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A B S T R A C T

Reinforcement learning (RL) provides an alternative method for designing condition-based decision making in
engineering systems. In this study, a simple and flexible RL tabular Q-learning framework is employed to identify
the optimal operation schedules for a solar hot water system according to action–reward feedback. The system is
simulated in TRNSYS software. Three energy sources must supply a building’s hot-water demand: low-cost heat
from solar thermal collectors and a heat-recovery chiller, coupled to a conventional heat pump. Key performance
indicators are used as rewards for balancing the system’s performance with regard to energy efficiency, heat-load
delivery, and operational costs. A sensitivity analysis is performed for different reward functions and meteor-
ological conditions. Optimal schedules are obtained for selected scenarios in January, April, July, and October,
according to the dynamic conditions of the system. The results indicate that when solar radiation is widely
available (October through April), the nominal operation schedule frequently yields the highest performance.
However, the obtained schedule differs when the solar radiation is reduced, for instance, in July. On average,
with prioritization of the efficient use of both low-cost energy sources, the performance in July can be on average
21% higher than under nominal schedule-based operation.

1. Introduction

It is estimated that the energy consumption for domestic hot water
(DHW) accounts for up to 10% of the total end energy use [1]. In this
context, solar hot water (SHW) systems are a sustainable alternative to
conventional fossil fuel- or electricity-driven devices for delivering low-
grade heat in residential and commercial buildings, as well as industrial
applications [2]. As solar resource is variable, thermal storage and
auxiliary thermal sources are frequently integrated to increase the
availability of the system [3]. In addition to the main thermal and
hydraulic components in an SHW system, the integration of a com-
prehensive control system is critical to ensure the high performance of

each component and for the thermal energy management of the system
[4]. Coordination mechanisms must be considered between the dif-
ferent elements of the system (hot-water production, demand profiles)
to reduce the operational costs of the system [5]. For instance, the
optimal flow control and energy-efficiency strategies for SWH systems
with forced circulation have been studied [6,7] to increase the thermal
energy output and reduce the pump energy consumption. Furthermore,
time delays caused by thermal inertia can potentially have negative
consequences for the control-loop performance, owing to the in-
troduction of unstable behavior [8]. In this context, the development of
intelligent and flexible control systems is essential for improving the
energy-management strategies, to enhance not only the energy savings
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and efficiency but also the user satisfaction.
With the increased availability of monitoring data and the devel-

opment of versatile data-driven applications such as machine learning,
various algorithms have been developed and applied to perform deci-
sion-making tasks in various research areas involving engineering sys-
tems. These applications have mainly focused on design, manufacture,
operation, and maintenance [9–12]. Reinforcement learning (RL) offers
an alternative approach to decision making based on the system’s ex-
perience and conditions. In addition to the physical, cost, and comfort
restrictions of the system, time-deferred effects of actions and policies
are taken into account and identified as beneficial or damaging to its
overall goals. In a typical RL setting, the objective is to extract optimal
decision policies under a sequence of states, actions, and rewards with
which the decision-maker (called the agent) learns to optimize a cost
function by interacting with an environment. Diverse RL techniques
have been developed for specific applications. An RL agent can be
trained using historical operation and sensor data, as well as stochastic
ambient effects, thus shifting the focus from model- and risk-based
analysis to data-driven condition-based decisions.

Relevant application areas in different engineering systems are
listed as follows: the design and optimization of production and
maintenance scheduling policies [13,14], power-grid management
[15], demand response models to market electricity pricing [16], and
autonomous driving [17]. Recently, RL algorithms have been applied to
adaptive controls in energy systems. This has allowed the integration of
renewable energy sources into electrical grids and real-time decision
making for microgrid energy management [18,19]. A review of these

applications was presented in [20], in which the studied systems in-
cluded heating, ventilation, and air conditioning (HVAC) systems [21],
DHW systems [22–24], smart appliances, hybrid and electric vehicles
(EVs) [25], and distributed generation coupled to energy storage [26].
The main objective of the RL agent in these studies is to manage the
energy costs, user satisfaction and comfort; manage the peak-demand
performance; and reduce the fuel consumption. For instance, in [27], an
adaptive and occupant-centered controller for lighting in commercial
buildings was successfully implemented, balancing the occupant com-
fort and energy consumption, in contrast to schedule- and occupancy-
based control scenarios.

In thermal systems, similar adaptive controls for DHW systems have
been developed to integrate renewable energy sources and reduce the
overall energy consumption. The mass flow rate in combined thermo-
photovoltaic (PV/T) systems and geothermal heat pumps in buildings
were optimized according to the heat demand, net output power, and
optimal operational temperatures via numerical simulations [28].
Methods such as Tabular Q-learning and Batch Q-learning with Memory
Replay were compared with standard rule-based control (RBC). All the
tested solar PV/T RL control methods outperformed the RBC by > 10%
after the third year of simulation. Additionally, the more general case of
a heterogeneous cluster of thermal demand response electric water
heaters was investigated using Batch RL algorithms [29]. By using a
detailed stratified thermal model of storage tanks, the RL was compared
with the traditional hysteresis controller. It outperformed the tradi-
tional controller by reducing the electricity cost while maintaining the
user satisfaction under time-varying electricity-price scenarios.

Acronyms

RL Reinforcement Learning
SHW Solar Hot Water System
TRNSYS Transient System Simulation Tool
KPI Key Performance Indicators
DHW Domestic Hot Water Systems
HVAC Heating, Ventilation and Air Conditioning Systems
SHIP Solar Heat Industrial Processes
DL Deep Learning
EVs, Electric Vehicles
PV/T Thermo-Photovoltaic Systems
RBC Rule-Based Control
MDP Markov Decision Process
FPC Flat Plate Solar Collector
ETC Evacuated Tube Solar Collector
IAM Incidence Angle Modifier
GHI Global Horizontal Irradiance
DFI Diffuse Horizontal Irradiance
DNI Direct Normal Irradiance

Subscripts

i fluid inlet
a ambient
sp speed
dir direction
o optical property
T transverse
L longitudinal
t time
G global KPI
v tempering valve outlet

Nomenclature

st state of the system at time t
S state space
at action taken by the agent at time t
A s( )t state-dependent action Space

+p s s a( | , )t t t1 action-dependent transition probabilities between
states

R s a( , )t t action-state dependent reward function
r discount factor of future rewards

Q s a( , ) Q-function or action-value function
rt reward perceived at time t

policy guiding the permissible actions taken
r learning rate

Rk total reward at the end of episode
o transmittance
o absorptance

incidence angle of solar radiation
K optical efficiency factor
FR heat removal factor
UL overall thermal loss coefficient
T temperature
( )n transmittance-absorptance product at normal incidence

angle
0 optical efficiency of ETC solar collector

a a,a a1 2 first and second order loss coefficients of ETC solar col-
lector

I solar irradiance
M meteorological conditions
W wind
P atmospheric pressure
O operational condition
E energy gain from solar field
CH electrical power input to the chiller
HP energy rate delivered by heat pumps

, , weights for sensitivity analysis
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Experimental validation of the demand response of DHW buffers was
performed, with the aim of optimizing the heating cycles for max-
imizing the use of local PV production. Compared with standard ther-
mostat controllers, the use of a RL-based algorithm combined with a
data-driven weather forecast increased the amount of PV energy de-
livered to the DHW system by > 20% [30].

