
Comput. Geom. 89 (2020) 101630
Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
www.elsevier.com/locate/comgeo

Fast and compact planar embeddings ✩

Leo Ferres a, José Fuentes-Sepúlveda b,c, Travis Gagie c,d,e,∗, Meng He e,
Gonzalo Navarro b,c,f

a Faculty of Engineering, Universidad del Desarrollo & Telefónica I+D, Santiago, Chile
b Department of Computer Science, University of Chile, Santiago, Chile
c Center of Biotechnology and Bioengineering (CeBiB), Chile
d School of Computer Science and Telecommunications, Diego Portales University, Santiago, Chile
e Faculty of Computer Science, Dalhousie University, Halifax, Canada
f Millennium Institute for Foundational Research on Data (IMFD), Chile

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 August 2017
Accepted 11 February 2020
Available online 28 February 2020

Keywords:
Planar embedding
Compact data structures
Parallel construction

There are many representations of planar graphs, but few are as elegant as Turán’s (1984):
it is simple and practical, uses only 4 bits per edge, can handle self-loops and multi-
edges, and can store any specified embedding. Its main disadvantage has been that “it
does not allow efficient searching” (Jacobson, 1989). In this paper we show how to add
a sublinear number of bits to Turán’s representation such that it supports fast navigation
while retaining simplicity. As a consequence of the inherited simplicity, we offer the first
efficient parallel construction of a compact encoding of a planar graph embedding. Our
experimental results show that the resulting representation uses about 6 bits per edge in
practice, supports basic navigation operations within a few microseconds, and can be built
sequentially at a rate below 1 microsecond per edge, featuring a linear speedup with a
parallel efficiency around 50% for large datasets.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The rate at which we generate data is increasing even faster than the speed and capacity of computing hardware. Thus,
if we want to use efficiently what we generate, we need to represent it in better ways. The surge in the number and
complexity of the maps we want to have available on mobile devices is particularly pronounced and has resulted in diverse
ways to store planar graphs. Each of these representations has its disadvantages, however, so in this paper we introduce a
compact representation of a planar graph that supports fast navigation, can represent arbitrary planar embeddings and is
easy to build, and we demonstrate its practicality.

More concretely, as described in Section 2, Tutte [2] showed that a planar embedding of a connected graph with n nodes
and m edges can be represented in m log 12 ≈ 3.58m bits, and Blelloch and Farzan [3] gave a data structure matching this
bound except for o(m)-bit redundancy, that in addition supports efficient navigation. Their structure is complex, however,
and no implementation has been attempted. The much simpler representation of Turán [4] uses 4m bits, which is still close
to the lower bound, but it does not support navigation. Other representations do not support navigation [5], take more

✩ A previous version of this paper appeared in the 15th Algorithms and Data Structures Symposium (WADS 2017) [1].

* Corresponding author at: Dalhousie University, Canada.
E-mail addresses: lferres@udd.cl (L. Ferres), jfuentess@dcc.uchile.cl (J. Fuentes-Sepúlveda), travis.gagie@dal.ca (T. Gagie), mhe@cs.dal.ca (M. He),

gnavarro@dcc.uchile.cl (G. Navarro).
https://doi.org/10.1016/j.comgeo.2020.101630
0925-7721/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comgeo.2020.101630
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2020.101630&domain=pdf
mailto:lferres@udd.cl
mailto:jfuentess@dcc.uchile.cl
mailto:travis.gagie@dal.ca
mailto:mhe@cs.dal.ca
mailto:gnavarro@dcc.uchile.cl
https://doi.org/10.1016/j.comgeo.2020.101630

2 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
than 4m + o(m) bits [6,7], or cannot represent multi-edges or certain planar embeddings [8,5,9]. For graphs large enough to
require compact representations, how to build those representations is also likely to be an issue and, in particular, whether
it is possible to do so in parallel. We are not aware of any previous work on efficient parallel construction of compact
representations of planar graphs and we finish Section 2 by reviewing some obstacles for specific representations.

Our contribution in this paper is threefold:

1. We show how to add o(m) bits to Turán’s representation such that it supports fast navigation. We can list the edges
incident to any vertex in clockwise or counter-clockwise order using constant time per edge, including starting the
enumeration at any desired neighbor. As a consequence, we can also list the nodes on a face in constant time per
node. We can also find a vertex’s degree in time O(f (m)) for any f (m) ∈ ω(1), and determine whether two vertices
are neighbors in O(f (m)) time for any f (m) ∈ ω(log m).

2. We give a parallel algorithm that builds our data structure from any spanning tree of the planar embedding, in O(m)

work and O(log m) span (O
(

log2 m
)

span to support the neighbor query). This is the first linear-work practical parallel
algorithm for building compact representations of planar embeddings.

3. We implement and experimentally evaluate the space, query, and construction performance of our representation. In
practice, our structure uses less than 6m bits, performs navigation operations within a few microseconds, and can be
built sequentially at a rate below 1 microsecond per edge. The parallel algorithm scales linearly, with an efficiency
around 50% for large datasets, with up to 24 processors.

Summarizing, we offer the first simple compact representation of planar embeddings, which is easy to program, uses
little space, and is efficiently built and navigated. Our structure is thousands of times faster than the classical adjacency list
structure when such structure cannot fit in main memory, but ours fits due to its smaller memory footprint. We have made
the code publicly available at http://www.dcc .uchile .cl /~jfuentess /pemb/.

Turán chooses an arbitrary spanning tree of the graph; roots it at a vertex on the outer face; chooses an incidence of
the outer face at the root; and traverses the tree, starting with the edge immediately after that incidence of the outer face
and writing the tree’s balanced-parentheses representation as he goes. This sequence is interleaved with another, over a
different binary alphabet, consisting of an occurrence of one character for the first time he sees each edge not in the tree
and an occurrence of the other character for the second time he sees that edge. These two sequences can be written as
three sequences over {0, 1}: one of length 2n − 2 encoding the balanced-parentheses representation of the tree; one of
length 2m − 2n + 2 encoding the interleaved sequence; and one of length 2m indicating how they are interleaved.

By an incidence of the outer face at the root, we mean a place where the outer face touches the root. For example, in
the planar embedding shown at the top left of Fig. 1, with the spanning tree shown in red and rooted at vertex 1, the
elements touching the root are (in counter-clockwise order, starting arbitrarily): face A, edge (1, 1), face H, edge (1, 1), face
A, edge (1, 3), face B, edge (1, 2), face D, edge (1, 5), face F, and edge (1, 7). There are two incidences of the outer face A at
the root, between edges (1, 7) and (1, 1) and between edges (1, 1) and (1, 3). Therefore, Turán can start his traversal of the
spanning tree by crossing either edge (1, 1) or edge (1, 3); he cannot start by crossing edge (1, 7), even though it is on the
outer face and is incident to the root, because doing so would result in an encoding indicating that face F is the outer face.

Our extension of Turán’s representation is based on the observation that the interleaved sequence encodes the balanced-
parentheses representation of the complementary spanning tree of the dual of the graph. By adding a sublinear number of
bits to each balanced-parentheses representation, we can support fast navigation in the trees, and by storing the sequence
indicating the interleaving as a bitvector with support for operations rank and select [6], we can support fast navigation in
the graph.

Section 2 surveys the related work on compact representations of planar embeddings. Section 3 describes bitvectors and
the balanced-parentheses representation of trees, which are the building blocks of our extension of Turán’s representation.
We also describe the model of parallelism we use in our construction algorithms. In Section 4 we prove the observation
mentioned above on Turán’s interleaved sequence. In Section 5 we describe our data structure and how we implement
queries. Section 6 describes our parallel construction algorithm and discusses some implementation issues. In Section 7 we
describe our experiments on space, query and construction performance, and discuss the results. Finally, in Section 8 we
present our conclusions and future work directions.

2. Related work

Before discussing the related work, let us distinguish between planar graphs and planar embeddings. A planar graph
is a graph that can be drawn in the plane without intersection of its edges, except in their ending points. A particular
drawing of a planar graph induces an embedding, which is defined by the resulting ordering of the neighbors of the nodes
when read in, say, counterclockwise order. This defines the resulting faces, and the embedding must also define which
is the external face (this is not the case of an embedding in a sphere). In unconnected planar graphs, in addition, the
embeddings must also define which components are drawn inside which faces of other components. A planar graph may
have more than one planar embedding. For example, in the graph of Fig. 1, if we move the vertex 3 towards the interior
of the face delimited by the vertices 1, 2, 6, and 5, we obtain a different embedding of the same graph. Some compact

http://www.dcc.uchile.cl/~jfuentess/pemb/

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 3
Fig. 1. Top left: A planar embedding of a planar graph G , with a spanning tree T of G shown in red and the complementary spanning tree T ∗ of the dual
of G shown in blue with dashed lines. Bottom left: The two spanning trees, with T rooted at the vertex 1 on the outer face and T ∗ rooted at the vertex
A corresponding to the outer face. Right: The list of edges we process while traversing T starting at 1 and processing edges in counter-clockwise order,
with the edges in T shown in red and the ones in G − T shown in black; the edges of T ∗ corresponding to the edges in G − T are shown in blue. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

representations of planar graphs, explained later in this section, need to select a suitable embedding of the graph. In many
practical applications, however, we are asked to store a particular embedding of a graph, and cannot change it to suit our
representation. With respect to operations, when listing the neighbors of a vertex, the order of the neighbors is relevant for
planar embeddings, but not for planar graphs. Other operations, like listing the vertices that delimit a face, make sense only
for planar embeddings.

For the rest of the document we assume that the planar graphs and embeddings are connected. We will refer explicitly to
unconnected planar graphs and embedding when we state results about them. Further, we note that all the representations
described below renumber the vertices in some convenient way (since storing a specified order on the nodes takes �(n log n)

bits). Applications can then use these arbitrary node identifiers assigned by the representations.
Tutte [2] showed that representing a specified embedding of a connected planar multi-graph with n vertices and m edges

requires m log 12 ≈ 3.58m bits in the worst case. Turán [4] gave a very simple representation that uses 4m bits. Jacobson [6]
argued that this representation “does not allow fast searching” and (introducing techniques that we will apply to Turán’s
representation) proposed one that instead uses O(m) bits and supports fast navigation, based on book embeddings [10].
Munro and Raman [8] estimated that Jacobson’s representation uses 64n bits and proposed one using 2m + 8n + o(m) bits
that retains fast navigation, still based on the same book embeddings (but this does not handle self-loops). Keeler and
Westbrook [5] also noted that “the constant factor in [Jacobson’s] space bound is relatively large” and gave a representation
that uses m log 12 + O(1) bits for planar graphs (not embeddings), as well as for planar embeddings containing either no
self-loops or no vertices with degree 1; however, they again gave up fast navigation. Chiang, Lin and Lu [9], improving
previous work by Chuang et al. [11], gave a representation (without allowing self-loops) that uses 2m + 3n + o(m) bits
with fast navigation, based on so-called orderly spanning trees. However, although all planar graphs can be represented
with orderly spanning trees, some planar embeddings cannot. For simple planar embeddings (i.e., no self-loops nor multiple
edges, thus m ≤ 3n), their space decreases to 2n + 2m + o(m) ≤ 4m + o(m) on connected graphs. Barbay et al. [7] gave
a data structure that uses O(m) bits to represent simple planar graphs with fast navigation, based on realizers of planar
triangulations [12]. Still, their constant is relatively large, 18n + o(m). Finally, Blelloch and Farzan [3], extending the work

4 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
of Blandford et al. [13], matched for the first time Tutte’s lower bound on general planar embeddings, with a structure
that uses m log 12 + o(m) bits and supports fast navigation. Their structure is based on small vertex separators [14]. They
can also represent any planar graph within its lower-bound space plus a sublinear redundancy, even when the exact lower
bound is unknown for general planar graphs [15]. While Blelloch and Farzan closed the problem in theoretical terms,
their representation is complicated and has not been implemented. Other authors [16–21] have considered special kinds of
planar graphs, notably tri-connected planar graphs and triangulations. We refer the reader to Munro and Nicholson’s [22]
and Navarro’s [23, Chapter 9] recent surveys for further discussion of compact data structures for graphs.

Most of the navigable representations we have mentioned require complicated construction algorithms, generally defying
a parallel implementation. It is not known how to compute a book embedding [10] in parallel, which is necessary to
build the representations of Jacobson and of Munro and Raman. There are also no parallel algorithms to build orderly
spanning trees [9], necessary for the representation of Chiang et al. Its predecessor [11] uses instead a triangulation and
a canonical ordering; for the latter there is only a CREW construction running in O

(
log4 n

)
time with n2 processors [24].

