TABLA DE CONTENIDO

CAP	PÍTULO) 1: INTRODUCCIÓN1
1.	1 Co	ontexto1
1.	2 M	otivación y problemática 2
1.	3 Oł	ojetivos
	1.3.1	Objetivo general
	1.3.2	Objetivos específicos
	1.3.3	Objetivos operacionales 4
1.4	4 Al	cances y limitaciones 4
1.	5 M	etodología a implementar 6
1.	6 Ro	ol de estudio en el contexto minero7
1.	7 Ca	rta Gantt
CAP	PÍTULO	2: MARCO TEÓRICO11
2.	1 Ca	racterización de roca intacta y del macizo rocoso11
	2.1.1	Roca intacta
	2.1.2	Macizo rocoso 12
	2.1.3	Propiedades del macizo rocoso12
	2.1.4	Métodos de clasificación del macizo rocoso12
	2.1.5	Efecto escala
2.2	2 Cr	iterio de falla14
	2.2.1	Criterio de falla de Mohr – Coulomb 14
	2.2.2	Ángulo de fricción (Ø) 15
	2.2.3	Cohesión (C)
2.	3 Es	tabilidad de taludes en el macizo rocoso16
	2.3.1	Modos de falla 16
	2.3.1.1	Mecanismos de falla con total control estructural16
	2.3.1.2	Mecanismos de falla sin control estructural 19
	2.3.2	Factor de seguridad 20
	2.3.3	Cálculo de estabilidad de taludes 21
	2.3.3.1	Métodos exactos 22
2.4	4 Vi	braciones

2.4.1	Parámetros de las ondas23
2.4.2	Parámetros de vibración25
2.4.3	Atenuación de ondas en el macizo rocoso 26
2.4.4	Tipo de ondas sísmicas 27
2.4.4	1 Onda de compresión (P) 27
2.4.4	2 Onda transversal (S) 28
2.4.4	3 Onda rayleigh (R) 28
2.5 N	10delos de campo lejano 29
2.5.1	Modelo de Devine
2.6 N	Iodelos de campo cercano
2.6.1	Modelo de Holmberg & Persson
2.7 0	Criterios de daño para roca intacta
2.8 0	Criterios de daño para macizo rocoso 34
2.9 N	Iodelos de PPV escalados a macizo rocoso
2.9.1	Consideraciones del Modelo de Vergara (2014)
2.9.1	1 Escalamiento de la resistencia a la tracción
2.9.1	2 Escalamiento del módulo de deformación 39
2.9.1	3 Modelo de escalamiento propuesto por Vergara (2014) 39
2.9.1	4 Análisis de sensibilidad 39
2.9.2	Consideraciones del Modelo de Pardo (2016) 40
2.9.2	1 Escalamiento de la resistencia a la tracción 40
2.9.2	2 Escalamiento del módulo de deformación 41
2.9.2	3 Escalamiento del módulo de deformación 41
2.10	Mecanismo de fragmentación por tronadura 41
2.11	Distribución de energía en la tronadura 44
2.12	Propiedades de los explosivos
2.13	Evaluación de vibraciones mediante geófonos 48
2.14	Daño sobre el macizo rocoso 50
2.15	Parámetros que afectan en la generación de vibraciones 50
2.16	Daño inducido por la tronadura51
2.17	Daño inducido por la tronadura a escala banco - berma