This study analyzes the operation of an SHW subsystem that inter-
acts with other heat sources to deliver hot water to a university
building. Three heat sources deliver energy to the system sequentially:
(1) low-temperature solar thermal collectors; (2) mid-temperature ex-
cess heat from a heat-recovery chiller; and (3) high-temperature con-
ventional air–water heat pumps. Given the design of the system, the
heat driven by the solar collectors and the heat-recovery chiller is
considered low-cost; it is attributed to the capture of free solar radiation
and waste heat (a byproduct of the operation of the water-cooled
chiller), respectively. An RL agent is given control over the operation of
these two low-cost sources, seeking to find the optimal operation
schedule of the circulation pumps that manage these heat sources,
while prioritizing the participation of the solar field. To examine this
balance among the energy consumption, renewable participation, and
hot-water supply at the design temperatures, different key performance
indicators (KPIs) are proposed to guide the rewards that the agent
perceives according to the energy efficiency, renewable capacity, and
economic considerations. The daily operation of the system under dif-
ferent scenarios is investigated. As is demonstrated, the RL agent can
extract the optimal policies from the permissible actions in the system
by incorporating its thermal behavior, reflecting the importance given
to each KPI. Therefore, the main contribution of this work is the de-
velopment of a framework for condition-based operation scheduling for
SHW systems, emphasizing the flexibility of production policies via RL
with the Q-learning algorithm. This approach considers both the com-
fort-demand profiles and the overall production goals in the operation
scheduling. Additionally, with the incorporation of the availability of
solar radiation as a key driver of the system’s goals, the overlooked
complexity of the thermal inertia behavior of the solar thermal system
plays a pivotal role.

The remainder of this paper is organized as follows. Sections 2 and 3
provide the necessary background for RL and SHW systems, respec-
tively. Section 4 describes the proposed framework, including the si-
mulation approach and the construction of the RL state–action–reward
setting. Section 5 presents the results and a detailed sensitivity analysis
of the KPI. Finally, Section 6 presents concluding remarks.

2. Reinforcement learning

The basic concept of an RL algorithm is the interaction between an
agent and its environment through feedback loops based on actions and
rewards, leading to a specific goal. Through this feedback loop, the
agent can derive an optimal policy given the restrictions established by
the environment (e.g., a physical asset or system). The agent–environ-
ment interaction sequence is mathematically described by a Markov
decision process (MDP). An MDP formally describes a stochastic dy-
namic system defined by a tuple S A T R, , , . The elements that define
this system are as follows:

(1) A discrete and finite state space that, at a certain time t , is re-
presented by s S.t

(2) A finite action space that depends on a given state a A s( )t t . The
effect on an action on the state st will cause the transition to the
next state +st 1.

(3) Transition probabilities between states give the previous state–ac-
tion tuple +p s s a( | , )t t t1 , which is defined as × ×T S A S: [0, 1].
These transitions are Markovian if the future state resulting from an
action is only dependent on the present system’s state.

(4) A reward function R s a( , )t t defined as × ×R S A S: , which
represents the consequence of taking an action at at a certain state

st .
(5) A discount factor (0, 1)r that allows the maximum future reward

sequence that a certain action at can possibly yield to be quantified.
Thus, the feedback loop that the agent perceives is based on future
discounted rewards to encompass the time delay between the action
and the resulting reward.

Various RL algorithms have been developed and widely used in a
variety of settings, including traditional algorithms such as Q-learning
[31] and SARSA [32] and more complex deep learning (DL) algorithms,
such as the Deep Q-Networks (DQN) for feature enhancement [33] and
human-level decision making [34]. In practice, the difference between
these algorithms lies in how the worth of an action is translated into
perceptible rewards through explicit functions (as in Q-learning and
SARSA) or represented by the trained weights of artificial neural net-
works in DL settings. Among these approaches, model-free RL algo-
rithms are a class of data-driven approaches in which the internal logic
of the system is represented as a black box from the agent’s perspective.
Model-free RL algorithms do not explicitly have the transition-prob-
ability matrix of the MDP, but they obtain an approximation of the
action-values by exploring and interacting with the environment or
system [35]. This allows the exploration of large action–state spaces
with a reduced computational cost compared with dynamic-program-
ming approaches [36].

The framework used in this study, i.e., tabular Q-learning, is based
on a modified version of the value function method, where the utility or
worth of each corresponding action–state is solely expressed by a
quantified value (Q-value), which is given by an action–value function
[35]. An action–value function Q s a( , ), which is also called a Q-func-
tion, is defined as the maximum expected return rt of a specific action at
over a state st given a policy , as shown:

= = =Q s a maxE r s s a a( , ) ( | , , ).
a

t t t (1)

The future optimal action a and the optimal policy are then
expressed through the Q-function as follows:

=Q s a maxQ s a( , ) ( , )
a (2)

=s argmaxQ s a( ) ( , )
a (3)

where Q s a( , ) represents the maximum future Q-value from the pos-
sible action–state s a( , ) tuples. The optimal policy is extracted as the
set of actions that maximize the Q-value. The Q-learning algorithm is a
value iteration method adaptation of the Bellman Equation used to
estimate Q s a( , ). The linear approximation of the Q-function updates
the corresponding Q-values using the maximum Q-value available for
the present state [20]:

= + ++Q s a Q s a r Q s a Q s a( , ) ( , ) [ ( , ) ( , )]t t t r t1
' ' (4)

where +Q s a( , )t 1 represents the updated Q-values for the action–state
tuple calculated from the present Q-value Q s a( , )t and the present re-
ward function rt , as well as the discounted maximum future Q-value
given the possible s a( , ). Here, represents the learning rate of the
algorithm, and r represents the discount factor. Both are in the range of
[0,1].

The Q-learning algorithm is an off-policy learning method, which
uses a simulator of the environment as an inexpensive method for
generating and sampling a large number of training examples that map
out the real-life problem under analysis [37]. In comparison, an on-
policy setting requires continuous interactions between the agent and
the environment to determine future states of the system to simulta-
neously derive the optimal policy while mapping out the state space.
Such an on-policy is used in SARSA. Additionally, when interacting
with a deterministic setting, the Q-learning method allows the most
promising set of actions given a specific environment state to be iden-
tified [38]. A typical issue when deriving the optimal control policy is
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exploration versus exploitation of the environment. Exploration can be
introduced as random mapping of the Q-values before the systematic
selection of the best output [35]. As the Q-learning method seeks the
highest available future reward to select an action, in long decision-
making sequences, the agent may become biased according to the first
experienced state of the system. To counter this, the Q-learning method
requires a detailed configuration of the action–state space to avoid
biased estimation of the Q-values. In this case, as the action–state space
is reduced and the reward function’s values are directly calculated from
the state of the system, a greedy policy is used to maximize the ex-
ploitation through the training and evaluation phase; i.e., the taken
action always yields the greatest reward given the present state.

In this study, a tabular approach is used for the Q-learning method,
given that the action–state space is reduced. This, in contrast to larger
action–state spaces, which benefit from approximate solutions to esti-
mate the Q-values, such as the use of neural networks [34]. This tabular
approach has a simple formulation and straightforward implementa-
tion, as described in the flowchart presented in Fig. 1. Depending on the
agent–environment interaction setting, the agent retrieves information
on the state of the system via continuous or periodical observations.
Then, according to the observed Q-values, the agent selects the avail-
able action with the highest value, retrieving the reward or penalty for
it, updating the Q-value, and causing the transition to the next state.
Both parameters and r focus on the learning rate and the monitored
effects of actions in the system. The parameter defines the rate of new
knowledge rewriting already stored information. Low values of r favor
short-term effects, and the agent is focused on long-term developments
in the system with values close to 1 [35].

Based on the cited literature, in the context of maintenance and
operation scheduling, the use of RL can be applied for downtime and
maintenance costs minimization or the maximization of production
goals, according to quantifiable rewards extracted from the system’s
monitoring data. Additionally, this process considers the delay between
an action and the corresponding reward, which is known as a temporal
credit-assignment problem and is particularly important in systems
with long response times, such as thermal systems, owing to their in-
herent thermal inertia.

