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A B S T R A C T

Uplift modeling is an approach for estimating the incremental effect of an action or treatment at the individual
level. It has gained attention in the marketing and analytics communities due to its ability to adequately model
the effect of direct marketing actions via predictive analytics. The main contribution of our study is the im-
plementation of the uplift modeling framework to maximize the effectiveness of retention efforts in higher
education institutions i.e., improvement of academic performance by offering tutorials. The objective is to im-
prove the design of retention programs by tailoring them to students who are more likely to be retained if
targeted. Data from three different bachelor programs from a Chilean university were collected. Students who
participated in the tutorials are considered the treatment group, otherwise, they are assigned to the nontreat-
ment group. Our results demonstrate the virtues of uplift modeling in tailoring retention efforts in higher
education over conventional predictive modeling approaches.

1. Introduction

Student dropout is a genuine concern in private and public in-
stitutions in higher education because of its negative impact on the
well-being of students and the community in general. Early desertion in
undergraduate programs not only causes monetary losses to educa-
tional institutions in terms of tuition fees paid either by the students or
by the state through scholarships, but also social costs.

Universities have focused in the past years in the design of retention
campaigns as a means to prevent student withdrawal. Dropout arises
from different context-specific academic and nonacademic factors.
Academic achievement and institutional habitus [1], as well as demo-
graphics, social interaction, financial constraints, motivation and per-
sonality, play a vital role [2]. Each risk factor can be addressed in
numerous ways such as academic assistance (e.g., tutoring, counselling
and mentoring [3,4]), social engagement and individual attachment to
the institution [5–7], purpose for completing school (e.g., vocational
education, part-time job placements, internships), and financial assis-
tance.

The success of retention campaigns is subject not only to appro-
priately understanding the factors associated to student attrition, but
also to accurately identifying and targeting students who are most
likely to respond to interventions. Unlike research on factors related to

student withdrawal, this paper aims to extend the current student
dropout literature by introducing uplift modeling as a decision-making
tool to support the design of student dropout prevention strategies.

Uplift modeling is a predictive analytics technique that estimates
the effect of a treatment on the behavior of an individual. Conventional
predictive models for churn prediction aim at identifying and targeting
individuals who are more likely to attrite. However, targeting on the
basis of risk does not consider that each individual responds differently
to retention strategies, as risk of dropping out and sensitivity to the
intervention are not necessarily related [8].

This study proposes a novel framework for preventing student at-
trition using uplift modeling. Our main contributions can be sum-
marised as follows:

• We apply uplift modeling to the student dropout problem. Two
special considerations are made: addressing self-selection bias and
the low risk of triggering student attrition. The former refers to the
design of the retention campaign as the university makes an open
call to all students who want to participate. The latter alludes to the
low risk of targeting students with tailored programs.

• Using data from three bachelor programs from a Chilean university,
we demonstrate the virtues of our proposal over conventional pre-
dictive modeling. The university currently invites all students to a
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program designed to improve academic performance and engage-
ment. Although the program has a positive effect on student reten-
tion, we show the benefits of designing a customized program i.e.,
targeting only students who are the most likely to be retained by the
program.

• Model comprehensibility is addressed by segmenting students ac-
cording to their estimated uplift, and later observing the char-
acteristics of each segment. This allows us to gain insight into the
application and develop better retention policies. The analysis of the
variables that are relevant for defining a segment of students to
target is discussed in the empirical section.

The remainder of this paper is organized as follows: A literature
review on student dropout is presented in Section 2. The proposed
framework for student retention using uplift modeling is presented in
Section 3. Experimental results are given in Section 4. Finally, Section 5
provides the main conclusions, while also addressing future develop-
ments.

2. Prior work on student dropout

Student dropout in higher education has been studied for several
years. Dropout occurs when an individual enrolled at an educational
institution decides to voluntarily abandon studies [9,10].

The foundations of the research on student dropout are established
since the 70's and 80's by [9–12], whose approaches are still used
nowadays as a starting point for new developments [13–17]. [9] pro-
posed an interdisciplinary approach by using psychological variables to
model student attrition as the interaction between a student and the
educational environment. Later, [10] proposed a parsimonious model
that reflects the relation between prematriculation attributes and the
interaction with the environment (academic and social systems). Last,
[12] extended the former approaches by incorporating additional ele-
ments related to the interaction between the students and the educa-
tional institution.

The early work on student dropout stimulated different research
approaches that were widely discussed in the last decade. A first re-
search stream refers to the time of attrition, since associated attributes
may vary throughout the academic program [16]. That is, the scope
may include freshman to sophomore years [18], from sophomore to
junior years [19] or different predetermined periods [17]. By contrast,
other studies do not focus on the time perspective, but rather analyze
the dropout phenomenon from a systematic standpoint [20].

Furthermore, studies discussing factors associated with dropping
out, such as the influence of socioeconomic determinants, have yielded
contradictory results. While [15] confirmed the influence of gender in
student attrition [21] did not find a significant relationship. Similarly,
[17] claimed that low-income students are less likely to abandon their
bachelor program, in contrast to [22], which suggested that this group
has a higher risk of churn. These divergences may indicate that student
dropout depends largely on contextual elements.

Predicting student dropout via statistical and machine learning
techniques has gained increasing attention, leading to a rich research
area known as learning analytics or educational data mining (EDM)
[23]. Recent studies on student dropout mainly focus on applications of
different machine learning techniques for this task. Examples include
semi-supervised learning [24], unsupervised learning [25], and en-
semble learning [26].