As for the vertex separators [14] required to build the representation of Blandford et al. and of Blelloch and Farzan, Kao et
al. [25] designed a linear-work, logarithmic-span algorithm for computing a cycle separator of a planar graph. However, the
construction of these representations of planar embeddings decompose the input graph by repeatedly computing separators
until each piece is sufficiently small. This increases the total work to O(n log n) even if this optimal parallel algorithm is
used. The best linear-work parallel algorithms [26] for building the realizers [12] used in the construction of Barbay et al.’s
representation have O(log n) span in the expected case but O(log n log logn) deterministic span.

3. Preliminaries

3.1. Bitvectors and parentheses

A bitvector is a binary string that supports the queries rank and select in addition to random access, where rankb(i)
returns the number of bits set to b in the prefix of length i of the string and selectb(j) returns the position of the jth bit
set to b. For convenience, we define selectb(0) = 0.

It is possible to represent a bitvector of length � in � + o(�) bits and support random access, rank and select in constant
time [6,27,28]. Furthermore, if the bitvector has k 1s, it can be represented in log

(
�
k

) + o(�) bits [29], which is �H(k/�) +
o(�) = k log(�/k) +O(k)+o(�), with H(x) = −x log x − (1 −x) log(1 −x). All our logarithms are to the base 2 unless otherwise
stated.

By adding some further operations on the bitvectors, we can represent an ordered tree or forest of t vertices using
2t + o(t) bits and support natural navigation queries in constant time. One of the most popular such representations is a
string of balanced parentheses: we traverse each tree from left to right, writing an opening parenthesis when we first visit
a vertex (starting at the root) and a closing parenthesis when we leave it for the last time (or, in the case of the root, when
we finish the traversal). We can encode the string of parentheses as a bitvector of length 2t , with 0s encoding opening
parentheses and 1s encoding closing parentheses. By adding o(t) further bits, we can support in constant time, among
others, the following queries used by our solution [8,30,31]:

• match(i) locates the position of the parenthesis matching the ith parenthesis in the bitvector (i.e., finds the other
parenthesis referring to the same node);

• parent(v) returns the parent of v , or 0 if v is the root of its tree. Nodes v and parent(v) are represented as their
pre-order rank in the traversal.

3.2. Parallel computation model

As we focus on practical parallel algorithms, we describe and analyze our construction using the Dynamic Multithreading
(DyM) Model [32] (we nevertheless express our final results in terms of the PRAM model as well). In the DyM model, a
multithreaded computation is modeled as a directed acyclic graph (DAG) where vertices are instructions and edge (u, v)

represents precedence between instructions u and v . The model is based on two parameters of the multithreaded com-
putation: its work T1 and its span T∞ . The work is the running time on a single thread, that is, the number of nodes
(i.e., instructions) in the DAG, assuming each instruction takes constant time. The span is the length of the longest path
in the DAG, that is, the intrinsically sequential part of the computation. The time T p needed to execute the computation
on p threads then has complexity �(T1/p + T∞), which can be reached with a greedy scheduler. The improvement of a
multithreaded computation using p threads is called speedup, T1/T p . The upper bound on the achievable speedup, T1/T∞ ,
is called parallelism. Finally, the efficiency is defined as T1/pT p and can be interpreted as the percentage of improvement
achieved by using p cores or how close we are to the linear speedup. In the DyM model, the workload of the threads is
balanced by using the work-stealing algorithm [33].

To describe parallel algorithms in the DyM model, we augment sequential pseudocode with three keywords. The spawn
keyword, followed by a procedure call, indicates that the procedure should run in its own thread and may thus be executed
in parallel to the thread that spawned it. The sync keyword indicates that the current thread must wait for the termination

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 5
Fig. 2. Left: If we process an edge (v, w) in T , then we move to w in our traversal of T and the next edge, (w, x) in this case, is also incident to the
vertex v∗ we are visiting in our traversal of T ∗ . Right: If (v, w) is not in T , then in T ∗ we move from v∗ to the vertex w∗ corresponding to the face on
the opposite side of (v, w) in G . The next edge, (v, y) in this case, is also incident to w∗ .

of all threads it has spawned. Finally, parfor is “syntactic sugar” for spawning one thread per iteration in a for loop,
thereby allowing these iterations to run in parallel, followed by a sync operation that waits for all iterations to complete.
In practice, the parfor keyword is implemented by halving the range of loop iterations, spawning one half and using the
current procedure to process the other half recursively until reaching one iteration per range. After that, the iterations are
executed in parallel. Therefore, this implementation adds an overhead bounded above by the logarithm of the number of
loop iterations. We include such overheads in our complexities.

4. Spanning trees of planar graphs

It is well known [34–36] that for any spanning tree T of a connected planar graph G , the edges dual to T are a spanning
tree T ∗ of the dual of G; see Fig. 1 for an illustration (including multi-edges and a self-loop). (The trees T and T ∗ are
sometimes called interdigitating because of the way their branches interlock.) If we choose T as the spanning tree of G for
Turán’s representation, then we store a 0 and a 1, in that order, for each edge in T ∗ . We now show that these bits encode
a traversal of T ∗ .

Lemma 1. Consider any planar embedding of a planar graph G, any spanning tree T of G and the complementary spanning tree T ∗
of the dual of G. Suppose we perform a depth-first traversal of T starting from any vertex on the outer face of G and always process
the edges incident to the vertex v we are visiting in counter-clockwise order. At the root, we choose an incidence of the outer face
arbitrarily and start from the edge immediately after that incidence, rotating counter-clockwise; at any other vertex, we start from the
edge immediately after the one to that vertex’s parent. Then each edge not in T corresponds to the next edge we cross in a depth-first
traversal of T ∗ .

Proof. Suppose the traversal of T ∗ starts at the vertex of the dual of G corresponding to the outer face of G . We now prove
by induction that the vertex we are visiting in T ∗ always corresponds to the face of G incident to the vertex we are visiting
in T and to the previous and next edges in counter-clockwise order.

Our claim is true before we process any edges, since we order the edges starting from an incidence of the outer face to
the root of T . Assume it is still true after we have processed i < m edges, and that at this time we are visiting v in T and
v∗ in T ∗ . First suppose that the (i + 1)th edge (v, w) we process is in T . We note that w �= v , since otherwise (v, w) could
not be in T . We cross from v to w in T , which is also incident to the face corresponding to v∗ . Now (v, w) is the previous
edge — considering their counter-clockwise order at w , starting from (v, w) — and the next edge (which is (v, w) again if
w has degree 1) is also incident to v∗ . This is illustrated on the left side of Fig. 2. In fact, the next edge is the one after
(v, w) in a clockwise traversal of the edges incident to the face corresponding to v∗ .

Now suppose (v, w) is not in T and let w∗ be the vertex in T ∗ corresponding to the face on the opposite side of (v, w),
which is also incident to v . We note that w∗ �= v∗ , since otherwise (v, w) would have to be in T . We cross from v∗ to w∗
in T ∗ . Now (v, w) is the previous edge — this time still considering their counter-clockwise order at v — and the next edge
(which may be (v, w) again if it is a self-loop) is also incident to w∗ . This is illustrated on the right side of Fig. 2. In fact,
the next edge is the one that follows (v, w) in a clockwise traversal of the edges incident to the face corresponding to w∗ .

Since our claim remains true in both cases after we have processed i + 1 edges, by induction it is always true. In other
words, whenever we should process an edge e in G that is not in T , we are visiting in T ∗ one of the vertices corresponding
to the faces incident to e (i.e., one of the endpoints of the edge in the dual of G that corresponds to e). Since we process
each edge in G twice, once at each of its endpoints or twice at its unique endpoint if it is a self-loop, it follows that the list
of edges we process that are not in T , corresponds to the list of edges we cross in a traversal of T ∗ . �

We process the edges in counter-clockwise order so that the traversals of T and T ∗ are from left to right and from right
to left, respectively; processing them in clockwise order would reverse those directions. For example, for the embedding in
Fig. 1, if we start the traversal of the red tree T at vertex 1 and start processing the edges at (1, 3), then we process them
in the order shown at the right of the figure.

5. Data structure

Our extension of Turán’s representation of a planar embedding of a connected planar graph G with n vertices and m
edges consists of the following components, which take 4m + o(m) bits:

6 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
• a bitvector A[1..2m] in which A[i] = 1 if and only if the ith edge we process in the traversal of T described in Lemma 1,
is in T ;

• a bitvector B[1..2(n − 1)] in which B[i] = 0 if and only if the ith time we process an edge in T during the traversal, is
the first time we process that edge;

• a bitvector B∗[1..2(m − n + 1)] in which B∗[i] = 0 if and only if the ith time we process an edge not in T during the
traversal, is the first time we process that edge.

Notice B encodes the balanced-parentheses representation of T , except that it lacks the leading 0 and trailing 1 encoding the
parentheses for the root. By Lemma 1, B∗ encodes the balanced-parentheses representation of a traversal of the spanning
tree T ∗ of the dual of G complementary to T (the right-to-left traversal of T ∗ , in fact), except that it also lacks the leading
0 and trailing 1 encoding the parentheses for the root. Therefore, since B and B∗ encode forests, we can support match and
parent with them.

To build A, B and B∗ given the embedding of G and T , we traverse T as in Lemma 1. Whenever we process an edge, if
it is in T then we append a 1 to A and append the edge to a list L; otherwise, we append a 0 to A and append the edge
to another list L∗ . When we have finished the traversal, we replace each edge in L or L∗ by a 0 if it is the first occurrence
of that edge in that list, and by a 1 if it is the second occurrence; this turns L and L∗ into B and B∗ , respectively. For the
example shown in Fig. 1, L and L∗ eventually contain the edges shown in the columns labeled T and G − T , respectively, in
the table on the right side of the figure, and

A[1..28] = 0110110101110010110100010100

B[1..14] = 00101100110011

B∗[1..14] = 01001001110101 .

We identify each vertex v in G by its pre-order rank in our traversal of T . We say that, while we visit v , we process
all the edges that lead from v to other nodes w . Note that each edge (v, w) is processed twice, while visiting v and while
visiting w , but these correspond to two distinct positions in our traversal. Consider the following queries:

first(v): return i such that the first edge we process while visiting v is the ith we process during our traversal;
last(v): return i such that the last edge we process while visiting v is the ith we process during our traversal;
next(i): return j such that if we are visiting v when we process the ith edge during our traversal, then the next edge we

process when visiting v , in counter-clockwise order, is the one we process jth;
prev(i): return j such that if we are visiting v when we process the ith edge during our traversal, then the previous edge

we processed when visiting v , in counter-clockwise order, is the one we process jth;
mate(i): return j such that we process the same edge ith and jth during our traversal;
vertex(i): return the vertex v such that we are visiting v when we process the ith edge during our traversal.

With these it is straightforward to reenact our traversal of T and recover the embedding of G . For example, with the
following queries we can list the edges incident to the root of T in Fig. 1 and determine whether they are in T :

first(1) = 1 mate(1) = 4 vertex(4) = 3 A[1] = 0
next(1) = 2 mate(2) = 10 vertex(10) = 2 A[2] = 1
next(2) = 11 mate(11) = 17 vertex(17) = 5 A[11] = 1
next(11) = 18 mate(18) = 26 vertex(26) = 7 A[18] = 1 .

To see why we can recover the embedding from the traversal, consider that if we have already correctly embedded the
first i edges processed in the traversal, then we can embed the (i + 1)th correctly given its endpoints and its rank in the
counter-clockwise order at those vertices. Queries last and prev are superfluous for this task, but they allow traversing the
neighbors of a node in clockwise order.

5.1. Implementing the basic queries

We now explain our constant-time implementations of first, next, prev, mate and vertex.

Query first. If m = 0 then first(v) is undefined, which we indicate by returning 0. Otherwise, we first process an edge at
v immediately after first arriving at v . Since we identify v with its pre-order rank in our traversal of T and B lacks the
opening parenthesis for the root, while first arriving at any vertex v other than the root we write the (v − 1)th 0 in B and,
thus, the B.select0(v − 1)th 1 in A. If v is the root then first(v) = 1 and so, since selectx(0) = 0, this case is also handled by
the formula below:

first(v) =
{

A.select1(B.select0(v − 1)) + 1 if m ≥ 1
0 otherwise.

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 7
In our example,

first(5) = A.select1(B.select0(4)) + 1 = A.select1(7) + 1 = 12

and indeed the twelfth edge we process, (5, 6), is the first one we process at vertex 5. Note that the formula works for
nodes with only one edge too.