3. Solar hot water systems

Both domestic and industrial applications of SHW systems exhibit
potential for reducing the greenhouse-gas emissions, and currently one
of the most widely used water heating systems worldwide [39,40]. The
installed capacity of SHW systems for buildings increased by approxi-
mately 250% over the past decade, and by the end of 2017, it exceeded
470 GWth, surpassing the 402-GWel installed capacity of solar photo-
voltaic technologies. During the same year, the operation of SHW sys-
tems achieved reductions of 41.7 million tons of oil and 134.7 million
tons of CO2 emissions [41]. Additionally, in recent years, there has been
increasing interest in large-scale solar thermal systems (> 350 kWth;
500 m2) integrated into the building design, district heating networks,
and solar heat industrial process (SHIP) applications [42]. Despite their
growth and outstanding benefits, the global installed capacity of solar
thermal systems covered only 2.1% of the total demand for space and
water heating in 2018 [43].

Most commercial and residential SHW applications are based on
non-concentrating solar thermal technologies, which are mainly clas-
sified into flat plate (FPC) and evacuated tube (ETC). In the latter ca-
tegory, the heat-pipe ETC variation combines advantages of both
standard types of solar collectors. These collectors incur relatively low
maintenance costs and are less affected by unfavorable weather con-
ditions than the FPC; moreover, they have good anti-freezing properties
and a high thermal conductivity to prevent internal overheating, which
is a frequent issue in the ETC [44]. Under standard EN 12975-2 testing
conditions, ETC efficiency values obtained are estimated within
50–60% [45]. Ayompe et al. [46] performed year-round energy

performance monitoring for different SHW configurations, reporting an
annual solar fraction, collector efficiency, and system efficiency of
40.2%, 60.7%, and 50.3%, respectively, for a heat-pipe ETC.

3.1. SHW case study

The SHW system analyzed in this study is presented in Fig. 2, in
which three heating stages operating in series can be identified. The red
and blue lines represent the flow of hot and cold streams in the system,
respectively. The goal of this heating system is to deliver a load of
24,000 L at 45°C with a daily operating schedule from 7AM to 9PM.
This setting is based on the installation located at a building at the
Physical and Mathematical Sciences Faculty of the Universidad de
Chile, in Santiago, Chile, which was previously studied in [47] (the
simulation’s representability of the system was assessed). The first
heating stage corresponds to the renewable section, consisting of the
solar field of a heat-pipe ETC, a preheating storage tank, and the mains
water inlet to the system. The second section integrates a hot-water
flow from a heat-recovery chiller, which receives a water flow pre-
viously heated by the solar loop. The tank is designed to store water
between 35 and 40°C. Finally, in the heating section, electricity-driven
heat pumps (with a temperature set point of 50°C) and an additional
mains water inlet are used to regulate the temperature of the water
delivered to the load through a tempering valve, which is dispatched at
45°C. Heat exchangers and constant-speed centrifugal pumps connect
the different closed loops. The monitored variables mainly consist of the
temperature and operational status of the aforementioned equipment.
The solar field is composed of a total absorption area of 105.6 m2 of the
ETC, which is tilted at 15° and is north-oriented. Tables 1 and 2 present
the optical and thermal efficiencies of the installed solar collector
(Hitek Solar NSC 58-30 model1).

Table 1 presents the IAM values obtained under the test conditions
for the selected ETC model, expressing how the optical properties, such
as the transmittance o and absorptance o, of the solar collector’s
components, vary depending on the incidence angle of solar radiation
on the collector’s surface. This is expressed as the K factor in Eq. (5),
affecting the solar collector’s overall efficiency, as well as FR, re-
presenting the heat-removal factor; UL, the overall thermal-loss coeffi-
cient; Ti, the fluid inlet temperature; Ta, the ambient temperature; and
( )n, the transmittance-absorptance product at the normal incidence
angle [48]. In the case of the ETC, these models present non-
symmetrical cover optical properties; thus, the effects of both the
transverse T and longitudinal L incidence angles are taken into ac-
count, as indicated by Eq. (6) [49]. The heat-recovery chiller used is a
Thermocold CWC Prozone 1320 Z C model of 254 kW nominal capacity,
with a set point of 10 °C. All the storage tanks have a constant volume of
4 m3.

= F G K U T T[ ( ) ( )]i R T n L i a (5)

= K KK ( ) ( )· ( )T L (6)

3.2. Simulation approach

A physical representation of the SHW system was developed in the
Transient System Simulation Program (TRNSYS) [50] to generate syn-
thetic data that represent the different scenarios in which the agent
operates. The different scenarios are a result of altering the control
system and operating hours of the solar and heat-recovery chiller cir-
culation pumps.

TRNSYS operates through types (or component blocks) which

1 For reference, the datasheet reports that a difference of 10 °C between
ambient and mean solar collector temperature results in a power output per
collector unit of 1686 W, with an approximated total of 74 kW for the complete
solar field.
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integrate experimentally validated or theoretical equations to express
the operation of the thermal, hydraulic, and control components pre-
sent in the system. TRNSYS has been applied in several applications
related to solar energy systems and validated experimentally. Different
technologies, such as flat plate and heat pipe evacuated tube collectors,
have been validated in diverse applications [51], such as pool heating
[52], large heating networks [53], and coupling with HVAC systems
[54], as well as representing the stratification of hot-water storage
systems [55]. While stochastic effects can be introduced in a TRNSYS
setting, simulations of thermal behavior are deterministic in nature.

For the SHW system studied, the nominal design conditions are
introduced in the corresponding operational types representing the
solar collectors, heat-recovery chiller, heat pumps, heat exchangers,
single-speed centrifugal pumps, and control system. Actual meteor-
ological data, e.g., the solar radiation, ambient temperature, wind

speed, and wind directions, are used to describe the environment in
which the SHW system operates. Additionally, the following simplifi-
cations are made.

• The temperature of the water entering from the mains system is
calculated according to the numerical correlations presented in [56]
and adapted to the local weather.

• Heat pumps are represented by an auxiliary water heater configured
with nominal heating capacities corresponding to the design con-
ditions.

• The system’s control has automatic responses, as follows:
o The flow from the preheating tanks to the heat tanks is equivalent

to the flow required by the users. Replacement water from the
mains system is introduced into the solar preheating tank (Pre-
Heat Tank 1 in Fig. 2). This allows the mass of water stored in the
system to be constant.

o For safety purposes, if the outlet temperature dispatched from the
heat tanks is > 45°C, mixing valves are activated, and the mains
water is introduced until the temperature is below this threshold.
The extra water is then reintroduced into the hot-water tank cir-
culation flows.

• The operational statuses of both the solar and heat-recovery chiller
circulation pumps (Pumps 1, 2 and 7, 8 in Fig. 2, respectively) are
altered to simulate the different scenarios, reflecting the actions that
the RL agent can control during the daily operation schedule.

In the design of the SHW system, it is considered that the heat load
is delivered at a constant rate. However, on the basis of operational
experience of both the users and the building’s management team, an
estimate of the daily demand profile is presented in Fig. 3, where the
greatest demand occurs between 12 PM and 2 PM, coinciding with the
highest availability of solar radiation during the year. This profile is
introduced in the TRNSYS deck, along with the component’s design
characteristics. For the agent–environment interaction, samples are

Fig. 1. Information flowchart for a Q-learning agent with periodic observations.

Fig. 2. Schematic of the SWH system, showing the preheating and heating sections.

Table 1
Incidence angle modifier (IAM) values for the Hitek Solar NSC Heat Pipe ETC
solar collector.

10° 20° 30° 40° 50° 60° 70°

K ( )T 1.010 1.019 1.056 1.151 1.452 1.462 1.261
K ( )L 0.999 0.994 1.018 0.974 0.952 0.913 0.833

Table 2
Thermal capacities of the Hitek Solar NSC Heat Pipe ETC solar collector
(parameters related to the aperture area).