As mentioned above, the majority of machine learning applications
on student dropout prevention have focused on identifying students
with high propensity to attrite, i.e., targeting those at high risk.
However, to the best of our knowledge, no study has focused on cus-
tomizing the assignment of retention actions to students on the basis of
their expected sensitivity to an intervention. Therefore, we propose
uplift modeling as a tool to support the design of student dropout
prevention strategies.

3. The uplift modeling framework and student dropout

This section formally defines uplift modeling, and subsequently
presents the main approaches for estimating and evaluating uplift
models. At the end, we discuss some considerations that must be ad-
dressed when applying uplift modeling to the context of student
dropout.

3.1. Uplift modeling

Uplift modeling is a predictive analytics technique that estimates
the individual treatment effect (ITE), i.e., the effect of an action or
treatment on an outcome of interest. This task differs from the esti-
mation of average causal effects, since it considers that causal effects
vary with observable characteristics. Uplift modeling is analogous to
the problem of treatment effect heterogeneity [27] and individualized
treatment rule estimation [28], as it aims to determine the degree to
which treatments have differential causal effects on individuals. The
goal is to customize the assignment of treatments by prescribing the
action that maximizes a given objective. Therefore, uplift models
identify individuals for whom the exposure to an action is expected to
lead to a favorable outcome.

Uplift modeling has been applied in a wide variety of domains.
Initial applications mainly focused on maximizing the effectiveness of
marketing campaigns [29–32]. Nonetheless, uplift modeling has re-
ceived also attention in the fields of personalized medicine [33], and
price optimization [34,35].

Formally, uplift models predict the ITE in terms of the potential
outcomes framework [36]. The problem consists of learning based on a
sample of N students independent and identically distributed, whether
student i should be treated (i.e., take the tutorials), given the set of
pretreatment characteristics, Xi, the binary indicator of treatment,
T ∈ {0,1}, i.e., T = 1 meaning treatment, and the binary outcome
variable, Y ∈ {0,1}, where Y = 1 represents no attrition. The potential
outcomes, Yi(1) and Yi(0), are the future states of the outcome for the ith
student with and without the treatment, respectively. Then, the ITE of
treatment against nontreatment on Y is the difference between the two
potential outcomes, Yi(1) − Yi(0). Since the ITE varies with observables
characteristics, it can be defined in terms of the conditional average
treatment effect (CATE),

= =CATE ITE P Y X do T P Y X do T: : ( | , ( 1)) ( | , ( 0)).i i i i i i i (1)

Eq. (1) defines the CATEi as a comparison between the conditional
likelihoods of no attrition under two different regimes, i.e., treatment
and nontreatment. Although predictive modeling consists of estimating
outcomes as a function of observed variables, the uplift modeling task is
not to predict the outcome variable, but its variation due to the treat-
ment. The do(⋅) operator [37] is commonly used in causal calculus to
indicate that T = t denotes an intervention, i.e., interventional condi-
tional distribution, rather than the observed values taken by T, i.e.,
observational conditional distribution. Uplift modeling employs ma-
chine learning techniques to estimate the potential outcomes. Hence,
the difference of the two conditional probabilities is a continuous score
known as the uplift score, i . Students whose > 0i are considered
treatment responders and, therefore, should be targeted.

We estimate the CATEs under certain assumptions, since the tutor-
ials are not assigned at random. A first assumption is that the treatment
assignment is as good as random once we control for the observed
variables, that is, under unconfoundedness, the potential outcomes are
independent of the treatment conditional on the observed variables,
Y(T) ⊥ ⊥ T ∣ X [38]. A second assumption, common support, guarantees
that the conditional treatment probability is non-zero, P(Treat-
ment|X) > 0 which is necessary to find appropriate matches of treated
and untreated students. Finally, satisfying the stable unit treatment
value assumption (SUTVA) [39] ensures that the potential outcomes are
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not influenced by treatments given to other students.
The uplift modeling literature distinguishes between two ap-

proaches to estimate the uplift: data preprocessing and data processing
[40]. The data preprocessing approach consists of modifying, prior to
training, (1) the outcome variable or (2) the input space. In contrast,
the data processing approach alludes to methods that estimate the uplift
indirectly or directly. Uplift is estimated indirectly when two separate
predictive models (i.e., one for the treated and one for the untreated)
are trained. The direct estimation refers to modified machine learning
algorithms that have been adapted to directly estimate the uplift.

The modified outcome approach (MOA) was introduced by [41,42]
to estimate conditional average treatment effects on the treated based
on the difference-in-differences estimator and the ITE, respectively. In
the uplift modeling literature this approach was presented by [43] and
have been extended by [29,44,45]. For example, the MOA by [43] re-
labels the outcome variable by taking into account the four types of
individuals present in the data set: treatment responders (TR), treat-
ment nonresponders (TN), nontreatment responders (NR) and non-
treatment nonresponders (NN). The transformed outcome variable
considers TR and NN as positive cases, since these individuals are po-
sitively affected by the treatment. In contrast, NR and TN are regarded
as negative cases, since these individuals either have a unfavourable or
no response to the treatment. Hence, the uplift modeling problem is
reduced to a conventional classification model, with the uplift com-
puted as follows:

P TR NN X P NR TN X( | ) ( | ).i i i (2)

Although the main advantage of the MOA is that it can use existing
learning methods entirely off-the-shelf, the approach can also be in-
efficient, since the information of the treatment indicator is not used
more than for the construction of the transformed outcome [46].