Query last. The logic of last is similar to that of first; we must locate the closing parenthesis that represents v in T .

last(v) =
{

A.select1(B.match(B.select0(v − 1))) if m ≥ 1
0 otherwise.

Query next. If the ith edge we process is the last edge we process at a vertex v then next(i) is undefined, which we again
indicate by returning 0. This is the case when i = 2m, or A[i] = 1 and B[A.rank1(i)] = 1. Otherwise, if the ith edge we
process is not in T , then A[i] = 0, and we process the next edge at v one time step later. Finally, if the ith edge e we
process is in T and not the last one we process at v , then we next process an edge at v immediately after returning to v
by processing e again at time mate(i). This is the case when A[i] = 1 and B[A.rank1(i)] = 0. In other words,

next(i) =
⎧⎨
⎩

i + 1 if i < 2m and A[i] = 0
mate(i) + 1 if i < 2m and A[i] = 1 and B[A.rank1(i)] = 0
0 otherwise.

In our example, since A[12] = 1, B[A.rank1(12)] = B[8] = 0, the twelfth edge we process is (5, 6) and it is also the fifteenth
edge we process,

next(12) = mate(12) + 1 = 16 ,

and indeed the second edge we process at vertex 5 is (5, 7).

Query prev. The logic for prev is similar to that of next; we only need to consider that, once we move one position back-
wards, we might arrive at a closing parenthesis. The formula follows.

prev(i) =
⎧⎨
⎩

i − 1 if i > 1 and A[i − 1] = 0
mate(i − 1) if i > 1 and A[i − 1] = 1 and B[A.rank1(i − 1)] = 1
0 otherwise.

Query mate. To implement mate(i), we check A[i] to determine whether we wrote a bit in B or in B∗ while processing the
ith edge, and use rank on A to find that bit in the corresponding sequence. We then use match to find the bit encoding the
matching parenthesis, and finally use select on A to find where we wrote in A that matching bit. Therefore,

mate(i) =
{

A.select0(B∗.match(A.rank0(i))) if A[i] = 0
A.select1(B.match(A.rank1(i))) otherwise.

To compute mate(12) for our example, since A[12] = 1,

mate(12)

= A.select1(B.match(A.rank1(12)))

= A.select1(B.match(8))

= A.select1(9)

= 15 .

Query vertex. Suppose the ith edge e we process is not in T and we process it at vertex v . If the preceding time we
processed an edge in T was the first time we processed that edge, we then wrote a 0 in B , encoding the opening parenthesis
for v; otherwise, we then wrote a 1 in B , encoding the closing parenthesis for one of v ’s children. Now suppose e is in T .
If that is the first time we process e, we move to the other endpoint w of e — which is a child of v — and write a 0 in B ,
encoding the opening parenthesis for w . If it is the second time we process e, then we write a 1 in B , encoding the closing
parenthesis for v itself. Therefore,

8 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
Function degree.
Input : node v

1 d = 0
2 edg = first(v)

3 while edg �= 0 do
4 edg = next(edg)

5 d = d + 1

6 return d

Function listing.
Input : node v

1 edg = first(v)

2 while edg �= 0 do

3 mt = mate(edg)

4 output vertex(mt)

5 edg = next(edg)

Function face.
Input : edge e

1 edg = e, fst = true
2 while edg �= e or fst do
3 fst = false
4 mt = mate(edg)

5 output vertex(mt)
6 edg = next(mt)

vertex(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B.rank0(A.rank1(i)) + 1
if A[i] = 0 and B[A.rank1(i)] = 0

B.parent(B.rank0(B.match(A.rank1(i)))) + 1
if A[i] = 0 and B[A.rank1(i)] = 1

B.parent(B.rank0(A.rank1(i))) + 1
if A[i] = 1 and B[A.rank1(i)] = 0

B.rank0(B.match(A.rank1(i))) + 1
otherwise.

In our example, since A[16] = 0 and B[A.rank1(16)] = B[9] = 1,

vertex(16)

= B.parent(B.rank0(B.match(A.rank1(16)))) + 1

= B.parent(B.rank0(B.match(9))) + 1

= B.parent(B.rank0(8)) + 1

= B.parent(5) + 1

= 5 ,

and indeed we process the sixteenth edge (5, 7) while visiting 5.
We remind the reader that since B lacks parentheses for the root of T , B.parent(5) refers to the parent of the fifth

vertex in an in-order traversal of T not including the root, i.e., the parent vertex 5 of vertex 6. Adding 1 includes the root
in the traversal, so the final answer correctly refers to vertex 5. The lack of parentheses for the root also means that, e.g.,
B.parent(4) refers to the parent of vertex 5 and returns 0 because vertex 5 is the root of its own tree in the forest encoded
by B , without vertex 1. Adding 1 to that 0 also correctly turns the final value into 1, the in-order rank of the root. Of course,
we have the option of prepending and appending bits to A, B and B∗ to represent the roots of T and T ∗ , but that slightly
confuses the relationship between the positions of the bits and the time steps at which we process edges.

We also note that, if we do not require that node identifiers are precisely preorder ranks in T , then we can use the
positions of their 0 in B as their identifiers. This removes the need for using B.rank0 and B.select0 in all the formulas that
convert between node identifiers and positions in T .

5.2. More complex queries

We can define more complex queries on top of the basic ones. For example, we give the pseudocode of three queries:
degree(v) returns the number of neighbors of vertex v; listing(v) returns the list of neighbors of vertex v , in counter-
clockwise order; face(e) returns the list of vertices, in clockwise order, of one of the face where the edge e belongs. We also
support the other order (clockwise or counter-clockwise, or the other face where e belongs) by using last and prev instead
of first and next.

Queries listing(v) and face(e) are implemented in optimal time, that is, O(1) per returned element. Instead,
degree(v) requires time O(degree(v)). We can also determine neighbour(u, v), that is, whether two vertices u and v
are neighbors, by listing the neighbors of each in interleaved form, in time O(min(degree(u), degree(v))). These times
are not so satisfactory compared with the O(1) achieved by other representations [8,9] to compute neighbour(u, v) and
degree(v).

For degree(v), we can get arbitrarily close to constant time by adding o(m) further bits to our representation, that
is, we can solve the query in time O(f (m)) for any given function f (m) ∈ ω(1). To do this, we store a bitvector D[1..n]
marking with 1s the (at most) m/ f (m) = o(m) vertices with degree at least f (m), which takes nH(m/(nf (m))) + o(n) =
O((m/ f (m)) log(nf (m)/m))+ o(n) = o(m) bits by using a sparse bitvector representation [29] (recall that G is connected, so
m ≥ n − 1). We also store a second bitvector E[1..2m] where we append, for each D[v] = 1, degree(v) − 1 copies of 0s
followed by a 1. Since E has m/ f (m) 1s, it can also be stored as a sparse bitvector using O((m/ f (m)) log f (m)) + o(m) =

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 9
o(m) bits. Therefore, if D[v] = 1, its degree is obtained in constant time with select1(E, r) − select1(E, r − 1), where r =
rank1(D, v). If, instead, D[v] = 0, then we know that degree(v) < f (m) and thus we apply the procedure that sequentially
counts the neighbors, in time O(f (m)).

We can use a similar idea, albeit more complex, to answer neighbour(u, v) queries in time O(f (m)), for any f (m) =
ω(log m). We consider the graph induced by the O(m/ f (m)) = o(m/ log m) nodes with degree f (m) or higher and eliminate
multi-edges and self-loops. The resulting graph G ′ is simple and still planar, so it has average degree less than or equal
to 6 and thus o(m/ log m) edges. We represent G ′ in classical adjacency-list form, with the nodes inside each list sorted
by increasing node identifier. This requires o(m) bits in total. To answer neighbour(u, v) on G , we check whether either u
or v is low-degree (assuming we mark low-degree nodes in a bitvector D ′ analogous to D) and, if so, list its neighbors in
O(f (m)) time. If not, we translate nodes u and v to their corresponding nodes u′ = rank1(D ′, u) and v ′ = rank1(D ′, v) in
G ′ and query G ′ in time o(f (m)). To solve neighbour(u, v) in G ′ , we find the position of the adjacency list of u in G ′ by
computing u′ = rank1(D ′, u), then use binary search for v in the list of u in time O(log m) = o(f (m)).

The following theorem summarizes the results of this section.

Theorem 1. We can store a given planar embedding of a connected planar graph G with m edges in 4m + o(m) bits such that later,
given a vertex v, we can list the edges incident to v in clockwise or counter-clockwise order, even if we are given a particular starting
edge incident to v, using constant time per edge. We can also traverse the edges limiting a face in constant time per edge. Further, we
can find a vertex’s degree in O(f (m)) time for any given function f (m) ∈ ω(1), and determine whether two vertices are neighbors in
O(f (m)) time for any given function f (m) ∈ ω(log m).

5.3. Reducing space on simple planar graphs

Chiang et al. [9] use 2m + 3n + o(m) bits to represent planar graphs without self-loops, which can be more than the
4m +o(m) bits used in our representation. However, if G is simple (i.e., has no loops nor multiple edges), their representation
requires only 2m + 2n + o(m) ≤ 4m + o(m) bits. We remind the reader that this representation can handle any simple planar
graph, but does not always respect the given embedding, so they cannot represent arbitrary embeddings.

We show that, if there are no self-loops, our representation can use less than 4m + o(m) bits, by exploiting some
redundancy in our representation and without changing the main scheme. Assume we represent a single sequence S[1..2m]
over an alphabet of four symbols, � = {(,), [,]}, that replaces A, B , and B∗ . That is, the parentheses are the 0s and 1s in
B , the brackets are the 0s and 1s and B∗ , and A corresponds to whether the symbols are parentheses or brackets. In our
running example, the sequence is

S[1..2m] = [((]) ([) [) ((] [) [) (] (]] [)]) [].
The zeroth-order entropy of S is defined as H0(S) = ∑

c∈�
mc
2m log 2m

mc
, where c occurs mc times in S . The kth-order entropy,

for any k > 0, is defined as Hk(S) = ∑
C∈�k

|SC |
2m H0(SC), where SC is the string formed by the symbols that follow the

context C in S (assume S is circular for simplicity, so that S[1] follows S[2m]).
Ferragina and Venturini [37] show how to store a string S within |S|Hk(S) +o(|S| log |�|) bits, for any k = o(log|�| |S|), so

that any substring of length O(log |S|) can be extracted in constant time. We use their result to store S in 2mH1(S) + o(m)

bits. Instead of a structure on parentheses on bitvector B and another on bitvector B∗ , we build both parentheses structures
on top of sequence S . Both are similar to the original o(m)-bit structure of Navarro and Sadakane [31], only that the
structure built to navigate parentheses ignores the bracket symbols, and vice versa (a similar arrangement is described by
Navarro [23, pp. 311–315]). The only changes are that each symbol uses 2 bits instead of 1, that there are two symbols
that do not change the “excess” count (number of opening minus closing parentheses up to some position), and that in
order to extract a chunk of �(log m) symbols, we use the extraction method of Ferragina and Venturini [37]. A rank/select
functionality on top of A is also easily provided on top of S , by using the same o(m)-bit structures [27,28] and interpreting
both parentheses as 1s and both brackets as 0s. Therefore, with o(m) further bits, we provide the necessary functionality on
top of the H1(S) bits needed to encode S .

This entropy gives precisely 2 bits per symbol (and thus 4m bits in total) for general planar embeddings, but if there are
no self-loops, then the substring “[]” cannot appear in S (other longer strings cannot appear either, but we would need
a higher-entropy model to capture them). An upper bound to the first-order entropy when this substring is forbidden is
obtained by noticing that we can have only 3 symbols, instead of 4, following an opening bracket; therefore we can encode
S using n log 4 + n log 4 + (m − n) log 3 + (m − n) log 4 = m log 12 + n log(4/3) ≈ 3.58m + 0.42n. This is still 4m in the worst
case. To obtain a nontrivial bound in terms of m, we calculate the exact first-order entropy of S when substring “[]” is
forbidden.