Parameter Reference Value

0 0.618
a W m K[ /( )]a1 2 1.377

a W m K[ /( )]a2 2 2 0.018

Effective thermal capacity [kJ m K/( )]2 5.684

C. Correa-Jullian, et al. Applied Energy 268 (2020) 114943

5



extracted for four different meteorological conditions throughout the
year. As it is of interest to extend the use of the solar field and increase
the thermal efficiency of the system, the RL agent is presented with four
evenly spaced time windows with remarkably different solar-radiation
daily profiles. These daily profiles are simulated between the 1st and
10th of January, April, July, and October to examine the sensitivity and
adaptability of the agent’s decisions to solar-radiation availability and
thus the performance of the solar field. Sample solar-radiation profiles
for the Global Horizontal (GHI), Diffuse Horizontal (DFI), and Direct
Normal (DNI) components are presented in Fig. 4.

The performance of the ETC mainly depends on the GHI solar ra-
diation, as its geometry allows for passive sun-tracking throughout the
day. While the radiation profile for July is the lowest, it also exhibits a
smooth behavior, similar to the January profile. The radiation profiles
for April and October exhibit more irregular behavior. Finally, the

selection of the variables and the analyzed timeframes depends on the
thermal behavior of the system and is thus based on the previously
presented solar-radiation profiles and the thermal inertia of the system.

4. Proposed solar thermal system operation scheduling
framework

In this section, the condition-based operation scheduling framework
is presented, combining the data-driven decision-making algorithm
with performance indicators. This allows the exploration of the optimal
operating configuration for an SHW system under different meteor-
ological conditions and overall policy goals. Here, a balance among
reducing the energy consumption, increasing the participation of the
solar field, and reaching the design outlet temperatures is desired.

In previous studies [57–60], RL applications have focused on
maintenance scheduling, given the ability to properly define states,
actions, and rewards. The nature of the environment, as well as the
agent–environment interactions, depends on the nature of the TRNSYS
simulation. By building detailed simulation models, a significant
amount of synthetic data can be generated for training the RL model. To
simplify the experimental setting, all possible scenarios are simulated
beforehand. Thus, the interaction between the agent and the environ-
ment is limited. Future states are dependent on the previous actions
taken; thus, there are inaccessible action–state combinations during the
interaction episode. Furthermore, the RL agent interacts with a de-
terministic environment, with finite-length episodes that cover the
daily operation of the SHW system. The transition probabilities for each
state are stationary. Observations, states, and actions performed on the
environment are defined as discrete interactions with the agent. As the
action–state space is well defined and limited, the values of the Q-
function are approximated via a tabular approach. A weighted sum of
KPIs is used as the reward function for balancing the performance of the

Fig. 3. Estimated hot-water demand weekly profile for the SWH system (in
number of users).

Fig. 4. Solar-radiation daily profiles for selected days in January, April, July, and October.
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system with regard to the energy efficiency, heat-load delivery, and
operational costs.

The proposed approach considers (a) the short-term effect of actions
on the system in daily operation scheduling for the main thermal
components; (b) simple decisions regarding the control system of side
components (i.e., on/off signals); (c) no downtime as a consequence of
these actions, other than the inherent thermal inertia; and (d) a reward
function that allows the prioritization of different aspects of the SHW’s
operation, which are represented by different KPIs.

4.1. State space and variables

To define the state space, the temperature, meteorological condi-
tions, and energy flow variables are extracted from the TRNSYS simu-
lation. The state at each timestep is then defined by a function of the
monitored variables given the combination of actions and observations
of the system:

= f T T T I GHI DFI DNI M RH W W P
O O

s
( :{ , }, :{ , , }, :{ , , , },
:{ })

N amb s d

N

t

1, ,

1 . (7)

Here, the state st is constructed as a function of the following
variables: T and O represent the temperature and operational status
monitored for N components, respectively; I represents the solar-ra-
diation measurements; and M represents other meteorological condi-
tions. The solar irradiance measurements include the DNI, GHI, and DFI
components, and other ambient measurements include the relative
humidity (RH), wind speed and direction (Wsp, Wdir), and atmospheric
pressure (P), representing the meteorological conditions. Finally, a
binary (0,1) operational status is used as a substitute for flow mea-
surements, as single-speed centrifugal pumps are used.

Special consideration is given to the use of radiation values, as they
provide valuable information about the expected performance of the

solar field in deterministic steady-state simulations. Additionally, in-
formation regarding the temperatures and heat flows is obtained for
each component. The components selected to describe the state of the
system are the solar field, heat-recovery chiller, heat pumps, hot-water
storage tanks, mains water inlet, and tempering valve outlet. These
main components affect the overall efficiency of the system, which
consists of the three heat sources and three temperature points relevant
to the delivery of the heat load. This selection results in a total of 43
variables, which are arranged in a multi-dimensional array [observa-
tions, time window, variables] for each daily profile. A sampling fre-
quency of 6 min is considered to account for the natural thermal inertia
of the system and the variability of the solar radiation, as minute-based
measurements may suffer from uncertainties caused by atmospheric
phenomena [47].

4.2. Agent–environment interaction

For simplifying the interaction between the agent and the en-
vironment and considering the thermal inertia of the SHW system, the
agent acts sequentially on the environment at three instances daily,
which are denoted as “interaction windows.” Given the size of the
system, it is estimated that at least 1 h is needed to observe significant
thermal changes in the monitored points [47]. During these three daily
observation-action time windows, the agent assesses the current situa-
tion and selects a future action according to the obtained KPI. As the
possible future states depend on the present state, the decision making
process of the control system is condition-based, i.e., sensible to both
the meteorological conditions and the thermal performance of the
system. The number of interaction windows is selected to observe the
development of the system’s state during the insolation hours of the
design operation schedule (7 AM to 9 PM) in time windows that allow
the assessment of the selected action’s effect considering the inertia of
the system.

To cover the hours in which solar radiation is mostly available
during the user consumption profile shown in Fig. 3, the action events
are distributed at 10 AM, 2 PM, and 6 PM. Thus, a daily operation is
divided into three time windows: 8 AM to 12 PM, 12 PM to 4 PM, and 4
PM to 8 PM. Additionally, these time-windows are divided into two
phases: an observation window in which the agent can assess the pre-
sent state of the SHW system and select an adequate action and an
assessment window in which the rewards are calculated. In Fig. 5, this
temporal arrangement is superimposed on the energy-gain profile of the
solar collector for January.

4.3. Permissible actions

Permissible actions in the system are focused on the operation of the
solar field and heat-recovery chiller circulation pumps. The objective is
to investigate operation schedules that may not be intuitive while also
considering the effects of the thermal inertia of the SHW system, as well
as different meteorological conditions, economic factors, and heat
loads. Among the three heat sources in the SHW system, only two (the

Fig. 5. Daily interaction instances and assessment time windows.

Table 3
Admissible paths for solar and chiller by-pass pump control.

