕ̂0(x) is acquired once in the experiment. It is obtained when we apply a null gradient.

In addition, observe that equation (3.3) asserts that, the minimum of Jn is reached when
ϕ̂n = ϕn + 2π`, ` ∈ Z. In terms of the displacement u, the periodicity of Jn(x; ·, henc) is
2henc. Therefore, as in standard phase-contrast MRI, aliasing arises if |henc| is less or equal
to the true displacement.

3.2.3 Dual encoding strategy
To overcome aliasing, we apply the following dual encoding strategy:

• We define the sum of functionals Jn with hencs H1 and H2:

JΣ,n(x;u,H1, H2) = Jn(x;u,H1) + Jn(x;u,H2) (3.4)

Note that for each n we perform three measurements: the corresponding to H1, H2 and
the null gradient.

• For each n, we can estimate un(x) by the unwrapped displacement u∗n(x;H1, H2) by
solving the problem

u∗n(x;H1, H2) = arg min
u∈[−umax,umax]

JΣ,n(x;u,H1, H2) (3.5)

where umax = lcm(2henc1, henc2)/2, as in Section 2.2.6.

• If we need to obtain a displacement in a steady-state and τn = 2πn
N

, we apply the
following discrete Fourier transform in time of {u∗n}N−1

n=0 in order to obtain uc by equation
(1.15)
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The advantage of the dual henc strategy is that the minimum vn(x;H1, H2) of
JΣ,n(x; ·, H1, H2) is reached uniquely in an interval of width 2lcm{H1, H2}, where lcm is the
(rational) least common multiple, and, moreover, u∗n(x;H1, H2) is a minimum for Jn(x; ·, H1)
and Jn(x; ·, H2). Therefore, if we take a good pair (H1, H2), such that 2lcm{H1, H2} is max-
imized, we can obtain an estimation for vn which is unique in a wide interval, even when
both (H1, H2) are smaller than the true displacement ûn. Aliasing will only happens when
lcm{H1, H2} ≤ |ûn|

3.3 Methods
We consider a phantom consisting of a plastic box of approximately 10x10x10 centimeters
filled with an heparin gel to emulate soft tissue.
The scan parameters are:

• TR = 2000 ms, TE = 95 ms.

• N = 8 timesteps τn to sample one wave period of time T = 20 ms.

• Mechanical and MEG frequency are the same: fmech = fgrad = 50 Hz, and then ω =
2πfmech = 314.159 rad/s.

• The gradient has the form

G(t) =


A if t ∈ [0, T/2]
−A if t ∈ [−T/2, 0[
0 otherwise

with MEG amplitudes A = {2, 8, 9, 12, 16, 18} [mT/m].

According to section 1.3.3, the encoding efficiency is

ξ(ω, T ) = −γ
∫ T/2

−T/2
G(t) sin(ωt)dt = −4γA

ω
(3.6)

where we used the fact that T = 2π
ω

. Hence we see that in practice, for fixed ω, the encoding
efficiency is controlled by the parameter A. Note that since aliasing occurs if |henc(A)| < |u|,
aliasing occurs in this case if

|henc(A)| =
∣∣∣∣ π

ξ(ω, T )

∣∣∣∣ = πω

4γA < |utrue| (3.7)

In the following table we show henc as a function of the amplitude for the amplitudes used
in our experiment:

The following table shows the critical displacement for the dual encoding technique, fol-
lowing Table 2.1:
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A [10−3mT/m] 2 8 9 12 16 18 24
|henc(A)| [10−4m] 4.612 1.153 1.025 0.769 0.576 0.512 0.384

Table 3.1: Correspondence between amplitude (A) and the henc, which can be seen as the
critical observed displacement.

(A1, A2) (9, 12) (8, 12) (12, 16) (12, 18) (16, 24) (18, 24)
|henceff | [10−4m] 3.074 2.306 2.306 1.537 1.153 1.537

Table 3.2: Correspondence between the pair (A1, A2) of amplitudes and the effective henc,
that is, the critical displacement for the dual-henc technique.

3.4 Results

3.4.1 Results for a fixed time
We show the results for the phantom experiments for n = 3, 5, 7 in Figures 3.1, 3.2 and
3.3, respectively. The peak displacement is different at each time, which can be seen in the
single-henc figure corresponding to A = 2. We can distinguish the shape of the phantom
by separating it from the noisy part near the boundaries of each image. We first show the
single-henc phase contrast MRI and the dual-henc technique, where we observe the aliasing
in pixels corresponding to displacements according to Tables 3.1 and 3.2, respectively. That
is,

• For single-henc, we observe aliasing from A = 8 onwards for n = 3, 5 and A = 12
for n = 7. It is also clear how the noise in the image decreases when increasing the
encoding gradient.

• For dual-henc, we observe aliasing only for the pair (12, 18) onwards for n = 3, 5 and
we do not observe aliasing in any image for n = 7, because the critical value shown in
Table 3.2 is not reached.

In addition, by observing the images for the different times, we can see the propagation
of the displacement.

3.4.2 Results for the discrete Fourier transform in time
We perform a discrete Fourier transform in time and show the results for the phantom
experiments in Figure 3.4. The peak displacement can be seen in the single-henc figure
corresponding to A = 2, and we see that it is bigger than the peak of each time. The
transition to aliased images is not inferred directly from Tables 3.1 and 3.2, but we can
notice that if one of the recovered displacements has aliasing for any time, then the Fourier
transform in time has aliasing, that is:

• For single-henc, we observe aliasing from A = 8 onwards, because aliasing is present
for that amplitude and some n, specifically, at least for n = 3, 5.
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(a) PC A = 2 (b) PC A = 8 (c) PC A = 9 (d) PC A = 12

(e) ODV 9, 12 (f) ODV 8, 12 (g) ODV 12, 16 (h) ODV 12, 18

Figure 3.1: Phantom data: single- (PC) and dual-HENC, for n = 3

(a) PC A = 2 (b) PC A = 8 (c) PC A = 9 (d) PC A = 12

(e) ODV 9, 12 (f) ODV 8, 12 (g) ODV 12, 16 (h) ODV 12, 18

Figure 3.2: Phantom data: single- (PC) and dual-HENC, for the time corresponding to
n = 5.
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(a) PC A = 2 (b) PC A = 8 (c) PC A = 9 (d) PC A = 12

(e) ODV 9, 12 (f) ODV 8, 12 (g) ODV 12, 16 (h) ODV 12, 18

Figure 3.3: Phantom data: single- (PC) and dual-HENC, for the time corresponding n = 7.

• For dual-henc, we observe aliasing in (A1, A2) = (12, 18) since aliasing is present for
that amplitude pair and at least n = 3, 5.

(a) PC A = 2 (b) PC A = 8 (c) PC A = 9 (d) PC A = 12

(e) ODV 9, 12 (f) ODV 8, 12 (g) ODV 12, 16 (h) ODV 12, 18

Figure 3.4: Phantom data: single- (PC) and dual-HENC, for Re(uc) obtained from the
discrete Fourier transform in time.
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3.5 Discussions and conclusions
We see that the theory is confirmed at least in a phantom experiment, showing properly the
predictions given. At this moment, we haven’t performed any experiment with volunteers.
The dual-henc MRE technique presented has a potential advantage: we can reconstruct very
small displacements, which usually correspond to points distant to the mechanical source,
with less noise and at the same time we can reconstruct larger displacements, corresponding
to points close to the mechanical source, without aliasing.

Here we aim to keep henc constant. Equation (3.7) has as a consequence that, if the
frequency is halved, the amplitude must be doubled. This does not cause serious problems
in actual implementations.

However, if the frequency is halved, i.e., if the period is doubled, the corresponding
repetition time and echo times become much larger than those used for velocity recovering
in MRI. This could cause practical problems that are not solved by the dual-henc technique,
since they are related with the relaxation times showed in equation (1.1). Therefore it is still
a challenge to explore deeper in tissues by reducing the frequency.
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Chapter 4

Nonlinear hybrid inverse problems in
elasticity

The content of this chapter corresponds to the article H. Carrillo and A. Waters. “Nonlinear
hybrid inverse problems in elasticity”. In preparation.

4.1 Introduction
We consider an isotropic nonlinear elastic wave equation in a bounded domain Ω. The stress
the material is under going is described by the Lamé parameters, λ, µ, and ρ. We study
the following problem: is it possible to determine the Lamé parameters λ, µ and ρ from the
knowledge of Neumann data of the solution on the boundary? We are interested in the global
recovery problem of the displacement field.

Our main motivation is the structure of hyper-elastic materials, many of which are not
accurately described by linear elastic models. A hyperelastic model is one for an ideally elastic
material in which the stress-strain relationship is derived from the strain energy density
function. This type of model is often known as Green’s model which was made rigorous
by Ogden [Ogd97]. Hyper-elastic models accurately describe the stress-strain behaviour of
materials such as rubber, [Muh05]. Unfilled vulcanized elastomers almost always conform to
the hyperelastic ideal. Filled elastomers and biological tissues are also modelled via the hyper-
elastic idealisation, [Gao+14]. In the linear case, for reconstruction of the Lamé coefficients
concerning biological tissues, one can see [Amm08] for example. Our focus is on a non-linear
model, and the reduction of the amount of required data to recover the coefficients uniquely.
Of the three parameters required to recover the material structure, it is often the most
natural to recover the parameter µ which encodes more about possible disease in patients
than the other parameters. Several diseases involve changes in the mechanical properties of
tissue and normal function of tissue, for example in skeletal muscle, heart, lungs and gut
[mclaughlin2010calculating; HSB17; GME12].

From power density measurements we are able to to prove a stability estimate for both the
solution and the parameter µ. Even in the linear case for elasticity this has not been shown
before in the literature. For the linear problem, the closest works in 2 and 3 dimensions
are for the anisotropic conductivity problem [Bal+14] and for full solution measurements in
[BMU15; AWZ15; WS15]. However, this list is not exhaustive there are numerous results
on recovering the parameters µ and λ from knowledge of the solution in a domain for the
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linear problem [Bal+11; SKS12; NTT11; KS12; KK08]. As such, the significant contribution
of this article is the extension to the nonlinear problem. The difficult symbol computations
used to find stability estimates for the nonlinear problem can also be used to extend known
results on the linear problem.

In Section 4.4, we give precise stability estimates for the linearized incompressible model
of elasticity in 2 dimensions with the background pressure held fixed, see Theorem 4.5.
These stability estimates have no kernel (they are injective) for all ω sufficiently large on the
entirety of the domain with two measurements. In Section 4.5, we can extend these estimates
to include some generic nonlinear forcing terms. This is the first time global injectivity with
a single fixed ω has been shown under any conditions.

For the later part of the article, in Section 4.7, we consider the Saint-Venant model of
elasticity. Because the (nonlinear) Saint-Venant model depends on the parameter λ and this
in practice is large, we also prove convergence of the linearized Saint Venant model in 2 and
3 dimensions using a differential operator (the curl) which removes the parameter λ. In the
process of doing so, in Section 4.6, we correct an earlier computational error in the stability
estimates for the linearized compressible problem in two dimensions in [AWZ15] which affects
the 2d stability estimates. The size of the parameter λ aversely affects the size of the class
of solutions which can be considered in the linearized Saint-Venant model, unless we apply
the curl. This means our convergence results are sharper than in [Hub+18]. Indeed, the
main assumption on their nonlinear models does not give any convergence result for the
Saint-Venant model when λ is very large. We use solution measurements in the linearized
Saint-Venant model, since power density measurements do not work well when using the
annihilation (curl) operator.

Iterative algorithms for the recovery of µ and convergence results are presented for each
model in Sections 4.4.5, 4.5.3 and 4.7.3. Main tools in this article come from the theory
of over-determined elliptic boundary-value problems. In Section 4.3 we present necessary
preliminaries.

4.2 Notation
In this paper we use the Einstein summation convention. For two vectors a and b, the exterior
product is denoted by

a⊗ b = abᵀ,

i.e., a⊗ b is a matrix with entries
(a⊗ b)ij = aibj.

More generally, the exterior product between a tensor A of order m and B of order n is a
new tensor A⊗B of order m+ n with entries

(A⊗B)i1...imj1...jn = Ai1...imBj1...jn .