The second preprocessing method is the modified covariate ap-
proach (MCA), also referred to as S-learner [47] or R-learner [48]. The
MCA was presented by [49] to model interactions between the treat-
ment indicator and the observed pretreatment variables. In the uplift
literature, Lo [32] proposed to train a single predictive model that in-
cludes within the input space aside from the pretreatment variables, the
indicator of treatment as a dummy, D, and interaction terms between
the dummy and the pretreatment variables, D × X. So that,

= = ×P Y X do T k f X D D X( | , ( )) ( , , ). A potential drawback of the MCA
is that the enlargement of the input space can result in multicollinearity
problems [29].

Estimating uplift indirectly refers to the separate model approach
(SMA), also referred to as T-learner [47,48] or Q-learner [28]. The SMA
is the most intuitive method, as the predictive models learned on the
treated and untreated are used to predict the uplift score of each test
case based on the conditional probabilities of treatment and nontreat-
ment. This methodology is simple and implements standard machine
learning techniques, but can be suboptimal since the modeling objec-
tive of the two predictive models is not to estimate directly the uplift
[50]. Nonetheless, [45] concludes that the SMA may perform compe-
titively under certain conditions.

Methods to model uplift directly aim to offset the main drawbacks
of the previous approaches. The objective is to implement a single
training scheme to estimate the uplift by adapting the objective func-
tion of conventional machine learning algorithms (a complete overview
is given by [40,44]). The literature on heterogeneous treatment effects
has proposed the causal tree [46], causal bayesian additive regression
trees (BART) [51], causal forest [52], causal boosting [53], and gen-
eralized random forest [54] algorithms with modified splitting proce-
dures that partition the data according to treatment effect hetero-
geneity.

Similarly in the uplift literature adapted K-nearest neighbour clas-
sifiers are proposed by [55,56]. Modifications to the splitting and
pruning criteria of decision tree classifiers are found in [31,50,57,58].

Modified random forest algorithms are suggested to offset the in-
stability of a single decision tree by [30,34,35]. For example, [59]
employs a modified random forest algorithm to estimate the effect of
motivational e-mail campaigns. Last, [60] presented a support vector
machine for uplift modeling and [61] proposed a reinforcement
learning approach.

The evaluation of uplift models cannot be performed by means of a
loss function as conventional predictive models, due to the fundamental
problem of causal inference [62]. The difficulty relates to the im-
possibility of observing the true effect of the treatment for each student.
The data set, however, is split into a training set and a test set preser-
ving the proportions of treated and untreated students. The uplift model
is constructed on the training set, and later, the model is applied to the
test set, to obtain the potential outcomes for each test case. The pre-
dicted uplift score is then computed as illustrated in Eq. (1). Subse-
quently, test cases are ranked according to the predicted uplift score in
descending order. Last, test cases are segmented in groups of equal size
(i.e., bins) and the segment-wise treatment effect is calculated as the
difference between the response rates of treated and untreated subjects.
The intuition behind this approach is that a model with an outstanding
performance is expected to allocate in top segments students whose
propensity to attrite will be reduced subject to participating in the tu-
torials.

Formally, test cases are ranked in descending order according to
their uplift scores, . Let k be the k segment of test cases in , so
that the amount of treated and untreated test units within the segment
can be calculated respectively as follows:

= =N T{ 1}
i

i
(1)

k
k (3)

and

= =N T{ 0},
i

i
(0)

k
k (4)

where the Iverson bracket is equal to one if the logical proposition
between the brackets is satisfied. In addition, the number of treated and
untreated test cases who do not drop out within the πk segment is ob-
tained as follows:

= = =R Y T{ 1} { 1}
i

i i
(1)

k
k (5)

and

= = =R Y T{ 1} { 0}.
i

i i
(0)

k
k (6)

Last, the segment-wise uplift [63] is calculated as follows:

= +
R
N

R
N

N N( ).
(1)

(1)

(0)

(0)
(1) (0)

k
k

k

k

k
k k

(7)

The performance of an uplift model can be visualized by an uplift
curve [50] (see Fig. 1). The uplift curve shows the cumulated segment-
wise uplift as a function of the fraction of targeted students. It illustrates
the trade-off between the action of targeting larger proportions of the
population and the resulting uplift. The overall effect of the treatment is
the uplift resulting from targeting 100% of the test set. A straight line
connecting the two extremes of the uplift curve (dash line in Fig. 1)
serves as a baseline and represents the uplift that is achieved when
students are randomly exposed to the treatment (i.e., random selection
instead of selection using an uplift model). The farther is the uplift
curve above the diagonal line, the better is the model. Moreover, it is
expected that the curve has a steep increase until all responders are
identified, to later flatten and potentially move downward as treating
more students becomes ineffective. Decision-makers can use the uplift
curve to decide the optimal proportion of students to target given the
straightforward interpretation.
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The Qini measure is a quantitative performance metric that facil-
itates the comparison of the performance of different uplift models.
Similarly to the area under the receiver operating characteristic curve
(AUC or AUROC), as computed for evaluating binary classification
models, the Qini is the area between the uplift curve and the diagonal.
Thus, the larger the Qini, the better the performance of the model.

3.2. Important considerations for student dropout

Uplift modeling considers different segments of individuals de-
pending on their response to an intervention [64]. Treatment re-
sponders are labeled as persuadables, whereas individuals who are
harmed by the treatment are known as do-not-disturbs. Moreover, there
are also individuals who either will never be persuaded -the lost causes-
or will respond no matter the action -the sure things. Therefore, our
interest is in identifying persuadables and refraining the treatment to the
other categories.

There are important differences between the student dropout task
and conventional uplift applications. First, there is a low risk of trig-
gering students to drop out by targeting them with a retention effort,
i.e., do-not-disturb students. This is because students with already
outstanding performance who take tailored programs will still benefit
from the intervention, and neither their performance nor their en-
gagement will be negatively affected.