Path 10 AM 2 PM 6 PM Path 10 AM 2 PM 6 PM Path 10 AM 2 PM 6 PM

1 {1,1} {1,1} {1,1} 9 {1,0} {1,1} {1,1} 17 {0,1} {1,1} {1,1}
2 {1,1} {1,1} {1,0} 10 {1,0} {1,1} {1,0} 18 {0,1} {1,1} {1,0}
3 {1,1} {1,1} {0,1} 11 {1,0} {1,1} {0,1} – {0,1} {1,1} {0,1}
4 {1,1} {1,0} {1,1} 12 {1,0} {1,0} {1,1} 19 {0,1} {1,0} {1,1}
5 {1,1} {1,0} {1,0} 13 {1,0} {1,0} {1,0} 20 {0,1} {1,0} {1,0}
6 {1,1} {1,0} {0,1} 14 {1,0} {1,0} {0,1} – {0,1} {1,0} {0,1}
7 {1,1} {0,1} {1,1} 15 {1,0} {0,1} {1,1} – {0,1} {0,1} {1,1}
8 {1,1} {0,1} {1,0} 16 {1,0} {0,1} {1,0} – {0,1} {0,1} {1,0}
– {1,1} {0,1} {0,1} – {1,0} {0,1} {0,1} – {0,1} {0,1} {0,1}
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solar field and the chiller bypass pumps) are treated as independent
variables in the TRNSYS simulation. The heat pumps are controlled by
an integrated thermostat with a set point of 50°C. To focus on the
guiding principles underlying the control logic (whether to (a) prior-
itize the renewable capacity factor, (b) maximize the ratio between free
and priced energy, or (c) minimize the energy consumption), no further
assumptions are made about the operation logic of the SHW (other than
the operation schedule).

A state of the system is defined by the operational condition of the
single-speed centrifugal pumps that recirculate flows from the solar
field and the heat-recovery chiller as a tuple x y{ , }. The first digit re-
presents the state of the solar circulation pump, and the second digit
represents the state of the heat-recovery circulation pump. At each of
the three agent–environment interactions, there are four possible states
considering both components and on/off or 1/0 pump control signals:
{1,1}, {1,0}, {0,1}, and {0,0}. For practical reasons, the latter state in
which both heat sources are shut-off is ignored. As the participation of
the solar field is of interest, daily sequences involving two periods in
which it is shut-off from operation are also ignored. Table 3 presents the
20 possible sets of actions, paths, or scenarios per day, which are re-
presented by a trio of tuples of control signals for the solar and chiller
circulation pumps. Here, paths are defined by tuples (solar pump con-
trol, chiller bypass pump control) where 1/0 represents the on/off
conditions, respectively.

4.4. Condition-based rewards

KPIs are used to describe the effects of selected actions on the state
of the system. These KPIs are related to the energy consumption and
overall efficiency. From the TRNSYS simulation, the following main
variables and components are used to analyze the agent’s decisions: (a)
the total energy gain of the solar field, (b) the required electrical power
of the heat-recovery chiller, (c) the energy delivered to the stream by
the heat pumps, and (d) the outlet temperature of the tempering valve.
These variables are selected because they can be corroborated with data
collected in a real system through temperature and control signal
measurements. While the first four variables describe the energy gains
and consumptions of the system, the latter is crucial for determining
whether the hot-water demand is satisfied under the design conditions
(i.e., 45°C).

The proposed KPIs are presented in Eqs. (8)–(12), where three main
ideas are expressed: the renewable capacity factor, amount of hot water
supplied, and energy consumption. KPI1 and KPI2 both represent a re-
newable capacity factor. The first covers only components in the pre-
heating section, and the latter also includes the heating section (heat
pumps). The energy consumption and cost are represented by KPI3, as
the ratio of the low-cost energy to the total energy entering the system.
In this case, the heat-recovery chiller is considered a low-cost energy
source, as the main function of this equipment is to deliver cold water
to a separate section of the HVAC system. Thus, the water used for
internal refrigeration of the chiller requires no additional energy con-
sumption to reach temperatures beneficial to the hot-water load. A
higher KPI3 represents delivery of a larger amount of energy from the
preheating section, reducing the need for the traditional heat pumps
and reducing the overall energy consumption in the system. KPI4
quantifies the use of the traditional heat sources, i.e., the heat-recovery
chiller and heat pumps. Finally, KPI5 represents the number of time
periods in which the design temperature is satisfied by the system. It is
the sum of a binary function based on the outlet temperature of the
tempering valve. The designed outlet temperature is 45°C; however,
fluctuations of up to 5°C may naturally occur within the system and do
not require further action from the heat sources. Yet, the penalization
must be asymmetrical, as hot water at 50°C is not desired, for safety
reasons. Thus, the safety threshold is set in the range of 40–45°C.

=
+

E
CH E

KPI1 (8)

=
+ +

E
CH E HP

KPI2 (9)

= +
+ +
E CH

E CH HP
KPI3 (10)

= +CH HPKPI4 (11)

= =
° °f

t
f if T during time t

if not
KPI ; 1 [40 C, 45 C]

0
t

t
v

5
(12)

In Eqs. (8)–(12) E represents the energy gain of the solar field, CH
represents the electrical power required by the chiller, HP represents
the rate at which energy is delivered to the stream by the heat pumps
(in kJ/h), and TV represents the outlet temperature of the tempering
valve (in °C).

The KPIs are calculated during each observation and assessment
window after a certain action has been taken, yielding a matrix of
[timesteps, interactions, KPI values] = [20,3,2] for all possible sta-
te–action combinations. Then, the mean difference between the values

+t t( 1, )is used to represent the reward of the action on the state of the
system. As the overall performance of the system depends on the energy
consumption, the participation of the solar field, and the outlet tem-
peratures, these KPIs are combined to form a global KPIG. However,
depending on the authority in charge of the system, the priorities differ.
To evaluate the influence of each of the original KPIs, four different
combinations are studied, reflecting the three main ideas in each term
(the renewable capacity factor, amount of hot water supplied, and en-
ergy consumption). These are defined in Eqs. (13)–(16) according to the
values of the weights , , and the KPI, subject to the restrictions of
Eq. (17):

= + +KPI KPI KPICase1 KPI · · ·G,1 1 5 3 (13)

= + +KPI KPI KPICase2 KPI · · ·G,2 2 5 3 (14)

= + +KPI KPI KPI KPICase3 KPI · ·( ) ·G,3 1 5 4 3 (15)

= + +KPI KPI KPI KPICase4 KPI · ·( ) ·G,4 2 5 4 3 (16)

+ + =

=
>

1
, [0, 1]

1
0 (17)

The difference between KPI1 and KPI2 is that the latter also considers
the effect of the heat pumps. Thus, KPIG,1 and KPIG,2 produce similar
results, but the latter is representative of the whole system (not only the
preheating section). Similarly, KPI4 and KPI5 are both related to the
energy consumption. Combining these two KPIs adds a penalty term
specific to the use of traditional sources when hot water is supplied at
the desired temperatures, which gives priority to the solar field’s par-
ticipation. Thus, the similarity in the results provided by KPIG,3 and
KPIG,4 is expected. According to the foregoing definition, a higher score
of KPIG is obtained with higher values of KPI KPI KPI, ,1 2 3, and KPI5,
while the cost ofKPI4 is minimized. For each admissible (action, state)
pair, the instantaneous reward function is expressed as follows:

=r s a KPI s a( , ) ( , )t G t, (18)

Thus, the total reward for each daily scenario k,which is composed
of the instantaneous observed rewards ri

obs at each interaction period i
obtained from the combination of visited states svis and selected actions
asel, is defined as

= r s aR ( , ).k
i

i
obs vis sel

3

(19)
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4.5. Q-table with action-dependent states

A Q-table approach is used to map the corresponding combinations
of available actions and viable states of the system. After the training
process, each Q-value in the table represents the worth of pursuing an
action in a certain state of the system. As the permissible states are
action-dependent, there are Q-values corresponding to inadmissible
(state, action) pairs that are not updated with the reward function in Eq.
(18).