For two matrices A and B of the same size, the inner product is denoted by

A : B = aijbji,

and we write |A|2 = A : A. In addition, we consider the product between a tensor A of order
(n+ 1) and other B of order n as the vector AB with entries

(AB)i0 = Ai0i1...inBi1...in .
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Let Ω ⊂ Rd be a simply-connected smooth bounded domain in Rd. For vector–valued func-
tions

f(x) = (f1(x), f2(x), . . . , fd(x)) : Ω→ Rd ,

the Hilbert space Hm(Ω)d, m ∈ N is defined as the completion of the space C∞c (Ω)d with
respect to the norm

‖f‖2
m = ‖f‖2

m,Ω =
m∑
|i|=1

∫
Ω

|∇if(x)|2 + |f(x)|2 dx,

where we write ∇i = ∂i1 . . . ∂id for i = (i1, . . . , id) for the higher-order derivative. Let E be
the symmetric gradient acting on u ∈ H1

0 (Ω)d as

Eu = 1
2(∇u+ (∇u)ᵀ) = ∇Su. (4.1)

In general, we assume the Lamé coefficients are C3(Ω) where Ω denotes the closure of Ω
and that they satisfy the following conditions

λ(x) ≥ λmin = min{λ(x) : x ∈ Ω} > 0, (4.2)
µ(x) ≥ µmin = min{µ(x) : x ∈ Ω} > 0,
ρ(x) ≥ ρmin = min{ρ(x) : x ∈ Ω} > 0.

We consider the density ρ(x) to be fixed for this article, and as such we remove it from the
symbol computations. We remind the definition of the divergence for a matrix function: if
T : Ω̄→Mn (square matrices of order n) is differentiable, then

div(T )(x) = ∂jTij(x)êi ∈ Rd.

Also we remind the definition of the curl of a function f : Ω→ Rd:

∇× f = ∂1f2 − ∂2f1

in dimension d = 2, and

∇× f = (∂2f3 − ∂3f2)e1 − (∂1f3 − ∂3f1)e2 + (∂1f2 − ∂2f1)e3

in dimension d = 3.
And finally we remind the reader of a useful integration by parts identity. If S : Ω̄ → Sd
(symmetric matrices) and v : Ω̄→ Rd, then∫

Ω
div(S) · v dx =

∫
∂Ω

(Sν) · v da−
∫

Ω
S : ∇Sv dx,

where ν denotes the outward unit normal on ∂Ω.
We will also need the following lemma.

Lemma 4.1. [Korn’s inequality] Let Ω be as above. Let u ∈ H1
0 (Ω)d then∫

Ω

|∇u|2 dx ≤ 2
∫
Ω

|∇Su|2 dx,
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c.f., for instance, [Amm+15].
We now review the existence and uniqueness results for the elasticity system. We consider

the following boundary value problem for the elasticity equations
∇(λ(x)∇ · uλ) + ω2uλ(x) + 2∇ · µ(x)∇Suλ(x) = 0 in Ω,

uλ(x) = g(x) on ∂Ω,
(4.3)

with µ(x), λ(x) ∈ C1(Ω̄) the Lamé coefficients.
The solution uλ(x) is such that

uλ(x) : Ω→ Rd.

It is known that the solution uλ(x) exists and is unique. In particular, ∇Suλ(x) ∈ L2(Ω)d
if g(x) ∈ H1/2(∂Ω), λ, µ ∈ L∞(Ω) and satisfy (4.2) and ∇Suλ(x) ∈ H4(Ω)d under the
additional assumptions that µ(x), λ(x) ∈ C4(Ω̄), g ∈ H9/2(∂Ω)d. We need the latter regularity
assumption for later stability estimates.

The Poisson ratio σ of the anomaly is given in terms of the Lamé coefficients by

σ = λ/µ

1 + 2λ/µ.

It is known in soft tissues σ ≈ 1/2 or equivalently λ >> µ. This makes it difficult to re-
construct both parameters µ and λ simultaneously [Man+01],[GFI03]. Therefore we first
construct asymptotic solutions to the problem (4.3) when λmin →∞. The following theorem
loosely follows [Amm+08] and [Amm+13] which consider piecewise constant Lamé coeffi-
cients. We recall that in the limit, the elasticity equations (4.3) reduces to the following
Stokes system



ω2u(x) + 2∇ · µ(x)∇Su(x) +∇p(x) = 0 in Ω,

∇ · u(x) = 0 in Ω,

u(x) = g(x) on ∂Ω,
∫
Ω

p(x) dx = 0.

(4.4)

Theorem 4.1 ([AWZ15] ’14). Suppose that ω2 is not an eigenvalue of the problem (4.4) with
g(x) = 0, then there exists a positive constant C which is independent of λ such that the
following error estimates hold for λmin large enough

||uλ − u||H1(Ω)d ≤
C√
λmin

. (4.5)

Remark 1. The relation between the pressure p in (4.4) and uλ in (4.3) is that p is the limit
of λ∇ · uλ as λmin →∞.
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4.3 Preliminaries on Over-determined Elliptic
Boundary-Value Problems

In this section, we present some basic properties about over-determined elliptic boundary-
value problems which plays a key role in our stability estimates in the next sections. The
presentation follows closely to the ones in [Sol73; WS15]. We present it here for the conve-
nience of the reader.

We first recall the definition of ellipticity in the sense of Douglis-Nirenberg. Consider the
(possibly) redundant system of linear partial differential equations

L(x, ∂
∂x

)y = S, (4.6)

B(x, ∂
∂x

)y = φ,

form unknown functions y = (y1, . . . , ym) comprising in total ofM equations. Here L(x, ∂
∂x

) is
a matrix differential operator of dimensionM×m with entries Lij(x, ∂

∂x
). For each 1 ≤ i ≤M ,

1 ≤ j ≤ m and for each point x, the entry Lij(x, ∂
∂x

) is a polynomial in ∂
∂xi

i = 1, . . . , d. If the
system is redundant, then there are possibly more equations than unknowns, M ≥ m. The
matrix B(x, ∂

∂x
) has entries Bij(x, ∂

∂x
) for 1 ≤ k ≤ Q, 1 ≤ j ≤ m consisting of Q equations at

the boundary. The operators are also polynomial in the partials of x. Naturally, the vector
S is a vector of length M , and φ is a vector of length Q.

Definition 4.1. [c.f.[ADN59],[DN55]] Let integers si, tj ∈ Z be given for each row 1 ≤ i ≤M
and column 1 ≤ j ≤ m with the following property: for si + tj ≥ 0 the order of Lij does not
exceed si + tj. For si + tj < 0, one has Lij = 0. Furthermore, the numbers are normalized so
that for all i one has si ≤ 0. The numbers si, tj are known as Douglis-Nirenberg numbers.

The principal part of L for this choice of numbers si, tj is defined as the matrix operator
L0 whose entries are composed of those terms in Lij which are exactly of order si + tj.

The principal part B0 of B is composed of the entries which are composed of those terms
in Bkj which are exactly of order σk + tj. The numbers σk, 1 ≤ k ≤ Q are computed as

σk = max
1≤j≤m

(bkj − tj)

with bkj denoting the order of Bkj. Real directions with ξ 6= 0 and
rankL0(x, iξ) < m

are called characteristic directions of L at x. The operator L is said to be (possibly) over-
determined elliptic in Ω if ∀x ∈ Ω and for all real nonzero vectors ξ one has

rankL0(x, iξ) = m.

We next recall the following Lopatinskii boundary condition.

Definition 4.2. Fix x ∈ ∂Ω and let ν be the inward unit normal vector at x. Let ζ be any
non-zero tangential vector to Ω at x. We consider the line {x + zν, z > 0} in the upper half
plane and the following system of ODE’s

L0(x, iζ + ν
d

dz
)ỹ(z) = 0 z > 0, (4.7)

B0(x, iζ + ν
d

dz
)ỹ(z) = 0 z = 0. (4.8)
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We define the vector space V of all solutions to the system (4.7)-(4.8) which are such that
ỹ(z) → 0 as z → ∞. If V = {0}, then we say that the Lopatinskii condition is fulfilled for
the pair (L,B) at x.

Now, let A be the operator defined by

A = (L,B).

Then the equations (4.6) read as Ay = (S, φ).
Let A act on the space

D(p, l) = W l+t1
p (Ω)× . . .×W l+tm

p (Ω)

with l ≥ 0, p > 1. Here Wα
p denotes the standard Sobolev space with α’s order partial

derivatives in the Lp space. With some regularity assumptions on the coefficients of L and
B, A is bounded with range in the space

R(p, l) = W l−s1
p (Ω)× . . .×W l−sm

p (Ω)×W
l−σ1− 1

p
p × . . .×W

l−σq− 1
p

p (∂Ω).

We have the following result, see [WS15, Theorem 1].

Theorem 4.2. Let the integers l ≥ 0, p > 1 be given. Let (S, φ) ∈ R(p, l). Let the Douglis-
Nirenberg numbers si and tj be given for L and σk be as in Definition 4.1. Let Ω be a bounded
domain with boundary in Cl+max tj . Also assume that p(l − si) > d and p(l − σk) > d for all
i and k. Let the coefficients Lij be in W l−si

p (Ω) and the coefficients of Bkj be in W l−σk− 1
p .

The following statements are equivalent:

1. L is over-determined elliptic and the Lopatinskii condition is fulfilled for (L,B) on ∂Ω.

2. There exists a left regularizer R for the operator A = L × B such that

RA = I − T

with T compact from R(p, l) to D(p, l).

3. The following a priori estimate holds
m∑
j=1
||yj||

W
l+tj
p (Ω)

≤ C1

 M∑
i=1
||Si||W l−si

p (Ω) +
Q∑
k=1
||φk||

W
l−σj−

1
p

p (∂Ω)


+C2

∑
tj>0
||yj||Lp(Ω),

where yj is the j-th component of the solution y.

4.4 Linear elasticity with elastic energy density
measurements

Given Theorem 4.1 for the system (4.4), we chose to consider the system
ω2uj + 2∇ · µ∇Suj = −∇pj in Ω,

∇ · uj = 0 in Ω,
uj = gj on ∂Ω,

(4.9)
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for j = 1, . . . , J . We add the power density measurements:
µ

2 |∇
Suj|2 = Hj in Ω, (4.10)

for j = 1, . . . , J . Power density measurements are essentially a measure of the local energy
of the solution, as a result of the Lebesgue differentiation theorem. An example of imaging
technique that measures power densities, but under an similar scalar model, is ultrasound
modulated electrical impedance tomography (UMEIT) [Bal+11].

Let v = (µ, {uj}Jj=1). Then the system (4.9)-(4.10) may be recast as{
Fv = H in Ω,
Bv = g on ∂Ω. (4.11)

where F and B are the differential operators defining the system (4.9)-(4.10). We know that
the underlying unperturbed equations are well posed, and the main result of section 4.4.5
will be to provide an existence and uniqueness result for the linearisation of this equation
(4.11). We consider the background pressure ∇p to be fixed. The stability estimates given
here then would allow us to go back and solve for p as soon as u and µ are known, since by
applying divergence we can determine ∆p and then obtain an elliptic equation in p. We do
not perform this calculation here, but it is the motivation behind our choice of model in this
section.

4.4.1 Ellipticity arguments in dimension 2
In dimension d = 2, notice that ξ ∈ R2 can be written as

ξ = |ξ|
(

cos(θ)
sin(θ)

)

for some θ ∈] − π, π]. Moreover, the symmetric gradient of a incompressible vector valued
function u satisfies

∇Su = (∇Su)ᵀ, tr(∇Su) = 0,
then ∇Su can be written as

∇Su(x) = |∇
Su(x)|√

2

[
cos(α(x)) sin(α(x))
sin(α(x)) − cos(α(x))

]

for some α(x) ∈] − π, π]. We will use these structures along the section. We also use the
following notation where F is a vector or a matrix:

F̂ = F

|F |
.

One measurement, lack of invertibility

We consider the case of dimension d = 2 only in this section. Consider the case J = 1, that
is, only one measurement. Let us define Fj = ∇Suj and assume that |Fj| > 0 for all x ∈ Ω.
From equation (4.10) we obtain

µ = 2Hj

|Fj|2
(4.12)

and then we can replace µ in equation (4.9) to obtain:
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Lemma 4.2.

ω2|Fj|2

2Hj

uj +∇Suj∇ ln(Hj) + (I− 2F̂j ⊗ F̂j)∇⊗∇Suj = −|Fj|
2

2Hj

∇pj (4.13)

where I is a fourth order tensor whose entries are defined as

Iijkl = δikδjl + δjkδil.

Proof. We have (dropping the sub-index j):

2∇ · µ∇Su+ ω2u+∇p = 0

where µ is given by (4.12). We analyze the first term in the left side of the equation,
considering additionally that ∇ · u = 0:

2∇ · µ∇Su = 2µ∆u+ 2∇Su∇µ = 4H
|F |2

∆u− 4∇Su∇
(
H

|F |2
)
.

Then we compute ∇
(
H

|F |2
)

:

∇
(
H

|F |2
)

= 1
|F |4

(
|F |2∇H −H∇|F |2

)
where:

∇|F |2 = ∂|F |2

∂xk
êk = 2Fij

∂Fij
∂xk

êk = 2(∇⊗ F )F.