Furthermore, conventional uplift modeling avoids to treat lost causes
which could pose an ethical problem. The reason for this is that un-
derperforming students can be considered as “lost causes”, and there-
fore not be treated. Our objective, however, is not to refrain the action
to students who might benefit from it, especially the ones with low
academic performance. We seek to design customized programs for a
specific segment of students using an uplift model. This does not imply
cancelling the current program that is available to all the students.

Another issue that arises in this particular case is self-selection bias.
The university makes an open call for all students who are willing to
participate in the tutorials. The students, however, are autonomous to
decide their participation. Nonetheless, students with grades below
average on the standardized test for college admission and/or relatively
poor performance in the first semester of the bachelor program are
more likely to accept the invitation to the tutorials. This may affect the
estimation of causal effects, and provide an erroneous estimation of the
uplift. Therefore, we verify the presence of selection bias before
training, and if needed, correct the imbalance between the

pretreatment characteristics of the treatment groups.

4. Experimental analysis

First, this section describes the data set and the data preprocessing
and transformation methods. Later, it presents the preliminary analysis
consisting of the assessment and correction of selection bias. Last, it
displays and discusses the Qini values of the twelve different uplift
models and the uplift curve of the model with the best performance.

4.1. Data set description

We gathered a data set of 3362 students who enrolled between 2012
and 2016 in three bachelor programs of a business school. The complete
list of variables is depicted in Table A1 in the appendix. Two main
sources of variables were combined to perform this study: pre-
matriculation information and academic performance. These variables
were collected during the first year of the programs and their two
sources are described next.

• Prematriculation information
- Sociodemographic data consists of information about gender, age,
marital status, occupational status, working hours, expected type
of funding in higher school, family income level and residence.

- Family background refers to data about the number of family
members, educational level of both father and mother, number of
parents that are alive, occupational status of both parents, number
of members working, number of members enrolled in educational
institutions, and an indicator of head of the family (e.g. father,
mother, uncle, grandparent, among others).

- Standardized admission test data indicate the scores of the Chilean
standardized test (known as PSU) used for university admissions. It
includes the subjects of mathematics, verbal, science, and history.

- High school features include the type of high school (i.e., single-
gender or mixed-gender education) and the type of funding re-
ceived by the institution (i.e., public, private, or state-subsidized
private).

• Academic information was collected along the first year of the ba-
chelor programs. It consisted of data related to: dropout (i.e., tem-
porary leave or absence, voluntary dropout, and expulsion), aca-
demic performance (i.e., final grades and credits for each course),
entry type, declared bachelor program preferences, and the parti-
cipation in the tutorials offered by the program for academic sup-
port (PAA).

The PAA seeks to improve the academic performance of students
and to reduce the risk of student dropout by offering tutorials in sub-
jects such as economics, mathematics, statistics, and English. The PAA
started in 2012, and since then, students are invited each year at the
beginning of the second semester to participate. Offering tutorials is a
retention strategy whose objective is to prevent student dropout. We
introduce a binary variable in the data set to indicate whether a student
participated in any of the tutorials. Participants were labeled as treated,
whereas nonparticipants as untreated.

The data set comprises 60 variables and includes academic perfor-
mance information up to the end of the first semester. The outcome
variable (i.e., dropout indicator) is defined on the basis of whether a
student voluntarily abandoned the bachelor program within the one-
year period after finishing the first semester. This time frame is chosen
based on the starting point of the tutorials (i.e., at the beginning of the
second semester) and the literature on student dropout.

4.2. Data preprocessing and transformation

First, we remove 72 observations without records on academic
performance during the first semester (e.g., students who did not take

Fig. 1. Performance of an uplift model visualized by an uplift curve. The di-
agonal dashed line represents the random assignment of the treatment, whereas
the curve bent upwards is the uplift curve. The farther the uplift curve from the
diagonal line, the better the model.
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any course), and two variables with several missing values. Second, we
impute missing values with the average or the mode, depending on the
variable type. That is, missing values in numerical variables are re-
placed by the conditional average based on the entry cohort, whereas
for categorical variables an additional category, “unknown”, is created
(those with more than 10% of missing observations) or substituted with
the mode. An overview is provided in Table A2 in the appendix. Last,
we apply dummy encoding to nominal variables and aggregate similar
categories. The final data set includes 60 pretreatment variables.

4.3. Results

This subsection presents the preliminary analysis and the results of
the uplift models trained on the student dropout data set. We assess and
correct the balance across the pretreatment covariates of the treatment
and nontreatment groups to mitigate the effects of selection bias. Then,
different uplift models from the data processing and the data pre-
processing approaches are employed to estimate the uplift, and later
their performance is evaluated.

4.3.1. Preliminary analysis
Predicting the effect of treatments on an outcome of interest cannot

be accurately determined when treatments are not randomly assigned
to individuals, since the treatment groups may not be comparable. We
assess the balance across the pretreatment variables of the treatment
and the nontreatment groups to mitigate the effects of selection bias,
since the tutorials were not assigned to students at random. The balance
assessment can be performed either by considering theoretical evidence
or by applying statistical tests. Statistical approaches consists of the
estimation of: 1) the normalized difference between the treatment and
nontreatment groups for each of the pretreatment variables, and 2) a
chi-square test that performs an omnibus test whose null hypothesis
states that at least one variable is significantly different between both
groups.

