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a b s t r a c t

Hartsfield and Ringel in 1990 conjectured that any connected graph with q ≥ 2 edges
has an edge labeling f with labels in the set {1, . . . , q}, such that for every two distinct
vertices u and v, f u ̸= f v , where f v

=
∑

e∈E(v) f (e), and E(v) is the set of edges of the
graph incident to vertex v.

We say that a graph G = (V , E), with q edges, is universal antimagic, if for every
set B of q positive numbers there is a bijection f : E → B such that f u ̸= f v , for any
two distinct vertices u and v. It is weighted universal antimagic if for any vertex weight
function w and every set B of q positive numbers there is a bijection f : E → B such
that w(u) + f u ̸= w(v) + f v , for any two distinct vertices u and v.

In this work we prove that paths, cycles, and graphs whose connected components
are cycles or paths of odd lengths are universal antimagic. We also prove that a split
graph and any graph containing a complete bipartite graph as a spanning subgraph is
universal antimagic. Surprisingly, we are also able to prove that any graph containing
a complete bipartite graph Kn,m with n,m ≥ 3 as a spanning subgraph is weighted
universal antimagic. From all the results we can derive effective methods to construct
the labelings.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Hartsfield and Ringel in 1990 conjectured that any connected graph with q ≥ 2 edges has an antimagic labeling, that
is, an edge labeling f with labels in the set {1, . . . , q} =: [q], such that for every two distinct vertices u and v, f u ̸= f v ,
where f v

=
∑

e∈E(v) f (e), and E(v) is the set of edges of the graph incident to vertex v, see [7].
In the past fifteen years there have been interesting advances and several classes of graphs have been shown to admit

antimagic labelings (see [1–6,9–15]). Yet, Hartsfield and Ringel’s conjecture is still open even for trees.
In [16], the stronger notion of weighted-k-antimagic graphs was introduced, based on previous concepts presented

in [8]. A graph G = (V , E) with q edges is weighted-k-antimagic if for any vertex weight function w there is an edge
labeling f : E → [q+ k] such that w(u)+ f u ̸= w(v)+ f v , for any two distinct vertices u and v. A function f that satisfies
this property is called a (w, k)-antimagic labeling of G.

In this work we consider the following related notions: universal antimagic and weighted universal antimagic labelings.
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Universal antimagic
A graph G = (V , E), with q edges, is universal antimagic, if for every set B of q positive numbers there is a bijection

f : E → B such that f u ̸= f v , for any two distinct vertices u and v. A function f satisfying this condition is called a
B-antimagic labeling of G. Universal antimagic graphs should be rare. So far we do not know any connected graph with
at least three vertices which is not universal antimagic. However, if we allow the set B to contain non-positive numbers,
then there are graphs with no B-antimagic labeling. By instance, in [8] it was noticed that no path of i vertices Pi, for each
i ∈ {3, 4, 5} has an antimagic labeling using numbers in {−1, 0, . . . , i − 3}. The same idea applies to the complete graph
K1,n.

In this work we prove in Proposition 1 that paths, cycles, and graphs whose connected components are cycles or path
of odd lengths are universal antimagic. In Proposition 2 we prove that split graphs are universal antimagic. In Theorem 3
we prove that any graph containing a complete bipartite graph as a spanning subgraph is universal antimagic.

Weighted universal antimagic
In [16] it was shown that the complete bipartite graph K1,n is weighted-2-antimagic but it is not weighted-0-antimagic.

By instance, if we assign the weight 4 to all vertices of degree 1 of K1,3, and weight 0 to the vertex v of degree three, then
any labeling of K1,3 will fail to be antimagic. In [11] it was proved that each connected graph G on p vertices having a
universal vertex (a vertex which is adjacent to all other vertices of the graph) is weighted-1-antimagic, unless G = K1,p−1
and p is even. Moreover, for each complete partite graph H , with H ̸= K1,n, K2,2, any connected graph G containing H
as a spanning subgraph is weighted-0-antimagic. The result is tight in the sense that K1,n and K2,2 are not weighted-0-
antimagic. In fact, if we assign weight 2 to the vertices in one of the independent sets of the graph K2,2, and weight 0 to
the vertices in the other independent set, then no labeling of this graph is antimagic.

A graph G = (V , E), with q edges, is weighted universal antimagic if for any vertex weight function w and every set B
of q positive numbers there is a bijection f : E → B such that w(u) + f u ̸= w(v) + f v , for any two distinct vertices u and
v.