Therefore
2∇ · µ∇Su = 2H

|F |2
∆u+ 2

|F |2
∇H − 4H

|F |4
(∇⊗ F )F

and then
2H
|F |2

∆u+ 2
|F |2
∇Su∇H − 4H∇Su

|F |4
(∇⊗ F )F + ω2u+∇p = 0.

Multipyling both sides of the equation by |F |
2

2H we obtain:

∆u+∇Su∇ ln(H)− 2F̂ (∇⊗ F )F̂ + ω2 |F |2

2H u+ |F |
2

2H ∇p = 0

Finally, we notice that

∆u− 2F̂ (∇⊗ F )F̂ = (I− 2F̂ ⊗ F̂ )∇⊗∇Su.

Now, identifying the leading term of (4.13), we define the operator:

Pj(x,D) =
(
I− 2F̂j ⊗ F̂j

)
∇⊗∇S

and it has the symbol:

qj(x, ξ) = 2(F̂jξ)⊗ (F̂jξ)−
1
2

(
|ξ|2Id + (ξ ⊗ ξ)

)
. (4.14)
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Lemma 4.3. In dimension d = 2, let

ξ = |ξ|
(

cos(θ)
sin(θ)

)
, F̂j(x) = 1√

2

[
cos(α(x)) sin(α(x))
sin(α(x)) − cos(α(x))

]
. (4.15)

Computing we have that

det(qj(x, ξ)) = −|ξ|
4

2 sin2
(

2θ − α(x)
)
. (4.16)

The conclusion is the operator is not elliptic for only one set of measurements given by (4.10)
with J = 1.

Proof. In this case, we have

qj(x, ξ) = −1
2

( [|ξ|2 0
0 |ξ|2

]
+
[
ξ2

1 ξ1ξ2
ξ1ξ2 ξ2

2

] )
+ 2

[
A2 AB
AB B2

]

=

−
1
2(|ξ|2 + ξ2

1) + 2A2 −ξ1ξ2

2 + 2AB

−ξ1ξ2

2 + 2AB −1
2(|ξ|2 + ξ2

2) + 2B2


where

A = (F̂jξ)1, B = (F̂jξ)2.

Then,

det(qj(x, ξ)) = 1
4(|ξ|2 + ξ2

1)(|ξ|2 + ξ2
2)−B2(|ξ|2 + ξ2

1)− A2(|ξ|2 + ξ2
2)

+4A2B2 −
(

2AB − ξ1ξ2

2

)2

= |ξ|4

2 − |ξ|
2(A2 +B2)−B2ξ2

1 − A2ξ2
2 + 2ABξ1ξ2

= |ξ|4

2 − |ξ|
2(A2 +B2)− (Aξ2 −Bξ1)2

In addition, notice that using the representation (4.15), we have

A = (F11ξ1 + F12ξ2) = |ξ|√
2

(cos(α) cos(θ) + sin(α) sin(θ)) = |ξ|√
2

cos(α− θ),

B = (F21ξ1 + F22ξ2) = |ξ|√
2

(sin(α) cos(θ) + cos(α) sin(θ)) = |ξ|√
2

sin(α− θ).
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So, the determinant of qj(x, ξ) can be written as

det(qj(x, ξ)) = |ξ|4

2 − |ξ|
2
( |ξ|2

2 cos2(α− θ)− |ξ|
2

2 sin2(α− θ)
)
− (Aξ2 −Bξ1)2

= −(Aξ2 −Bξ1)2

= −
( |ξ|2√

2
cos(α− θ) sin(θ)− |ξ|

2
√

2
sin(α− θ) cos(θ)

)2

= −|ξ|
4

2 sin2(2θ − α)

and we conclude the proof of the estimate on the principal symbol. Notice that for all F̂j(x)
with the structure given in equation (4.15), the operator Pj(x,D) is not elliptic, since for all
x ∈ Ω and for all F̂j(x) it is possible to find ξ = (cos(α(x)/2), sin(α(x)/2)) ∈ S1 such that
det(qj(x, ξ)) = 0, i.e., qj(x, ξ) is not of full rank.

Remark 2. Although this result gives us an idea about the ellipticity for the equation, this
is a result of the ellipticity for the operator Pj(x,D). Similar problems have been studied
in [Bal+11; Bal13], where a result says that an analogue system (in scalar case) is in fact
hyperbolic. It seems natural to linearize in nonlinear models, since the problem is reduced
to a linear one, and better mathematical results are known to hold. In the remaining of the
article, we show results concerning to linearization of the models in study.

Linearisation of the model problem for J measurements

We consider the background pressure to be fixed, and let d be the dimension which is arbitrary
for this system. The linearized problem for j ∈ {1, . . . , J} is then given by



2∇ · δµ∇Suj + 2∇ · µ∇Sδuj + ω2δuj = 0 in Ω,
δµ

2 |∇
Suj|2 + µ∇Suj : ∇Sδuj = δHj in Ω,

∇ · δuj = 0 in Ω,
δuj = 0 on ∂Ω.

(4.17)

We make the definition w = (δµ, {δuj}Jj=1) which allows us to re-write the system as:

{
Lw = S in Ω,
Bw = g on ∂Ω. (4.18)
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The principal symbol associated to (4.17) is, rearranging rows, the following:

PJ(x, ξ) =


|F1|2

2 iµ(F1ξ)ᵀ 0 · · · 0

2iF1ξ −µ
(
|ξ|2Id + (ξ ⊗ ξ)

)
0 · · · 0

0 iξᵀ 0 · · · 0
|F2|2

2 0 iµ(F2ξ)ᵀ · · · 0

2iF2ξ 0 −µ
(
|ξ|2Id + (ξ ⊗ ξ)

)
· · · 0

0 0 iξᵀ · · · 0
... ... ... . . . ...
|FJ |2

2 0 0 · · · iµ(FJξ)ᵀ

2iFJξ 0 0 · · · −µ
(
|ξ|2Id + (ξ ⊗ ξ)

)
0 0 0 · · · iξᵀ


which is a matrix of size J(d + 2) × (Jd + 1). We can recognize the following family of
submatrices

ρj(x, ξ) =


|Fj|2

2 iµ(Fjξ)ᵀ

2iFjξ −µ
(
|ξ|2Id + (ξ ⊗ ξ)

)
 (4.19)

and we have from the formulas for the determinant of block matrices that (see, for example,
Section 6.2 in [meyer2000matrix]):

det
(
ρj(x, ξ)

)
= 2d−1µd|Fj|2det

(
qj(x, ξ)

)
, (4.20)

where qj is defined in (4.14). Note that Lemma 4.3 now says that the linearized operator L
is not elliptic.
On the other hand, if we take determinant for the submatrices with the rows containing the
highest power of ξ in Pj, we obtain, by applying properties for determinant of block matrices,
the following:

(−1)(J−1)d µJd

2(J−1)d |Fj|
2det

(
|ξ|2Id + ξ ⊗ ξ

)J−1
det

(
qj(x, ξ)

)
.

Definition 4.3. We say that a family {Op(ρj(x, ξ))}Jj=1 of operators is elliptic if ρj(x, ξ) is
invertible for all x ∈ Ω and all j = 1, . . . , J implies ξ = 0.

This definition is inspired by the one in [Bal14], Definition 2.1.

Lemma 4.4. If {ρj} forms an elliptic family and |Fj| > 0 for all x ∈ Ω and j = 1, ...J , then
the full linearized operator L(x, ξ) is elliptic.
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Proof. Let C0 and {Cj}Jj=1 be the submatrices of PJ defined by

C0 =



|F1|2
2iF1ξ

0
|F2|2
2iF2ξ

0
...
|FJ |2
2iFJξ

0



, Cj =



0
...
0

2iµ(Fjξ)ᵀ
−µ(|ξ|2Id + ξ ⊗ ξ)

iξᵀ

0
...
0



← row ((j − 1)(d+ 2) + 1)

where C0 ∈MJ(d+2)×1(C) and Cj ∈MJ(d+2)×d(C) for j = 1, . . . , J .
Let ξ 6= 0. Then we can see easily that −µ(|ξ|2 + ξ ⊗ ξ) is invertible, hence Cj has complete
column rank. In addition, if j1 6= j2, then Cj1 and Cj2 do not have the same nonzero rows.
If L(x, ξ) is not full rank, then it is clear that there exists j0 and αj0 ∈ Rd\{0} such that in
the nonzero rows of Cj0 we have |Fj0 |

2

2iµFj0ξ
0

 =

 2iµ(Fj0ξ)ᵀ
−µ(|ξ|2Id + ξ ⊗ ξ)

iξᵀ



αj01

...
αj0d


and then we have that ξᵀαj0 = 0 and

(
|Fj0 |2 2iµ(Fj0ξ)ᵀ

2iµFj0ξ −µ(|ξ|2Id + ξ ⊗ ξ)

)
−1
αj01

...
αj0d

 =


0
...
0

 .

That is, ρj0(x, ξ) is not invertible.

Theorem 4.3. For J = 2, d = 2, if α2(x) 6= α1(x) + kπ for all k ∈ Z and for all x ∈ Ω,
then the differential operator corresponding with the system (4.17) is elliptic.

Proof. We have to prove that

det(qj(x, ξ)) = 0 ∀j ⇒ ξ = 0

since equation (4.20) establishes that ρj(x, ξ) is invertible if and only if qj(x, ξ) is invertible.
If det(qj(x, ξ)) = 0 for j = 1, 2, then we have

sin(2θ − α1(x)) = 0 ∧ sin(2θ − α2(x)) = 0 (4.21)

or
ξ = 0

but (4.21) implies
α2 = α1 + kπ for some k ∈ Z

which is false by hypothesis. So we conclude that ξ = 0. That is, (q1, q2) forms an elliptic
family. We conclude the proof using Lemma 4.4.
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4.4.2 Lopatinskii condition
We prove now the following in dimension d = 2.

Lemma 4.5. Consider v = (µ, {uj}j=1,...,J). Let x ∈ ∂Ω, ν the outward unit normal to Ω at
x, and ζ ∈ Sd−1 satisfying ζ · ν = 0. Define ṽ(z) = v(x− νz). Then the only solution of the
system of ODEs {

PJ(x, iζ + ν∂z)ṽ = 0, z > 0,
Bṽ = 0, z = 0, (4.22)

such that ṽ(z)→ 0 as z →∞ is ṽ ≡ 0.

Proof. The system can be seen as the following

|Fj|2µ̃+ 2µ
(
Fj[iζ + ν∂z]

)ᵀ

ũj = 0, z > 0,

Fj[iζ + ν∂z]µ̃−
µ

2

(
(iζ + ν∂z)2Id + (iζ + ν∂z)⊗ (iζ + ν∂z)

)
ũj = 0, z > 0,

i(iη + ν∂z)ᵀũj = 0, z > 0,
ũ = 0, z = 0,

(4.23)

for all j = 1, . . . J .
We can eliminate µ̃ using the first equation

µ̃ = − 2µ
|Fj|2

(
Fj[iζ + ν∂z]

)ᵀ

ũj. (4.24)

Replacing it in the second equation, after some calculations we have

qj(x, ν)∂2
z ũj + irj(x, ν, ζ)∂zũj + sj(x, ζ)ũj = 0 (4.25)

for all j = 1, . . . , J , where qj is the same matrix of previous sections, and rj, sj are real
matrices given by

rj(x, ν, ζ) = 2(F̂jν ⊗ F̂jζ + F̂jζ ⊗ F̂jν)− 1
2(ν ⊗ ζ + ζ ⊗ ν), sj(x, ζ) = −qj(x, ζ).

We look the imaginary part of (4.25):

rj∂zũj = 0, z > 0.

After some calculations (see Lemma 4.6), we have

det(rj) 6= 0

so we have
∂zũj = 0

and this implies ũj ≡ 0 since ũ(0) = 0. Then using (4.38) we obtain µ̃ ≡ 0. Therefore we
conclude ṽ ≡ 0.

Lemma 4.6. In dimension d = 2, we have det(rj(x, ν, ζ)) 6= 0.
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Proof. We have
rj(x, ν, ζ) = M +N

where
M =

[
2AC AD +BC

AD +BC 2BD

]
,

N = −1
2

[
2ν1ζ1 ν1ζ2 + ζ1ν2

ν1ζ2 + ζ1ν2 2ν2ζ2

]
and

A = (F̂ ν)1, B = (F̂ ν)2, C = (F̂ ζ)1, D = (F̂ ζ)2.