Formally, the normalized difference Δx is defined as the difference
in averages by treatment status, scaled by the square root of the sum of
the variances divided by two (Eq. (8)). The Xt and st are the sample
mean and the sample standard deviation of the x pretreatment variable
for the treatment group, respectively. Analogously, Xc and sc represent
the mean and standard deviation for the untreated individuals. A rule of
thumb in the literature is that a normalized difference larger than one
quarter is an indication of imbalance in that particular pretreatment
variable.

=
+

X X
s s( )/2

,x
t c

t c
2 2 (8)

Table 1 displays ten of the pretreatment variables with the largest
normalized differences. We observe considerable differences between

the students who participated in the tutorials and those who did not in
terms of their family income, PSU scores in mathematics, type of
healthcare affiliation, parents educational level, among others. This
disparity may indicate that the beneficiaries of the program were
mainly students from low-income families. Therefore, an unbiased up-
lift estimation requires that we reduce the imbalance between the
treated and untreated students by making as homogeneous as possible
both groups.

In addition, we performed the omnibus test proposed by [65]. This
implementation is available in the RItools package in R. The p-value of
5.55e-156 indicates that at least one pretreatment variable has im-
balanced. This result is consistent with the normalized differences
analysis.

This study employs propensity score matching (PSM) to reduce the
effect of imbalanced pretreatment variables on the uplift estimation
[38]. Among methods, such as multivariate regression, synthetic con-
trol, and instrumental variable estimators, PSM is one of the most
widely used approaches for causal inference in observational studies
since it: separates the adjustment of confounding and the estimation of
treatment effects phases, excludes from the analysis individuals for
whom no comparison can be made, allows to formally verify whether
the resulting data set is balanced [66], and is not sensitive to the
number of pretreatment variables [67]. Nonetheless, PSM requires
large samples to achieve overlap between the treated and untreated
individuals, as well as it only controls for observed confounding vari-
ables [68].

PSM seeks to balance the overall distribution of the pretreatment
variables by pairing “similar” treated and untreated students. The
measure of similarity is the propensity score (PS). The PS is the like-
lihood of an individual to be treated as a function of the pretreatment
characteristics, P(T = 1|Xi) [38]. Thus, treated and untreated in-
dividuals whose PS is relatively equal are considered similar and mat-
ched. This is done by means of nearest neighbour matching which se-
lects the untreated individual whose PS is closest to the PS of a treated
individual.

Table 2 illustrates the improvement in balance for the previously
shown ten pretreatment variables after using PSM. The imbalance of
some variables such as gross family income, PSU score in mathematics
and private school remains large, but it is considerably reduced by PSM.
The p-value of the omnibus test (0.987) demonstrates that the matched
set is statistically balanced.

4.3.2. Uplift modeling techniques
This study includes a selection of uplift models from the data pre-

processing and the data processing approaches. Two well-established
learners were chosen for classification: random forest and boosted trees
(i.e., xgboost), as it has been empirically observed that ensemble
methods reduce considerably the risk of overfitting without

Table 1
Top ten unbalanced pretreatment variables.

Variable Untreated Treated

(N(0) = 2,676) (N(1) = 614)

Mean (s.d.) Mean (s.d.) Δx

Gross family income 0.17 (0.95) −0.75 (0.85) 1.02
PSU score mathematics 0.17 (0.92) −0.76 (0.98) 0.98
Private school 0.61 (0.49) 0.19 (0.40) 0.94
Private healthcare 0.72 (0.45) 0.34 (0.47) 0.80
Father educ. level 0.14 (0.94) −0.61 (1.03) 0.77
Mother educ. level 0.13 (0.94) −0.59 (1.04) 0.73
Public healthcare 0.25 (0.43) 0.58 (0.49) 0.72
Public school 0.15 (0.36) 0.45 (0.50) 0.68
School type (governance) 0.01 (0.08) −0.05 (0.12) 0.61
Human sciences as school's field 0.98 (0.12) 0.83 (0.38) 0.56

Table 2
Top ten unbalanced pretreatment variables after PSM.

Variable Untreated Treated

(N(0) = 490) (N(1) = 490)

Mean (s.d.) Mean (s.d.) Δx

Gross family income −0.45 (0.96) −0.63 (0.88) 0.20
PSU score mathematics −0.33 (0.97) −0.52 (0.86) 0.20
Private school 0.34 (0.47) 0.24 (0.43) 0.21
Private healthcare 0.48 (0.50) 0.41 (0.49) 0.15
Father educ. level −0.28 (1.08) −0.48 (0.99) 0.19
Mother educ. level −0.27 (0.99) −0.50 (1.06) 0.22
Public healthcare 0.45 (0.50) 0.52 (0.50) 0.14
Public school 0.31 (0.46) 0.37 (0.48) 0.13
School type (governance) −0.04 (0.11) −0.05 (0.11) 0.15
Human sciences as school's field 0.94 (0.24) 0.93 (0.25) 0.02
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compromising the bias error [69]. The baseline uplift methodology is
the SMA. The MOA and MCA are implemented as in [32,43], respec-
tively. Last, uplift is estimated directly by implementing the CTS [35],
KL, ED, Chi [58], Xlearner and Rlearner [70] algorithms.

4.3.3. Uplift models performance
We use ten-fold crossvalidation to evaluate predictive performance,

which is a well-established approach for model validation. The data set
is split into ten folds of the same size. Stratification is applied to pre-
serve within each fold the observed overall response rate. In every
iteration, one fold is left out for testing and the remaining folds are used
to train the model. The overall performance is the average of the results
of each round and the standard deviation of the results indicates the
stability of the model.