It is clear that every weighted universal antimagic is also universal antimagic and there are universal antimagic graphs
which are not weighted universal antimagic. By instance, K1,n and K2,2 are universal antimagic but they are not weighted
universal antimagic. Surprisingly, in Theorem 5 we prove that any graph containing a complete bipartite graph Kn,m with
n,m ≥ 3 as a spanning subgraph is weighted universal antimagic. We left open the case K2,n with n ≥ 3.

2. Universal antimagic graphs

We first consider graphs with maximum degree two. On the one hand, when they are connected we can build explicit
B-antimagic labelings. On the other hand, there are disconnected graphs with maximum degree two for which there is
no antimagic labeling, hence they are not universal antimagic. By instance, any disconnected graph whose connected
components are paths with three vertices. However, we can prove the following result.

Proposition 1. Let G be a graph with maximum degree 2. If G is connected or any of its connected components is a cycle or
a path of odd length at least three, then G is universal antimagic.

Proof. Since G has maximum degree two, we know that its connected components are cycles or paths. We first consider
the case when G is a path with vertices v1, . . . , vq+1 and edges e1, . . . , eq, where ei = vivi+1, for each i = 1, . . . , q. Let
B = {b1, . . . , bq} be a set of q positive numbers 0 < b1 < · · · < bq.

For q = 2, the edge labeling f (e1) = b1 and f (e2) = b2 is B-antimagic since b1 < b2 < b1 + b2. For q = 3 the edge
labeling f (e1) = b1, f (e3) = b2 and f (e2) = b3 is also antimagic since b1 < b2 < b1 + b2 < b1 + b3. For q ≥ 4 we define an
edge labeling of G as follows. We define f (e1) = b1, f (eq) = b2, and we iterate this process with the set {b3, . . . , bq} on
the path with q − 2 edges e2, . . . , eq−1. This clearly defines an B-antimagic labeling since

b1 < b2 < b1 + b3 < · · · < bq−3 + bq−1 < bq−2 + bq < bq−1 + bq.

Notice that all previous labelings f for paths satisfy the following property: for each edge e incident to a vertex of degree
one and each edge e′ with both ends of degree two, f (e) < f (e′). When this happens we say that f is degree-monotone.

When G is a cycle with q edges, we can split any vertex into two new vertices, obtaining a path P with the same set
of edges as G. Given a set B = {b1, . . . , bq} of q positive numbers 0 < b1 < · · · < bq, let f be the B-antimagic labeling
previously obtained for P . Then f is also a B-antimagic labeling for G as the value b1 + b2 is smaller than bi + bj for any
{i, j} ̸= {1, 2}.

We now assume that G has q edges and has at least two connected components. Let G′ be the subgraph of G containing
precisely the cycles of G and G′′

= G \ G′. Then, by hypothesis, each connected component of G′′ is a path of odd length
with at least three vertices.

Let B be a set of q positive numbers 0 < b1 < · · · < bq. Let r be the number of edges of G′ and let B′ be the subset of B
containing the r largest number of B. We assign the values of B′ to the edges in G′ in the following way: the largest ones
to one cycle, the next largest ones to the next cycles and so on. Inside each cycle we proceed as in the unique cycle case.
It is clear that the labeling f defined in this way satisfies that f u ̸= f v for any two distinct vertices u and v in G′ and that
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f u > a + b for any two a and b not in B′. Moreover, any labeling g of G′′ with labels in B′′
= B \ B′ satisfies that gv < f u,

for each v ∈ G′′ and each u ∈ G′.
Then, in order to finish the proof, we can assume that G contains only paths of odd length at least three.
We prove by induction on the number of edges of G that given any set B of q positive numbers there is a B-antimagic

labeling of G which is also degree-monotone: the label of any edge incident to a vertex of degree one is less than the
label assigned to any edge whose two ends have degree two.

We already noticed that when G is a path, there is a B-labeling which is degree-monotone.
Let k be the number of vertices of G of degree one. Let B′ be the set of labels obtained from B by deleting the smaller

k values and let B′′
= B \ B′ be its complement.

If G has at least two connected components and one of them is P4, then let b′ be the smallest label in B′, and let b1 < b2
be the smallest labels in B′′. We apply the induction to the graph G′ obtained from G by removing P4 and with the set
of labels C = B \ {b′, b1, b2}. By the induction hypothesis, G′ has a degree-monotone C-antimagic labeling. By labeling P4
with its only degree-monotone {b′, b1, b2}-antimagic labeling, we extend the labeling of G′ to a B-labeling of G which is
degree-monotone and B-antimagic because,

b1 < b2 < b′′ < b′
+ b1 < b′

+ b2 < c + d

for every b′′
∈ B′′ and every c, d ∈ B′.