Since ν · ζ = 0, without loss of generality we can take ζ1 = −ν2 and ζ2 = ν1, and using
the properties of F̂j we have

C = (F̂j)11ζ1 + (F̂j)12ζ2 = −(F̂j)11ν2 + (F̂j)12ν1 = B,

D = (F̂j)21ζ1 + (F̂j)22ζ2 = −(F̂j)21ν2 + (F̂j)22ν1 = −A.

Then
rj =

[
4AB + ν1ν2 2(B2 − A2)− 1

2(ν2
1 − ν2

2)
2(B2 − A2)− 1

2(ν2
1 − ν2

2) −(4AB + ν1ν2)

]
and we can compute the determinant

−det(rj) =
(

4AB + ν1ν2

)2
+
(

2(B2 − A2)− 1
2(ν2

1 − ν2
2)
)2
. (4.26)

Using the fact that ∇Suj are divergence free, we have

A = 1√
2

cos(αj − θ), B = 1√
2

sin(αj − θ)

where θ = arg(ν), so that ν = (cos(θ), sin(θ)). Then

−det(rj) =
(

2 cos(αj − θ) sin(αj − θ) + cos(θ) sin(θ)
)2

+
(

(cos2(αj − θ)− sin2(αj − θ)) + cos2(θ)− sin2(θ)
2

)2

=
(

sin(2(αj − θ)) + sin(2θ)
2

)2
+
(

cos(2(αj − θ)) + cos(2θ)
2

)2

= 5
4 + cos(2αj − 3θ)

6= 0 ∀x, ν, ζ.

Remark 3. It should be possible to show the theorem holds under weaker assumptions given
the form of the determinant (4.26).
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4.4.3 Stability estimates
In any dimension d with J measurements, we can see the problem (4.17) in the framework
of Section 4.3. The Douglis-Niernberg numbers are

si =

−1 if i = k′ · (d+ 2) + k′′, k′ = 0, 1, . . . , J, k′′ = 0, 1,
0 otherwise,

tj =

1 if j = 1,
2 otherwise ,

σk = −1, k = 1, . . . , Jd.

where i = 1, . . . , J(d+ 2) and j = 1, . . . , Jd+ 1. The operator A = (L,B) is defined from

X =
Jd+1∏
j=1

H l+tj(Ω)

to

Y =
J(d+2)∏
i=1

H l−si(Ω)×
Jd∏
j=1

H l−σj−1/2(∂Ω)

where we choose l such that 2(l − si) > d, 2(l − σk) > d. In dimension d = 2, we can choose
l = 2.
Moreover, if d = 2 and J = 2, the we have

X = H3(Ω)×
(
H4(Ω)2

)2
(4.27)

with norm

||(δµ, {δuj}Jj=1)||X = ||δµ||H3(Ω) +
J∑
j=1
||δuj||H4(Ω)2

and

Y =
(
H3(Ω)×H2(Ω)2 ×H3(Ω)

)2
×
(
H5/2(∂Ω)2

)2
(4.28)

with norm

||({δf pdj }Jj=1, {δf ecj }Jj=1, {δfdivj }Jj=1, {δgj}Jj=1)||Y

=
J∑
j=1
||δf pdj ||H3(Ω) + ||δf ecj ||H2(Ω)2 + ||δfdivj ||H3(Ω) + ||δgj||H5/2(∂Ω)2 .
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Theorem 4.4. Let d = 2, J = 2, we have the estimate for w = (δµ, {δuj}Jj=1) a solution to
(4.17)

||δµ||H3(Ω)+
2∑
j=1
||δuj||H4(Ω)2≤C

J∑
j=1

(
||Lecj (δµ, δuj)||H2(Ω)2 +||Lpdj (δµ, δuj)||H3(Ω)

+||Ldiv(δµ, δuj)||H3(Ω) + ||Bδuj||H5/2(Ω)2

)

+C2

(
||δµ||L2(Ω)2 +

J∑
j=1
||δuj||L2(Ω)2

)
(4.29)

where Lecj ,L
pd
j ,Ldiv are the parts of L coming from the elasticity equations, the power density

measurements and the divergence condition, respectively. If C2 = 0, then the inverse operator
is locally well-defined.

Proof. Since (L,B) satisfies the Lopatinskii condition, by Theorem 4.2 we have the estimate

||w||X ≤ C||(S, g)||Y + C2||w||L2(Ω)d·J . (4.30)

If C2 = 0, then the inverse operator is locally well-defined. We remark that in dimension 2,
we can choose l = 2.

4.4.4 Injectivity
Lemma 4.7. Let the dimension be d = 2. The boundary value problem given by

L̃jδuj := −2∇ ·
( 2µ
|Fj|2

(Fj : ∇Sδuj)Fj
)

+ 2∇ · µ∇Suj + ω2δuj = f̃ in Ω,

B̃jδuj := δuj = g̃j on ∂Ω,

(4.31)

is elliptic. In addition, we have:

2∑
j=1
||δuj||H4(Ω)2≤ C̃

J∑
j=1

(
||L̃jδuj||H2(Ω)2 +||B̃jδuj||H5/2(Ω)2

)
+C̃2

J∑
j=1
||δuj||L2(Ω)2 . (4.32)

Proof. In fact, the principal symbol of the operator corresponding with this equation is
c · qj(x, ξ) where c is a constant, hence the ellipticity of the operator is given by Theorem
4.3. The Lopatinskii condition is given by the proof of Lemma 4.5. Therefore we have the
proposed estimate by Theorem 4.2.

Lemma 4.8. Let A be the operator corresponding to the equation given in the previous
lemma. Let the dimension be 2. If δuj ∈ ker(L̃j, B̃j), then

∫
Ω
|δuj|2 ≤

2||µ||2L∞
ω2

∫
Ω
|∇(δuj)|2. (4.33)
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Proof. Multiplying the equation (4.31) by δuj, and integrating by parts we have∫
Ω

2µ|∇Sδuj : F̂j|2dx−
∫

Ω
µ|∇Sδuj|2 + ω2

∫
Ω
|δuj|2dx = 0. (4.34)

On the other hand, let F⊥j be such that Fj : F⊥j = 0 and |F⊥j | = |Fj|. Then ∇Sδuj can be
expressed as

∇Sδuj = (∇Sδuj : F̂j)F̂j + (∇Sδuj : F̂⊥j )F̂⊥j (4.35)

and then ∫
Ω
µ|∇Sδuj|2 =

∫
Ω
µ
(
|∇Sδuj : F̂j|2 + |∇Sδuj : F̂⊥j |2

)
dx. (4.36)

Summing (4.34) and (4.36) we have

ω2
∫

Ω
|δuj|2dx =

∫
Ω
µ
(
|∇Sδuj : F̂⊥j |2 − |∇Sδuj : F̂j|2

)
dx

≤
∫

Ω
µ
(
|∇Sδuj : F̂j|2 + |∇Sδuj : F̂⊥j |2

)
dx

=
∫

Ω
µ|∇Sδuj|2dx

and we conclude noticing that

|∇Sδuj|2 = 1
4

∣∣∣∣∇δuj +∇δuᵀj
∣∣∣∣2

= 1
4

(
|∇δuj|2 + |∇δuᵀj |2 + 2∇δuj : ∇δuᵀj

)

≤ 1
4

(
2|∇δuj|2 + 2|∇δuᵀj |2

)

= |∇δuj|2.

Lemma 4.9. In dimension d = 2, there exists ω0 > 0 such that ∀ω ≥ ω0 we have
ker(L̃j, B̃j) = {0} for all j. In other words, the operator (L̃, B̃) is injective, where
L̃ = {L̃j}Jj=1 and B̃ = {B̃j}Jj=1.

Proof. From Lemma 4.7 with (L̃jw, B̃jδuj) = (0, 0) for all j and from Lemma 4.8, we have

J∑
j=1
||δuj||H4(Ω)2 ≤ C̃2

J∑
j=1
||δuj||L2(Ω)2 ≤

C̃2||µ||L∞(Ω)

ω

J∑
j=1
||∇δuj||L2(Ω)2 .

If we take ω large enough such that C̃2||µ||L∞ < ω, we can absorb the right side of the
estimate into the left hand side. So we conclude δuj = 0.

As a result we have the following result.
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Theorem 4.5. Let d = 2, J = 2, ω ≥ ω0 as in the previous lemma and the hypothesis of
Theorem 4.4. Then we have the estimate for (δµ, δuj) a solution to (4.17)

||δµ||H3(Ω)+
2∑
j=1
||δuj||H4(Ω)2≤C

2∑
j=1

(
||Lecj (δµ, δuj)||H2(Ω)2 +||Lpdj (δµ, δuj)||H3(Ω)

+||Ldiv(δµ, δuj)||H3(Ω) + ||Bδuj||H5/2(Ω)2

)
.

(4.37)

Proof. Considering equation (4.17) with the right hand side equal to zero, we can take the
second equation and obtain

δµ = − 2µ
|Fj|2

Fj : ∇Sδuk. (4.38)

Then we replace δµ in the first equation, so we obtain the equation (4.31). By Lemma 4.9
we obtain δuj = 0 and using equation (4.38) we conclude δµ = 0. Hence, we can eliminate
the terms multiplying C2 in equation (4.29), which is valid because we have the hypothesis
of Theorem 4.4.

4.4.5 Fixed-point algorithm
We introduce the general fixed point Lemmas which are needed to solve nonlinear PDE with
small data. Let J be a linear operator, and N a power nonlinearity. We view the nonlinear
PDE as

J(w) = N(w) in Ω,
w = f in Ω,
w = 0 on ∂Ω.

The solution then looks like

w = wlin + J−1N(w). (4.39)

We also have the following abstract iteration result:

Lemma 4.10. [[Tao06] Prop 1.38] Let N ,S be two Banach spaces and suppose we are given
an invertible linear operator J : N → S with the bound

||J−1F ||S ≤ C0||F ||N (4.40)

for all F ∈ N and some C0 > 0. Suppose that we are given a nonlinear operator N : S → N
which is a sum of a u dependent part and a u independent part. Assume the u dependent
part Nu is such that Nu(0) = 0 and obeys the following Lipschitz bounds

||N(u)−N(v)||N ≤
1

2C0
||u− v||S (4.41)

for all u, v ∈ Bε = {u ∈ S : ||u||S ≤ ε} for some ε > 0. In other words we have that
||N ||Ċ0,1(Bε→N ) ≤ 1

2C0
. Then, for all ulin ∈ Bε/2 there exists a unique solution u ∈ Bε with

the map ulin 7→ u Lipschitz with constant at most 2. In particular we have that

||u||S ≤ 2||ulin||S . (4.42)
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Remark 4. The proof of Lemma 4.10 consists in establishing the convergence of the following
iterative sequence:

u(n) =

ulin if n = 0,
ulin + J−1N(u(n−1)) if n ≥ 1.

Therefore, the Lemma 4.10 also establishes the convergence of this kind of sequences.

Given the abstract convergence Lemma above, we want to apply this to the linearised
elasticity problem to give a direct proof of existence and uniqueness to the system (4.17).

We set the following notation:

• vj = (µ, {uj}j) and v = {vj}Jj=1.

• Also, v = v0 + δv, where v0 = (µ0, {u0,j}Jj=1) = {vj}Jj=1.

• δv = (δµ, {δuj}j) = {wj}Jj=1 = w.

• F(vj) =



µ

2 |∇
Suj|2

2∇ · µ∇Suj + ω2uj

∇ · uj

, Hj =

Hj

Gj

0

, Bvj = gj.

• Fv = {Fvj}Jj=1, H = {Hj}Jj=1, Bv = {Bvj}Jj=1.

• Lj = F ′(v0j), that is,

Ljwj = F ′(v0j)wj =



δµ

2 |∇
Su0j|2 + µ∇Su0j : ∇Sδu0j

2∇ · δµ∇Su0j + 2∇ · µ∇Sδu0j + ω2δu0j

∇ · δu0j

.

• Sj =

δHj

δGj

0

.

• Lw = {Ljwj}Jj=1, S = {Sj}Jj=1.

• H0 := F(v0j), g0 = Bv0.

And consider the following nonlinear problem:{
F(v0 + w) = H in Ω,
Bw = g − g0 on ∂Ω, (4.43)

and the linear problem {
Lw = S in Ω,
Bw = g − g0 on ∂Ω. (4.44)
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The system (4.44) can be written as

Aw =
(
S

q − q0

)
. (4.45)

Note that
F(v0 + w) = F(v0) + F ′(v0)w + G(w; v0)

where G(w; v0) is given by

Gj(w; v0) =



δµ∇Su0j : ∇Sδuj + (µ0 + δµ)
2 |∇Sδuj|2

2∇ · δµ∇Sδuj

0


(4.46)

is such that
||(G(w; v0)||Y ≤ C||w||2X (4.47)

where the constant C depends only on the L∞(Ω) norm of |∇Suj| and µ for j = 1, 2 so that
we can write the problem as{

Lw = H−H0 − G(w; v0) in Ω,
Bw = g − g0 on ∂Ω. (4.48)

We define the following fixed point Algorithm:

Algorithm 1:

Input.