Let us use the names op = (, cp =), ob = [, and cb =]. Let us call xy number of symbols y following a symbol x in S;
for example opob is the number of opening brackets following opening parentheses, that is, the number of occurrences of
substring “([” in S . It must then hold that

∑
op∗ = ∑

cp∗ = n and
∑

ob∗ = ∑
cb∗ = m − n. It also holds

∑∗op = ∑∗cp = n
and

∑∗ob = ∑∗cb = m − n. The system of restrictions must be satisfied while maximizing

2mH1(S) = nH(op∗) + nH(cp∗) + (m − n)H(ob∗) + (m − n)H(cb∗),

10 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
where H(x1, . . . , x4) = ∑ xi
x log x

xi
and x = ∑

xi . Forbidding self-loops implies the additional restriction obcb = 0.
We solve the optimization problem with a combination of algebraic and numeric computation, using Maple and C, up to

4 significant digits. We find that the entropy is maximized at a value slightly below 3.8m.1 Therefore, the resulting space
with no self-loops and using the described compressed representation can be bounded by 3.8m + o(m) bits. Simple graphs
have no self-loops and no multiple-edges, but this second restriction translates into longer forbidden substrings, whose
effect is harder to analyze.

We remind the reader that the representation of Keeler and Westbrook [5], on the other hand, achieves m log 12 ≈ 3.58m
bits when no self-loops (or, alternatively, no degree-one nodes) are permitted, yet it does not support queries. When neither
self-loops nor degree-one nodes are permitted, they reach 3m bits. In this case, both “[]” and “()” are forbidden strings.
While we have not been able to compute the exact first-order entropy in this case, this must be at most n log 3 + n log 4 +
(m − n) log 3 + (m − n) log 4 = m log 12 ≈ 3.58m, which is obtained by using log 4 bits to encode the symbol that follows a
closing bracket or parenthesis, and log 3 bits to encode the symbol that follows an opening bracket or parenthesis.

We note that these space improvements can also be applied on top of the representation of Chiang et al. [9] since, when
encoding a simple graph, the difference between both representations is that they use a particular spanning tree (which
may also force a particular embedding).

5.4. Unconnected planar graphs

Our representation can be easily extended to unconnected planar graphs, because our parentheses representations can
immediately be extended to handle forests instead of just individual trees. To handle an unconnected planar graph, we first
find all the connected components of the graph and then compute an arbitrary spanning tree for each connected component.
Then, we construct the binary sequences: the sequence B will represent the forest of the spanning trees, concatenating all
the balanced-parentheses representations; the sequence B∗ will represent the complementary spanning tree of the dual of
the graph. Finally, sequence A indicates the interleaving of the sequences B and B∗ . We visit the connected components in
arbitrary order.

Note that, in the case of connected planar graphs, our navigation queries and the fact that the first edge we list is
adjacent to the external face, are sufficient to recover the embedding. This is not the case if the graph has k > 1 connected
components. Concretely, some components may be embedded inside faces of other components, whereas our arrangement
assumes that all the connected components lie on the outer face (our navigation queries cannot distinguish between those
cases).

To recover the embedding we might add k − 1 edges to the spanning tree, so that all the connected components lying
in a single face are threaded through a node in their frontier, and the first one is linked to a node on the containing face.
Therefore the total length of A will be 2(m + k − 1) and the length of B will be 2(n + k − 2). The fake edges will be marked
in a bitvector K [1..n +k −2] indexed by preorder value. Since K contains k −1 1s, it can be encoded in k log(n/k) +O(k) bits
[38]. Since n ≤ m +k, the space of the whole structure can be written in terms of m and k as 4m +k log(m/k) +O(k)+o(m)

bits.
The k log(m/k) +O(k) or k log(n/k) +O(k) bits to describe the embedding are asymptotically optimal: consider a chain

of t triangles (delimited with m = 2t + 1 edges) and k − 1 isolated nodes (so there are k connected components in total) to
represent all the ways to distribute k − 1 balls into t bins. This requires log

(k+t−2
k−1

) = k log(t/k) +O(k) = k log(m/k) +O(k)

bits with any encoding. This is also k log(n/k) +O(k) bits, since this graph has n = 2t + k nodes.
We use K to avoid listing fake edges in any of the traversal operations. The fake edges increase the degree of a node by a

constant factor: a node may have one fake edge per face it participates in, which at most doubles its degree. Further, a node
in the frontier of its component may have two extra fake edges threading it with other connected components. Therefore,
the time complexity of the navigation operations is not affected.

The fake edges may, in addition, be useful for a more ambitious face operation that takes into account the actual
embedding, where a face is surrounded by a sequence of edges but is also limited by the frontier edges of the connected
components it has inside. To find all those edges, we also traverse the fake edges in the face traversal, yet without listing
them. The fake edges will lead us to the other connected components that are contained and/or surround the face we are
listing.

6. Parallel construction

In this section we discuss the parallel construction of our extension of Turán’s representation. Since the representation is
based on spanning trees and tree traversals, we can borrow ideas of well-known parallel algorithms, such as parallel Euler
Tour traversal or parallel computation of spanning trees.

We assume that a tree T is represented with adjacency lists. Such representation consists of an array of nodes V T [1..n],
and an array of edges ET [1..2n − 2]. Each node v ∈ V T stores two indices in ET , v.first and v.last, delimiting the adjacency

1 The maximum is 3.7999m, found for m = 1.731n, opop = cpop = 0.2683n, obop = 0.2679n, cbop = 0.1955n, opcp = cpcp = 0.2677n, obcp = 0.2673n,
cbcp = 0.1974n, opob = cpob = 0.1961n, obob = 0.1958n, cbob = 0.1429n, opcb = cpcb = 0.2679n, obcb = 0, cbcb = 0.1952n.

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 11
Algorithm 1: Parallel compact planar embedding algorithm.
Input : A planar graph embedding G = (V G , EG), a spanning tree T = (V T , ET) of G , an array C of size |ET |, and the starting vertex init.
Output : Bitvectors A, B and B∗ induced by G and T .

1 A = a bitvector of length |EG | initialized with 0s
2 B = a bitvector of length |ET | − 2
3 B∗ = a bitvector of length |EG | − |ET | + 2 initialized with 0s
4 LE = an array of length |ET |
5 parfor j = 1 to |ET | do
6 LE[j].rankA = C[ET [j].mat] + 1
7 LE[j].rankB = 1
8 if ET [j].src = init or ET [j].src.first �= j then // forward edge
9 LE[j].value = 0 // opening parenthesis

10 if ET [j].tgt.first = ET [j].tgt.last then // target is a leaf
11 LE[j].succ = ET [j].mat
12 else // target has children
13 LE[j].succ = ET [j].tgt.first + 1

14 else // backward edge
15 LE[j].value = 1 // closing parenthesis
16 if ET [j].mat = ET [j].tgt.last then // j was the last edge of target, return
17 LE[j].succ = ET [j].tgt.first
18 else // continue with next edge from target
19 LE[j].succ = ET [j].mat + 1

20 parallelListRanking(LE)

21 parfor j = 1 to |ET | do
22 A[LE[j].rankA] = 1
23 B[LE[j].rankB] = LE[j].value

24 Dpos, Dedge = arrays of length |EG | and |EG | − |ET | + 2, respectively
25 parfor j = 1 to |ET | do
26 p = LE[j].rankA − LE[j].rankB
27 base = ref (ET [j].mat)
28 delta = p − base − 1
29 parfor k = base + 1 to base + C[ET [j].mat] do
30 Dpos[k] = k + delta
31 Dedge[k + delta] = k

32 parfor j = 1 to |EG | − |ET | + 2 do
33 mat = EG [Dedge[j]].mat
34 if j > Dpos[mat] then
35 B∗[j] = 1

36 createRankSelect(A), createBP(B), createBP(B∗)

list of v , which starts with v ’s parent edge (except the root) and is sorted counter-clockwise around v . The number of
children of v is then v.last − v.first (plus 1 for the root). Each edge e ∈ E T has three fields: e.src and e.tgt are the positions
in V T of its source and target vertices, and e.mat is the position in E T of the mate edge e′ of e, where e′.src = e.tgt and
e′.tgt = e.src. Our representation of graphs is similar, with the exception that the concept of parent of a vertex is not valid
in graphs; therefore the first edge in the adjacency list of a vertex v cannot be interpreted as v ’s parent edge.

6.1. Parallel construction of compact planar embeddings

We will first assume that the input consists of a connected planar graph embedding G = (V G , EG) and a spanning tree
T = (V T , ET) of G , together with an array C that stores the number of edges of G \ T between any two consecutive edges
in T , in counter-clockwise order. In Section 6.3 we will explain how to obtain T and C in parallel.

With the spanning tree, we construct the bitvectors A, B , and B∗ by performing an Euler Tour over T . During the tour,
by writing a 0 for each forward (parent to child) edge and a 1 for each backward (child to parent) edge, we obtain the
bitvector B . By reading in C the number of edges of G \ T between two consecutive edges of T , representing these edges
with 0s and the edges of T with 1s, we obtain the bitvector A. Finally, by using the previous Euler Tour and the array C we
can obtain the bitvector B∗ , by finding out which is the first (0) and which is the second (1) occurrence of each edge.

Algorithm 1 gives the detailed pseudocode. It works in the following steps:

1. In lines 1–4, it initializes the output bitvectors (A and B∗ are set to 0s) and creates an auxiliar array LE that is used to
store the traversal of the tree following the Euler Tour. Each entry of LE represents one traversed edge of T and stores
four fields: value is 0 or 1 depending on whether the edge is a forward or a backward edge, respectively; succ is the
index in LE of the next edge in the Euler tour; rankA is the rank of the edge in A; and rankB is the rank of the edge in
B .

12 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
2. In lines 5–19, the algorithm traverses T to create the Euler Tour. For each edge e j ∈ ET , rankA is set to C[ET [j].mat] + 1
and rankB to 1 (lines 6–7). Those ranks will be used later to compute the final positions of the edges in A, B , and B∗ .
For each forward edge, a 0 is written in the corresponding value field and the succ field is connected to the next edge
in the Euler Tour. For backward edges the procedure is similar. Note that all the edges in the adjacency list of a node
of T are forward edges, except (for non-root nodes) the first one, which is the parent edge.

3. Line 20 computes the final ranks in A and B using a parallel list ranking algorithm that adds up the weights from
the beginning of the list to each element. The weights are stored in the fields rankA and rankB of LE . We use the list
ranking algorithm of Helman and Jájá [39].

4. Bitvectors A and B are written in lines 21–23. Since initially all the elements of A are 0s, it is enough to set to 1 all
the elements in the rankA fields. For B , the algorithm copies the content of field value at position rankB, for all the
elements in LE .

5. The algorithm now computes the position of each edge of G \ T in B∗ . That information is implicit in the fields rankA
and rankB of LE (line 26), once the list ranking of step 3 is carried out. For each edge e ∈ E T , the algorithm computes
the positions in B∗ of the edges of G \ T that follow, in counter-clockwise order, the mate edge of e (lines 27–31). The
algorithm uses two auxiliary arrays, Dpos and Dedge . Let edge EG [j] belong to G \ T . Then Dpos[j] stores the position of
the edge in B∗ . The array Dedge is the inverse of Dpos: Dedge[i] is the position of the i-th edge of B∗ in EG . This step
uses function ref (e), which maps the position e of an edge in E T to its position in EG . This is naturally returned by the
spanning tree construction, which gives the identity in G of the edges selected for T .

6. In lines 32–35, the algorithm computes whether the edges stored in Dpos are forward or backward edges. For each edge
e in G \ T , it compares the positions in B∗ of e and its mate. If the position of e is greater, then e is a backward edge
and, therefore, is represented with a 1.

7. Finally, in line 36 the structures to support operations rank, select, match, and parent are constructed. For the bitvector
A, the parallel algorithm of Labeit et al. [40] (createRankSelect) is used. For B and B∗ the parallel algorithm of
Ferres et al. [41] for balanced parenthesis sequences (createBP) is used.

We have omitted some implementation details for simplicity. For example, the pseudocode uses parfor throughout,
whereas the implementation uses the threads in a more controlled manner. Line 29, in particular, is more efficiently done
in sequential form. We have also omitted some space optimizations, such as the reuse of some fields instead of allocating
new arrays.

Analysis. Step 1 initializes the arrays, which requires T1 = O(m) work and T∞ = O(log m) span (due to the overhead
of the implicit parfor). In step 2, the algorithm traverses the edges of T , performing an independent computation on
each edge. Therefore, with the overhead of the parfor loop, we obtain T1 = O(n) and T∞ = O(logn) time. Step 3 uses a
parallel list ranking algorithm [39] over n elements, which has complexities T1 = O(n) and T∞ = O(log n). Step 4 assigns
the values to A and B independently for each entry, thus we have again T1 = O(n) and T∞ = O(log n). In step 5, the
algorithm traverses all the edges in G \ T . Since the loop in line 29 is also processed in parallel, we obtain T1 = O(m − n)

and T∞ = O(log(m − n)). Similarly to step 4, in step 6 the algorithm sets the entries of bitvector B∗ , which can be done
independently for each entry, obtaining times T1 =O(m − n) and T∞ =O(log(m − n)). Finally, step 7 builds the rank/select
structures in times T1 = O(m) and T∞ = O(log m) [40]. The construction of the structures supporting match and parent
over balanced parentheses is constructed in times T1 =O(m) and T∞ =O(log m) [41].