If no connected component of G is P4, then its connected components are path of odd length at least five. We apply
induction as follows. Let G′ be obtained from G by deleting all its vertices of degree one. Then, each connected component
of G′ is a path of odd length at least three.

By the induction hypothesis, G′ has a degree-monotone B′-antimagic labeling g . Hence, gv > a+b > a, for each vertex
v of degree two in G′, for each a /∈ B′ and each b ∈ B′ assigned by g to an edge incident to a vertex of degree one. Let
v1, . . . , vk be the vertices of G′ of degree one, where the ordering is such that gv1 < · · · < gvk . Let b1 < · · · < bk be the
labels in B′′. We extend g to a labeling f of G by defining f (v′

ivi) = bi, where vi is the neighbor of vi not in G′, for each
i ∈ [k]. It is clear that

f v′
1 = b1 < · · · < f v′

k = bk < f v1 = b1 + gv1 < · · · < bk + gvk < gv,

for all v of degree two in G′.
Hence, f is a B-antimagic labeling which is also degree monotone. □

A split-partition of a connected graph G = (V , E) is a partition {S, K , R} of the set V , where S is an independent set
and the following properties are satisfied: (1) for each x ∈ S, NG(x) ⊊ K and (2) for each x ∈ K , R ⊆ NG(x), where NG(x)
denotes the set of neighbors of a vertex x in G.

In [2], Barrus proves that any connected graph with at least three vertices and admitting a split-partition {S, K , R},
with K a set of pairwise adjacent vertices, is antimagic. It is not hard to see that the proof of this result can be modified
to show that graphs admitting such a split-partition are universal antimagic. Therefore, the following result holds.

Proposition 2. Any connected graph with at least three vertices and admitting a split-partition {S, K , R}, with K a set of
pairwise adjacent vertices, is universal antimagic. In particular, split graphs are universal antimagic.

In [13], Barrus’ result was extended to each graph G = (V , E) admitting a split-partition {S, K , R}, where K induces in G
a regular graph. The proof of this result heavily relies on arithmetic relations between the elements of the set {1, . . . , |E|},
which does not hold for general sets of positive numbers.

In what follows, we consider a similar situation where a graph contains a spanning subgraph which is a complete
bipartite graph.

Theorem 3. For each 1 ≤ m ≤ n, any graph G = (V , E) containing the complete bipartite graph Km,n as a spanning subgraph
is universal antimagic.

Proof. Let B be a subset of positive numbers of size |E|. We prove that there is a B-antimagic labeling of G.
We start with the case m = 1. If K1,n is a spanning subgraph of G, then there exists a universal vertex v in G. Let g be

any partial labeling of the edges of the graph G − v, with the smallest numbers of B. We denote the vertices of G − v by
v1, v2, . . . , vn such that, for each i ∈ [n − 1], gvi ≤ gvi+1 .

Let b1 < b2 < · · · < bn be the largest n numbers of B. We extend the labeling g to a labeling f of G by defining
f (vvi) = bi, for each i ∈ [n]. We have that

f v1 = gv1 + b1 < f v2 = gv2 + b2 < · · · < f vn = gvn + bn.

Since v has degree n and we assigned the largest numbers of B to the edges incident to v, then f vn < f v , which means
that f is a B-antimagic labeling of G.

Now we prove the case m = 2. We can assume G has no universal vertex, as otherwise, we can apply previous case.
The case n ≤ 2 was already considered in Propositions 1 and 2.
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We now consider n ≥ 3. Let V = {x, w} ∪ Y be the set of vertices of G, where {x, w} is the independent set of size two
of the spanning K2,n, and Y is the independent set of size n. Let B be any set of |E| positive numbers. As before, we shall
define a B-antimagic labeling of G.

We can assume that xw /∈ E because G has no universal vertex. Let g be any labeling of the edges of the graph induced
by Y with the smallest numbers of B. Let Y = {v1, . . . , vn} such that gvi ≤ gvi+1 , for each i ∈ [n − 1].

Let b1 < · · · < b2n be the elements of B not used by g . We extend the labeling g to a labeling f of G by defining
f (xvi) = b2i−1 and f (wvi) = b2i, for each i ∈ [n].

Then, f vi = gvi + b2i−1 + b2i, for each i ∈ {1, . . . , n}, f x =
∑n

i=1 b2i−1 and f w
=

∑n
i=1 b2i. Thus,

f v1 < · · · < f vn

and f x < f w . Moreover, for each i ∈ [n], the vertex vi has at most n− 2 neighbors because is not a universal vertex. Thus,
for each i ∈ [n], gvi is the sum of at most n − 2 numbers of B \ {b1, . . . , b2n} which implies that f vn < f w and

f vn−1 = gvn−1 + b2n−3 + b2n−2

<

n−2∑
i=1

b2i−1 + b2n−3 + b2n−2

<

n−2∑
i=1

b2i−1 + b2n−3 + b2n−1

= f x.