• A function v0 = (µ0, {u0j}), where µ0 is given and then u0,j is the solution of the system:
2∇ · µ0∇Suj + ω2uj = −∇pj in Ω,

∇ · uj = 0 in Ω,
uj = gj on ∂Ω.

(4.49)

• Observations H in Ω and boundary information g on ∂Ω, i.e.,
H = F(v0 + wtrue) and g = g0 + Bwtrue.

• A tolerance ε > 0.

Steps.

• Compute H0 via the formula H0 = F(v0).

• Define w0 = 0.

• Iterations, from k to k + 1:

• wk+1 = I(wk) := A−1(H−H0 − G(wk; v0), g − g0),
• Stop if ||wk+1 − wk|| < ε.

• Define v = v0 + wk+1

Return v
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Lemma 4.11. There exist a constant c1 = c1(ε) > 0 such that

||G(w; v0)− G(w̃; v0)||Y ≤ c1

(
||δµ− δµ̃||H3(Ω) +

∑
j

||δuj − δũj||(H4(Ω))2

)
(4.50)

provided ||δµ||H3(Ω), ||δuj||H4(Ω)2 ≤ ε, for some ε > 0. Such a constant satisfies c1(ε) → 0
whenever ε→ 0.

Proof. The definition of Gj(w, v0) in (4.46), implies Gj(w, v0) is a differentiable function of
w. The mean value theorem gives the result. Alternatively, using that H2(Ω)d and H3(Ω)d
are Banach algebras gives a bound for c1:

c1 ≤ CBAε
(
JCBA max

j
||u0j||H4(Ω)d + J ||µ0||H3(Ω) + 5ε

)
with CBA > 0 the constant from the bound given by the fact H2(Ω) and H3(Ω) are Banach
algebras, c.f. [Cia88] Theorem 6.1-4.

Theorem 4.6. If ε > 0 is sufficiently small so that

c1(ε)||A−1||L(Y,X ) <
1
2

where c1(ε) is given by the previous Lemma. Then the algorithm converges if in addition we
have

||(H−H0, g − g0)||X ≤
ε

2 ,

and we obtain

||w||X < ε. (4.51)

Proof. We take

J = A, N(w) = (G(w; v0), 0), wlin = (H−H0, g − g0).

Because the nonlinearity satisfies the conditions for the fixed point iteration by Lemma 4.11
application of the previous convergence Lemma 4.10 gives the desired result.

Remark 5. Note that the bound on A−1w̃ can be made precise by taking the constant from
(4.37), with w = A−1w̃, but it depends on the constant C appearing in Theorem 4.2.

4.5 Model with generic forcing term f (u)
Let f ∈ C3(H3(Rd)d, L2(Rd)d) be a differentiable function whose symbol is a polynomial with
degree at most 1. The model studied in this section is

2∇ · µ∇Suj + ω2uj − f(uj) = −∇pj in Ω,
µ

2 |∇
Suj|2 − f(uj) · uj = Hj in Ω,

∇ · uj = 0 in Ω,
uj = gj on ∂Ω,

(4.52)
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where j = 1, . . . , J . The motivation for considering the term f(uj) is to have a first intuition
on more general nonlinear elasticity models in dimension d = 2. In [Wat19], a simplified
nonlinear elasticity model is studied in dimension d = 3 with scalar valued functions.

The system (4.52) can be written as
{
FFTv = H in Ω,
Bv = g on ∂Ω, (4.53)

where v = (µ, {uj}Jj=1). The linearized problem for j ∈ {1, . . . , J} is then given by


2∇ · δµ∇Suj + 2∇ · µ∇Sδuj + ω2δuj = Df(uj)δuj in Ω,

Wj[δµ, δuj] = δHj in Ω,
∇ · δuj = 0 in Ω,

δuj = 0 on ∂Ω,

(4.54)

where

Wj[δµ, δuj] = δµ

2 |∇
Suj|2 + µ∇Suj : ∇Sδuj − (Df(uj)δuj) · uj − f(uj) · δuj

and if we take w = (δµ, {δuj}Jj=1) it can be re-written as
{
LFTw = S in Ω,
Bw = g on ∂Ω, (4.55)

and it can be seen as the equation

AFTw =
(
S
g

)
.

4.5.1 Ellipticity and Lopatinskii condition
The principal symbol associated to (4.54) measurements is exactly PJ(x, ξ) given in section
(4.4.1). That is, for J = 2 measurements:

PJ(x, ξ) =



|F1|2

µ
iµ(F1ξ)ᵀ 0

2iF1ξ −µ
(
|ξ|2 + (ξ ⊗ ξ)

)
0

0 iξᵀ 0
|F2|2

2 0 iµ(F2ξ)ᵀ

2iF2ξ 0 −µ
(
|ξ|2 + (ξ ⊗ ξ)

)
0 0 iξᵀ


which is a matrix of size J(d+ 2)× (Jd+ 1).

64



CHAPTER 4. HYBRID INVERSE PROBLEMS IN ELASTICITY

Corollary 4.1. Let d = 2, J = 2. Then the operator LFT is elliptic and B covers LFT .
Moreover we have the estimate for w = (δµ, {δuj}2

j=1) a solution to (4.54)

||δµ||H3(Ω)+
2∑
j=1
||δuj||H4(Ω)2≤C

2∑
j=1

(
||LecFT,j(δµ, δuj)||H2(Ω)2+||LpdFT,j(δµ, δuj)||H3(Ω)

+||LdivFT (δµ, δuj)||H3(Ω) + ||Bδuj||H5/2(Ω)2

)

+C2

(
||δµ||L2(Ω)2 +

2∑
j=1
||δuj||L2(Ω)2

)
(4.56)

where LecFT,j,L
pd
FT,j,LdivFT are the parts of LFT coming from the elasticity equations, the power

density measurements and the divergence condition, respectively.

Proof. Since the ellipticity and Lopatinskii condition depend only on the principal symbol,
then we have the result inmediatly from Theorem 4.4.

4.5.2 Injectivity
Lemma 4.12. The following boundary problem is elliptic:

Lj,FT [δuj] = 0 in Ω,
∇ · δuj = 0 in Ω,

δuj = 0 on ∂Ω,
(4.57)

for j = 1, 2, d = 2, where

Lj,FT [δuj] = 2∇
([
− 2µ
|F |2

(F : ∇Sδuj) + h(uj)δuj
]
Fj

)
+ 2∇ · µ∇Sδuj

+ω2δuj −Df(uj)δuj
and

h(uj) = 2
|Fj|2

(
uᵀjDf(uj)− f(uj)ᵀ

)
is elliptic. Therefore we have

2∑
j=1
||δuj||H4(Ω)2≤C

2∑
j=1

(
||LFT δuj||H2(Ω)2 + ||BFT δuj||H5/2(Ω)2

)
+ C2

2∑
j=1
||δuj||L2(Ω)2 .

Proof. In fact, since the symbol of f is a polynomial with degree at most 1, we notice
that the principal symbol for the system (4.57) is given by the principal symbol associated to
(4.17). The Lopatinskii condition is satisfied because it depends only on the principal symbol.
Therefore we conclude the ellipticity and the estimate by considering Theorem 4.4.

Lemma 4.13. Let ÃFT be the operator corresponding to the equation given in the previous
lemma. In dimension 2, if {δuj} ∈ ker(ÃFT ), then∫

Ω
|δuj|2 ≤ C̃(ω2)

∫
Ω
|Dδuj|2 (4.58)

where C̃(ω2) = 1 + 2||µ||L∞
ω2 − (||Df(uj)||L(H1,L2) + ||h(uj)||L(H1,L2))

.
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Proof. If δuj ∈ ker(ÃFT ), then:
Lj,FT [δµ, δuj] = 0 in Ω,

∇ · δuj = 0 in Ω,
δuj = 0 on ∂Ω.

(4.59)

Note that
1
|Fj|2

(Df(uj)δuj) · uj = 1
|Fj|2

(uᵀjDf(uj))δuj.

From the second equation in (4.59) we obtain:

δµ = − 2µ
|Fj|2

(Fj : ∇Sδuj) + h(uj)δuj.

On the other hand, multiplying the first equation of (4.59) by δuj and integrating, we obtain:

ω2
∫

Ω
|δuj|2 =

∫
Ω

(Df(uj)δuj) · δuj − 4
∫

Ω
µ|F̂j : ∇Sδuj|2

+2
∫

Ω
(h(uj)δuj)(F̂j : ∇Sδuj) + 2

∫
Ω
µ|∇Sδuj|2

and considering the identity (4.36):

ω2
∫

Ω
|δuj|2 =

∫
Ω

(Df(uj)δuj) · δuj + 2
∫

Ω
(h(uj)δuj)(F̂j : ∇Sδuj)

+2
∫

Ω
µ|F̂⊥j : ∇Sδuj|2 − 2

∫
Ω
µ|F̂j : ∇Sδuj|2

≤
(
||Df(uj)||L(H1,L2) + ||h(uj)||L(H1,L2)

)
||δuj||2L2

+(1 + 2||µ||L∞)
∫

Ω
|∇Sδuj|2.

Therefore we obtain the desired result∫
Ω
|δuj|2 ≤

1 + 2||µ||L∞
ω2 − (||Df(uj)||L(H3,L2) + ||h(uj)||L(H3,L2))

∫
Ω
|∇uj|2.

Lemma 4.14. In dim 2, there exists ω0 > 0 such that ∀ω ≥ ω0 we have ker(ÃFT ) = {0}. In
other words, the operator is injective.

Proof. From Corollary 4.1 taking ÃFTw = (0, 0), we have, using the previous lemma:∑
j

||δuj||H4(Ω)2 ≤ C2
∑
j

||δuj||L2(Ω)2 ≤ C2C̃(ω)
∑
j

||∇δuj||L2

where C̃(ω2) is given in (4.58). If we take ω large enough such that C2C̃(ω2) < 1, we can
absorb the right side of the estimate. So we conclude that δuj = 0.
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As a result we have the following corollary.

Corollary 4.2. Let d = 2, J = 2, and ω ≥ ω0 as in the previous lemma. Then we have the
estimate for (δµ, δuj) a solution to (4.54)

||δµ||H3(Ω) +
2∑
j=1
||δuj||H4(Ω)2 ≤ C

2∑
j=1

(
||Sj||H3(Ω)×H2(Ω)2 + ||gj||H5/2(Ω)2

)
. (4.60)

Proof. Considering equation (4.54) with the terms not depending on uj equal to zero, we can
take the second equation and obtain

δµ = 1
|Fj|2

[(
f(uj) + uᵀjDf(uj)

)
· δuj − 2µ∇Suj : ∇Sδuj

]
. (4.61)

Then we replace δµ in the first equation, so we obtain the equation (4.57). By Lemma 4.14
we obtain δuj = 0 and using equation (4.61) we conclude δµ = 0. Hence, we can eliminate
the terms multiplying C2 in equation (4.56), which is valid because we have the hypothesis
of Corollary 4.1.

4.5.3 Fixed point algorithm
We note that FFT = F +Fadd and LFT = L+Ladd with F and L given in the previous case
and

Faddvj =

−f(uj) · uj
−f(uj)

0

 , Lj,addvj =

−(Df(uj)δuj) · uj − f(uj) · δuj
−Df(uj)δuj

0

 .
In addition we define GFT (w; v) = F(v + w) − Fv − Lw. It is clear that GFT (w; v) =
G(w; v) + Gadd(w; v) with G defined as before and

Gj,add(w; v) =

o(δuj) · (uj + δuj)− (Df(uj)δuj) · uj
o(δuj)

0


where

o(δuj) =
∫ 1

0
(1− t)D2f(u+ tδuj)[δuj, δuj]dt

comes from Taylor’s formula

f(uj + δuj) = f(uj) +Df(uj)δuj +
∫ 1

0
(1− t)D2f(u+ tδuj)[δuj, δuj]dt.

The Fixed Point Algorithm for this case is the same as Algorithm 1, with the following
changes:

• Instead of F ,L,G,A, we use FFT ,LFT ,GFT ,AFT

• In the step of solving equation (4.49), we solve
2∇ · µ0∇Suj + ω2uj − f(uj) = −∇pj in Ω,

∇ · uj = 0 in Ω,
uj = gj on ∂Ω.