Section 3.1 defines uplift modeling as the estimation of the net ef-
fect of a treatment on an outcome of interest. The predicted individual
uplift score can be seen as an indicator of how sensitive an individual is
to the treatment. Hence, the treatment assignment consists of targeting
individuals whose uplift score is positive. A good performing uplift
model identifies accurately treatment responders and prioritizes the
treatment allocation to those whose net treatment effect is the largest.
This study empirically evaluates the performance of uplift modeling by
ranking in descending order test cases based on their predicted uplift
scores, later segmenting the sorted test set in four bins of equal size, and
calculating the “observed bin uplift” as indicated in Eq. (7). The larger
the observed bin uplift, the larger the net effect of the treatment within
that particular bin. Hence, best performing uplift models would have a
larger observed uplift in top bins than in subsequent bins.

Response modeling and uplift modeling aim to optimally identify in-
dividuals to maximize the effect of a targeting decision by employing
predictive analytics. The difference lies in that response models build a
predictive model only using the treatment group, while uplift models in-
corporate the information available in both the treatment and the non-
treatment groups into the analysis. That is, uplift modeling targets students
based on the predicted net effect of the tutorials, whereas targeting in
response modeling is made on the basis of their likelihood to attrite.

We corroborate the advantage of uplift models over response
modeling in treatment customization by contrasting the predicted uplift
achieved when the tutorials are assigned as suggested by the
MOAxgboost uplift model (Panel A) and by two conventional response
models: the random forest (Panel B) and the XGboost (Panel C) algo-
rithms (Fig. 2). We display the results of the MOAxgboost, as it will be
seen below that this approach outperforms other uplift modeling
methodologies trained on the student drop out data set. The perfor-
mance of these models is evaluated according to the per bin observed
uplift. In Fig. 2, the y axis shows the observed uplift, whereas the x axis
indicates the bins. We can see that the uplift model prioritizes the as-
signment of tutorials to students who are expected to be positively af-
fected. As more students are targeted, the effect of the program de-
creases and even become negative or null in the last bins. By contrast,
response models fail in ranking correctly treatment responders, as the
effect of the tutorials in the first quartiles is inferior or even negative
than the one predicted by the MOAxgboost. The study by [8] aligns
with this finding as it concludes that individuals whose risk of churning
is high, are not in all cases the best targets for retention campaigns.

The Qini metric summarizes the performance of the different uplift
modeling approaches employed in our experiments. The larger the Qini,
the better the performance of the uplift model. Table 3 presents the Qini
values for each technique at different targeting percentages, since uplift
models may perform differently depending on the targeted fraction of
students. The Qini values of the model with the best performance are in
bold. Nonetheless, it is observed that the MOAxgboost achieves an
optimal performance in targeting both small and large groups of stu-
dents. That is, the MOAxgboost is the most appropriate approach to
personalize the assignment of tutorials to students. Moreover, the
variability of the Qini values for all models increases as more students

are selected to participate in the tutorials, indicating the instability of
uplift modeling when targeting large samples.

As it was previously mentioned, the performance of uplift models is
visualized by means of an uplift curve. The uplift curve illustrates the
cumulated uplift as a function of the proportion of targeted individuals.
Fig. 3 shows the uplift curve of the MOAxgboost. Overall, targeting
according to the predictions of the MOAxgboost model boosts the effect
of the program compared to targeting at random. The uplift curve in-
creases irregularly up to targeting 80% of the sample, as the uplift
model correctly identifies students who will not drop out due to their
participation in the tutorials. Subsequently, it moves downward as the
tutorials would be given to students whose intention to attrite will not
change. The advantage of using an uplift curve is that it favors model
comprehensibility and supports program designers in choosing the
optimal fraction of students to target.

The results of the MOAxgboost model motivate the usage of uplift
modeling as a support tool to assist decision-makers in designing retention
strategies to reduce student dropout. The MOAxgboost uplift technique

(a)

(b)

(c)

Fig. 2. The MOAxgboost uplift model (Panel A) contrasted against conventional
random forest (Panel B) and extreme gradient boosting trees (XGboost) (Panel
C) algorithms. It is observed that the uplift model effectively: 1) identifies
treatment responders and 2) prioritizes the assignment of the treatment.

D. Olaya, et al. Decision Support Systems 134 (2020) 113320

6



performs well in the majority of analyzed segments and, therefore, per-
sonalizing the assignment of tutorials according to its predictions can
prevent future cases of student dropout. We, however, advice training
different uplift modeling approaches, as there is no single uplift modeling
technique with outstanding performance for all problems (i.e., No free
lunch theorem) [40].

Last, we are also interested in analyzing in terms of the pretreatment
variables to what extend students identified by the MOAxgboost uplift
model as treatment responders differ from those who are treatment
nonresponders. Our interest lies in the accuracy of the model, but also
in its comprehensibility. Therefore, we form four different profiles on
the basis of the quartiles shown in Fig. 2, Panel A. Since test set students
are ranked according to their likelihood to respond positively to the
program, i.e., individual uplift scores of the MOAxgboost model, seg-
ments of students with high treatment effects are those at the top.

The student profiles result from averaging the values of the ten most
important predictors of the MOAxgboost. The importance scores of each
attribute are obtained by fitting over ten folds a MOAxgboost, and
subsequently averaging the values. We use the Gain criterion, as it in-
dicates how valuable is the attribute at the splits during the construc-
tion of the trees. Although more variables can be selected, inspecting
few variables allows us to maintain clarity in visualizations.

Fig. 4 illustrates the variation of the average across the four quar-
tiles for the chosen variables. Students with the highest likelihood to
respond to the retention program are those in the top segments. We can
conclude from the figure that the main differences among treatment
responders and nonresponders are observed in their PSU scores in
mathematics, the number of members in the family, attendance to a

private school, the overall performance in the first semester, and the
performance in English courses.