In addition to the size of the compact data structure, our algorithm uses O(m log m) bits for the arrays LE , D pos and
Dedge . As said, the constant is kept low in practice by reusing fields. Notice that the memory consumption is independent
of the number of threads.

6.2. Structures for degree and neighbor queries

Before discussing how to construct the structures to speed up degree(v) and neighbour(u, v) queries, let us discuss
the parallel construction of the sparse bitvector of Raman et al. [29]. Let � be the length of the sparse bitvector. Their
representation divides the bitvector into blocks of length b = (log �)/2. The ith block is described as a pair (ci , oi), where ci
corresponds to the number of 1s inside the block, also known as the class of the block, and oi corresponds to its offset, an
identifier among all the different blocks sharing the same class. Thus, the bitvector is represented as two arrays, C[1..
�/b�]
and O [1..
�/b�], where C[i] = ci and O [i] = oi . We can compute in parallel each entry of the arrays C and O independently,
using linear time on each block [23, Sec. 4.1]. Thus, we have O(�) work and O(log(�/b) + b) = O(log�) span. In order to
reduce the space consumption of the arrays C and O , the entries of the arrays are packed into the bits of consecutive
machine words. Notice that the size of the elements of C is fixed,
log(b + 1)� bits, whereas the size of those of O ,
log oi�
bits, is variable. To pack the entries of O in parallel, we need to compute an array P [1..
�/b�] pointing to the starting
position of each element in O . Array P is computed with a parallel prefix sum over the values
log oi�. This takes linear
work and logarithmic span [40], and then we can write each value oi to its packed position in parallel. The array P is
retained to provide efficient access to O . To reduce its space to o(�) bits, only the entries of the form P [i · log n] are stored
in absolute form, whereas the others are stored as differences from the preceding multiple of log n, using O(log log n) bits.
This space reduction is easily computed in parallel within the same time bounds. Once the data structures C , O , and P ,

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 13
using �H + o(�) bits, are built, we can access in constant time any chunk of O(log�) bits from the bitvector by using tables
[29]. Therefore, we can provide rank and select functionality by building the classical o(�)-bit data structures on top of the
bitvector, in parallel [40]. In total, we use O(�) work and O(log�) span.

The structures to support degree(v) can then be constructed in parallel as follows: First, we construct the bitvector
D by checking all the vertices with degree at least f (m). Remember that the degree of a vertex v can be computed in
constant time with v.last − v.first. Since the degree of each vertex can be obtained independently, we can do this in parallel
with O(m) work and O(log m) span. Then, we construct the bitvector E by writing in unary the degree of each high-degree
vertex. To do that, we perform a parallel prefix sum over all the degrees of high-degree vertices. The prefix sum returns the
positions where we have to write a 1 in E . Thus, we construct E with O(m) work and O(log m) span. Finally, we construct
the compact representation of D and E in O(m) work and O(log m) span, using the sparse bitvectors of Raman et al. [29].

For the neighbour(u, v) query, we must contract the original graph G into a smaller graph G ′ = (V ′, E ′), induced by
all the vertices with degree at least f (m). To build G ′ efficiently in parallel we do as follows. We first compute D ′[1..n]
similarly to D . We then fill two arrays X[1..n] and Y [1..2m], so that X[i] = D ′[i]; and Y [j] = 1 if D ′[EG [j].src] = 1 and
D ′[EG [j].tgt] = 1, and Y [j] = 0 otherwise. Next, we perform a parallel prefix sum over X , so that X[i] is the name of node
i in G ′ (if D ′[i] = 1). We also perform a parallel prefix sum on Y , so as to write contiguously in array E ′ the mapped edge
targets, E ′[j′] = X[EG [j].tgt] for those entries j where Y [j] = 1, where j′ = ∑ j

k=1 Y [k]. For each such edge, we also check if
it is the first with this X[EG [j].src] value, and if so, we record that j′ is the start of the adjacency list of node X[EG [j].src],
in an array V ′[X[EG [j].src]] = j′ .

Thus V ′ and E ′ are an adjacency list representation of G ′ , built with O(m) work and O(log m) span. Instead of sorting
the adjacency lists, however, we build a wavelet tree representation on E ′ [40]. This supports the operation rank generalized
to sequences, and therefore we use that high-degree nodes u and v of G are connected if and only if X[v] is mentioned in
the adjacency list of X[u], that is, E ′.rankX[v](V ′[X[u] +1] −1) − E ′.rankX[v](V ′[X[u]] −1) > 0. The generalized rank operation
takes time O

(
log |V ′|) and the wavelet tree is built with O

(|E ′|) = o(m/ log m) work and O
(

log2 |E ′|
)

=O
(

log2 m
)

span.

Lemma 2. Given a connected planar graph embedding G with m edges and a spanning tree of G, we can compute in parallel a compact
representation of G, using 4m + o(m) bits and supporting the navigational operations described in Section 5, in O(m) work and
O(log m) span (O

(
log2 m

)
span if operation neighbour is supported), using O(m log m) bits of additional memory.

6.3. Parallel computation of spanning trees

In this section we discuss the parallel computation of the spanning tree T = (V T , ET) and the array C used in Section 6.1.
Generating a rooted (or a directed) spanning tree turns out to be a difficult to parallelize problem. Even if it seems to be

easier on planar embeddings, we do not know of good worst-case results on the DyM model. We discuss practical solutions
later.

Such a spanning tree algorithm returns an array of parent references for each vertex. With this array of references, we
can construct the corresponding adjacency list representation of the spanning tree. To do that, we mark with a 1 each edge
EG that belongs to ET and with a 0 the rest of the edges. Using a parallel prefix sum algorithm over EG , we compute
the position of all the marked edges of EG in ET . The first and last fields of each node in the spanning tree are computed
similarly. As a byproduct of the computation of E T , we can compute the array C , which stores the number of edges of
G \ T between two consecutive edges in T , in counter-clockwise order. This can be done by using the marks in the edges,
counting the number of 0s between two consecutive 1s. Note that the starting vertex for the spanning tree must be in the
outer face of G , to meet the description of the compact data structure for planar embeddings. Overall, we require times
T1 =O(m) and T∞ =O(logm) once the spanning tree is built, which is the complexity of the variants of the parallel prefix
sum algorithm we employ. By combining the results with Lemma 2, we have the main result on construction.

Theorem 2. The compact representation introduced in Theorem 1 of a connected planar graph embedding G with m edges can be con-

structed under the Dynamic Multithreaded parallel model with O(m + spw) work and O(log m + sps) span (O
(

log2 m + sps
)

span
if operation neighbour is supported), where spw and sps are the work and span, respectively, of any rooted spanning tree algorithm on
planar embeddings.

In practice. The generation of a spanning tree is also difficult to parallelize in practice. Bader and Cong [42] mention that
“the spanning tree problem is notoriously hard for any parallel implementation to achieve reasonable speedup”, and propose
an algorithm that is shown to perform well in practice. This is the one we use in our implementation.

Their algorithm works as follows. Given a starting vertex of the graph G with n vertices and m edges, the algorithm
computes sequentially a spanning tree of size O(p), called stub spanning tree, where p is the number of available threads.
Then, the leaves of the stub spanning tree are evenly assigned to the p threads as starting vertices. Each thread traverses G ,
using its starting vertices, constructing spanning trees with a DFS traversal using a stack. For each vertex, a reference to its
parent is assigned. Since a vertex can be visited by several threads, the assignment of the parent of the vertex may generate
a race condition. However, since the parent assigned by any thread already belongs to a spanning tree, any assignment will

14 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
generate a correct tree. Thus, the race condition is benign. Once a thread has no more vertices on its stack, it tries to steal
vertices from the stack of another thread by using the work-stealing algorithm. Since the spanning trees generated by all
the threads are connected to the stub spanning tree, the union of all the spanning tree generates a spanning tree of G .

They analyze their algorithm in expectation on random graphs, obtaining O(m/p) time when p � m, but general random
graphs have a very small diameter. The diameter seems to be a lower bound for the span of their algorithm, and this is
�(n1/4) on random planar graphs [43]. Also, their best possible time is O

(√
m

)
, achieved when using p = √

m processors.
Despite its analysis, the algorithm of Bader and Cong has a good practical behavior and its implementation is simple.

PRAM model. We can also analyze our algorithm under the PRAM model. Algorithm 1 is easily translated into the EREW
model, reaching O(m/ log m) processors and O(log m) time, dominated by the parallel list ranking of line 20, the expansion
from n to m processors in line 29, and the construction of succinct structures in line 36. The construction in Section 6.2,
of the structures that speed up degree and neighbour queries, is also easily carried out in the EREW model within those
bounds, except for the sorting of the edges of G ′ . This can be done in O(logm) time with O(m) processors in the EREW
model [44], and in O

(
log2 m

)
time with O(m/ logm) processors in the CREW model [45]. The postprocessing we have

described in this section, once the spanning tree is built, also runs in O(log m) time and O(m/ logm) EREW processors.
The most costly part of the process is likely to be the construction of the spanning tree. The best PRAM results we know

of are O
(

log2 m log∗ m
)

time and O(m) processors in the EREW model [46], O
(

log2 m
)

time and O(m/ logm) processors

in the arbitrary CRCW model [47], and O(log m) time and O
(
m3

)
processors in the same model [48].

Theorem 3. The compact representation introduced in Theorem 1 of a connected planar graph embedding G with m edges can be
constructed under the PRAM EREW model with O(m) processors and O

(
log2 m log∗ m

)
time, and under the PRAM arbitrary CRCW

model with O(m/ log m) processors and O
(

log2 m
)

time, or O
(
m3

)
processors and O(log m) time.

In the case of unconnected planar graphs, we can use the algorithm of Shun et al. [49] to find the connected components,
and then proceed as in Section 5.4 to represent them. This algorithm, in the PRAM arbitrary CRCW model, requires O(n)

expected work and O
(

log2 n log∗ n
)

span with high probability.2

Corollary 1. The parallel construction of Theorem 3 can be applied to unconnected planar graphs of n nodes, in the PRAM arbitrary
CRCW model, with O(n/ log n) processors in expectation, and O

(
log2 n log∗ n

)
time with high probability.

7. Experiments

We implemented the data structure construction and queries in C and compiled it using GCC 5.4. For the parallel con-
struction we used Cilk Plus extension, an implementation of the DyM model. We build only the basic structures, excluding
those to speed up operations degree and neighbor. The code and data needed to replicate our results are available at http://
www.dcc .uchile .cl /~jfuentess /pemb/.

The experiments were carried out on a NUMA machine with two NUMA nodes (Machine A). Each NUMA node includes
a 14-core Intel® Xeon® CPU (E5-2695) processor clocked at 2.3 GHz. The machine runs Linux 4.4.0-83-generic, in 64-bit
mode. The machine has per-core L1 and L2 caches of sizes 64 KB and 256 KB, respectively and a per-processor shared L3
cache of 35 MB, with a 768 GB DDR3 RAM memory (384 GB per NUMA node), clocked at 1867 MHz. Hyperthreading was
enabled, giving a total of 28 logical cores per NUMA node.

To show the impact of a machine with limited memory in the running time of queries, additional experiments were
carried out on a machine (Machine B) with Intel® CoreTM i7-7500U CPU, with four physical cores running at 2.70 GHz.
The computer runs Linux 4.8.0-53-generic, in 64-bit mode. This machine has per-core L1 and L2 caches of sizes 64 KB and
256 KB, respectively, and a shared L3 cache of 4 MB, with a 8 GB DDR4 RAM. To reduce the size of the available physical
memory, we set the mem parameter of the Linux Kernel to mem=600 MB. The machine has a hard disk with a capacity of
1 TB, 5400 RPM and a SATA connection. The results using this machine are reported only in the last part of Section 7.3.