(4.62)
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Lemma 4.15. There exists a constant c2 = c2(ε) > 0 such that

||GFT (w; v0)− GFT (w̃; v0)||Y ≤ c2

(
||δµ− δµ̃||H3(Ω) +

∑
j

||δuj − δũj||(H4(Ω))2

)
, (4.63)

provided ||δµ||H3(Ω), ||δuj||H4(Ω)2 ≤ ε, for some ε > 0.

Proof. Let

ψ(δuj, δũj) = D2f(u+ tδuj)[δuj, δuj]−D2f(u+ tδũj)[δũj, δũj]

= D2f(uj + tδuj)[δuj − δũj, δuj] +D2f(uj + tδuj)[δũj, δuj − δũj]

+
(
D2f(uj + tδuj)−D2f(uj + tδũj)

)
[δũj, δũj],

hence
||ψ(δuj, δũj)||L2(Ω)2 ≤ c3ε||δuj − δũj||H1(Ω)2 ,

with c3 being the maximum between

2 sup{||D2f(h)||L(H4(Ω)2,L(H4(Ω)2,L2(Ω)2)); ||uj − h||H3(Ω)2 ≤ ε}

and
2ε2 sup{||D3f(h)||L(H4(Ω)2,L(H4(Ω)2,L(H4(Ω)2,L2(Ω)2))); ||uj − h||H4(Ω)2 ≤ ε}

given by the mean value theorem over D2f . Then

||o(δuj)− o(δũj)||L2(Ω)2 =
∫ 1

0
|1− t|c3ε||δuj − δũj||H4(Ω)2dt

≤ c3ε||δuj − δũj||H4(Ω)2 .

Then the conclusion is direct from Lemma 4.11 and the definition of Gadd.

Then we have the following analogue to Theorem 4.6:

Corollary 4.3. If ε > 0 is sufficiently small so that

c2(ε)||A−1
FT ||L(Y,X ) <

1
2

then the algorithm of this case converges if in addition we have

||(H−H0, g − g0)||X ≤
ε

2 ,

and we obtain

||w||X < ε. (4.64)
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4.6 Linear Elasticity with internal measurements,
incompressible case

The model considered in this section is given by the system (4.9), but with internal measure-
ments of uj, i.e.,

uj = Hj in Ω. (4.65)
In [WS15], Proposition 1 c), they proved that there is no ellipticity for the joint recovery of
µ and p. Therefore we must either apply the curl to the operator to remove ∇p or we must
hold ∇p fixed. This last case is studied in [WS15], establishing the ellipticity and Lopatinskii
condition with at least one measurement, but null kernel with two measurements. If we are to
use the model with ∇p fixed, then we know that λ is large. This causes serious convergence
problems when considering the Saint-Venant model of non-linear elasticity, for example with
results like 4.10, where we need to have a contraction map, so we chose to apply the curl
operator, which eliminates the λ terms.

Hence, we consider the model
ω2∇× uj + 2∇×∇ · µ∇Suj = 0 in Ω,

uj = Hj in Ω,
∇ · uj = 0 in Ω,

uj = gj on ∂Ω.

(4.66)

The linearization of (4.66) gives the following system:
ω2∇× δuj + 2∇×∇ · µ∇Sδuj + 2∇×∇ · δµ∇Suj = 0 in Ω,

δuj = δHj in Ω,
∇ · δuj = 0 in Ω,

δuj = 0 on ∂Ω.

(4.67)

4.6.1 Ellipticity
Let Σcurl(ξ) be the symbol of the curl operator, that is

Σcurl(ξ) = i (−ξ2 ξ1)

in dimension 2, and

Σcurl(ξ) = i

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0


in dimension 3. Note that if b ∈ Rd, then Σcurl(ξ) b = i b× ξ.

The linearized system then has the following principal symbol:

P(x, ξ) =

 2(∇Su ξ)× ξ −2µ Σcurl(ξ)
(
|ξ|2Id + ξ ⊗ ξ

)
0 Id
0 iξᵀ


with is a matrix with size (2d+ 1)× (d+ 1). Let ξ 6= 0 and C1, . . . ,Cd+1 the columns of that
matrix. Let α1, . . . , αd+1 ∈ C such that

d+1∑
i=1

αiCi = 0.
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We see that, because of the identity matrix, necessarily α2 = · · · = αd+1 = 0, so we have to
analyse the equation α1C1 = 0. This last equation can be reduced to the case studied in
[AWZ15], giving the nonellipticity for 1 measurement. If we consider the augmented system
for 2 measurements, we obtain the ellipticity as in [AWZ15] for 3 dimensions. Notice that
this computation in 2 dimensions corrects a mistake in the original computations presented
there.
The symbol for the augmented system is

P2(x, ξ) =



2(∇Su1 ξ)× ξ P (ξ) 0
0 Id 0
0 iξᵀ 0

2(∇Su2 ξ)× ξ 0 P (ξ)
0 0 Id
0 0 iξᵀ


where

P (ξ) = −2µΣcurl(ξ)
(
|ξ|2Id + ξ ⊗ ξ

)
.

In order to have ellipticity, that is, in order to P2(x, ξ) being column rank, we need that he
following condition holds:

|(∇Su1ξ)× ξ|+ |(∇Su2ξ)× ξ| 6= 0 ∀|ξ| 6= 0. (4.68)

This is slightly different to the case in [AWZ15] where the following is considered:

|(∇Su1ξ)× ξ|+ |(∇Su2ξ)× ξ| ≥ |ξ|2. (4.69)

It is unclear to the authors which condition is more natural.
Condition (4.68) is equivalent to the following: let A(j) = ∇Suj, and the matrices B(j)

defined in two dimensions by

B(j) =
(
a

(j)
11 − a

(j)
22 2(a(j)

12 + a
(j)
21 )
)

(4.70)

and in three dimensions by

B(j) =


a

(j)
23 0 0 a

(j)
22 − a

(j)
33 a

(j)
12 −a(j)

13

0 −a(j)
13 0 −a(j)

12 a
(j)
33 − a

(j)
11 a

(j)
23

0 0 a
(j)
12 a

(j)
13 −a(j)

23 a
(j)
11 − a

(j)
22

 . (4.71)

A condition in dimension d = 2, 3 for having ellipticity is that the d× d matrix(
B(1)

B(2)

)
must be invertible. (4.72)

The equivalence between (4.68) and (4.72) comes from the equality(
((A(1)ξ)× ξ)ᵀ
((A(1)ξ)× ξ)ᵀ

)
=
(
B(1)

B(2)

)(
ξ2

2 − ξ2
1

ξ1ξ2

)
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in dimension 2, and

(
((A(1)ξ)× ξ)ᵀ
((A(1)ξ)× ξ)ᵀ

)
=
(
B(1)

B(2)

)


ξ2
3 − ξ2

2
ξ2

3 − ξ2
1

ξ2
2 − ξ2

1
ξ2ξ3
ξ1ξ3
ξ1ξ2


in dimension 3. Note that condition (4.72) is a sufficient condition for∇Su1 6= α∇Su2 ∀α ∈ R.

4.6.2 Lopatinskii condition
The Lopatinskii condition we show is based in [AWZ15]. The analysis is the same, but in
certain step we consider the condition (4.68) instead of (4.69).
If

P2(x, iη + ν∂z)(µ̃, ũ) = 0,
then we easily see that ũ ≡ 0, due to the identity blocks. Then, consider A(j) = ∇Suj. Then
we have the equation

(A(j)ν × ν)∂2
z µ̃+ i(A(j)η × ν + A(j)ν × η)∂zµ̃− (A(j)η × η)µ̃ = 0, j = 1, 2.

If in each equation we apply the dot product with A(j)ν×ν, and then we sum both equations,
we obtain:

a∂2
z µ̃+ b∂zµ̃+ cµ̃ = 0 (4.73)

with
a =

∑
j

|A(j)ν × ν|2

which is nonzero by (4.68). Then, let λ1,2 = −ib±
√
−b2 − 4ac
2a the roots of the characteristic

polynomial related to equation (4.73). The solutions have the structure

µ̃(z) = α(exp(λ1z)− exp(λ2z))

since µ̃(0) = 0. If λ1,2 is purely imaginary, the only option for µ̃ going to 0 when z → ∞ is
when α = 0. If λ1,2 has a real part, then one of the exponentials goes to infinity and the
other goes to zero when z → ∞, so the only option we have is α = 0. That is, we have the
Lopatinskii condition.

The Douglis numbers are:

si =

0 if i ∈ {1, . . . , d+ 1, 2d+ 2, . . . , 3d+ 1},
−2 otherwise,

tj =

2 if i = 1,
3 otherwise,

σk = −1, k = 1, . . . , 2d.
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Then the operator over (δµ, {δuj}Jj=1) given by equation (4.67) with 2 measurements is defined
from

X = H l+2(Ω)×H l+3(Ω)d ×H l+3(Ω)d

to
Y =

(
H l(Ω)d ×H l+2(Ω)d ×H l+2(Ω)×H l+1/2(Ω)d

)2

where we can take l = 2 in dimension 2 and dimension 3. Then we have the following
estimate:

||δµ||Hl+2(Ω) +
2∑
j=1
||δuj||Hl+3(Ω)d ≤ C

2∑
j=1

(
||Lecj (δµ, δuj)||Hl(Ω)d

+||Lintj (δµ, δuj)||Hl+2(Ω)d

+||Ldivj δuj||Hl+2(Ω) + ||δuj||Hl+1/2(∂Ω)d

)

+C2

(
||δµ||L2(Ω) +

2∑
j=1
||δuj||L2(Ω)d

)
.

4.6.3 Local injectivity
The results in [GW16] prove local injectivity and the convergence of an algorithm for the
recovery of µ. They use unique continuation properties assuming δµ|∂Ω = 0 (in our notation).
In this section we show another injectivity argument, based on [Bal14].

If we consider the right hand side of (4.66) being 0, then we have

∇×∇ ·
(
δµA(j)

)
= 0, j = 1, 2.

Let ρ(x, ξ) be the principal symbol for this last equation. Then

ρ(x, ξ) =
(

(A(1)ξ)× ξ
(A(2)ξ)× ξ

)
.

In dimension 2, we need to assume that A(j)
12 6= 0 to obtain that (0, 1) is non characteristic

at the origin, since

A(j)
(

0
1

)
×
(

0
1

)
= A

(j)
12 .

In dimension 3, we need to assume that a(j)
13 , a

(j)
23 6= 0 to obtain that (0, 0, 1) is non character-

istic at the origin, since

A(j)(0, 0, 1)× (0, 0, 1) = (a(j)
23 ,−a

(j)
13 , 0).

The condition (4.68) provides the hypothesis for Theorem 3.6 in [Bal14], since there are not
real roots, and then, due to the fundamental algebra theorem, we have two different complex
roots. Therefore, we have a unique continuation principle for µ and we can take C2 = 0 in
the last estimate above.
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4.7 Nonlinear Elasticity (Saint-Venant model) with
internal measurements

Saint-Venant model is the first nonlinear model in elasticity that is studied in the literature.
It is a generalization of the linear model studied before, and it comes from the simplification
of the Green strain tensor

Eu = ∇Su+ 1
2∇u

ᵀ∇u. (4.74)

In linear elasticity, it is assumed that the displacements are sufficiently small for neglecting
the term ∇uᵀ∇u, considering the small strain tensor,

εu = ∇Su, (4.75)

c.f. [Ogd97] for the constant coefficient calculations. The Saint Venant-Kirchhoff model
considers (4.74) instead of (4.75), since it is assumed that the deformations are not so small,
and Eu plays the role of εu in the constitutive equations of linear elasticity.
In this section, we consider the Saint-Venant’s model under a periodic force with frequency
ω, which can be written as a “steady state” equation by:{

(Lµ,λ +Nµ,λ)u+ ω2u = 0 in Ω,
u = g on ∂Ω. (4.76)

where
Lµ,λu = 2∇ · µ∇Su+∇(λ∇ · u),
Nµ,λu = 2cτ∇ · (µ∇uᵀ∇u) +∇(λ|∇u|2).

and cτ is a constant in x coming from the fact that we cannot obtain a time independent
equation by applying a periodic force in time, as in the previous cases, since they are linear
in u. So, our model is considered for a fixed time τ .
The measurements are

u = H in Ω. (4.77)

Applying the curl operator in (4.76), we obtain{
(L̃µ + Ñµ)u+ ω2∇× u = 0 in Ω,

u = 0 on ∂Ω. (4.78)

where
L̃µu = 2∇×∇ · µ∇Su, Ñµu = 2cτ∇×∇ · (µ∇uᵀ∇u).