2.18	Variables críticas del diseño de tronadura	54
2.19	Parámetros controlables en la generación de vibraciones	57
2.20	Secuencia de tronadura de contorno	57
2.21	Técnicas de monitoreo de vibraciones y mediciones en terreno	57
2.22	Daño campo lejano	58
2.23	Daño campo cercano	59
2.24	Limitaciones y ventajas del estudio de vibraciones	60
2.25	Análisis técnico-económico asociado a tronadura	61
2.26	Experiencias internas y externas relacionadas con el estudio	63
CAPÍTU	ULO 3: ANTECEDENTES DE LA FAENA	64
3.1	Características generales y ubicación	64
3.2	Recursos geológicos y reservas mineras	65
3.3	Descripción del proceso productivo	65
3.4	Flota de equipos mina	66
3.5	Geología del yacimiento	67
3.6	Unidades Geotécnicas en Mina Los Pelambres	69
3.7	Modelo geológico y estructural de la mina	70
3.8	Propiedades resistentes de la roca intacta	72
3.9	Propiedades resistentes del macizo rocoso	73
3.10	Propiedades resistentes de las estructuras	75
3.11	Parámetros de diseño para perforación y tronadura	77
3.12	Estándar de perforación y tronadura	79
3.13	Proceso de perforación y tronadura	80
3.14	Evaluación de daño y calidad geotécnica post tronadura	82
3.15	Características de los explosivos utilizados	84
3.16	Estándar de tiempos de retardo	84
CAPÍTI	ULO 4: MARCO METODOLÓGICO	86
4.1	Metodología de trabajo	89
4.2	Plan de trabajo para análisis estructural	90
4.3	Plan de trabajo pre tronadura	
4.4	Plan de trabajo post tronadura	93

CAPÍT	ULO 5: ANÁLISIS Y EVALUACIÓN DE RESULTADOS	94
5.1	Conciliación geotécnica a nivel banco – berma	
5.2	Revisión de mecanismos de inestabilidad en Fase F10N	118
5.3	Propuesta de diseño a nivel banco - berma	123
5.4	Vibraciones inducidas por tronadura en campo cercano	128
5.5	Modelo de daño	131
5.6	Zonas de daño	134
5.7	Ábacos de diseño – Caso Base	136
5.8	Ábacos de diseño – Propuestas de tronadura para UGT06	140
5.9	Ábacos de diseño – Propuestas de Tronadura para UGT03	155
CAPÍT	ULO 6: CONCLUSIONES Y RECOMENDACIONES	167
CAPÍT	ULO 7: BIBLIOGRAFÍA	173
CAPÍT	ULO 8: ANEXOS	175

Índice de ilustraciones

Ilustración 1: Metodología de Trabajo (Elaboración Propia)7
Ilustración 2: Ejemplificación de roca intacta, Calificación del Macizo Rocoso (Vallejos, 2018).
Ilustración 3: Ejemplificación efecto escala, Hutchinson & Diederichs (1996) 14
Ilustración 4: Proyección estereográfica de falla plana, Estabilidad de Taludes en Roca
(Vallejos, 2018)
Ilustración 5: Geométrica de falla en cuña, Estabilidad de Taludes en Roca (Vallejos, 2018) 17
Ilustración 6: Proyección estereográfica de falla por cuña, Estabilidad de Taludes en Roca
(Vallejos, 2018)
Ilustración 7: Proyección estereográfica de falla por volcamiento, Estabilidad de Taludes en
<i>Roca</i> (<i>Vallejos</i> , 2018)
Ilustración 8: Proyección estereográfica de falla circular, Estabilidad de Taludes en Roca
(Vallejos, 2018)
Ilustración 9: Factor de seguridad de taludes en condición estable e inestable, Estabilidad de
Taludes en Roca (Vallejos, 2018)
Ilustración 10: Esquema de métodos para cálculo de estabilidad de taludes, Morales (2009) 22
Ilustración 11: Esquema de métodos para cálculo de estabilidad de taludes, Vibraciones y Onda
Aérea (Cubillos, 2018)
Ilustración 12: Dirección de propagación onda P, Ondas sísmicas (Braile, 2020)
Ilustración 13: Dirección de propagación de onda S, Ondas sísmicas (Braile, 2020)
Ilustración 14: Dirección de propagación onda R, Ondas sísmicas (Braile, 2020)