The studies by [15,17,19] indicate the association of academic per-
formance variables from the first semester of bachelor programs and stu-
dent dropout. Although the model suggests targeting students with rela-
tively good performance, their proficiency in mathematics is among the
lowest. Particularly, math test scores are related to dropout during the first
academic year [71]. In addition, treatment responders are part of house-
holds with relatively few family members, as well as graduated from
nonprivate high schools. This indicates that retention campaigns can take
a proactive rather than a reactive approach, since prematriculation in-
formation may also be used for treatment customization.

The radar charts in this study intend to facilitate the interpretation
of uplift modeling estimates for decision-makers. They are valuable to
understand the needs of students and emphasize the attributes that
differentiate treatment responders from nonresponders.

5. Conclusions

This article applies the uplift modeling framework to the problem of
student dropout prevention. We demonstrate that focusing retention ef-
forts, i.e., offering tutorials, on students with the largest likelihood to be
retained due to the intervention boosts the effect of the program. We are
able to reach higher uplift with the best machine learning model designed
for this purpose, than with the alternative of targeting at random.

Self-selection bias is tested and corrected as part of the modeling
process to avoid bias in the uplift estimation. Subsequently, we train
twelve different uplift modeling approaches to predict students'

Table 3
Performance evaluation: Qini values. The Qini values of the model with the best performance are in bold.

Model at 10% at 30% at 50% at 100%

SMARF −0.0306 (0.0658) −0.2063 (0.5318) −0.4595 (1.2152) −0.0948 (2.3726)
SMAxgboost −0.0383 (0.1511) −0.1708 (0.6702) −0.2082 (1.1038) −0.5273 (2.7071)
MOARF −0.0587 (0.0518) −0.2428 (0.2523) −0.3337 (0.6460) 0.1160 (1.4222)
MOAxgboost 0.0385 (0.1123) 0.2253 (0.5894) 0.5095 (1.0739) 1.2031 (2.0885)
MCARF −0.1308 (0.1841) −0.4825 (0.8737) −0.6002 (1.4692) −0.7283 (2.6170)
MCAxgboost −0.0475 (0.1020) −0.1592 (0.3887) −0.2714 (0.8371) −0.5329 (1.5594)
XLearner −0.0142 (0.0037) −0.0474 (0.1636) −0.0627 (0.4795) 0.0423 (1.6597)
RLearner −0.0262 (0.0746) −0.1062 (0.5967) −0.2776 (1.1711) −0.3170 (2.1355)
KL −0.0618 (0.1083) −0.4044 (0.3630) −0.6504 (0.7124) −0.9005 (1.3740)
ED −0.0817 (0.0561) −0.4356 (0.2727) −0.6618 (0.7010) −0.7375 (1.6394)
Chi −0.0912 (0.0888) −0.6302 (0.3289) −1.1111 (0.5995) −1.2944 (1.4747)
CTS −0.0587 (0.1162) −0.2853 (0.5716) −0.5726 (0.8403) −0.7693 (1.7291)

Fig. 3. Uplift curve MOAxgboost. The MOAxgboost model boosts the effect of the program compared to targeting at random, as students who will not drop out due to
the intervention are prioritized. The uplift curve bends downward, as the tutorials are assigned to students whose intention to attrite will not change.
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response to the retention strategy, and assess feature relevance to better
understand the characteristics of students who are likely to be retained
with such program. This knowledge translates into a better design of
tailored retention efforts. Particularly, the importance of pre-
matriculation attributes indicates that the design of retention efforts
can take a proactive rather than a reactive approach.

There are several opportunities for future research. First, a further
step is to target students according to the uplift model, and subse-
quently corroborate the effectiveness of the customized targeting as-
signment. This task, however, requires setting aside a holdout set of
students who should not be treated, as estimating causal effects requires
the comparison of alike individuals. Particularly, in terms of their
characteristics and likelihood to respond to the intervention. Second,
student dropout is a context-specific phenomenon and retention stra-
tegies comprise, but are not limited to, offering tutorials. Therefore,
applying the uplift modeling framework to different institutional

contexts, i.e., data collection on prematriculation and academic in-
formation at other universities, would enrich the understanding on the
effectiveness and limitations of this approach in the customization of
retention programs. Third, incorporating academic information from
subsequent semesters may enhance model estimates and the compre-
hension of long-term program effects. Last, profit metrics for business
analytics can be adapted to assess the benefits and costs of student
dropout, as retaining students leads to social benefits and positive ex-
ternalities.
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Appendix A

Table A1
Data set variables.

Category Subcategory Variables

Academic Academic Number of courses 1st semester, year of entry, preferred application to bachelor program, performance 1st semester, performance in
statistics 1st semester, performance in mathematics 1st semester, performance in economics 1st semester, performance in English 1st
semester, type of entrance, and type of student (Bachelor A, B or C).

Prematriculation Family background Mother as head of family, head of family unknown, father as head of family, father educ. Level, number of parents alive, number of hours
dedicated to work, mother educ. Level, number of family members in other schools, number of family members in college, number of
family members in secondary school, number of working family members, number of family members in primary school, number of
family members in preschool, number of family members, number of family members studying, occupation father, and occupation
mother.

High school attributes Private school, public school, male school, female school, human sciences as school's field, graduation year from school, state-subsidized
private school, and school type (governance).