The linearized system from (4.78) with internal measurements is
DL̃(µ, u)[δµ, δu] +DÑ(µ, u)[δµ, δu] + ω2∇× δu = 0 in Ω,

δu = δH in Ω,
δu = 0 on ∂Ω.

(4.79)

where DL̃ and DÑ are the Fréchet derivatives of L̃ and Ñ , respectively, given by:

DL̃(µ, u)[δµ, δu] = 2∇×∇ · δµ∇Su+ 2∇×∇ · µ∇Sδu
DÑ(µ, u)[δµ, δu] = 2cτ∇×∇ · (δµ∇uᵀ∇u) + 2∇×∇ · (µ∇δuᵀ∇u),

+2∇×∇ · (µ∇uᵀ∇δu).
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4.7.1 Ellipticity
The symbol of the linearized operator is

P(x, ξ) =
 2

(
(∇Su+ cτ∇uᵀ∇u)ξ

)
× ξ P (ξ)

0 Id


where

P (ξ) = −2µΣcurl(ξ)
(
|ξ|2Id + ξ ⊗ ξ

)
(Id +∇uᵀ).

We see that Op(P(x, ξ)) is not elliptic. If we add a measurement, we will have the symbol

P2(x, ξ) =


2
(

(∇Su1 + cτ∇uᵀ1∇u1)ξ
)
× ξ P (ξ) 0

0 Id 0
2
(

(∇Su2 + cτ∇uᵀ2∇u2)ξ
)
× ξ 0 P (ξ)

0 0 Id


and we see that the linearized operator is elliptic if∣∣∣∣((∇Su1 + cτ∇uᵀ1∇u1)ξ

)
× ξ

∣∣∣∣+ ∣∣∣∣((∇Su2 +∇cτuᵀ2∇u2)ξ
)
× ξ

∣∣∣∣ 6= 0 ∀ξ 6= 0.

Let A(j) = ∇Suj +cτ∇uᵀj∇uj, and and the matrices B(j) defined as in (4.70)-(4.71). Then
a condition for having ellipticity is (4.72).

4.7.2 Lopatinskii condition and local injectivity
The deduction of the Lopatinskii condition and local injectivity are the same as the presented
in section 4.6, with the change

A(j) = ∇Suj + cτ∇uᵀj∇uj, j = 1, 2.

The Douglis numbers are:

si =

0 if i ∈ {1, . . . , d, 2d+ 1, . . . , 3d},
−2 otherwise,

tj =

2 if i = 1,
3 otherwise

σk = −1, k = 1, . . . , 2d.

Then the operator over (δµ, {δuj}Jj=1) given by equation (4.79) with 2 measurements is defined
from

X = H l+2(Ω)×H l+3(Ω)d ×H l+3(Ω)d

to
Y =

(
H l(Ω)d ×H l+2(Ω)d ×H l+1/2(Ω)d

)2
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with l = 2 in dimension 2 and 3. Then we have the following estimate:

||δµ||Hl+2(Ω)+
2∑
j=1
||δuj||Hl+3(Ω)d ≤ C

2∑
j=1

(
||Lecj (δµ, δuj)||Hl(Ω)d

+||Lintj (δµ, δuj)||Hl+2(Ω)d + ||δuj||
Hl+ 1

2(∂Ω)d

)

+C2

(
||δµ||L2(Ω)+

2∑
j=1
||δuj||L2(Ω)d

)
.

Since we have local injectivity, we can take C2 = 0. That is, we have

||δµ||Hl+2(Ω)+
2∑
j=1
||δuj||Hl+3(Ω)d ≤ C

2∑
j=1

(
||Lecj (δµ, δuj)||Hl(Ω)d

+||Lintj (δµ, δuj)||Hl+2(Ω)d + ||δuj||
Hl+ 1

2(∂Ω)d

)
.

(4.80)

4.7.3 Algorithm
We define µ0 as our first guess for µ and u0 a solution of the equation (4.78) corresponding to
µ = µ0. Let δû be the displacement satisfying H = u0+δû, and δµtr such that µtr = µ0+δµtr.

In order to reconstruct µtr from the measurements H, we define the discrepancy func-
tional:

J [δµ] = J1[δµ] + J2[δµ] = 1
2

(
||P1[δµ]− δû1||2Xu + ||P2[δµ]− δû2||2Xu

)
where Pj is the operator given by Pj : δµ 7→ δuj defined by equation (4.79) and Xu =
H l+3(Ω)d. Our strategy for determining µ from {H1, H2} is to solve the problem

min
δµ∈Xµ

J [δµ]

where Xµ = H l+2(Ω).
Following [AWZ15], we consider the following iterations{

δµn+1 = δµn − ηDJ [δµn],
δµ0 = 0. (4.81)

For each α multi-index of dimension d satisfying |α| ≤ l + 3, let ψαj = ∂|α|Pj[δµ]
∂xα

, ψαj,tr =
∂|α|δûj
∂xα

and the functionals:

J α
j [δµ] = 1

2 ||ψ
α
j − ψαj,tr||2L2(Ω)d ,

The derivative of J α
j can be written

DJ α
j [δµ] =

(
∂|α|

∂xα
DPj[δµ]

)∗( ∂|α|
∂xα

Pj[δµ]− ∂|α|

∂xα
Pj[δµtr]

)
. (4.82)
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This expression allows to conclude that the algorithm given by (4.81) converges (see [AWZ15]
Theorem 6) when (4.80) holds and the initial guess µ0 is close enough to µ.

On the other hand we need to determine each DJ α
j [δµ] in a more explicit form.

Lemma 4.16. Let φαj be a solution of the following adjoint system:


2∇ ·
[(
δµ(Id + 2cτ∇uj) + 2cτµ∇δuj

)
∇S(∇× φαj )

]
= ψαj − ψαj,tr in Ω,

∇S(∇× φαj ) = 0 on ∂Ω,

∇× φαj = 0 on ∂Ω,

φαj = 0 on ∂Ω,

(4.83)

Then, the Fréchet-derivative of J α
j is given by:

DJ α
j [δµ] = 2

[
∇Sδuj + cτ

(
(∇δuᵀj∇uj) + (∇δuᵀj∇uj)ᵀ

)]
: ∇S(∇× φαj ).

Proof. We compute the second order derivatives of L̃ and Ñ :

D2L̃(µ, uj)[δµ, δuj; γ, w] = 2∇×∇ · (δµ∇Sw) + ω2∇× w
+2∇×∇ · γ∇Sδuj,

D2Ñ(µ, uj)[δµ, δuj; γ, w] = 2cτ∇×∇ ·
(
δµ(∇wᵀ∇uj +∇uᵀj∇w)

+µ(∇δuᵀj∇w +∇wᵀ∇δuj)
)

+2cτ∇×∇ ·
(
γ(∇δuᵀj∇uj +∇uᵀj∇δuj)

)
.

We have, using the adjoint equation and integrating by parts:∫
Ω

(ψαj − ψαj,tr) · wdx

=
∫

Ω
2∇ ·

[(
δµ(Id + 2cτ∇uj) + 2cτµ∇δuj

)
∇S(∇× φαj )

]
· w dx

=
∫

Ω
∇×

[(
2∇ · δµ∇Sw + ω2w

)
+ 2cτ

(
δµ(∇wᵀ∇uj +∇uᵀj∇w)

+µ(∇δuᵀj∇w +∇wᵀ∇δuj)
)]
· φαj dx

= −
∫

Ω

[
2∇×∇ · γ

(
∇Sδuj + cτ (∇δuᵀj∇uj +∇uᵀj∇δuj)

)]
· φαj dx

where in the last step we used the computation of the second order derivative of L̃+ Ñ and
that

D2(L̃+ Ñ)(µ, uj)[δµ, δuj; γ, w] = 0.
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Finally, using (4.82), integrating by parts and considering w = γ
∂α

∂xα
DPj[δµ], we have:

DJ α
j [δµ]γ =

∫
Ω

(ψαj − ψαj,tr) · w dx

=
∫

Ω
γ
[
2
(
∇Sδu+ cτ (∇δuᵀ∇u+∇uᵀ∇δu)

)
: ∇S(∇× φαj )

]
dx.

Therefore,

DJ α
j [δµ] = 2

(
∇Sδu+ cτ (∇δuᵀ∇u+∇uᵀ∇δu)

)
: ∇S(∇× φαj ).
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Chapter 5

Conclusion

5.1 Conclusion
In chapter 2 we have presented a robust method for estimating velocities from dual-VENC
data by PC-MRI. We presented a theoretical analysis of the phase contrast MRI technique
under the approach of least squares functionals and under this comprehension we gave a new
idea for a more robust and less noisy estimation of the velocity, involving three measurements.
We also presented an empirical analysis by making measurements for a phantom and for
volunteers. We reconstructed velocities for different combinations of VENCs, and we propose
some convenient combinations for the two VENCs used, such that in practice it would be
necessary to choose only one of the VENCs. The reconstruction algorithm is relatively simple
and it could be implemented by MRI scanners.

The method proposed has the potential of changing the protocols in PC-MRI, since we
change from the need of scanning with |utrue| ≤ VENC, which is in general not known a priori
to hold, to scan with high-VENC satisfying |utrue| ≤ 3VENC, which augment the chance to
obtain aliasing-free images at the first try.

In chapter 3 we have presented the extension of ODV in the case of the recovery of
harmonic displacements by PC-MRI and we showed a practical analysis for certain types of
waveforms. We presented the extension for measurements which can lead us to a discrete
Fourier transform in time as well. Therefore we presented useful measurements for obtaining
the input of different problems in elastography.

In chapter 4 we studied some hybrid inverse problems in elasticity. We focused on time-
independent equations in the displacement field, which is a vector-valued solution. We ana-
lyzed ellipticity conditions of the PDE problem augmented with interior data: power density
measurements and the internal displacements. Since our information is internal, we obtained
better stability estimates than boundary value inverse problems.

The inverse problem of linear elasticity with power density measurements was studied in
dimension two with the additional knowledge of the pressure, because there is no ellipticity,
according to Definition 4.1, in the case of unknown pressure. We obtained ellipticity for two
measurements under certain conditions over the small strain tensors which seem natural to
impose, and a trivial kernel if in addition we impose a lower bound for the frequency ω.
We showed the convergence of a reconstruction algorithm for the recovery of µ. We also
applied the techniques applied for this inverse problem in the study of the recovery of µ if
the equation has a nonlinear forcing term, which is a differential operator of order at most
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one. This work is an extension of [Bal14] to the case of elasticity, which is not present in the
literature, and using different techniques in computations.

The inverse problem of Saint-Venant elasticity model with internal measurements was
studied for dimension two and three. We showed ellipticity for two measurements under
certain conditions over the strain tensors. We also obtained a trivial kernel without imposing
any condition over the frequency ω, which is a good result if we place this problem in the
context of the low hencs in MRE. We finally proposed an algorithm for the reconstruction
of µ based in the obtained stability estimates. This work can be seen as an extension of
[AWZ15] to the case of the Saint-Venant model.

5.2 Perspectives
The ODV idea certainly has questions to explore about, for example, the possibility of adap-
tation to, for example, 4D-flow [Sta+14] and displacement encoding with stimulated echoes
(DEnSE) [Ale+99].

The ODV technique can be explored in cases of high variability of the recovered parameter,
since it is a non-smoothing technique as the other techniques found in the literature. Finally,
it would be interesting to combine ODV with other approaches in inverse problems in imaging,
for example compressed sensing [Lus+08], in order to accelerate acquisitions or coupling the
recovered parameter with a physical model in order to denoise the recovery.

The power density measurements is an example of nonlinear model of measurements in
hybrid inverse problems and it is open to study other nonlinear models, for example with any
arbitrary power over the norm of the small strain tensor, analogue to [Bal13]. In addition,
reasonable extensions are to obtain analog results in dimension three and to assume that the
pressure is unknown.

About the nonlinear models of elasticity, it would be interesting to extend the study of the
inverse problem for the Saint Venant model to another models, for example the Neo-Hookean
model.

In real applications, the functions involved in the models of hybrid inverse problems could
be not as smooth as we assume them. Hence, it would be useful to reduce the regularity in
the estimates obtained in this work. In addition, the studied problems are time-independent.
A possible future work is to study the time-dependent case, which would increase the number
of potential applications to other modalities of elasticity imaging.

Finally, it would be interesting to implement the proposed algorithms in hybrid inverse
problems, verifying the convergence in reasonable times. This would be an important step
for showing the applicability of this work.

80



Appendix A

Summary

In this thesis we present a study of inverse problems and methods for the reconstruction of the
following parameters of interest: the velocity of blood in vessels via MRI, the displacements
of tissues under a harmonic regime via MRI, and the shear modulus from different models of
hybrid imaging: linear elasticity with internal measurements of elastic energy density (power
density), and the (nonlinear) Saint-Venant model of elasticity with internal measurements of
the displacement field.