Ilustración 16: Guías para la estimación del factor de alteración D, Hoek E. (2012), Calificación Ilustración 17: Etapas de los mecanismos de fragmentación por tronadura, Manual de Ilustración 18: Etapas de los mecanismos de fragmentación por tronadura, Manual de Ilustración 19: Configuración triaxial de geófonos (Protocolo de instalación de Geófonos Ilustración 20: Esquema de daño producto de tronadura (Elaboración propia, 2019). 50 Ilustración 21: Factores que tienen efecto sobre las vibraciones (Konya, 1990)...... 51 Ilustración 23: Generación de un gradiente de presión (Fuente Propia)......55 Ilustración 25: Metodología de Cross Hole (Bravo, 2018)...... 58 Ilustración 26: Tabla resumen sobre influencia de mecanismos de atenuación de energía...... 59 Ilustración 27: Ubicación del complejo minero, Minera Los Pelambres (Bonzi, 2016). 65 Ilustración 29: Mapa geológico del sector de la Mina Los Pelambres (Bonzi, 2016). 68 Ilustración 31: Definición de las Unidades Geotécnicas (Modelo Estructural MLP, 2018)...... 69 Ilustración 32: Unidades Geotécnicas Mina Los Pelambres (Modelo Estructural MLP, 2018)..70 Ilustración 34: Ajuste residual de las propiedades de las estructuras (Propiedades Resistentes de Ilustración 35: Parámetros geométricos en la construcción de taludes (Manual de Diseño de Ilustración 37: Esquema general de perforación en Mina Los Pelambres (Manual de Diseño de Ilustración 38: Flujograma del proceso de perforación y tronadura, rajo Los Pelambres (Manual Ilustración 41: Esquema de diseño y carguío de precorte (Manual de Diseño de Perforación y Ilustración 42: Perfil de cargas de las UGT03 y UGT12 Pelambres (Manual de Diseño de Ilustración 43: Parámetros del diseño de tronadura en UGT03 y UGT12 (Manual de Diseño de Ilustración 44: Perfil de cargas de la UGT06 (Manual de Diseño de Perforación y Tronadura

Ilustración 45: Parámetros del diseño de tronadura en UGT06 (Manual de Diseño de Perforación y Tronadura ENAEX 2019)
Ilustración 46: Plan de trabajo para evaluar condición geomecánica-estructural de F10N
(Elaboración Propia, 2020)
Ilustración 48: Plan de trabajo de condición post-tronadura en F10N (Elaboración Propia, 2020)
Ilustración 49: Condición estructural actual de F10N, Mina Los Pelambres (Fuente Propia) 94
Ilustración 50: Análisis estereográfico de la UGT03, Mina Los Pelambres (Modelo Estructural MLP, 2018)
Ilustración 51: Análisis estereográfico de la UGT06, Mina Los Pelambres (Modelo Estructural MLP, 2018)
Ilustración 52: Análisis estereográfico de la UGT012, Mina Los Pelambres (Modelo Estructural MLP, 2018)
Ilustración 53: Condición geotécnica crítica del banco 3425, Fase F10N (Fuente Propia) 98
Ilustración 54: Condición geotécnica crítica del banco 3410, Fase F10N (Fuente Propia) 99
Ilustración 55: Condición geotécnica crítica del banco 3395, Fase F10N (Fuente Propia) 100
Ilustración 56: Condición geotécnica crítica del banco 3380, Fase F10N (Fuente Propia) 101
Ilustración 57: Proyección estereográfica de estructuras críticas de F10N (Elaboración propia). 102
Ilustración 58: Histograma de los manteos de las estructuras críticas declaradas (Fuente Propia)
Ilustración 59: Proyección estereográfica de todos los mapeos de F10N (Elaboración propia). 104
Ilustración 60: Histograma de los manteos de estructuras declaradas en F10N (Fuente Propia). 106
Ilustración 61: Proyección estereográfica del Banco 3425, Fase F10N (Fuente Propia) 107
Ilustración 62: Análisis para definir falla plana en 3425 (Fuente Propia) 108
Ilustración 63: Análisis para definir falla en cuña 3425 (Fuente Propia) 108
Ilustración 64: Proyección estereográfica del Banco 3410, Fase F10N (Fuente Propia) 110
Ilustración 65: Análisis para definir falla plana en 3410 (Fuente Propia) 111
Ilustración 66: Análisis para definir falla en cuña 3410 (Fuente Propia)
Ilustración 67: Proyección estereográfica del Banco 3395, Fase F10N (Fuente Propia) 112
Ilustración 68: Análisis para definir falla plana en 3395 (Fuente Propia) 113
Ilustración 69: Análisis para definir falla en cuña 3395 (Fuente Propia)
Ilustración 70: Proyección estereográfica del Banco 3380, Fase F10N (Fuente Propia) 115
Ilustración 71: Análisis para definir falla plana en 3380 (Fuente Propia)
Ilustración 72: Análisis para definir falla en cuña 3380 (Fuente Propia)
Ilustración 73: Comparación entre la topografía actual de Fase F10N y el diseño mina (Fuente
<i>Propia</i>)
Ilustración 74: Discos estructurales a nivel de banco en Fase F10N (Fuente Propia) 119

Ilustración 75: Inestabilidades identificadas en terreno, Fase F10N (Fuente Propia)11	9
Ilustración 76: Proyección estereográfica de estructuras identificadas mediante scanner (Fuent	е
<i>Propia</i>)	0
Ilustración 77: Análisis cinemático de estabilidad respecto a la información del scanner (Fuent	е
<i>Propia</i>)12	2
Ilustración 78: Análisis cinemático respecto a la información del scanner (Fuente Propia) 12	2
Ilustración 79: Proyección estereográfica para el desarrollo del estudio a escala de banco	0
(Fuente Propia)	4
Ilustración 80: Análisis cinemático de falla plana con un ángulo cara de banco de 70° (Fuent	е
<i>Propia</i>)12	5
Ilustración 81: Análisis cinemático de falla plana con un ángulo cara de banco de 75° 12	5
Ilustración 82: Análisis cinemático de falla plana con un ángulo cara de banco de 80° 12	5
Ilustración 83: Análisis cinemático de falla cuña con un ángulo cara de banco de 70° (Fuent	е
<i>Propia</i>)12	6
Ilustración 84: Análisis cinemático de falla cuña con un ángulo cara de banco de 75° (Fuent	е
<i>Propia</i>)12	6
Ilustración 85: Análisis cinemático de falla cuña con un ángulo cara de banco de 80° 12	7
Ilustración 86: Tabla resumen del análisis de equilibrio límite de Fase F10N (Fuente Propia,).
	8
Ilustración 87: Perfil de carga explosiva, propuesta N°1 (Fuente Propia)14	7
Ilustración 88: Simulación Paradigme, propuesta N°1 14	8
Ilustración 89: Perfil de carga explosiva, propuesta N°2 (Fuente Propia)14	8
Ilustración 90: Simulación Paradigme, propuesta N°2 14	9
Ilustración 91: Perfil de carga explosiva, propuesta N°3 (Fuente Propia)14	9
Ilustración 92: Simulación Paradigme, propuesta N°3	0
Ilustración 93: Perfil de carga explosiva, propuesta N°4 (Fuente Propia)	0
Ilustración 94: Simulación Paradigme, propuesta N°4	1
Ilustración 95: Perfil de carga explosiva, propuesta N°5 (Fuente Propia)15	1
Ilustración 96: Simulación Paradigme, propuesta N°5	2
Ilustración 97: Sector de la tronadura en F10N, banco 3365 (Fuente Propia)	5
Ilustración 98: Perfil de carga de la tronadura aplicada en F10N, banco 3365 (Fuente Propia,).
	6
Ilustración 99: Auscultación de pozo, tramo superior del pozo (Fuente Propia)	2
Ilustración 100: Auscultación de pozo, tramo inferior del pozo (Fuente Propia)	2
Ilustración 101: Sector conciliado post tronadura en fase F10N (Fuente Propia)	6
Ilustración 102: Fórmulas de escalamiento a macizo rocoso del módulo de deformación 17	6
Ilustración 103: Tipos de sistemas de iniciación (Bravo, 2018)	7
Ilustración 104: Esquema de la prueba de filtro de precorte	8
Ilustración 105: Banco 3365 de fase F10N, posterior a la tronadura implementada	9
Ilustración 106: Cumplimiento del ancho de berma por perfil	1
Ilustración 107: Tabla resumen del cumplimiento del ancho de berma por banco	2
Ilustración 108: Plan de trabajo Mina Los Pelambres (Fuente Propia)	3

Índice de tablas

Tabla 1: Métodos de clasificación de macizo rocoso, Casanegra (2008)	13
Tabla 2: Modelo de daño de McKenzie	34
Tabla 3: Criterio de daño escalado a macizo rocoso (Vergara, 2016)	35
Tabla 4: Tabla resumen de limitaciones y ventajas del estudio de vibraciones	60
Tabla 5: Equipos mina año 2019 para Mina Los Pelambres	67
Tabla 6: Resumen de los sets estructurales de MLP (Análisis Banco Berma, 2018)	72
Tabla 7: Propiedades geomecánicas de la roca intacta (Análisis Banco Berma, 2018)	73
Tabla 8: Valores de RMR, RQD y GSI por Unidades Geotécnicas	74
Tabla 9: Resumen de las propiedades de las estructuras por tipo de relleno (Prop	piedades
Resistentes de Roca Intacta y de Macizo Rocoso, 2017)	75
Tabla 10: Parámetros base de análisis de estabilidad (Propiedades Resistentes de Roca	Intacta y
de Macizo Rocoso, 2017).	76
Tabla 11: Bases de diseño proyectadas para el año 2020 (Budget MLP, 2019)	77
Tabla 12: Cartilla de evaluación del factor de condición	83
Tabla 13: Características de los explosivos (Guía del Explosivista Enaex 2019)	84
Tabla 14: Tabla resumen de tiempos de retardo por UGT (Manual de Diseño de Perfo	ración y
Tronadura ENAEX, 2019).	85
Tabla 15: Sets estructurales de UGT03.	95
Tabla 16: Sets estructurales de UGT06	96
Tabla 17: Sets estructurales de UGT12.	96
Tabla 18: Mecanismos de inestabilidad del banco 3425	98
Tabla 19: Mecanismos de inestabilidad del banco 3410	99
Tabla 20: Mecanismos de inestabilidad del banco 3395	101
Tabla 21: Mecanismos de inestabilidad del banco 3380	102
Tabla 22: Set estructurales identificados a partir de la proyección estereográfica crítica.	103
Tabla 23: Set estructurales identificados a partir de la proyección estereográfica total	105
Tabla 24: Sets estructurales del banco 3425.	107
Tabla 25: Análisis de estabilidad del banco 3425	109
Tabla 26: Sets estructurales del banco 3410.	110
Tabla 27: Análisis de estabilidad del banco 3410.	112
Tabla 28: Set estructurales del banco 3395.	113
Tabla 29: Análisis de estabilidad del banco 3395	114
Tabla 30: Set estructurales del banco 3380.	116
Tabla 31: Análisis de estabilidad del banco 3380.	117
Tabla 32: Sets estructurales definidos a partir del mapeo geológico sobre el scanner	120
Tabla 33: Factor de seguridad de las inestabilidades críticas identificadas	123

Tabla 34: Set estructurales a utilizar para el análisis banco-berma	. 124
Tabla 35: Parámetros de ajuste H&P para UGT03	. 129
Tabla 36: Parámetros de ajuste H&P para UGT06	. 130
Tabla 37: Parámetros geomecánicos y PPVc para UGT03	. 131
Tabla 38: Parámetros geomecánicos y PPVc para UGT06	. 132
Tabla 39: Parámetros geomecánicos y PPVc para UGT12	. 132
Tabla 40: Parámetros geomecánicos y PPVcmr para UGT03	. 133
Tabla 41: Parámetros geomecánicos y PPVcmr para UGT06	. 133
Tabla 42: Parámetros geomecánicos y PPVcmr para UGT12	. 133
Tabla 43: Criterio de daño de McKenzie para UGT03	. 134
Tabla 44: Criterio de daño de McKenzie para UGT06	. 134
Tabla 45: Criterio de daño de McKenzie para UGT12	. 135
Tabla 46: Criterio de daño de Vergara para UGT03	. 135
Tabla 47: Criterio de daño de Vergara para UGT06	. 136
Tabla 48: Criterio de daño de Vergara para UGT12	. 136
Tabla 49: Nivel de vibraciones para UGT03 (Fuente Propia)	. 137
Tabla 50: Nivel de vibraciones para UGT06	. 138
Tabla 51: Nivel de vibraciones para UGT12	. 139
Tabla 52: Parámetros de tronadura para la propuesta N°1	. 141
Tabla 53: Parámetros de tronadura para la propuesta N°2	. 142
. Tabla 54: Parámetros de tronadura para la propuesta N°3	. 143
Tabla 55: Parámetros de tronadura para la propuesta N°4 (Fuente Propia)	. 144
Tabla 56: Parámetros de tronadura para la propuesta N°5	. 146
Tabla 57: Resumen de simulaciones de vibración mediante Paradigme	. 152
Tabla 58: Niveles de vibraciones por propuesta	. 153
Tabla 59: Comparación de los niveles de vibraciones respecto caso base	. 154
Tabla 60: Parámetros de tronadura para la propuesta N°5	. 156
Tabla 61: Niveles de vibraciones de la propuesta y caso base	. 157
Tabla 62: Comparación de los niveles de vibraciones respecto caso base	. 158
Tabla 63: Costo de propuesta y caso base	. 164
Tabla 64: Gasto de propuesta y caso base	. 164
Tabla 65: Parámetros geotécnicos conciliados Post Tronadura	. 166
Tabla 66: Resumen pruebas en terreno	. 175
Tabla 67: Modelo de Bauer y Calder	. 175
Tabla 68: Modelo de Hoek y Bray	. 175
Tabla 69: Modelo de Oriad	. 176

Índice de ecuaciones

Ecuación 1: Criterio de falla de Mohr – Coulomb (Coulomb, 1776)	. 15
Ecuación 2: Desplazamiento de una onda sísmica	. 24
Ecuación 3: Frecuencia de la onda sísmica	24
Ecuación 4: Longitud de onda sísmica.	. 25
Ecuación 5: Desplazamiento de una onda sísmica	. 25
Ecuación 6: Velocidad de una onda sísmica	. 25
Ecuación 7: Aceleración de una onda sísmica	. 26
Ecuación 8: Factor de atenuación geométrica	. 26
Ecuación 9: Factor de atenuación inelástico	. 27
Ecuación 10: Modelo de vibraciones de campo lejano, Duvalí (1971)	. 29
Ecuación 11: Modelo de Devine, Campo Lejano (Devine, 1966)	. 30
Ecuación 12: Peso de la carga, Holmberg y Persson	. 31
Ecuación 13: Modelo de velocidad propuesto por Holmberg y Persson	. 31
Ecuación 14: PPV resultado, Holmberg y Persson.	. 31
Ecuación 15: Relación de deformación de McKenzie	33
Ecuación 16: Relación PPVcrítica, criterio de daño	33
Ecuación 17: PPVcrm escalado a macizo rocoso, criterio de daño	35
Ecuación 18: Criterio de falla de Hoek & Brown	36
Ecuación 19: Constante del material a	37
Ecuación 20: Resistencia a la tracción escalada a macizo rocoso	37
Ecuación 21: Constante del material s.	37
Ecuación 22: Valor reducido de la constante del material m	37
Ecuación 23: Módulo de Young, Hoek & Diederichs (2006)	39
Ecuación 24: Modelo de PPVcmr, Vergara (2014).	39
Ecuación 25: Esfuerzo de tracción escalado a macizo rocoso (Sheorey, 1997)	40
Ecuación 26: Módulo de Young, Galera (2005).	41
Ecuación 27: Modelo de PPVcmr, Pardo (2016)	41
Ecuación 28: Costo final de perforación y tronadura	46
Ecuación 29: Factor de Carga Total.	61
Ecuación 30: Costo de perforación por metro.	62
<i>Ecuación 31: Costo de perforación por tonelada</i>	. 62
Ecuación 32: Costo de explosivos	. 63
Ecuación 33: Costo final de perforación y tronadura	63
Ecuación 34: Eactor de diseño anlicado en Mina Los Pelambres	00 20
Leuacion 57. 1 actor de diseño apricado en mina Los I elamores	02