Hence, if f is not a B-antimagic labeling, it is because f vn = f x.
We have that some of b2n − b2n−1 or b2n−2 − b2n−3 is smaller than (f (w) − f (x))/2 because n ≥ 3 and f (w) − f (x) =∑n
i=1(b2i − b2i−1). Let j ∈ {n − 1, n} such that b2j − b2j−1 < (f (w) − f (x))/2. Define h as the labeling obtained from f by

interchanging the values at edges xvj and wvj. Clearly the new sums at the vertices change only at x and w. Moreover,

hvn = f vn = f x < hx < hw < f w.

Therefore,

hv1 < · · · < hvn = f vn < hx < hw

which implies that h is a B-antimagic labeling. □

In the next section, in Theorem 5, we shall prove that Km,n is weighted universal antimagic, whenever m, n ≥ 3. As
this property is stronger than what we need here, we omit the proof for the case m ≥ 3.

3. Weighted antimagic graphs

In [16] it was observed that if G has a spanning subgraph H which is weighted-k-antimagic, then G itself is
weighted-k-antimagic. Here we can prove the analogous property for weighted universal antimagic graphs.

Proposition 4. Let G = (V , E) be a graph and let H = (V , F ) be a spanning subgraph of G which is weighted universal
antimagic. Then G is weighted universal antimagic.

Proof. Let w : V → R be a vertex weight function. Let q = |E| and let B be a set with q positive numbers. We must prove
that there is a bijection f : E → B such that w(x) + f x ̸= w(y) + f y, for every x, y ∈ V with x ̸= y.

Let p = |F | and let A ⊆ B with |A| = p. We define f in two steps. We first assign the values in B \ A to the edges not
in F , arbitrarily. This defines f in the set E \ F . Let w′(x) = w(x) +

∑
zx∈E\F f (zx), for each x ∈ V .

Since H is weighted universal antimagic, given w′ there is a function g : F → A such that w′(x) +
∑

zx∈F g(zx) ̸=

w′(y) +
∑

zy∈F g(zy), for every x, y ∈ V with x ̸= y.
We define f restricted to F as the function g . Then, f is a bijection and for each pair of distinct vertices x and y we

have that w(x) + f x = w(x) +
∑

zx∈E\F f (zx) +
∑

zx∈F g(zx) = w′(x) +
∑

zx∈F g(zx) ̸= w′(y) +
∑

zy∈F g(zy) = w(y) + f y.
Therefore, G is weighted universal antimagic. □

Theorem 5. Let G be a graph and let Km,n be a complete bipartite spanning subgraph of G with n,m ≥ 3. Then G is weighted
universal antimagic.

Proof. From Proposition 4 it is enough to prove that Km,n = (V , F ) is weighted universal antimagic, when m, n ≥ 3.
Let R and C be the independent sets of Km,n, with |R| = m and |C | = n. Let w : V → R be a vertex weight function.

We assume that R = {u1, . . . , um} and C = {v1, . . . , vn} such that w(u1) ≤ · · · ≤ w(um) and w(v1) ≤ · · · ≤ w(vn).
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Let B = {bi,j : (i, j) ∈ [m] × [n]} be a subset of positive numbers such that

b1,1 < · · · < bm,1 < · · · < b1,n < · · · < bm,n.

For a function f : E → B, let

r fi = w(ui) +

n∑
j=1

f (uivj),

for each i ∈ [m] and let

c fj = w(vj) +

m∑
i=1

f (uivj),

for each j ∈ [n]. Let C f
= {c fj : j ∈ [n]} and Rf

= {r fj : j ∈ [m]}.
For the following definitions we denote by (x, y) and [x, y] the open and closed intervals defined by x, y ∈ R. We say

that i is a r-crash of f if

(r fi , r
f
i+1) ∩ C f

= ∅ ̸= [r fi , r
f
i+1] ∩ C f .

Similarly, we say that j is a c-crash of f if

(c fj , c
f
j+1) ∩ Rf

= ∅ ̸= [c fj , c
f
j+1] ∩ Rf .

A crash of f is either a r-crash of f or a c-crash of f .
With these definitions we have that f has a crash if and only if the set C f

∩ Rf is non-empty. Notice that if we find a
function f with C f

∩ Rf empty, then we get the result.
Let F be the set of all functions f from [m] × [n] to B, satisfying the following.