In Chapter 1 an introduction is presented giving a context in previous theory and appli-
cations. The main motivation comes from medical imaging, where MRI and elastography are
prominent examples.

In Chapter 2 we present a robust method for estimating velocities from dual-VENC data
by PC-MRI. We present a theoretical analysis of the phase contrast MRI technique using the
approach of least squares functionals and under this comprehension we propose a new idea for
a more robust and less noisy estimation of the velocity, involving three measurements. We also
present an empirical analysis by making measurements for a phantom and for volunteers. We
reconstruct velocities for different combinations of VENCs, and we propose some convenient
combinations for the two VENCs used, such that in practice it would be necessary to choose
only one of the VENCs. The reconstruction algorithm is relatively simple and it could be
implemented in MRI scanners. The proposed method has the potential of changing the
protocols in PC-MRI, since we change from the need of scanning such that the true velocity
is less than the VENC, which is in general not known a priori to hold, to scan with high-
VENC being less than the true velocity, even being the third part of it, which augment the
chance to obtain aliasing-free images at the first try.

In Chapter 3 we present the extension of ODV to the case of the recovery of harmonic
displacements by PC-MRI and we show a practical analysis for certain types of waveforms.
We present the extension for measurements which can lead us to a discrete Fourier transform
in time as well. Therefore we present useful measurements for obtaining the input of different
problems in elastography.

In Chapter 4 we study some hybrid inverse problems in elasticity. We focus on time-
independent equations in the displacement field, which is a vector-valued solution. We ana-
lyze ellipticity conditions of the PDE problem augmented with interior data: power density
measurements and the internal displacements. Since our information is internal, we obtain
better stability estimates than boundary value inverse problems.

The inverse problem of linear elasticity with power density measurements is studied in
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dimension two with the additional knowledge of the pressure, because there is no ellipticity,
in the case of unknown pressure. We obtain ellipticity for two measurements under certain
conditions over the small strain tensors which seem natural to impose, and a trivial kernel if
in addition we impose a lower bound for the mechanical frequency. We show the convergence
of a reconstruction algorithm for the recovery of the shear modulus. We also apply the
techniques applied for this inverse problem in the study of the recovery of the shear modulus
if the equation has a nonlinear forcing term, which is a differential operator of order at most
one.

The inverse problem of Saint-Venant elasticity model with internal measurements is stud-
ied for dimension two and three. We show ellipticity for two measurements under certain
conditions over the strain tensors. We also obtain a trivial kernel without imposing any
condition on the mechanical frequency, which is a good result if we place this problem in the
context of the low HENCs in MRE. We finally propose an algorithm for the reconstruction
of the shear modulus based on the obtained stability estimates.
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Samenvatting

In dit proefschrift presenteren we een studie van inverse problemen en methoden voor de re-
constructie van de volgende interessante parameters: de snelheid van bloed in bloedvaten via
MRI, de verplaatsingen van weefsels onder een harmonisch regime via MRI en de afschuifmod-
ulus van verschillende elasticiteitsmodellen van hybride beeldvorming: lineaire elasticiteit met
interne metingen van elastische energiedichtheid (vermogensdichtheid), en het (niet-lineaire)
Saint-Venant elasticiteitsmodel met interne metingen van het verplaatsingsveld.

In Hoofdstuk 1 presenteren we een inleiding die een context biedt voor eerdere theorieën
en toepassingen. De belangrijkste motivatie komt van medische beeldvorming, met MRI en
elastografie als prominente voorbeelden.

In Hoofdstuk 2 presenteren we een robuuste methode voor het schatten van snelheden
op basis van dual-VENC-gegevens met behulp van PC-MRI. We presenteren een theoretis-
che analyse van de fasecontrast-MRI-techniek onder de kleinste kwadraten benadering en
daarmee introduceren we een nieuw idee voor een robuustere en minder ruisende schatting
van de snelheid, met drie metingen. We hebben ook een empirische analyse gepresenteerd
door metingen te doen met een fantoom en met vrijwilligers. We hebben de snelheden voor
verschillende combinaties van VENC’s gereconstrueerd en we stellen enkele gunstige com-
binaties voor de twee gebruikte VENC’s voor, zodat het in de praktijk nodig zou zijn om
slechts één van de VENC’s te kiezen. Het reconstructie-algoritme is relatief eenvoudig en kan
worden gëımplementeerd in MRI-scanners. Onze methode heeft mogelijk als gevolg dat pro-
tocollen in PC-MRI gewijzigd zullen worden. Huidige methodes hebben namelijk meerdere
metingen nodig om er voor te zorgen dat de ware snelheid kleiner is dan de VENC. Voor onze
methode is het slechts nodig dat de hoge-VENC minstens een derde is van de ware snelheid.
Dit vergroot de kans op een aliasing-vrije afbeelding bij de eerste poging.

In Hoofdstuk 3 presenteren we de uitbreiding van ODV in het geval van het bepalen
van harmonische verplaatsingen door PC-MRI en we laten een praktische analyse zien voor
bepaalde soorten golven. Ook introduceren we een uitbreiding voor metingen die tot een dis-
crete Fourier-transformatie in de tijd kunnen leiden. Daarom hebben we bruikbare metingen
gepresenteerd voor het verkrijgen van de input van verschillende problemen in elastografie.

In Hoofdstuk 4 bestuderen we enkele hybride inverse problemen in elasticiteit. We hebben
ons gericht op tijdonafhankelijke vergelijkingen in het verplaatsingsveld, die een vector-
waardige oplossing hebben. We analyseren condities voor ellipticiteit van het PDE-probleem
aangevuld met interne gegevens: vermogensdichtheidsmetingen en interne verplaatsingen.
Omdat onze informatie intern is, hebben we betere stabiliteitsschattingen verkregen dan in-
verse problemen gebaseerd op grenswaarden. Het inverse probleem van lineaire elasticiteit
met vermogensdichtheidsmetingen is bestudeerd in twee dimensies met de aanvullende kennis
van de druk, omdat er geen ellipticiteit is in het geval van onbekende druk. We verkrijgen
ellipticiteit voor twee metingen onder bepaalde natuurlijke condities op de kleine spanning-
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stensoren, en een triviale kern als we ook een ondergrens voor de mechanische frequentie
opleggen. We hebben de convergentie aangetoond van een reconstructie-algoritme voor het
bepalen van de afschuifmodulus. We hebben de technieken voor dit omgekeerde probleem
ook toegepast in de studie van afschuifmodulusherstel als de vergelijking een niet-lineaire
forceringsterm heeft, die hoogstens een differentiële operator van orde één is.

Het inverse probleem van het Saint-Venant-elasticiteitsmodel met interne metingen is
bestudeerd voor twee en drie ruimtelijke dimensies. We laten ellipticiteit zien voor twee
metingen onder bepaalde omstandigheden over de spanningstensoren. We verkrijgen ook een
triviale kern zonder enige voorwaarde te stellen aan de mechanische frequentie, wat een goed
resultaat is als we dit probleem in de context van de lage HENC’s in MRE plaatsen. We
stellen uiteindelijk een algoritme voor die de reconstructie van de afschuifmodulus op basis
van de verkregen stabiliteitsschattingen mogelijk maakt.
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Resumen

En esta tesis presentamos un estudio de problemas inversos y métodos para la reconstrucción
de los siguientes parámetros de interés: la velocidad sangúınea en los vasos v́ıa imágenes
de resonancia magnética (MRI), el desplazamiento de tejidos bajo un régimen armónico v́ıa
MRI, y el módulo de corte a partir de distintos modelos h́ıbridos de imágenes: elasticidad
lineal con mediciones internas de densidad de enerǵıa (o densidad de potencia) elástica, y
el modelo de elasticidad (no-lineal) de Saint-Venant con mediciones internas del campo de
desplazamientos.

En el Caṕıtulo 1, se presenta una introducción dando un contexto en teoŕıa previa y
aplicaciones. La mayor motivación viene de las imágenes médicas, donde MRI y la elastograf́ıa
son ejemplos prominentes.

En el Caṕıtulo 2 presentamos un método robusto para la estimación de velocidades a
partir de datos de dual-VENC en MRI. Presentamos un análisis teórico de la técnica de
contraste de fase (PC-MRI) bajo el enfoque de funcionales de mı́nimos cuadrados y bajo esta
comprensión proporcionamos una nueva idea para una estimación más robusta y menos rui-
dosa de la velocidad, involucrando tres mediciones. Además presentamos un análisis emṕırico
mediante mediciones en un fantoma y voluntarios. Reconstruimos velocidades para distintas
combinaciones de VENCs, y proponemos algunas combinaciones convenientes para los dos
VENCs usados, tal que en la práctica seŕıa necesario escoger sólo uno de los VENCs. El al-
goritmo de reconstrucción es relativamente simple y podŕıa ser implementado por escáneres
de resonancia magnética. El método propuesto tiene el potencial de cambiar los protocolos
en PC-MRI, ya que cambiamos desde la necesidad de escanear tal que la velocidad real sea
menor que el VENC, lo cual, en general, no se sabe si se cumple a priori, a escanear con
un VENC alto siendo menor que la velocidad real, incluso siendo la tercera parte, lo cual
aumenta las posibilidades de obtener imágenes libres de aliasing en el primer intento.

En el Caṕıtulo 3, presentamos la extensión de la técnica ODV al caso de la recuperación de
desplazamientos armónicos v́ıa PC-MRI y mostramos un análisis práctico para ciertos tipos
de waveforms. Además, presentamos la extensión para mediciones que pueden conducirnos a
una transformada de Fourier discreta en tiempo. Por lo tanto, presentamos mediciones útiles
para la obtención de un input de diferentes problemas en elastograf́ıa.

En el Caṕıtulo 4, estudiamos algunos problemas inversos h́ıbridos en elasticidad. Nos
enfocamos en ecuaciones independientes del tiempo del campo de desplazamientos, el cual es
una solución a valores vectoriales. Analizamos condiciones de elipticidad para el problema
de EDP aumentado con datos interiores: mediciones de densidad de potencia y mediciones
internas de desplazamientos. Como nuestra información es interna, obtenemos estimaciones
de estabilidad mejores que en problemas inversos de valores de frontera.

El problema inverso de elasticidad lineal con mediciones de densidad de potencia es estu-
diado en dimensión dos con el conocimiento adicional de la presión, ya que no hay elipticidad
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en el caso de presión desconocida. Obtenemos elipticidad para dos mediciones bajo cier-
tas condiciones sobre los tensores de estrés, las cuales parecen ser naturales de imponer, y
además obtenemos un kernel trivial si además imponemos una cota inferior para la frecuencia
mecánica. Mostramos la convergencia de un algoritmo de reconstrucción para el módulo de
corte. Además aplicamos las técnicas usadas para este problema inverso en el estudio de
la recuperación del módulo de corte en el caso en que la ecuación además tiene un término
forzante, el cual es un operador diferencial de orden a lo más uno.

El problema inverso en el modelo de elasticidad de Saint-Venant con mediciones inter-
nas es estudiado para dimensión dos y tres. Mostramos la elipticidad para dos mediciones
bajo ciertas condiciones sobre los tensores de corte. Además obtenemos un kernel trivial
sin imponer ninguna condición sobre la frecuencia mecánica, el cual es un buen resultado si
contextualizamos este problema en HENCs bajos en MRE. Finalmente, proponemos un al-
goritmo para la reconstrucción del módulo de corte basado en las estimaciones de estabilidad
obtenidas.
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Propositions

1. In dual-VENC technique it is necessary to measure three times, that is, three different
velocity encoding magnetic gradients, instead of classical PC-MRI, where the number
of measurements is two.

2. Thanks to the additional measurement, the effective VENC increases if both VENCs
are chosen appropriately, for instance by a factor of three if the ratio between low and
high VENCs is 3/4.

3. The dual-VENC method can be performed by the scanner if it is programmed properly
and the high VENC is set, that is, the scanner can perform the choice of the low
VENC, the search interval and the minimization. Therefore, it is not necessary any
user intervention.

4. It is possible to recover uniquely and in a stable way the shear modulus in a two
dimensional harmonic linear elasticity model with two sets of internal power density
measurements, if the pressure from the Stokes approximation is given and the mechan-
ical frequency is sufficiently large.

5. It is possible to recover uniquely and in a stable way the shear modulus in a two or
three dimensional harmonic Saint-Venant elasticity model with two sets of internal
displacement measurements.

6. Stability estimates for the shear modulus in the studied elasticity and measurements
models allow to conclude the convergence of reconstruction algorithms for this param-
eter, provided the initial guess is close enough to the solution.
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