An asymmetric ×[12 32] Q-table is used to present the combination
of possible states and actions. The rows, as well as the first 12 columns,
represent the possible intermediate states. The remaining 20 columns
represent the final absorbing states or daily outcomes. Each state is
defined by a tuple that contains the control signal for the solar and
chiller heat rejection recirculation pumps: {1,1}, {1,0}, and {0,1} (as
defined in previous sections). A schematic of the daily decision process
is presented in Fig. 6. Here, the dependency of the actions regarding the
states can be observed, as the actions branch out to the future per-
missible action–states, as described in Section 4.3. For instance, if the
first action selected corresponds to {1}, the second action can only be
selected from options {4, 5, 6}. This is a representation of the possible
state sequence combinations presented in Table 3.

4.6. Q-learning algorithm implementation

The implemented Q-learning algorithm comprises the following
steps, as shown in Fig. 7.

(1) Initialization of the Q-Table. As the reward function rt can obtain
zero values for certain (state, action) combinations, the table is
initialized with –1.

(2) Selection of the daily initial state. This corresponds to {1,1}, i.e., a
state where the solar field and the chiller circulation pumps are
activated at 7:00 AM.

(3) At each interaction opportunity between the agent and the en-
vironment, depending on the present state and time, the possible
actions and admissible future states must be defined.

(4) The agent selects the action with the highest Q-value. If all the Q-
values are equal, as for the first daily decision, the selection is
performed randomly. The optimal policy is to select the action
yielding the highest return for each state, which corresponds to the
maximum available Q-value.

(5) After selecting an action, the new current state must be defined, and

the corresponding reward must be calculated, representing the
change between the present and previous states of the system.

(6) Finally, the corresponding Q-value of the selected (state, action)
tuple must be updated with the reward function and the approx-
imation of the Q-function presented in Eq. (4).

(7) Steps 3–6 are repeated for the selected number of training itera-
tions. In the proposed setting, 1000 iterations are conducted.

A sensitivity analysis is performed for the weights , , and related
to each KPI. Analysis of the sensitivity of the agent’s decisions to the
weights’ values reveals that the selection of the optimal policy depends
on the system’s management priorities regarding energy efficiency and
user comfort. With a higher value of , the agent’s decision is biased
toward KPI1; thus, the renewable capacity factor in the preheating
section impacts the final rk score more significantly than the other KPIs.
This allows an additional analysis based on the preference of the au-
thority in charge of the system’s management, e.g., energy efficiency,
reduced economic costs, or user satisfaction. The detailed process in
Fig. 7 is repeated for all the combinations of the policy weights , ,
and defined by Eq. (17), resulting in 36 different scenarios. In the next
section, the results are discussed, and the paths selected by the agent
under different meteorological conditions and reward functions, as well
as the resulting scores, are analyzed.

For clarity, an overall flow diagram of the framework’s im-
plementation is presented in Fig. 8, summarizing the details of this
section. This figure shows how the TRNSYS simulation data are in-
corporated into the defined states, actions, and rewards of the Q-
learning algorithm, as well as the calculation of the rewards for the
different scenarios presented.

5. Results and discussion

This section presents the results of the agent–environment interac-
tion simulation and reward calculation based on different meteor-
ological scenarios and overall cost functions. Importantly, the objective
of this analysis was to highlight the simplicity and flexibility that RL
introduces for a multi-objective optimization problem such as sche-
duling the operation of components based entirely on the operational
conditions of the complete system.

The overall scores Rk were analyzed for the 36 possible combina-
tions per meteorological scenario. For this, a sensitivity analysis of , ,
and was performed in determining the agent’s decisions throughout
the simulated interactions. The weight of each factor influenced the

Fig. 6. (a) Agent–environment interaction and (b) action-dependent state space.
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participation of the renewable energy source (the solar thermal
system), the heat-load supply, and the operational costs of the system.
Thus, was denoted the “renewable factor,” was denoted as the
“supply factor,” and was denoted as the “cost factor.” An analysis is
presented for the cases studied for the months of January and July,
comparing opposite meteorological conditions and how these affected
the agent’s decisions. As shown in Table 3, each path sequence de-
scribes a combination of three actions per day. A weight sensitivity
analysis is presented for the maximum Rk scores and selected paths and
the frequency of selected actions. Furthermore, the maximum scores
per path and the optimal weight values for all the studied cases are
presented in Tables 4 and 5. The maximum scores and corresponding
paths for each case and month are highlighted in bold font in both
tables.

5.1. Weight sensitivity score analysis

First, the effects of the four combinations of the weight parameters
on the overall scores Rkwere examined. Surface graphs are presented to
show the permissible and non-permissible action–states determined by
the relationships in Eq. (17). As shown in Fig. 9, for January, the global
Rkscores obtained with different combinations of , , and were not
significantly sensitive to the different cases, given the higher avail-
ability of solar radiation; thus, the performance of the solar field was
enhanced. Cases 1 and 2 exhibited a more independent response to the

factor, and Cases 3 and 4 did not exhibit a high sensitivity to changes
in . Higher scores were obtained by prioritizing the factor (obtaining
low and values), expressing the highest ratio of free versus total
energy flux in the system. The lowest scores were caused by low

participation of the solar field (low ) and a large heat-load supply
(high ), which implied high energy consumption.

The difference between the cost-function scenarios was observed
more clearly for July, as shown in Fig. 10. These differences were more
significant when the available solar radiation was minimized and
therefore the performance of the SHW system was reduced. The scores
obtained reflect more efficient use of energy resources compared with
other months, as high overall Rk scores were obtained (lower maximum
scores were obtained for April and October, as shown in Table 5).

Fig. 7. Flow diagram of the implemented Q-learning algorithm.

Fig. 8. Flow diagram of the overall framework.

Table 4
Most frequently selected path for different cases and months.

Cases Month Alpha Beta Gamma Max. Score Av. Score Path

Case 1 January 0.1 0.3 0.6 1.78 1.62 9
April 0.1 0.1 0.8 1.75 1.56 9
July 0.1 0.2 0.7 1.93 1.66 11
October 0.1 0.2 0.7 1.82 1.64 9

Case 2 January 0.1 0.1 0.8 1.98 1.73 1
April 0.1 0.1 0.8 1.74 1.56 9
July 0.1 0.1 0.8 2.04 1.79 11
October 0.1 0.8 0.1 1.51 1.40 12

Case 3 January 0.7 0.1 0.2 1.62 1.17 2
April 0.6 0.3 0.1 0.81 0.32 14
July 0.7 0.2 0.1 0.95 0.28 16
October 0.7 0.2 0.1 1.04 0.45 6

Case 4 January 0.1 0.1 0.8 1.90 1.52 1
April 0.1 0.1 0.8 1.60 1.39 1
July 0.2 0.3 0.5 0.87 0.35 13
October 0.2 0.3 0.5 0.85 0.53 12
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As indicated by Eqs. (14) and (15), cases 3 and 4 were significantly
penalized with a high value, which responded to the effect of KPI4
(representing increased energy consumption), balancing out a higher
KPI5 (increased heat delivery under design conditions). In principle,
these settings reduce unnecessary use of the heat-recovery chiller while
penalizing the use of the heat pumps, pushing to deliver the load at
40°C. In contrast, cases 1 and 3 exhibited a significant decrease in the
scores in the proximity of = 0.5 at = 0.1, while this effect was
negligible in cases 2 and 4. This was caused by the difference between

KPI1 andKPI2; the latter was less sensible to changes in the operation of
the heat-recovery chiller, counteracting the effect of the heat pumps.
This effect is explained by the operation of the heat pumps, in-
dependent of the RL agent. With a reduced participation of the heat-
recovery chiller, water temperatures prior to the heating section are
frequently lower than desired. This is of relevance under low avail-
ability of solar radiation, which results in a larger heat input from
conventional sources, compensating for the low heat input from the
field to deliver the heat load at the desired temperature (thus increasing
the penalty for higher values).

Owing to the higher availability of solar radiation during January,
the system did not struggle to satisfy the demanded heat load. Thus, the
value of KPI5 did not significantly affect the overall score for different
values of in cases 1 and 2. However, in cases 3 and 4, the additional
penalization for the use of the heat-recovery chiller and the automatic
heat pumps reduced the scores as increased. This effect was more
clearly observed during July, when the increase in led to lower global
KPI scores, as the system struggled to balance meeting the heating load
and reducing the operational costs with the limited participation of the
solar field. These surface graphs also suggest that the effect of the
chiller and heat pumps was greater than that of the solar field, which is
consistent with the system’s design described in Section 3.1. Ad-
ditionally, this allows us to quantify the maximum importance assigned
to the solar field, which does not affect the system’s operation in a
significantly negative way. At approximately = 0.3, the overall score
reduction is < 10%.

Table 5
Maximum scores for different weight values, selected paths, and cases.

Month Case Alpha Beta Gamma Max Score Path

January 1 0.1 0.1 0.8 1.967 1
2 0.1 0.1 0.8 1.984 1
3 0.1 0.1 0.8 1.878 1
4 0.1 0.1 0.8 1.895 1

April 1 0.1 0.1 0.8 1.746 9
2 0.1 0.1 0.8 1.742 9
3 0.1 0.1 0.8 1.586 1
4 0.1 0.1 0.8 1.601 1

July 1 0.1 0.1 0.8 1.928 4
2 0.1 0.1 0.8 2.035 11
3 0.1 0.1 0.8 1.775 3
4 0.1 0.1 0.8 1.793 3

October 1 0.1 0.2 0.7 1.820 9
2 0.1 0.1 0.8 1.822 1
3 0.1 0.1 0.8 1.690 1
4 0.1 0.1 0.8 1.705 1

Fig. 9. Scores for January (Cases 1–4).
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5.2. Selected path sensitivity to weight value

When analyzing the variability of the agent’s decision (i.e., a par-
ticular selected path) as a result of the different configurations of the
reward function, the relationship between the weights and selected
actions can be discussed. As in the previous results, there was an area of
permissible and non-permissible paths based on the weight values. This
analysis allows to estimate the regions defined by the importance as-
signed by the values of , , and . It also revealed the prevalence of
certain schedules based primarily on the meteorological conditions. For
January, path 1 (nominal conditions, {1,1}-{1,1}-{1,1}) and path 2
(chiller is shut-off during the last interaction window, {1,1}-{1,1}-
{1,0}) were present in all the rt cases. Path 1 was more often selected at
low and low-to-mid values in all the studied cases, while paths 1 and
2 were both dominant in cases 3 and 4, as shown in Fig. 11.

As mentioned previously, cases 3 and 4 reduced the use of the
chiller in favor of increasing the use of the solar field. In contrast, for
cases 1 and 2, paths 1 ({1,1}-{1,1}-{1,1}) and 9 (chiller was shut-off
during the first interaction, {1,0}-{1,1}-{1,1}) were dominant. In these
cases, at low and high values, the agent was willing to reduce the
participation of the chiller during the first period of the day. This effect
was greater in case 1 than in case 2, given the replacement of KPI1 with
KPI2 in the latter, which balanced the heat entering both phases of the
system. Furthermore, for similar values of and , in the center part of
the figures and towards higher values, the agent also tends to reduce
the participation of the chiller, choosing paths 5, 10, 12, and 14 (the
chiller was shut-off during 2/3 of the day in these paths).

For July, different path choices and behavior patterns were ob-
served, as shown in Fig. 12. There was a strong predilection for path 11

({1,0}-{1,1}-{0,1}) in all the cases. Other paths, such as 3 ({1,1}-{1,1}-
{0,1}) and 14 ({1,0}-{1,0}-{0,1}), were present in three of the four
cases, limiting the participation of the solar field when the available
solar radiation was insufficient to have a beneficial effect on the system.
This was also a logical approach of the RL’s agent based on the me-
teorological conditions.

Path 11 was dominant in cases 1 and 2, balancing the participation
of the solar field and the chiller at the minimum cost for every value of

. In cases 1 and 2, other investigated alternatives were characterized
for the reduction of the chiller’s participation, particularly for similar
values of and . Cases 3 and 4 exhibited similar path selections, al-
though case 4 particularly penalized the operation of the chiller, given
the influence of KPI2 (paths 13 {1,0}-{1,0}-{1,0} and 14 {1,0}-{1,0}-
{0,1}).

5.3. Maximum scores by most frequent selected policies

An overall view of the paths selected by the agent is presented in
this section. From the viewpoint of the operation schedule manager, it
is of interest to determine which paths or combinations of actions yield
higher scores, independent of which KPI is prioritized. To analyze the
effect of the selected paths on the total Rk scores, these maximum scores
were selected from all the combinations of weight factors. The most
frequently selected paths did not always generate high scores. However,
this approach allowed to examine how the different r values affected
the agent’s decision making.

The results are presented in Table 4. For instance, the path most
frequently selected for case 1 was the most insensitive to the meteor-
ological conditions, as among the months, only July exhibited a

Fig. 10. Scores for July (Cases 1–4).

C. Correa-Jullian, et al. Applied Energy 268 (2020) 114943

12



different path. While the agent tended to reduce the participation of the
chiller during the first period of the day (path 9 {1,0}-{1,1}-{1,1}), the
highest score was unexpectedly achieved in July (path 11 {1,0}-{1,1}-
{0,1}), in which both pumps connected to the chiller (first interaction,
more solar radiation available) and the solar field (last interaction, less
solar radiation available) were shut-off at one point during the day.
These high scores obtained in July can be counterintuitive, as lower
participation of the solar field reduces the renewable capacity factor
and the amount of low-cost energy in the system (reflected by KPI1
andKPI3, respectively). However, the ability of the system to reach
desired temperatures (KPI5) balanced out these lower values. Related to
this behavior, note that = 0.1 was maintained, and the other factors
exhibited minor differences. These results can be interpreted as follows:
the energy delivered by the heat-recovery chiller was higher than that
delivered by the solar field, and considering the thermal inertia in the
system, it could alone satisfy the heat load with little input from the
heat pumps. As the KPI3 values increased (caused by a reduction in the
activity of the heat pump), and increased, higher global Rk scores
were obtained. Case 2 yielded different results for January and October
(more solar radiation available); however, the highest score was ob-
tained in July, with path 11 ({1,0}-{1,1}-{0,1}). The weight values
selected in case 2 were similar to the combinations that yielded high
scores in case 1, as shown in Figs. 9 and 10. The selected paths for April
and July exhibited the same behavior that was observed in case 1 (paths
9 {1,0}-{1,1}-{1,1} and 11 {1,0}-{1,1}-{0,1}). However, in comparison
to case 1, the path selection in case 2 was more significantly influenced
by the operational costs of the chiller, reducing its participation also in
October (path 12 {1,0}-{1,0}-{1,1}), even when there was a higher
availability of solar radiation.

Case 3 exhibited different results. The highest scores were obtained

in January. Additionally, the use of the chiller was highly penalized,
even when it was shut off during two periods per day in April and July
(paths 14 {1,0}-{1,0}-{0,1} and 16 {1,0}-{0,1}-{1,0}, respectively) and
even when little solar radiation was available. This bias can be inter-
preted as a more “renewable efficient” policy, reflecting the effect of
KPI4. However, compared with the other cases, it produced lower scores
overall. Additionally, case 3 was the only scenario where high values
were selected. As case 4 was similar to case 3, January exhibited the
highest scores under nominal conditions ({1,1}-{1,1}-{1,1}). For July
and October, the aforementioned trend of penalizing the use of the
chiller was present, but the point of full shut-down of the chiller op-
eration was reached (path 13 {1,0}-{1,0}-{1,0}). The low scores ob-
tained despite the large factor could be due to the high usage of the
heat pumps to reach the desired output temperatures in the system to
counter the lower temperatures reached with the solar field. In the
present case, this is reflected by both KPI2 and KPI4.

5.4. Maximum scores for different selected paths

When analyzing the paths that generated the highest scores for the
different cases, the number of viable paths was reduced to five. Table 5
presents the selected paths that generated the highest scores for the
different cases and months. The weights were mostly constant at

= = =0.1, 0.1, 0.8 throughout the different scenarios, except for
case 1 in October.

Regarding the selected paths, those for January was highly regular.
Here, the agent chose to operate under nominal conditions throughout
the day. April also exhibited simple behavior. Even when the solar ra-
diation was limited, cases 1 and 2 penalized the use of the heat-re-
covery chiller during the first action window (10 AM) rather than

Fig. 11. Selected paths for January (Cases 1–4).
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participation of the solar field (path 9 {1,0}-{1,1}-{1,1}). Similarly,
cases 3 and 4 returned to nominal conditions rather than limiting the
participation of the solar field. July exhibited irregular behavior. Cases
3 and 4 reduced the participation of the solar field during low-radiation
hours (after 6 PM, path 3 {1,1}-{1,1}-{0,1}), and case 1 penalized the
unnecessary use of the heat-recovery chiller (2 PM, path 4 {1,1}-{1,0}-
{1,1}). For case 2, path 11 ({1,0}-{1,1}-{0,1}) had the highest score,
and it was also the most frequent choice for July in cases 1 and 2 (see
Table 4). Finally, October exhibited both the nominal path 1 ({1,1}-
{1,1}-{1,1}) and path number 9 (1,0}-{1,1}-{1,1}). Nevertheless, case
1 for October was the only scenario where the optimal weight config-
uration resulted in = = =0.1, 0.2, and 0.7.

The maximum scores for the cases were mostly caused by the
agent’s decision to maintain nominal operation. This is reasonable,
considering the overall performance of the solar field, except during
July, when the solar radiation is at its minimum level. However, the
maximum scores were observed for January and July, representing the
most economic path choices given the available resources and heat-load
goals. The maximum score for July was 2.035, which represents in-
creases of 3%, 17%, and 12% compared with the maximum scores for
January, April, and October, respectively. On average, July’s perfor-
mance exhibits a 14% increase compared to the nominal operation
schedules during the other tested months.

The RL agent is able to derive operation schedules which exhibit
better performance than under nominal conditions in April and July.
For the different values of , and , maximum scores under nominal
conditions (path 1 {1,0}-{1,0}-{1,0}) are presented in Table 6. For
January and October these scores and corresponding operation sche-
dules were confirmed by the RL agent (see Table 5). However, global
KPI scores increase a 11% and 21% on average for April and July,

respectively, as detailed in Table 7. This increase in July is caused by
schedules which either shut-off the heat-recovery chiller or the solar
field at different daily instances, in favor of maximizing heat gain and
minimizing costs under unfavorable meteorological conditions.

The sensitivity analysis revealed that this method can be applied
regardless of the meteorological conditions, yielding consistent con-
figurations of weight values ( , , ) for the maximum scores.
Regardless of the selected weights, the highest performance of the
system was achieved in January and July, corresponding to the max-
imum and minimum availability of solar radiation, respectively (albeit
the selected paths varied significantly). The April and October scenarios
were less predictable owing to the unstable weather conditions; the
agent was forced to compensate for the effects of conditions changing
daily and the thermal inertia of the system. The global KPI choice had
the principal effect on the choice of daily action paths. This highlights
the flexibility of the method when it is applied to the SHW system.

In this agent–environment interaction setting, the RL agent ex-
tracted logical and physically reasonable scheduling operations for the
SHW system, improving its ability to adapt to meteorological conditions

Fig. 12. Selected paths for July (Cases 1–4).

Table 6
Maximum Scores obtained under nominal operation.

Max. Scores Month

Case January April July October

1 1.967 1.477 1.648 1.815
2 1.984 1.669 1.700 1.822
3 1.878 1.586 1.564 1.690
4 1.895 1.601 1.326 1.705
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and different operating principles. By taking into account the thermal
inertia of the system, this method has an advantage over regular ther-
mostat-based controls, as it reduces the frequency of actions and thus
enhances the stability of the system. In most cases where solar radiation
was widely available at the selected location (October through April),
the nominal operational condition frequently yielded the highest per-
formance. However, the operation schedule differed significantly
during July, when the solar radiation was at its minimum. Both extreme
scenarios—January and July—exhibited the best-performing schedules.
A deeper study should be performed to investigate different agen-
t–environment interaction frequencies during the studied time win-
dows.

Methods such as RL allow decision-making situations to be in-
vestigated via different approaches. Depending on the level of knowl-
edge and complexity of a system, the environment, states, actions and
rewards can be defined in ways specific to the system, to evaluate the
time-deferred effects of these actions on the system. Thus, the design
and approach of the RL agent is entirely dependent on the studied
system, rendering it highly flexible. The present case study revealed
how this general methodology can be applied to a fairly complex system
that deals with demand profiles, thermal inertia, and varying sources of
energy to determine operational schedules according to the energy ef-
ficiency, comfort levels, and participation of renewable energy sources.
The tabular Q-learning approach is used owing to its simplicity; how-
ever, more complex methodologies should be investigated for similar
settings. Additionally, the proposed method allows the analysis of a
multi-objective optimization problem based entirely on the operational
conditions of the complete system. With this data-driven approach, a
specific physics model for solving the optimization problem is not re-
quired, providing an alternative technique for complex system analysis.

6. Conclusions

A decision-making environment representing a condition-based
operational scheduling is proposed. On the basis of the use of an RL
agent, optimal operational schedules are derived according to the in-
tegration scheme and performance of a hot-water system driven by a
renewable energy source. The system is controlled by a heat-recovery
chiller and a single-speed centrifugal pump, which is used to circulate
water through an evacuated tube solar collector field. Both the pump
and the chiller are subjected to the agent’s decisions to maximize a
reward function based on the energy efficiency and user satisfaction.
Through operating-profile samples generated in TRNSYS and sub-
sequent development of the agent–environment interaction space, de-
cisions regarding the operation of the circulation pumps were assessed
for three daily instances. Four global KPI were proposed and used as
reward functions under different meteorological conditions. Finally, a
sensitivity analysis was performed on the agent’s priorities: maximize
the renewable energy source participation, reduce the operational
costs, and increase the supply rate under the established design.

This setting of condition-based scheduling has several advantages
over programmed controlled systems. First, as long time windows are
considered, there is a lower probability of causing and reacting to un-
stable control signals, which can potentially damage the circulation
pumps and affect the delivery of hot water under the design conditions.

As in many dynamic systems, different operation scheduling plans have
long-term effects on the future states of the system and thus require an
approach that can encompass the delayed thermal responses
throughout the system. This time difference between the action and the
reward is a crucial component in the RL-based framework. Second, by
replacing the temperature-based controls and taking into account the
system’s current performance, efficient schedules can be identified ac-
cording to the established global KPI configuration. Third, this setting
allows the exploration of different policies depending on the prioritized
criteria represented by the global KPI reward function. In this case,
while the nominal operational conditions exhibited the highest per-
formance when solar radiation was available, new beneficial alternative
schedules were identified for July.

Although the proposed RL-based solar thermal system operation
scheduling framework is a promising approach, further development
and experimental validation are needed to assess its advantages.
Furthermore, given the available data, the agent–environment setting,
which is coupled to the condition-based KPI representing the reward
function, is a straightforward tool. This approach does not require a
large amount of computational resources to simulate action–reward
sequences and can reveal or confirm beneficial scheduling alternatives
for different systems.
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