Sociodemographic Family support, central region, southern Region, parent support, independent student, private healthcare, public healthcare, financing
source unknown, study support unknown, loan as 2nd funding source, scholarship as 2nd funding source, unknown 1st funding source,
parents support as 1st funding source, scholarship as 1st funding source, parents support as 2nd funding source, gender female, single,
gross family income, work schedule, and working student.

Standardized admis-
sion test

Score entrance exam, PSU score lang. & comu., PSU score mathematics, PSU score hist. & scien., ranking score, high school grades, and
age during 1st semester.

Fig. 4. The radar chart profiling allows us to examine the characteristics of students with high and low expected treatment effects. Students who are expected to
benefit from the tutorials are those who present the characteristics of the upper quartiles.
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Table A2
Missing values before variable transformation.

Variable Missing values (%) Replacement strategy

Age during 1st semester 0.27 mean
Father educ. level 16.14 “Unknown”
First funding source 13.01 “Unknown”
Gender 0 –
Graduation year from school 2.01 mean
Gross family income 2.13 mode
Head of family 12.67 “Unknown”
Healthcare type 2.13 “Unknown”
High school grades 8.57 mean
Male/Female/Mix school 2.80 mode
Marital Status 0 –
Max. score science-history 13.28 mean
Mother educ. level 13.62 “Unknown”
Number of family members in preschool 2.13 mean
Number of family members in primary school 2.13 mean
Number of courses 1st semester 0 –
Number of family members 11.88 mean
Number of family members in college 2.13 mean
Number of family members in other schools 2.13 mean
Number of family members in secondary school 2.13 mean
Number of family members studying 2.13 mean
Number of hours dedicated to work 2.13 mean
Number of working family members 2.13 mean
Occupation father 18.18 “Unknown”
Occupation mother 14.19 “Unknown”
Parents alive 11.82 “Unknown”
Performance 1st semester 0.03 mean
Performance in economics 1st semester 1.43 mean
Performance in English 1st semester 14.71 mean
Performance in mathematics 1st semester 2.34 mean
Performance in statistics 1st semester 90 removed
Preferred application to bachelor program 10.43 mean
PSU score lang. & comu. 13.28 mean
PSU score mathematics 13.28 mean
Ranking score 24.86 mean
Region 2.37 mode
School field 2.71 mode
School type (funding) 2.71 mode
School type (governance) 2.71 mode
Score entrance exam 8.45 mean
Second funding source 22.22 “Unknown”
Support 14.77 “Unknown”
Type of entrance 0 –
Type of student (Bachelor A, B or C) 0 –
Work schedule 98.69 removed
Working student 10.09 mode
Year of entry 0 –

References

[1] L. Thomas, Student retention in higher education: the role of institutional habitus,
J. Educ. Pol. 17 (4) (2002) 423–442.

[2] T. Dharmawan, H. Ginardi, A. Munif, Dropout detection using non-academic data,
2018 4th International Conference on Science and Technology (ICST), IEEE, 2018,
pp. 1–4.

[3] C.J. Bland, A.L. Taylor, S.L. Shollen, A.M. Weber-Main, P.A. Mulcahy, Faculty
Success through Mentoring: A Guide for Mentors, Mentees, and Leaders, R&L
Education, 2009.

[4] S. Larose, D. Cyrenne, O. Garceau, M. Harvey, F. Guay, F. Godin, G.M. Tarabulsy,
C. Deschênes, Academic mentoring and dropout prevention for students in math,
science and technology, Mentor. Tutor. 19 (4) (2011) 419–439.

[5] N. Zepke, L. Leach, Improving student engagement: ten proposals for action, Act.
Learn. High. Educ. 11 (3) (2010) 167–177.

[6] L. Thomas, Building student engagement and belonging in higher education at a
time of change, Paul Hamlyn Found. 100 (2012) 1–99.

[7] M. Yorke, The development and initial use of a survey of student belongingness,
engagement and self-confidence in UK higher education, Assess. Eval. High. Educ.
41 (1) (2016) 154–166.

[8] E. Ascarza, Retention futility: targeting high-risk customers might be ineffective, J.
Mark. Res. 55 (1) (2018) 80–98.

[9] W.G. Spady, Dropouts from higher education: an interdisciplinary review and
synthesis, Interchange 1 (1) (1970) 64–85.

[10] V. Tinto, Dropout from higher education: a theoretical synthesis of recent research,

Rev. Educ. Res. 45 (1) (1975) 89–125.
[11] J.P. Bean, Conceptual models of student attrition: how theory can help the in-

stitutional researcher, New Dir. Inst. Res. 1982 (36) (1982) 17–33.
[12] J.P. Bean, Interaction effects based on class level in an explanatory model of college

student dropout syndrome, Am. Educ. Res. J. 22 (1) (1985) 35–64.
[13] R. Chen, S.L. DesJardins, Investigating the impact of financial aid on student

dropout risks: racial and ethnic differences, J. High. Educ. 81 (2) (2010) 179–208.
[14] J. Forsman, C. Linder, R. Moll, D. Fraser, S. Andersson, A new approach to mod-

elling student retention through an application of complexity thinking, Stud. High.
Educ. 39 (1) (2014) 68–86.

[15] A. Fortin, L. Sauvé, C. Viger, F. Landry, Nontraditional student withdrawal from
undergraduate accounting programmes: a holistic perspective, Acc. Educ. 25 (5)
(2016) 437–478.

[16] B.M. Kehm, M.R. Larsen, H.B. Sommersel, Student dropout from universities in
europe: a review of empirical literature, Hungarian Educ. Res. J. 9 (2) (2019)
147–164.

[17] J. Vásquez, J. Miranda, Student desertion: What is and how can it be detected on
time? