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Real-order generalization of dissipativeness and passivity concepts are presented in this paper. They
are characterized as properties of a system; that is, they are independent of the system’s internal
representation and independent of the type of fractional derivative defining that representation. With
the aid of these extended concepts, the stability analysis of linearly interconnected multi-order (mixed-
order or multivariable) linear or nonlinear systems consisting of integer and fractional order subsystems
becomes a well-defined problem and it is reduced to verify algebraic inequalities and/or the dissipativenes
of each subsystem. In particular, small gain and passivity theorems for multi-order systems are obtained.
Examples show the benefits in simplicity obtained with this approach when analysing the stability of
large-scale multi-order nonlinear systems.
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1. Introduction

The stability study of large-scale input–output integer order systems relying on dissipative properties
(Moylan & Hill, 1978) has been carried out in much the same way that energy concepts are used in
statistical mechanic; that is, an abstraction of all internal subsystem dynamics and a focus on rather
measures of their input–output behaviour. In this way, the analysis of complex nonlinear systems has
been developed by considering the input–output properties of their subsystems and the interconnection
among them, as shown in multi-agent (Chopra & Spong, 2006), network (Kottenstette , 2013), control
(Ghanbari , 2016) or cooperative (Arcak, 2007) problems.

This approach will be extended to the cases where the subsystems are defined by different orders of
differentiation. The motivation of our results are as follows: first, some fractional models of complex
processes have been recently proposed (Podlubny, 1999; Caponetto et al., 2010) using the same order
of differentiation in each equation; and second, models of some real process are more precise if it used
multi-order large-scale systems Baleanu et al. (2016); Diethelm (2013). Our contribution is detailed in
the following paragraphs.

In Section 2 we adopt and generalize to real order, the operator approach in which the dissipative
property can be asserted by input–output measures (Desoer & Vidyasagar, 1975; Hill & Moylan, 1980;
van der Schaft, 2000), and therefore it is system property rather than of its internal representations. The
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144 J. A. GALLEGOS AND M. DUARTE-MERMOUD

alternative storage function approach proposed in Rakhshan et al. (2017) (which is a generalization to
real order of the integer order approach; Willems, 1972a) is dependent on the representation. It must
be noted that in integer order both approaches are equivalent (Hill & Moylan, 1980), but in fractional
systems, the same proof fails because of its non-local behaviour (Gallegos & Duarte-Mermoud, 2016b).
Moreover, the notions are established independent of the type of fractional derivative involved (c.f.
Rakhshan et al., 2017 where the results depend on the choice of Caputo derivative), a crucial fact since
there is no preferred fractional derivative as a generalization of integer derivative (Kilbas et al., 2006).
We show this feature with several examples. Moreover, in Section 2, we provide elementary stability
properties of fractional dissipative systems on which relies the large-scale stability. These results
generalize to real order the ones contained in Hill & Moylan (1980) and van der Schaft (2000).

In Section 3 we prove that systems consisting of interconnection of subsystems defined with possibly
different order derivation are well defined under mild Lipschitz-type assumptions. When particularized
to the same derivation order, this result generalizes the one in van der Schaft (2000), which was done
for feedback connection of two systems.

In Section 4 we prove the main results which exhibit conditions for the input–output stability of
large-scale systems. In particular, we generalize the small gain theorem in van der Schaft (2000),
both for a general connection and for real-order finite-gain subsystems. Next, we generalize the result
in Moylan & Hill (1978) by considering real-order dissipative subsystems. Finally, we introduce the
concept of passive interconnection of subsystems as a way to assure finite-gain stability.

In Section 5 we show through examples the benefits of this approach to analyse the stability of
large-scale mixed-order nonlinear systems. On the one hand, the Lyapunov method to study stability
(Gallegos & Duarte-Mermoud, 2016b; Tuan & Trinh, 2017) has been only extended to subsystems
having the same order of differentiation and lesser than one—the difficulties lying in the non-group
property of the fractional differentiation operators, which makes a hard problem to find a Lyapunov
function of systems with different differentiation orders. On the other hand, large-scale systems can
have involved internal (pseudo) state representations with unknown parameters. These difficulties are
more simply handled with the proposed input–output approach, as shown in several examples.

2. Definitions

In this section, we present the definition of real-order dissipativeness based on a norm defined by the
fractional integral and some stability properties of dissipativeness systems.

2.1. Fractional inner product

The Riemann–Liouville fractional integral of a function f : [0, T] → C is given by (Diethelm, 2010),

aIαf (t) := [
aIαf (·)](t) := 1

Γ (α)

∫ t

a
(t − τ)α−1f (τ )dτ , (1)

where α ∈ R>0, the set of positive real numbers. It is well defined for locally integrable functions.
We assume, w.l.o.g., a = 0 and omit the sub-index a. From this concept, definitions of commonly
used fractional derivative are obtained. The Riemann–Liouville (RL) fractional derivative of order α

is given by RDαf := DmIm−αf where m = �α� and the Caputo derivative of order α is given by
CDαf := Im−αDmf (see Diethelm, 2010, §2, 3).
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A DISSIPATIVE APPROACH TO THE STABILITY OF MULTI-ORDER SYSTEMS 145

The semi-group property of the fractional integral states that for any α, β > 0 and any t ≥ 0,
[Iα+β f ](t) = [IαIβ f ](t) whenever f is a continuous function (Diethelm, 2010, Theorem 2.2).

Using the same arguments in integer integrals, an inner product can be defined for the fractional
integral, since it will be linear, symmetric and positive-definite, module functions of null measure (see
also Gallegos et al., in press, §2.1).

Definition 1 Let x, y : [0, ∞] → C
n, A ∈ C

n × C
n. Considering T > 0 and α > 0 are fixed real

numbers, we define

• inner product: 〈x, y〉α,T := [Iαx∗y](t = T),

• norm: ||x||2α,T := 〈x, x〉α,T .

• x ∈ L2
α,e if for any T > 0, ||x||2α,T < ∞,

where ∗ denotes the conjugate transpose.

In the following results, we mainly use the linearity of the inner product and the Cauchy–Schwarz
inequality obtained from the induced norm. The Euclidean and its induced matrix norm are denoted by
|| · ||. Note also that for any constant matrix F,

||Fx||2α,T = [Iα||Fx||2](t = T)

≤ ||F||2[Iα||x||2](t = T) = ||F||2||x||2α,T .

In the following T will be often omitted when it refers to any T > 0. Note also that if ||x||α < ∞
and x is uniformly continuous, we obtain that x is bounded.

2.2. Dissipative systems

A large-scale system is an interconnection among many subsystems, which can be linear or nonlinear,
fractional or integer order, finite or infinite dimensional and/or single or multiple input–output. For
the sake of simplicity, it will be assumed a linear interconnection and that each subsystem has finite-
dimensional input and output. Fractional systems would be examples of infinite and finite dimensional
state and input/output, respectively (see Gallegos & Duarte-Mermoud, 2016b).

A desired feature in a large-scale system is finite gain since it is connected with standard control
requirements such as robustness and stability (van der Schaft, 2000). Finite gain and passivity concepts
can be enclosed in the dissipative one in an operator approach, which does not depend on the internal
state representation. Therefore, they become system’s properties determined only by its input and output.
The concept of dissipative systems, which is defined through an integral inequality, has its intuition in
mechanical systems, where that inequality is just an energetic balance verified for most of the physical
systems.

Definition 2 Let a system or map from U to Y (function spaces) be denoted by (u, y), y = y(u) or
y = G(u). Consider a null initial condition for the system, i.e. such that y ≡ 0 whenever u ≡ 0. Let I be
the identity operator, α > 0 and some real numbers ε, δ > 0.

• (u, y) is α-dissipative for (Q, S, R) if the operators Q, R are self-adjoint and such that (∀u ∈
L2

α,e), (∀T < ∞)

〈 y, Qy〉α,T + 2〈 y, Su〉α,T + 〈u, Ru〉α,T ≥ 0. (2)
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146 J. A. GALLEGOS AND M. DUARTE-MERMOUD

• (u, y) has α-finite gain if it is α-dissipative for (−I, 0, γ 2I).

• (u, y) is α-passive if it is α-dissipative for (0, I, 0).

• (u, y) is strictly input α-passive if it is α-dissipative for (0, I, −εI).

• (u, y) is strictly output α-passive if it is α-dissipative for (−εI, I, 0).

• (u, y) is strictly α-passive if it is α-dissipative for (εI, I, δI).

Remark 1 (i) More generally, it is possible to define an (α1, α2, α3)-dissipativenes. For instance, the
(α1, α2)-finite gain will be equivalent to ||y||α1

≤ γ ||u||α2
.

(ii) For a non-null initial condition, a suited constant term must be added in the definition, e.g.
〈y, Qy〉α,T +2〈y, Su〉α,T +〈u, Ru〉α,T ≥ C (∀u ∈ L2

α,e), (∀T < ∞). This approach is independent of the
internal representations of the system, in the sense that they differ only in that constant term. It follows
that an α-passive system with feedback control u = −ky have ||y||α bounded when k ≥ 0. In particular,
for u = 0, α = 1 and detectability properties of the output with respect to its state, the asymptotic
attractiveness of the internal state’s equilibrium point can be asserted (see Section 5).

Next, we show some properties intended to establish conditions for asserting the finite-gain property.

Proposition 1 Let (u, y) a system or map from U to Y
(i) If it is α-dissipative with Q < 0 then it has α-finite gain.

(ii) If it has α-finite gain and strictly input α-passive then it is α-strictly output passive.

(iii) If it is α-dissipative then it is β-dissipative for any β > α.

(iv) If it is strictly output α-passive then it has α-finite gain.

(v) If it α-passive then the system S : v → z, v = y + u, z = y − u has α-finite gain.

Proof.

(i) Since Q is self-adjoint, Q1/2 is self-adjoint. Let Ŝ := Q1/2S and η such that R + ŜT Ŝ ≤ η2I (e.g.

η2 could be the largest eigenvalue of R + ŜT Ŝ), then

∣∣∣∣Q1/2y − Ŝu
∣∣∣∣2

α,T ≤ η2||u||2α,T .

Therefore,

||y||2α,T ≤ K||u||2α,T ,

where K = ||Q||−1(η + ||Q1/2S||)2.

(ii) Using the finite gain and next the strictly input α-passivity, we get

||y||2α ≤ γ 2||u||2α ≤ 2γ 2

ε
〈 y, u〉α ,

implying strictly output α-passivity.

(iii) It follows from Definition 2 and the (β − α)-integration of (2).
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A DISSIPATIVE APPROACH TO THE STABILITY OF MULTI-ORDER SYSTEMS 147

(iv) By definition and adding a positive term

ε||y||2α ≤ 〈y, u〉α + 1/2||1/
√

εu − √
εy||2α .

Developing the square, i.e.

ε||y||2α ≤ 1/2ε||u||2α + ε/2||y||2α ,

the finite gain is obtained.

(v) By using the definition of passivity and noting that 2u = (v − z) and 2y = (v + z), the claim
follows. �

Remark 2 It is an easy problem to show that these properties remain true when one considers a non-null
term associated to the initial condition as in Remark 1(ii), with the exception of Proposition 1(iii). For
the latter, we observe that if the term to add is a non-positive constant, we still have that the dissipation
inequality (2) holds.

Next, we show two examples of the existence of dissipative fractional systems in the nonlinear and
linear cases, respectively. It must be noted that when the initial condition term in both cases is non-null,
a constant term will be added to inequality (2). Otherwise, since for null initial condition all fractional
systems have the same behaviour, it follows that the dissipative property can be verified for any kind of
fractional systems starting from rest, using the requirements below.

Example 1 Consider the input–output system

⎧⎪⎨
⎪⎩

RDαx = Ax + Bu

y = BTPx

limt→0+ I1−αx(t) = b,

(3)

where x(t) ∈ R
n, y(t), u(t) ∈ R

m for all t > 0, 0 < α < 1, b ∈ R
n, A ∈ R

n×n, B ∈ R
n×m,

T denotes the transpose and P ∈ R
n×n is a constant positive-definite matrix such that ATP + PA = Q is

a negative semi-definite constant matrix. The solutions of (3) are continuous on (0, T] for every T > 0
Diethelm (2010), with a singularity at t = 0. Define V(ξ(t)) := ξ(t) := [I1−αxTPx](t). The function ξ is
continuous on [0, T] for every T > 0. By applying inequality of RL derivative (see Alsaedi et al., 2015),
we get

d

dt
V(ξ) ≤ xTQx + xTPBu ≤ yTu,

and by integration, we get

∫ t

0
[yTu]dτ ≥ V(t) − V(0) ≥ −V(0) ∀t > 0.

Then, the RL fractional system (3) is 1-passive. The same holds for any fractional system of the form (3),
not necessarily RL, starting from a null initial condition.
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148 J. A. GALLEGOS AND M. DUARTE-MERMOUD

The following example provides a linear matrix inequality (LMI) characterization of the dissipative-
ness property for fractional linear systems.

Example 2 Consider the commensurate system

{
CDαx = Ax + Bu

y = Cx + Du,

with α ≤ 1, x : R≥0 → R
n, y : R≥0 → R

m, u : R≥0 → R
m and real constant matrices A, B, C, D of

suited dimensions. If the following system

⎧⎪⎨
⎪⎩

(
ATQ + QA QB − CT

BTQ − C −D − DT

)
≤ 0

Q = QT ≥ 0

(4)

has a solution for Q, then the linear system is α-passive. Indeed, by defining V = xTQx and using the
second condition of (4), we have

CDαV ≤ 2xTQAx + xTQBu = xTQAx + xTATQx + xTQBu,

where we have employed that CDαV ≤ 2xT P CDαx (see Tuan & Trinh, 2017). Using the first condition
of (4), we obtain the inequality (details omitted)

DαV ≤ yTu.

By α-integration, we have IαyTu ≥ V(x(t)) ≥ 0, for a null initial condition (and thus, for any
derivative) or IαyTu ≥ −V(x(0)), otherwise.

Note that condition (4) is independent of α. Therefore, if an integer linear system is dissipative,
the system defined by changing its order of derivation to α ≤ 1 is still dissipative. On the other hand,
condition (4) is necessary for dissipativeness when α = 1 as shown in Willems (1972b, Theorem 3), so
that in principle the set of quadruplets (A, B, C, D) could be enlarged for α < 1.

3. Well-posed large-scale systems

When subsystems of different orders of differentiation are considered, we must especially consider the
following existence and uniqueness problem. Given an external input e, there must exist a unique u such
that it is consistent with a feedback connection since otherwise the calculations will remain ill-defined.
Mathematically, u must satisfy u = e + Fy = e + FG(u), where F is the linear interconnection matrix
and (y, u) collects the output–input pairs of all subsystems. This connection encompasses others like
u = A1e + A2y, by redefining e.

Hence, the problem can be seen as a fixed point one and, intuitively, it will require a Lipschitz-
like condition on the system. We begin generalizing to fractional order the feedback connection of two
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A DISSIPATIVE APPROACH TO THE STABILITY OF MULTI-ORDER SYSTEMS 149

systems (van der Schaft, 2000), {
u1 = e1 − y2(u2)

u2 = e2 + y1(u1),
(5)

where (e1, e2) are external inputs to the total system with output (y1, y2) with internal inputs (u1, u2). Let
X to be a Banach space (e.g. Cm[0, T] the space of continuous function from [0, T] to R

m or L∞(0, T)

the space of bounded function from [0, T] to R
m).

Proposition 2 Consider the connection (5) of two systems such that for any u, v ∈ X

||yi(u) − yi(v)||α ≤ Li||u − v||α , i ∈ {1, 2}, (6)

where L1L2 < 1. Then, the system (5) has a unique solution in X.

Proof. From (5), u2 = e2 + G1(e1 − G2(u2)) =: f (u2, e). Hence,

|| f (u, e) − f (v, e)||α ≤ L1L2||u − v||α < ||u − v||α .

Thus, for any fixed e, f is a contraction map in X and it has a unique fixed point called u2. A similar
argument for u1 completes the proof. �

A finite-gain linear system holds assumption (6) since ||y(u) − y(v)||α = ||y(u − v)||α ≤ L||u − v||α
(note that initial condition terms cancel). Assumption (6) implies causality (i.e. if u ≡ v, then their
outputs are the same) and for systems with y(u ≡ 0) ≡ 0 (e.g. a linear system) (6) implies finite gain.
This simple result give us the idea for the general case.

Theorem 1 Consider the connection u = e + Fy where F ∈ R
m×m and ||F|| = C. Suppose that for

any u, v ∈ X

||y(u) − y(v)||α ≤ L||u − v||α , (7)

where L < C−1. Then the system u = e + Fy has a unique solution in X, for any e ∈ X. Moreover, the
map e ∈ X −→ u ∈ X is well defined and Lipschitz.

Proof. The first part of the proof follows the one of Proposition 2 by defining f (u, e) := e + FG(u) and
noting that from the assumptions we get

|| f (u, e) − f (v, e)||α ≤ C||G(u) − G(v)||α < ||u − v||α .

Since for every e ∈ X there exists a unique u ∈ X, a map can be (well) defined. Considering
e1, e2 ∈ X, we have

||u1 − u2||α ≤ ||e1 − e2||α + CL||u1 − u2||α ,

whereby

||u1 − u2||α ≤ (1 − CL)−1||e1 − e2||α ,

which shows that the map is Lipschitz. �
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150 J. A. GALLEGOS AND M. DUARTE-MERMOUD

By taking the induced matrix norm for the feedback matrix (5), that is F =
[

0 −1
1 0

]
, we get ||F|| = 2

yielding a weaker claim than that given by Proposition 2 since (7) implies L1, L2 < 1/2. The reason is
that in Theorem 1 it is not need to know the internal structure of the feedback matrix. From the Lipschitz
property of the map e −→ u, it follows that a system holding (12) has α-finite gain and is causal. From
the uniqueness, and if y(0) = 0, it follows that e ≡ 0 implies u ≡ 0.

The following proposition, together with Theorem 1, allows us to have a well-defined feedback
system composed of different order subsystems.

Proposition 3 Consider that for system (u, y) there exist numbers L and α such that for any u, v ∈ X

||y(u) − y(v)||α ≤ L||u − v||α . (8)

Then, for any β > α

||y(u) − y(v)||β ≤ L||u − v||β . (9)

Proof. It follows from the (β − α)-integration of (8) and the semi-group property of fractional
integrals. �

4. Finite gain of large-scale systems

In this section, the main results asserting the finite gain of large-scale systems are established by
imposing conditions on their subsystems and their connections. Finite gain is a special case of input–
output stability (see e.g. Khalil, 1996; Sastry, 1999) where a bounded output is obtained when a bounded
input is applied—the boundedness being given in a (fractional) integral norm. It also encompasses robust
stability (e.g. if e2 is a bounded noise in the connection (5)).

These results are established by requiring the same dissipative order for each subsystem. Due to
Proposition 1(iii), Example 1 and the examples of the next section, they also work for multi-order
systems.

4.1. Small-gain conditions

The intuition comes from requiring small enough finite gains on some subsystems so that the large-scale
feedback system is also finite gain. Again, we start generalizing the two subsystems Small-gain theorem
(see e.g. van der Schaft, 2000).

Proposition 4 Consider the feedback connection (5) of two finite gain systems (ui, yi) for i = 1, 2
such that their finite gains hold the following small-gain condition

γ1 · γ2 < 1. (10)

Then the system with inputs (e1, e2) and outputs (y1, y2) has α-finite gain.
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A DISSIPATIVE APPROACH TO THE STABILITY OF MULTI-ORDER SYSTEMS 151

Proof. From (5), finite gain and triangular inequality we have

||u1||α ≤ ||e1||α + γ2||u2||α
≤ ||e1||α + γ2||e2||α + γ2γ1||u1||α
= (1 − γ2γ1)

−1 [||e1||α + γ2||e2||α
]

.

Similarly, we obtain

||u2||α ≤ (1 − γ2γ1)
−1 [||e2||α + γ1||e1||α

]
.

Therefore, ||(e1, e2)||α < ∞ ⇒ ||(u1, u2)||α < ∞ ⇒ ||(y1, y2)||α < ∞, where the last implication
is due to the finite gain of the subsystems. �

Note that from the proof, it is indifferent in (5) the sign of its elements, due to the norm inequality.
The next result also makes this abstraction and requires even less information from the interconnection.

Theorem 2 Consider a collection of subsystems holding the finite-gain condition

||y||α ≤ γ ||u||α , (11)

linearly connected trough u = e + Fy, where u, e ∈ Cn(0, T), y ∈ Cm(0, T) and the matrix F ∈ R
n×m

holding

||F|| < γ −1. (12)

Then, the system with input e and outputs y has finite gain.

Proof. From triangular inequality and hypothesis we obtain

||u||α ≤ ||e||α + ||F|| · ||y||α
≤ ||e||α + ||F|| · γ · ||u||α
≤ (1 − ||F|| · γ )−1||e||α .

Therefore, ||(e1, . . . , en)||α < ∞ ⇒ ||(u1, . . . , un)||α < ∞ ⇒ ||(y1, . . . , yn)||α < ∞. �
A sufficient condition for (11) in the single input single output (SISO) case, is to have finite gain.

Indeed, if γ := maxi=1,...,n γi, then ||y||2α = ∑
i ||yi||2α ≤ ∑

i γi||ui||2α ≤ γ
∑

i ||ui||2α = γ ||u||2α .
When particularized to connection (5), condition (12) requiring γ1, γ2 < 1, is conservative in regard

to condition (10), due to the fact that we use less information on the interconnection structure. In this
way, robustness against uncertainties in the value of the interconnection parameters is obtained. If the
matrix of interconnection is fixed, some subsystems could be adjusted to get condition (12). Conversely,
condition (12) indicates that when the subsystems have an unknown finite gain, matrix F can be adjusted
to get a stable system.
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152 J. A. GALLEGOS AND M. DUARTE-MERMOUD

4.2. Dissipativeness conditions

According to Proposition 1(i), a dissipative system has finite gain if a linear matrix inequality is verified.
In the large-scale case, this LMI could be easier to check than conditions (11–12) since on the one
hand the latter assume known bounds on the finite gains of each subsystem, and on the other, an LMI
is numerically tractable. However, in contrast with the previous theorem, the specific structure of the
connection matrix will be relevant, as shown in the next result, which generalizes to fractional order the
main result in Moylan & Hill (1978).

Theorem 3 Let (Qi, Si, Ri) α-dissipative systems interconnected trough u = e + Fy, with y and u vec-
tors whose components are the outputs and inputs of each subsystem, respectively, e is an external input
and F is a constant matrix. Assume that the matrices Q := diag(Qi), S := diag(Si) and R := diag(Ri)

satisfy

Q̂ := SF + FTST + FTRF + Q < 0, (13)

where T denotes the transpose. Then, the system (e, y) has α-finite gain.

Proof. From the definition of the matrices in the hypotheses, the form of the interconnection and the
dissipativeness of each subsystem, we obtain

2
〈
y, S(e + Fy)

〉
α,T + 〈

(e + Fy), R(e + Fy)
〉
α,T + 〈 y, Qy〉α,T ≥ 0,

which is developed as

2〈y, Se〉α,T + 〈e, Re〉α,T + 〈e, RFy〉α,T + 〈Re, Fy〉α,T + 〈y, Qy〉α,T + 2〈y, SFy〉α,T + 〈Fy, RFy〉α,T ≥ 0.

Using the definition of Q̂, this inequality is compactly written as

〈y, Q̂y〉α,T + 2〈y, (S + FTR)e〉α,T + 〈e, Re〉α,T ≥ 0.

Therefore, the large-scale system (e, y) is dissipative (note that Q̂, R are self-adjoint since Q, R are).
By Proposition 1(i) finite gain is obtained provided that Q̂ < 0 i.e. (13) is verified. �
Remark 3 Note that (13) is an algebraic condition independent of the dissipative order α. Thus, classic
integer order results to obtain simplified versions of (13) can be used. For instance, if some subsystems
are passive, that is Qi = 0 and/or Ri = 0 (see Moylan & Hill, 1978) or if the interconnection has
symmetric structure (see Ghanbari et al., 2016). Note also that (13) is sometimes obtained in the integer
literature for the connection u = e − Fy, which explains the flip of signs.

More flexibility in the verification of the stability of a large-scale system than (13) is obtained
through the following result.

Corollary 1 Let (Qi, Si, Ri) α-dissipative systems interconnected as in Theorem 3. If there exists a
diagonal matrix D > 0 such that

Q̂ := DSF + FTSTD + FTFRF + DQ < 0, (14)

then the system (e, y) has α-finite gain.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article-abstract/37/1/143/5148144 by U

niversidad de C
hile user on 18 June 2020



A DISSIPATIVE APPROACH TO THE STABILITY OF MULTI-ORDER SYSTEMS 153

Proof. It follows along the same lines of the proof of Theorem 3, by redefining the inner product as
〈x, y〉T ,D,α := [0IαxTDy](T). �

4.3. Passivity conditions

Since the passive property is stronger than dissipativeness, in the sense that a α-passive system is also
α-dissipative but the converse is not necessarily true, a simplification of condition (13) or (14) to get
stability can be expected if passivity instead of dissipativeness is assumed. We start generalizing a result
the passivity theorem (van der Schaft, 2000), showing an alternative condition to (13).

Proposition 5 Let y1 = G1(u1) be a passive system and y2 = G1(u2) strictly input passive (or G1
strictly output passive and G2 passive). Consider the interconnection (5) with e2 = 0. If e1 ∈ L2

α , then
y1 ∈ L2

α .

Proof. By the linearity of the inner product and (5), we get

〈y1, e1〉α = 〈y1, u1〉α + 〈y1, y2〉α .

Using the passivity hypotheses, (5) and e2 = 0, we get

〈y1, e1〉α ≥ ε2||u2||2α .

From Cauchy–Schwarz

||y1||α||e1||α ≥ ε2||u2||2α = ε2||y1||2α ,

yielding the finite-gain result. The case G1 strictly output passive and G2 passive is similar. �
Remark 4 If G2 is a controller of the plant G1, Proposition 5 can be seen as a robustness result, since
the closed loop remains stable even if the plant is not exactly G1, although it is still passive.

The proof of the above simple case motivates the next large-scale result, where passivity of each
subsystem and a passive condition on the interconnection are required. The latter asserts that collecting
all the inputs and outputs of each subsystem in vectors y, u and e the following inequality is verified

yTe ≥ yTu ∀y, u, e ∈ X, (15)

where X is a vector space of dimension n. In the linear case studied in this paper, where u = e + Fy,
this is equivalent to the condition F ≤ 0. For instance, the feedback connection (5) is passive since its
connection matrix has null eigenvalues. Neutral or power preserving connections (Willems, 1972a) are
thus special cases of passive connections.

Theorem 4 Consider a passive interconnection of n strictly output passive systems. If ei ∈ L2
α for

i = {1, . . . , n}, then y ∈ L2
α .

Proof. From the passive interconnection, we obtain

n∑
i=1

〈yi, ei〉α ≥
n∑

i=1

〈yi, ui〉α ,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article-abstract/37/1/143/5148144 by U

niversidad de C
hile user on 18 June 2020



154 J. A. GALLEGOS AND M. DUARTE-MERMOUD

and from the passivity of each subsystem, it follows that

n∑
i=1

〈yi, ei〉α ≥
n∑

i=1

εi||yi||2α . (16)

Using Cauchy–Schwarz for the Fractional inner product, we obtain

n∑
i=1

||yi||α||ei||α ≥
n∑

i=1

εi||yi||2α .

Therefore, if ei ∈ L2
α for all i then yi ∈ L2

α for all i. Note that this also follows from Proposition 1(iv)
and the fact that from (16) the large-scale system is strictly output passive. �

5. Examples

In this section we show the benefits of the dissipative extension previously presented, to analyse the
stability of mixed-order systems. These are systems that present subsystems of different differentiation
orders and provide a more precise model of real process (Caponetto et al., 2010; Podlubny, 1999). The
Lyapunov method to study stability (Gallegos & Duarte-Mermoud, 2016b; Tuan & Trinh, 2017) has
been only extended to subsystems having the same less than one order of differentiation. Existence and
smoothness of solutions for this class of systems can be found in Gallegos et al. (accepted), where there
is also a discussion of the difficulties involved in the Lyapunov approach. Moreover, since the fractional
systems are started from rest, the following results hold for any fractional derivative.

Example 3 Consider the following system

ẋ1 = x2

ẋ2 = −h(x1) − x2 + u1

y1 = h(x1),

where h is an arbitrary smooth function taking values at (0, ∞) and x1, x2 : R≥0 → R. This system is
strictly output 1-passive (e.g. see Khalil, 1996, p. 259). Consider the fractional system

Dαx3 = x4

Dαx4 = −x3
3 − x4 + u2

y2 = x4,

where x3, x4 : R≥0 → R and α ≤ 1. Define V2 = (1/4)x4
1 +(1/2)x2

2, which is convex and differentiable.
Applying Tuan & Trinh (2017, Theorem 3) (since the fractional system started from rest, we can use
it for any fractional derivative) and considering the vector field f (x) of components x4, −x3

3 − x4 + u2,
we have

DαV ≤ ∂V

∂x

T

f (x)

= −y2
2 + y2u2.
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We deduce, by α-integration, that the system is strictly output α-passive (see Example 2). Consider
the interconnection given by

u1 = e + y2

u2 = y1.

The resulting mixed-order system is driven only by the external input e. In particular, the fractional
system is also 1-passive according to Proposition 1(iii), since we are considering systems starting from
rest. From Theorem 4, we deduce that the interconnected system is finite gain 1-stable.

We consider now a connection having star-shaped symmetry, i.e. one where subsystems do not have
interconnections with each other and the base system has interconnections with all the subsystems. It can
be seen as a model of hierarchical control or an internet protocol command. Although more generally
formulated, the base system is intended to be an integer system and the non-local behaviour is displaced
to the subordinate systems.

Example 4 Consider a base system (Q, S, R) α-dissipative connected to n subsystems (q, s, r)
β-dissipative systems with 0 < β ≤ α ≤ 1 through the connection

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

F0 F12 . . . . . . F12
F21 F1 0 . . . 0

... 0
. . .

...
...

...
. . .

...
F21 0 . . . 0 F1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We suppose that the subsystems are driven only by the external input e, but the base system can
have a non-null state. It follows that the interconnected system is (Q̂, Ŝ, R̂) α-dissipative (see the proof
of Theorem 3 together with Proposition 1(iii), for details). Hence, according to Theorem 3, if Q̂ < 0,
the total system has α-finite gain.

Given the specific form of the connection and since the algebraic condition Q̂ < 0 is the same if
α = β = 1, we can use Ghanbari et al. (2016, Theorem 2) to give a bound on n so that the stability is
assured. Particularizing to passive systems, that is (Q, S, R) = (0, (1/2)I, 0) and (q, s, r) = (0, (1/2)I, 0),
we have that a necessary condition for the total system to have α-finite gain is that

n <
σ̄(Q̂)

σ (βq̂β)
,

where σ , σ̄ are the minimum and maximum eigenvalue functions, respectively, Q̂ = (1/2)(H0 + HT
0 ),

q̂ = (1/2)(H1 + HT
1 ), β = (1/2)(H12 + HT

12) and H = −F. For instance, consider SISO systems with

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0.5 . . . . . . 0.5
0.5 0.4 0 . . . 0
... 0

. . .
...

...
...

. . .
...

0.5 0 . . . 0 0.4

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then, n < 20 is enough to guarantee stability of the interconnected system.
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Finally, we show that, from this approach, the attractiveness of an equilibrium point for an internal
representation of a system, can be asserted, resembling the role of Lyapunov functions.

Examplex 5 Consider a system (u, y). The Lyapunov functions for unforced systems (i.e. systems with
u ≡ 0) allow to deduce asymptotic properties of the solutions with initial conditions x(t0) close to the
equilibrium point x∗, where x is the internal variable (state or pseudo-state). Instead, by restating this in
the input–output framework, we work with an input u driving the system from rest to x(t0), after that
being identically zero. Since we start from rest, the type of fractional derivative being used is indifferent,
when the system has an internal representation expressed by a fractional equation.

More specifically, we consider bounded compactly supported functions u (i.e bounded functions
vanishing outside of a bounded interval). If the system is controllable, for any x(t0) there exists such a
function driving the system from x∗ to x(t0). Therefore, the set of x(t0) closes to the equilibrium can be
translated in the input–output sense as functions u whose infinite norm is close to zero.

If the system has α-finite gain, by Definition 2, we have that for any T > 0

||y||α,T ≤ γ ||u||α,T .

Since u is compactly supported and bounded, ||u||α,T converges to zero as T → ∞ for α < 1
(Gallegos et al., 2015, Property 17) or it remains bounded if α = 1. Therefore, ||y||α,T also converges
to zero for α < 1 or it remains bounded if α = 1. Thus, if y is uniformly continuous, then y converges
to zero (Gallegos et al., 2015, Lemma 21). Moreover, if the system is asymptotically detectable, that is,
if limt→∞ y(t) = 0 implies limt→∞ x(t) = x∗, then x∗ is locally attractive. Therefore, if the system is
(globally) controllable and asymptotically detectable, x∗ is (globally) attractive.

For instance, consider the system

Dαy = −a(t)y + u,

where 0 < α < 1, a is a continuous bounded function such that a(t) > ε > 0 for any t ≥ 0. Assume
null IC, that is y(t) ≡ 0 for t ≤ 0. It is clear that this system is asymptotically detectable (since x ≡ y).
On the other hand, by choosing u = a(t)y + y0

[Iαp](t0)
for t ∈ [0, t0] and zero otherwise, we obtain that

the system is driven from y(0) = 0 to y(t0) = y0, with p a function taking the value 1 on [0, t0] and zero

otherwise, and [Iαp](t0) is its fractional integral evaluated at t = t0. Hence, the system is controllable.
Note that with this input the system becomes Dαy = −a(t)y for t ≥ t0 and y(t0) = y0. Then,

we have

yDαy = −a(t)y2 + uy

1

2
Dαy2 ≤ −εy2 + uy,

where we use for the last inequality that, since the IC is null, any fractional derivative can be used, in
particular, the Caputo one, which has this property (Tuan & Trinh, 2017). By α-integration (taking from
t = 0), it follows that

−Iαεy2 + Iαuy ≥ 1

2
y2 ≥ 0.
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Thus, by Definition 2, the system is strictly output α-passive. By Proposition 1(iv) the system has α-finite
gain. By setting V = V(y) := 1

2 y2, we have that for any t ≥ t0, DαV ≤ 0 and V is a bounded function
at [0, t0]. Using Gallegos & Duarte-Mermoud (2016a, Theorem 8), it follows that V (i.e. y) is a bounded
function (where, again, we use the argument above since the IC is null). Since Dαy = −a(t)y2+yu and a
is bounded, it follows that Dαy is also a bounded function. Using Gallegos & Duarte-Mermoud (2016a,
Proposition 1), it follows that y is uniformly continuous. Therefore, y = 0 is globally attractive and the
solutions are bounded.

6. Conclusion

Real-order notions of dissipativeness, passivity and finite gain are established to deal with large-scale
mixed-order systems consisting of subsystems, possibly defined with different orders of differentiation.
These notions become properties of the system in the sense that they are independent of its internal
representation and they are formulated for any type of fractional system. The well-posedness of
such interconnected systems is then proved by requiring Lipschitz conditions on the subsystems.
Conditions for input–output stability are established for multi-order large-scale systems. Essentially,
these conditions are a trade-off between the knowledge of the interconnection and the dissipativeness
requirements of the subsystems. These results can be employed in the controller synthesis of large-scale
multi-order systems, as shown in examples.
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