7.1. Datasets

Our experiments ran on real and artificial datasets with different numbers of nodes. The datasets are shown in Table 1.
For the artificial datasets we generated points (x, y) with the function rnorm of R.3 The real dataset, wc, corresponds to the

2 See the note after their proof of Theorem 1.
3 The rnorm function generates random numbers with normal distribution given a mean and a standard deviation. In our case, the x and y components

were generated using mean 0 and standard deviation 10000. For more information about the rnorm function, visit https://stat .ethz .ch /R-manual /R-devel /
library /stats /html /Normal .html.

http://www.dcc.uchile.cl/~jfuentess/pemb/
http://www.dcc.uchile.cl/~jfuentess/pemb/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Normal.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Normal.html

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 15
Table 1
Datasets used in our experiments.

Dataset Vertices (n) Edges (m)

1 wc 2,243,467 6,730,395
2 pe5M 5,000,000 14,999,983
3 pe10M 10,000,000 29,999,979
4 pe15M 15,000,000 44,999,983
5 pe20M 20,000,000 59,999,975
6 pe25M 25,000,000 74,999,979

coordinates of 2, 243, 467 unique cities in the world.4 From those real or generated points, we obtained a Delaunay Triangu-
lation using Triangle, a software for the generation of meshes and triangulations.5 Finally, we generated planar embeddings
from the Delaunay triangulations with the Edge Addition Planarity Suite.6 The minimum and maximum degrees of the dataset
wc were 3 and 36, respectively. For the rest of the datasets, the minimum degree was 3 and the maximum degree was
16. We also tested our construction algorithm on several sparsified versions of one of the triangulations, as described in
Section 7.4. We do not see any reason for the time per edge of queries to change with sparsification.

7.2. Space usage

There are no other implemented compact representations of planar embeddings. In this subsection we aim to show
that representations designed for other kinds of graphs are indeed not competitive for this graph family. We compare our
compact representation with four solutions designed to compress Web graphs, social networks and planar graphs [50–53],
and with one parallel framework for processing general graphs in compressed form [54]. The three solutions for Web
graphs and social networks require reordering the vertices of the graph. The solution of Apostolico and Drovandi [50]
(AD) enumerates the vertices through a BFS traversal of the graph. The reordering induces two useful properties: locality
(a vertex with index i will have neighbors with indexes close to i), and similarity (vertices with similar index will have
similar adjacency lists). Thus, the vertices and their adjacency lists are compressed following the ordering induced by the
BFS traversal. The solution of Boldi et al. [51] (BRSV) reorders the nodes based on a clustering algorithm called Layered
Label Propagation (LLP). The LLP algorithm is used in combination with the WebGraph framework [55]. Brisaboa et al. [52]
proposed the k2-tree structure for graph compression. The k2-tree is a compact tree representation of the adjacency matrix
of a graph. The structure exploits the clustering of the edges in the adjacency matrix, representing large empty areas of the
matrix efficiently. The clustering is dependent on the ordering of the vertices of the graph. In our comparison, we used the
k2-tree structure combined with the BFS traversal of [50], as suggested by Hernández and Navarro [56]. Blandford et al. [53]
proposed a compact representation based on graph separators (GS). To construct the compact representation, the vertices of
the graph must be renumbered. The new numbering is computed recursively, decomposing the graph by the computation of
graph separators. The sequence of computed separators generate the new numbering. After the renumbering step, adjacent
vertices tend to be close in the numbering. The representation takes advantage of that and reorders the adjacency list of
each vertex, storing the difference between consecutive neighbors. Finally, the adjacency lists are encoded space-efficiently.
In our experiments, we use the child-flipping heuristic [53] to compute the numbering of the vertices and snip code to
encode the adjacency lists, which was the best among the choices we tested. Shun et al. [54] introduced Ligra+, a lightweight
graph processing framework for shared-memory multicore machines. In Ligra+, the graph is stored in compressed form, by
compressing the adjacency list of each vertex. The adjacency list of each vertex is sorted in increasing order and then
the consecutive differences are run-length encoded. Finally, we also consider a plain representation (Plain) composed by
an array of length 2m, representing the concatenation of the adjacency lists, and an array of length n, representing the
beginning of the adjacency list of each vertex.

Table 2 shows the bits per edge (bpe) of all the representations, where our solution is called Pemb, for planar embedding.
In the table, we consider four bytes for each vertex and edge in the plain representation, equivalent to an integer number
in common programming languages. Our compact representation reaches the best results, using less than half of the space
of its closest competitor. Note that the other results, using widely different techniques, obtain very close results, around 15
bpe. This seems to suggest that exploiting planarity is the key to obtain a drastic reduction in space. Our results, with at
most 6 bpe, are in accordance with the 4m + o(m) bits of Theorem 1.7 Notice that due to the neighbor reordering needed
by the other representations, they are not suitable for representing a particular planar embedding.

4 The dataset containing the coordinates was created by MaxMind, available from https://www.maxmind .com /en /free -world -cities -database. The original
dataset contains 3, 173, 959 cities, but some of them have the same coordinates. We selected the 2, 243, 467 cities with unique coordinates to build our
dataset wc.

5 Available at http://www.cs .cmu .edu /~quake /triangle .html. Our triangulations were generated using the options -cezCBVPNE.
6 Available at https://github .com /graph -algorithms /edge -addition -planarity-suite. Our embeddings were generated using the options -s -q -p.
7 We can get closer to 4 bpe by sparsifying the sublinear-size structures used to query bitvectors and parentheses, thus trading space for query time.

https://www.maxmind.com/en/free-world-cities-database
http://www.cs.cmu.edu/~quake/triangle.html
https://github.com/graph-algorithms/edge-addition-planarity-suite

16 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
Table 2
Bits per edge (bpe) of the plain representation, alternative compressed graph representations, and ours.

Dataset Plain Ligra+ BRSV AD k
2
-tree GS Pemb

wc 74.67 52.50 14.57 14.73 16.40 14.88 6.00
pe5M 74.67 52.99 14.97 14.14 15.33 15.12 5.93
pe10M 74.67 53.15 15.03 14.33 14.73 15.12 5.93
pe15M 74.67 53.20 15.04 14.38 14.38 15.12 5.72
pe20M 74.67 53.24 15.07 14.43 14.15 15.12 5.93
pe25M 74.67 53.32 15.11 14.50 13.96 15.14 5.80

Table 3
Median times of degree, listing and face queries, and the DFS traversal. All the values are in microseconds (μs),
except the dfs columns and the lim25M row, which explicitly indicate μs, ms, s (seconds), or hr (hours). The
row lim25M represents the results of the dataset pe25M in a machine with limited memory (Machine B).

Dataset Plain Pemb

deg list face dfs deg list face dfs

wc 0.01 0.12 0.35 0.51 s 4.04 20.01 8.28 14.87 s
pe5M 0.02 0.14 0.51 1.39 s 4.24 20.65 8.55 34.61 s
pe10M 0.03 0.14 0.60 2.65 s 4.41 21.24 8.82 70.05 s
pe15M 0.03 0.15 0.62 4.51 s 4.51 21.61 8.98 106.50 s
pe20M 0.03 0.15 0.64 5.66 s 4.60 21.77 9.17 142.20 s
pe25M 0.03 0.15 0.64 7.46 s 4.64 22.15 9.40 181.09 s

lim25M 9.31 ms 42.62 ms 12.79 ms �2 hr 2.04 μs 8.47 μs 5.26 μs 150.20 s

Table 4
Median times of degree and listing queries for alternative compact representations. All the values are in microseconds (μs).

Dataset Ligra+ BRSV AD k
2
-tree GS

deg list deg list deg list deg list deg list

wc 0.02 0.20 0.14 0.41 125.82 126.76 15.80 15.84 0.09 0.23
pe5M 0.02 0.26 0.17 0.43 124.45 121.16 13.73 13.75 0.09 0.26
pe10M 0.02 0.35 0.18 0.40 125.32 126.49 14.34 14.37 0.10 0.27
pe15M 0.02 0.39 0.19 0.41 125.02 122.02 14.85 14.86 0.10 0.27
pe20M 0.02 0.40 0.19 0.42 125.41 123.05 15.05 15.06 0.10 0.28
pe25M 0.02 0.41 0.20 0.41 126.08 126.56 15.45 15.41 0.10 0.28

7.3. Query times

We test the time to carry out the three basic queries introduced in Section 5: degree (deg), listing (list) and face
(face). Additionally, we test a more complex operation: a depth-first search traversal (dfs) starting from an arbitrary ver-
tex and using a stack. We solve degree by sequentially traversing the edges, as we have not built the extra data structures
to speed up this query. Observe that, given an adjacency list representation, answering degree and listing queries is straight-
forward. We measured the time of queries deg and list 10 times per vertex, face 10 times per edge, and dfs 10 times
for 30 vertices chosen at random (i.e., 300 repetitions in total). Table 3 shows the median time per query, both for the plain
representation and for our compact representation. The plain representation answers degree and listing queries 200 and
150 times faster than the compact representation, respectively. This result was expected, since the plain representation we
use already has the list of neighbors in counter-clockwise order. For the face query and the DFS traversal, the adjacency list
representation is only 16 and 26 times faster, respectively.

This slowdown is the price of a representation that uses about 13 times less space, that is, it could hold graphs 13 times
larger in main memory. To illustrate the effect of holding the compressed graph representation in main memory versus
having to handle it on disk, we replicate the experiments in a machine with artificially limited memory (Machine B). For
these new experiments we use the pe25M dataset, whose plain representation requires 668 MB, whereas its compact rep-
resentation needs only 52 MB. The machine was set to use at most 600 MB of RAM memory, just slightly less than the
necessary to hold the whole input representation. The results are shown in the last row of Table 3. For degree query, the
compact representation is around 4,500 times faster than the plain representation. For the listing query, the difference is
around 5,000 times. For the face query, the compact representation is around 2,400 times faster than the plain representa-
tion. We aborted the experiment on the DFS traversal for the adjacency list representation after two hours; a projection of
the other results suggests that more than a day would have been needed.

Thus, the compact representation pays off when it is the key to allow holding the graph in main memory.
We also measure the running time of degree and listing queries on the alternative compact graph representations intro-

duced in Section 7.2. The results are shown in Table 4. We remark that these structures do not represent embeddings but
graphs, and therefore are not a replacement for our representation. Still, the comparison gives more thorough information

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 17
Table 5
Running times of the parallel construction algorithm in seconds.

p wc pe5M pe10M pe15M pe20M pe25M

seq 2.93 7.36 15.46 23.61 31.76 40.01
1 3.56 8.93 18.77 28.78 39.33 49.20
2 2.24 5.15 10.74 16.24 21.88 27.26
4 1.33 2.98 5.94 8.94 12.31 15.25
8 0.76 1.73 3.43 5.03 6.53 8.14
12 0.54 1.22 2.43 3.59 4.70 5.84
16 0.43 1.00 1.86 2.80 3.66 4.54
20 0.36 0.80 1.63 2.37 3.13 3.88
24 0.31 0.72 1.41 2.05 2.83 3.44
28 0.27 0.65 1.23 1.97 2.50 3.08
32 0.27 0.60 1.21 1.77 2.30 2.88
36 0.27 0.59 1.12 1.69 2.25 2.74
40 0.24 0.54 1.05 1.57 2.07 2.60
44 0.23 0.52 0.99 1.49 1.96 2.46
48 0.22 0.49 0.95 1.42 1.91 2.35
52 0.22 0.48 0.92 1.38 1.82 2.28
56 0.22 0.47 0.91 1.34 1.78 2.23

on the space/time tradeoff offered by our structure. Structure Ligra+ is much faster than our representation, but also an
order of magnitude larger, roughly in the same category of the plain representation. All the other structures are about 2.5
times larger than ours, but their performance varies widely: while k

2
-tree and AD range from slightly faster to much slower

that ours, the structures BRSV and GS are much faster (indeed, not much slower than a plain representation). For complex
operations, such as DFS, the difference of our representation with respect to BRSV and GS is half the difference of the list
query, reported in Table 4.

7.4. Parallel construction

We now evaluate the performance of our parallel construction. In our implementation of the parallel spanning tree
algorithm of Bader and Cong [42], to limit the worst case, we included a threshold of O(m/p) elements in the stack size of
each thread. Each time a thread has more nodes that the threshold, it creates a new parallel thread with half of its stack.
Additionally, we also return, for each node, the reference to its parent. This yields better performance than forcing the first
edge of each node to lead to its parent.

Additionally, we implemented a sequential algorithm called seq, which corresponds to a sequential DFS algorithm to
build the spanning tree, followed by the serialization of the parallel algorithm. To serialize a parallel algorithm in the DyM
model, we replaced each parfor keyword for the for keyword and deleted the spawn and sync keywords. Each data point
is the median of 15 measurements.