1. f is a bijection, r f1 < · · · < r fm and c f1 < · · · < c fn .
2. If i ∈ [m] is a r-crash of f , then for all k ∈ [n], f (i, k) < f (i + 1, k).
3. If j ∈ [n] is a c-crash of f , then for all k, l ∈ [m], f (k, j) < f (l, j + 1).

The set F is not empty: it is easy to see that the function f (i, j) = bi,j belongs to F .
Indeed, the sums

∑n
j=1 f (uivj) increase with i and the sums

∑m
i=1 f (uivj) increase with j. Hence, r f1 < · · · < r fm and

c f1 < · · · < c fn .
Let f ∈ F be a function with |Rf

∩ C f
| minimum. To get the result we shall prove that Rf

∩ C f is empty.
Assume that i ∈ [m] is a r-crash of f . As f ∈ F , for all k ∈ [n], f (i, k) < f (i + 1, k). Moreover, as n ≥ 3,

r fi+1 − r fi = w(ui+1) − w(ui) +

n∑
l=1

(f (i + 1, l) − f (i, l))

> f (i + 1, 1) − f (i, 1) + f (i + 1, 2) − f (i, 2).

Then, there is (x, y) ∈ {(f (i, 1), f (i + 1, 1)), (f (i, 2), f (i + 1, 2))} such that 2(y − x) < r fi+1 − r fi .
By interchanging the values x and y in f we obtain a function g such that r fi < rgi < rgi+1 < r fi+1, r

g
k = r fk , for all

k ̸= i, i + 1 and cgj = c fj , j ∈ [n]. Hence, i is not a r-crash of g , Cg
= C f and Rg

= (Rf
\ {r fi , r

f
i+1}) ∪ {rgi , rgi+1}. Therefore,

|Cg
∩ Rg

| = |C f
∩ Rg

| = |C f
∩ (Rf

\ {r fi , r
f
i+1})| < |C f

∩ Rf
| which is a contradiction since g belongs to F . In fact, on the

one hand, if t is a r-crash of g and t < i, then g(t, k) = f (t, k) < f (t + 1, k) ≤ g(t + 1, k), for each k ∈ [n]. And, if t > i,
then g(t, k) ≤ f (t, k) < f (t + 1, k) = g(t + 1, k), for each k ∈ [n]. On the other hand, if s ∈ [n] is a c-crash of g , then
g(k, s) < g(l, s), for each k, l ∈ [m] since x and y belong to {f (t, 1) : t ∈ [n]} or both belong to {f (t, 2) : t ∈ [n]}.

Assume now that f has a c-crash at j ∈ [n]. As f ∈ F , for all k, l ∈ [m], f (k, j) < f (l, j + 1). As m ≥ 3, we can apply the
same argument as in the previous case to show that there is (x, y) ∈ {(f (1, j), f (1, j + 1)), (f (2, j), f (2, j + 1))} such that
2(y− x) < c fj+1 − c fj . By interchanging x and y we obtain g such that c fj < cgj < cgj+1 < c fj+1, c

g
l = c fl , for all l ̸= j, j+ 1 and

rgi = r fi , for each i ∈ [m]. Hence, j is not a c-crash of g and, as f has no r-crash, neither has g .
If g has a c-crash at s ∈ [n], then when s < j, we have g(k, s) = f (k, s) < f (l, s + 1) ≤ g(l, s + 1), for each k, l ∈ [m].

And, if s > j, then g(k, s) ≤ f (k, s) < f (l, s + 1) = g(l, s + 1), for each k, l ∈ [m]. Therefore, g belongs to F and, as before,
it can be proved that |Cg

∩ Rg
| < |C f

∩ Rf
| which is again a contradiction. We conclude that f has no crash at all and

therefore, Rf
∩ Cg is empty. □

All the results we present in this work give rise to effective method to compute the labelings. In particular, we can turn
the proof of Theorem 5 into an algorithm as follows. Initially, we assign to the edge iivj of Km,n the value bi,j. This defines
a function in F . Iteratively, we reduce the crashes of f . First, we reduce all r-crashes. The proof of Theorem 5 shows
that we can build a new function in F with less r-crashes than f . When we get a function without r-crashes we start
reducing c-crashes until no one remains. One can see that the initial function has at most min{m, n} crashes. Moreover,
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the reduction of one crash takes constant time. Therefore, after the initial step the algorithm uses linear time. In order
to carry out the initial step, we need to sort the set B and the weights given by the function w. This is the more time
consuming part of the algorithm which is O(mn log(mn)).
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