Table 5 shows the running times obtained in our experiments, and Fig. 3 shows the speedups compared with the seq
algorithm. On average, the seq algorithm took about 82% of the time obtained by the parallel algorithm running with 1
thread. With p ≥ 2, the parallel algorithm shows better times than the seq algorithm. We observe an almost linear speedup
up to p = 24, with an efficiency of at least 40% for the smaller datasets and almost 50% for the bigger ones. With p = 28
the speedup has a slowdown, due to the topology of our machine. Up to 24 cores, all the threads were running in the same
NUMA node. With p ≥ 28, both NUMA nodes are used, which implies higher communication costs. The communication
costs intra NUMA nodes are lower than the communication costs inter NUMA nodes [57]. In particular, the case of p = 28
also uses both NUMA nodes, since at least one core on our machine was available to OS processes. For p = 56, the wc
dataset exhibits an efficiency of only 24%, as it is the smallest one. For the bigger datasets, the lowest efficiency is 32%.

The running times and speedups reported in Table 5 and Fig. 3 include the construction of bitvectors and balanced
parentheses sequences, to support rank, select, parent, and match operations. To measure the efficiency of our algorithm,
without the influence of the construction of those additional data structures, we repeated all the construction experiments,
excluding the additional data structures. In the new experiments, we observed that the speedup increases on average 2.7%
for p ≤ 24 and 3.2% for p ≥ 28, reaching a maximum speedup of 18.8, compared to the values reported in Fig. 3.

Table 6 shows the running time for different edge densities of the dataset pe25M, and Fig. 4 shows the corresponding
speedups compared with the algorithm seq. The different densities are generated by deleting x million edges from the
dataset pe25M, with x ∈ {5, 10, 15, 20, 25, 30}. If several components are generated, we reconnect them by restoring as few
edges as possible, and then choosing new edges to be deleted. Thus, we report results for 45 to 75 (45Me to 75Me) million
edges. The dataset 75Me corresponds to the original dataset pe25M. We observe a decrease in the running time for all
values of p, according to the decrease in the number of edges. With respect to 75Me, the rest of the datasets show a
greater decrease in the running time for increasing values of p, reaching speedups of up to 19.5 for 45Me. In the case of
datasets with the same number of edges (see columns pe15M and pe20M in Table 5, and columns 45Me and 60Me in
Table 6), the datasets with higher number of vertices show higher running times. Comparing Figs. 3 and 4, we observe that
our algorithm scales similarly for triangulated and non-triangulated graphs.

18 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
Fig. 3. Speedup of the parallel algorithm.

Table 6
Running times of the parallel construction algorithm varying the edge density for
the dataset pe25M. The running times are measured in seconds.

p 45Me 50Me 55Me 60Me 65Me 70Me 75Me

seq 33.20 34.63 36.16 37.17 38.05 38.99 40.01
1 38.35 40.74 43.06 44.87 46.38 47.85 49.20
2 21.42 22.86 24.30 25.17 26.35 26.85 27.26
4 12.10 12.96 13.50 14.31 14.50 15.16 15.25
8 6.45 6.89 7.23 7.51 7.76 7.88 8.14
12 4.62 4.91 5.12 5.46 5.64 5.69 5.84
16 3.59 3.85 4.05 4.20 4.28 4.45 4.54
20 3.05 3.28 3.41 3.59 3.66 3.80 3.88
24 2.71 2.86 3.01 3.08 3.23 3.30 3.44
28 2.45 2.62 2.68 2.77 2.90 2.94 3.08
32 2.30 2.49 2.57 2.69 2.75 2.81 2.88
36 2.19 2.35 2.38 2.50 2.58 2.64 2.74
40 2.04 2.16 2.25 2.33 2.43 2.48 2.60
44 1.94 2.04 2.13 2.21 2.28 2.34 2.46
48 1.83 1.93 2.04 2.12 2.18 2.24 2.35
52 1.77 1.86 1.95 2.05 2.10 2.16 2.28
56 1.71 1.82 1.90 2.00 2.06 2.14 2.23

Fig. 4. Speedup of the parallel algorithm varying the edge density for the dataset pe25M.

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 19
Fig. 5. Memory consumption of the parallel algorithm and the final compact structure.

Fig. 5 shows the memory consumption of our algorithm. Specifically, the figure shows for each dataset the space used
by its adjacency list representation (inputGraph), the peak consumption of our construction (peakMem) in addition to
the input and the output, the space of its plain representation (plainGraph), and the size of its compact representation
(compGraph). The plain representation, consisting of an array of edges of length 2m and an array of vertices of length
n, is enough to navigate a graph, but for the construction we need more information about the embedding of the input
graph. This richer adjacency list representation is what we call inputGraph. To measure the peak consumption, we use
malloc_count,8 which monitors the memory allocated and released with malloc and free, respectively, and reports
the peak usage. The observed peak consumption equals the size of the arrays LE , D pos and Dedge . Compared with the space
consumption of the input adjacency list representation, our implementation uses 73% of extra space. The final compact
representation uses about 8% of the plain representation, as we have seen.

8. Conclusions and future work

Turán’s representation of planar embeddings [4] is much simpler than the known alternatives and encodes any planar
embedding of m edges in just 4m bits, close to the lower bound of 3.58m bits. In this paper we have shown how to add o(m)

bits to this encoding in order to support fast navigation and queries of the graph, in constant time for the most fundamental
operations. While there are asymptotically optimal representations [3], the simplicity of Turán’s encoding enabled us to
introduce the first actual implementation of such a compact data structure, where the basic navigation operations are solved
within microseconds. Further, the structure can be built at a rate of about one microsecond per edge, and the construction
can be parallelized with linear speedup and an efficiency near 50%. Our parallel construction algorithm has linear work and
logarithmic span on the dynamic multithreaded model once a spanning tree of the embedding is computed.

One intriguing question is about the queries we do not support in constant time. Some previous representations [8,9,3]
can compute the degree of a node in O(1) time, whereas we can handle any superconstant time. Similarly, they can answer
neighbor queries in O(1) time, whereas our structure needs superlogarithmic time. The representation closest to ours [9]
uses the same technique of two types of parentheses, but the arrangement of the parentheses follows a so-called orderly
spanning tree. While much more complex to build and unable to represent some embeddings, such spanning tree induces
a certain regularity on the representation of the edges leaving each node, which allows determining in constant time the
number of such edges, and whether two nodes are connected. It is an interesting question whether we can find a simpler
arrangement that retains those properties.

Another future research line is how to make our data structure dynamic. We can use a scheme inspired by Munro et
al. [58]. Suppose we store our static data structure and a dynamic buffer that contains information about edges that have
been added or deleted. If we want to know if an edge is present, we check our static data structure and then check the
buffer to see if its status has changed. Once the buffer becomes too large — e.g., more than m/ logε m bits — we rebuild
our static structure. Even when updates arrive sequentially, there are some issues to consider, such as how to quickly report
the neighbors of a node that originally had many edges but has had most of them deleted (perhaps by moving all the
information about a node into the buffer when half its incident edges have been updated) and how to detect if the graph
has become non-planar. There are more issues when the updates can be made in parallel, since then we may need locks
for nodes and finding a practical design becomes challenging.

Finally, we believe we can generalize our data structure to store efficiently graphs that are almost planar, using for
example generalizations of the technique of Fischer and Peters [59] to store graphs that are almost trees. Of course, it is NP-

8 Timo Bingmann. Malloc_count - Tools for runtime memory usage analysis and profiling. URL:https://panthema .net /2013 /malloc _count/. Last accessed:
August 08, 2017.

https://panthema.net/2013/malloc_count/

20 L. Ferres et al. / Comput. Geom. 89 (2020) 101630
hard to find the maximum planar subgraph of an arbitrary graph [60], but there have been recent advances in approximating
it and in practice bridges and tunnels, for example, might already be identified anyway.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The first author received funding from CORFO 13CEE2-21592 (2013-21592-1-INNOVA PRODUCCION2013-21592-1). The
second author received funding from Conicyt Fondecyt grant 3170534. The second, third and fifth authors received travel
funding from EU grant H2020-MSCA-RISE-2015 BIRDS GA No. 690941, and funding from Basal Funds FB0001, Conicyt, Chile.
The third author received funding from Academy of Finland grant 268324 and FONDECYT grant 1171058. The fourth au-
thor received funding from NSERC of Canada. The fifth author received funding from Millennium Institute for Foundational
Research on Data (IMFD). Early parts of this work were done while the third author was at the University of Helsinki and
while the third and fifth authors were visiting the University of A Coruña.

Many thanks to Jérémy Barbay, Luca Castelli Aleardi, Guojing Cong, Arash Farzan, Cecilia Hernández, Ian Munro, Pat
Nicholson, Romeo Rizzi and Julian Shun for fruitful discussions. We thank Susana Ladra and Guy Blelloch for sharing their
k2-tree and graph separators code with us. We also thank Telefonica I+D, in particular, Pablo García, for sharing their
computing equipment with us. The third author is grateful to the late David Gregory for his course on graph theory.

References

[1] L. Ferres, J. Fuentes, T. Gagie, M. He, G. Navarro, Fast and compact planar embeddings, in: Proceedings of the 15th International Symposium, Algorithms
and Data Structures (WADS), Springer International Publishing, 2017, pp. 385–396.

[2] W.T. Tutte, A census of planar maps, Can. J. Math. 15 (1963) 249–271.
[3] G.E. Blelloch, A. Farzan, Succinct representations of separable graphs, in: Proceedings of the 21st Annual Conference on Combinatorial Pattern Matching

(CPM), Springer-Verlag, 2010, pp. 138–150.
[4] G. Turán, On the succinct representation of graphs, Discrete Appl. Math. 8 (3) (1984) 289–294.
[5] K. Keeler, J. Westbrook, Short encodings of planar graphs and maps, Discrete Appl. Math. 58 (1995) 239–252.
[6] G. Jacobson, Space-efficient static trees and graphs, in: Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), IEEE

Computer Society, 1989, pp. 549–554.
[7] J. Barbay, L.C. Aleardi, M. He, J.I. Munro, Succinct representation of labeled graphs, Algorithmica 62 (2012) 224–257.
[8] J.I. Munro, V. Raman, Succinct representation of balanced parentheses and static trees, SIAM J. Comput. 31 (3) (2001) 762–776.
[9] Y.-T. Chiang, C.-C. Lin, H.-I. Lu, Orderly spanning trees with applications, SIAM J. Comput. 34 (2005) 924–945.

[10] M. Yannakakis, Embedding planar graphs in four pages, J. Comput. Syst. Sci. 38 (1) (1989) 36–67.
[11] R.C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, H.-I. Lu, Compact encodings of planar graphs via canonical orderings and multiple parentheses, in: Proceed-

ings of the 25th International Colloquium on Automata, Languages and Programming (ICALP), in: LNCS, vol. 1443, 1998, pp. 118–129.
[12] W. Schnyder, Embedding planar graphs on the grid, in: Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Society

for Industrial and Applied Mathematics, 1990, pp. 138–148.
[13] D.K. Blandford, G.E. Blelloch, I.A. Kash, Compact representations of separable graphs, in: Proceedings of the 14th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), Society for Industrial and Applied Mathematics, 2003, pp. 679–688.
[14] R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979) 177–189.
[15] N. Bonichon, C. Gavoille, N. Hanusse, D. Poulalhon, G. Schaeffer, Planar graphs, via well-orderly maps and trees, Graphs Comb. 22 (2) (2006) 185–202.
[16] X. He, M.Y. Kao, H.-I. Lu, A fast general methodology for information-theoretically optimal encodings of graphs, SIAM J. Comput. 30 (2000) 838–846.
[17] L.C. Aleardi, O. Devillers, G. Schaeffer, Succinct representation of triangulations with a boundary, in: Proceedings of the 9th International Conference

on Algorithms and Data Structures (WADS), Springer-Verlag, 2005, pp. 134–145.
[18] L. Castelli Aleardi, O. Devillers, G. Schaeffer, Succinct representations of planar maps, Theor. Comput. Sci. 408 (2–3) (2008) 174–187.
[19] E. Fusy, G. Schaeffer, D. Poulalhon, Dissections, orientations, and trees with applications to optimal mesh encoding and random sampling, ACM Trans.

Algorithms 4 (2) (2008) 19.
[20] K. Yamanaka, S.-I. Nakano, A compact encoding of plane triangulations with efficient query supports, Inf. Process. Lett. 110 (18–19) (2010) 803–809.
[21] L.C. Aleardi, O. Devillers, Array-based compact data structures for triangulations: practical solutions with theoretical guarantees, J. Comput. Geom. 9 (1)

(2018) 247–289.
[22] J.I. Munro, P.K. Nicholson, Compressed representations of graphs, in: Encyclopedia of Algorithms, Springer, 2016, pp. 382–386.
[23] G. Navarro, Compact Data Structures: A Practical Approach, Cambridge University Press, 2016.
[24] X. He, M.-Y. Kao, Parallel construction of canonical ordering and convex drawing of triconnected planar graphs, in: Proceedings of the 4th International

Symposium on Algorithms and Computation (ISAAC), 1993, pp. 303–312.
[25] M. Kao, S. Teng, K. Toyama, An optimal parallel algorithm for planar cycle separators, Algorithmica 14 (1995) 398–408.
[26] M. Kao, M. Fürer, X. He, B. Raghavachari, Optimal parallel algorithms for straight-line grid embeddings of planar graphs, SIAM J. Discrete Math. 7 (4)

(1994) 632–646.
[27] D.R. Clark, Compact PAT trees, Ph.D. thesis, University of Waterloo, Canada, 1996.
[28] J.I. Munro, Tables, in: Proceedings of the 16th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), in: LNCS,

vol. 1180, 1996, pp. 37–42.
[29] R. Raman, V. Raman, S.R. Satti, Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets, ACM Trans.

Algorithms 3 (4) (2007).
[30] R.F. Geary, N. Rahman, R. Raman, V. Raman, A simple optimal representation for balanced parentheses, Theor. Comput. Sci. 368 (3) (2006) 231–246.
[31] G. Navarro, K. Sadakane, Fully functional static and dynamic succinct trees, ACM Trans. Algorithms 10 (3) (2014) 16.
[32] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Multithreaded algorithms, in: Introduction to Algorithms, 3rd edition, The MIT Press, 2009, pp. 772–812.

http://refhub.elsevier.com/S0925-7721(20)30024-9/bib8D1E4BD79AE3E500B37123EC653150CAs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib8D1E4BD79AE3E500B37123EC653150CAs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib9346ABC21040FEC8B225188C32FD8F7Ds1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibF955EB512EBB5634C80D8226A8C2D1C2s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibF955EB512EBB5634C80D8226A8C2D1C2s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib466FE44F5F0C20FD630C33CB2A4506EFs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib91FA9A6D84FAC34E4BA8BB00E5E53D95s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibDC623361B9D2C82FD031354918F4F462s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibDC623361B9D2C82FD031354918F4F462s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib66F699752C46C16CAF1D6B0EB225117As1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib6187DA612851F1303FF255D8EEF7E7E9s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibDD126927CFEB5FB4D5048DA3E69E169Es1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib978FF2DAD10585D0B23CF29FA8B93AF1s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibA4AD4ED3979500AA61274A6C00B39ED6s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibA4AD4ED3979500AA61274A6C00B39ED6s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibA332542560AA4551B94765237761D0FDs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibA332542560AA4551B94765237761D0FDs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib48B9275EA5E6148FEEDC63E0CAF9ABF2s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib48B9275EA5E6148FEEDC63E0CAF9ABF2s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibE2369A53DDE7F883770CAD790E9D776As1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib334402F69BA9ACD11EEE134B17F48465s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibA64DB0373659BC802608C8533E5B2022s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib5601B804BBA08D39B823716424519D6As1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib5601B804BBA08D39B823716424519D6As1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibEA5281521282B01B3C3A57BF5C3AA7D6s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib80A249A0BEEB4F8016196736D2A994E2s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib80A249A0BEEB4F8016196736D2A994E2s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib55E226E58EC23B69207193104B9A1C3Bs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibCF75B380340603D153B5E53FBB5CA24Fs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibCF75B380340603D153B5E53FBB5CA24Fs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib0C67F566F6A060B6EC454BC648971E3Cs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibB98D9CA31BEC8145FFF5BC21C401C35Ds1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib4576EA9DA220B342317C55908E807921s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib4576EA9DA220B342317C55908E807921s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibE9BC743B4EA7584EA9DECAFB98FC1134s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib667149FFA82706BB2F7BA51C3F4F0012s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib667149FFA82706BB2F7BA51C3F4F0012s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib88A43DF6791578970A2641BB199F172As1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibFA591D77A3D0651129E1EA244E051E9Cs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibFA591D77A3D0651129E1EA244E051E9Cs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib54BD74A07FA0A6F2E9F3910CB442C98Bs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib54BD74A07FA0A6F2E9F3910CB442C98Bs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib134DE384B09BB0D10C03BC063A047564s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibFBA6F77A6FD5F858C302D4D10CA70C0Cs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib8B8E62A0E4B09071616255B9BCDED97As1

L. Ferres et al. / Comput. Geom. 89 (2020) 101630 21
[33] R.D. Blumofe, C.E. Leiserson, Scheduling multithreaded computations by work stealing, J. ACM 46 (5) (1999) 720–748.
[34] N. Biggs, Spanning trees of dual graphs, J. Comb. Theory, Ser. B 11 (2) (1971) 127–131.
[35] D. Eppstein, Dynamic generators of topologically embedded graphs, in: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), Society for Industrial and Applied Mathematics, 2003, pp. 599–608.
[36] T.R. Riley, W.P. Thurston, The absence of efficient dual pairs of spanning trees in planar graphs, Electron. J. Comb. 13 (1) (2006).
[37] P. Ferragina, R. Venturini, A simple storage scheme for strings achieving entropy bounds, Theor. Comput. Sci. 371 (1) (2007) 115–121.
[38] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dictionary, in: Proceedings of the 9th Workshop on Algorithm Engineering and

Experiments (ALENEX), 2007, pp. 60–70.
[39] D.R. Helman, J. JáJá, Prefix computations on symmetric multiprocessors, J. Parallel Distrib. Comput. 61 (2001) 265–278.
[40] J. Labeit, J. Shun, G.E. Blelloch, Parallel lightweight wavelet tree, suffix array and fm-index construction, J. Discret. Algorithms 43 (2017) 2–17.
[41] J. Fuentes-Sepúlveda, L. Ferres, M. He, N. Zeh, Parallel construction of succinct trees, Theor. Comput. Sci. 700 (2017) 1–22.
[42] D.A. Bader, G. Cong, A fast, parallel spanning tree algorithm for symmetric multiprocessors (SMPs), J. Parallel Distrib. Comput. 65 (2005) 994–1006.
[43] G. Chapuy, E. Fusy, O. Giménez, M. Noy, On the diameter of random planar graphs, Comb. Probab. Comput. 24 (1) (2015) 145–178.
[44] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (4) (1988) 770–785.
[45] G. Bilardi, A. Nicolau, Adaptive bitonic sorting: an optimal parallel algorithm for shared-memory machines, SIAM J. Comput. 18 (2) (1989) 216–228.
[46] G.E. Shannon, A linear-processor algorithm for depth-first search in planar graphs, Inf. Process. Lett. 29 (3) (1988) 119–123.
[47] M. Kao, S. Teng, K. Toyama, An optimal parallel algorithm for planar cycle separators, Algorithmica 14 (5) (1995) 398–408.
[48] T. Hagerup, Planar depth-first search in O (logn) parallel time, SIAM J. Comput. 19 (4) (1990) 678–704.
[49] J. Shun, L. Dhulipala, G. Blelloch, A simple and practical linear-work parallel algorithm for connectivity, in: Proceedings of the 26th ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA), 2014, pp. 143–153.
[50] A. Apostolico, G. Drovandi, Graph compression by BFS, Algorithms 2 (3) (2009) 1031–1044.
[51] P. Boldi, M. Rosa, M. Santini, S. Vigna, Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks, in:

Proceedings of the 20th International Conference on World Wide Web (WWW), 2011, pp. 587–596.
[52] N. Brisaboa, S. Ladra, G. Navarro, Compact representation of web graphs with extended functionality, Inf. Sci. 39 (1) (2014) 152–174.
[53] D.K. Blandford, G.E. Blelloch, I.A. Kash, Compact representations of separable graphs, in: Proceedings of the 14th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), 2003, pp. 679–688.
[54] J. Shun, L. Dhulipala, G.E. Blelloch, Smaller and faster: parallel processing of compressed graphs with Ligra+, in: Proceedings of the 25th Data Com-

pression Conference (DCC), 2015, pp. 403–412.
[55] P. Boldi, S. Vigna, The webgraph framework I: compression techniques, in: Proceedings of the 13th International Conference on World Wide Web

(WWW), ACM, 2004, pp. 595–602.
[56] C. Hernández, G. Navarro, Compressed representations for web and social graphs, Knowl. Inf. Syst. 40 (2) (2014) 279–313.
[57] U. Drepper, What every programmer should know about memory, http://people .redhat .com /drepper /cpumemory.pdf, 2007.
[58] J.I. Munro, Y. Nekrich, J.S. Vitter, Dynamic data structures for document collections and graphs, in: Proceedings of the 34th ACM Symposium on

Principles of Database Systems (PODS), 2015, pp. 277–289.
[59] J. Fischer, D. Peters, GLOUDS: representing tree-like graphs, J. Discret. Algorithms 36 (2016) 39–49.
[60] M. Yannakakis, The effect of a connectivity requirement on the complexity of maximum subgraph problems, J. ACM 26 (1979) 618–630.

http://refhub.elsevier.com/S0925-7721(20)30024-9/bib643442982BE7C6A6ED51E65476938B0As1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib2868C23BEA991777C5C8B08AC5862CCEs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib33E3BEBB1DEFD135DAE60321DC39AC87s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib33E3BEBB1DEFD135DAE60321DC39AC87s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibF2770481788C712DBF9A1FBCD5CD2E10s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibE0E09C551D5A8D8FAEEB746262400BBAs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibBB98B52BAC0657DEFBFD2E336B467442s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibBB98B52BAC0657DEFBFD2E336B467442s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib6EDE3CE845C0915305A688C9DA64C60Cs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibCF9902B22A5E62C718B629D35D121687s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibC2EF97BBD6FBB69BF3EBE163E56971CDs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibC7703CFC8C4EF129BD3E255F3D8C1581s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib161350F3835C3F5BF3F2DCB72987A7DBs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib860BAA89D5C1F664B1C5858A7C02A0DAs1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib082FD11AD53BF43C8F98887686CF1B15s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibE6B2EF5EC5F143D75F185B596CDF76A6s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib5D464E3F1727BB0ABDFCEE233D644B8Es1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibCB70E267A9C9D3A5CB8AE72EA726A0A9s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibDFAC9D0A1510B4ABEA831E068E019117s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibDFAC9D0A1510B4ABEA831E068E019117s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib5B39D24137C2C7A4C216FCFC5CC7FAE7s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib5C9791782892063826F1CE447C914869s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib5C9791782892063826F1CE447C914869s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib41748DA6949DD1840B9239C3F4777B68s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibA235289D0757612B7FAEFAE5E9AF11E2s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibA235289D0757612B7FAEFAE5E9AF11E2s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib851CD825B0CAA51305E82470A597EC9As1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib851CD825B0CAA51305E82470A597EC9As1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibD696C26AA8AA16679EEFC0E3F98F5313s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibD696C26AA8AA16679EEFC0E3F98F5313s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib7FE826A369E47E76B6AEB74379190555s1
http://people.redhat.com/drepper/cpumemory.pdf
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib1779236873158FE0D7D31C78BC535F1Ds1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib1779236873158FE0D7D31C78BC535F1Ds1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bibC3D58943332B9058C08671F6D34482A6s1
http://refhub.elsevier.com/S0925-7721(20)30024-9/bib31F54C393D504202C65CA12B454D63EDs1

	Fast and compact planar embeddings
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Bitvectors and parentheses
	3.2 Parallel computation model

	4 Spanning trees of planar graphs
	5 Data structure
	5.1 Implementing the basic queries
	5.2 More complex queries
	5.3 Reducing space on simple planar graphs
	5.4 Unconnected planar graphs

	6 Parallel construction
	6.1 Parallel construction of compact planar embeddings
	6.2 Structures for degree and neighbor queries
	6.3 Parallel computation of spanning trees

	7 Experiments
	7.1 Datasets
	7.2 Space usage
	7.3 Query times
	7.4 Parallel construction

	8 Conclusions and future work
	Acknowledgements
	References

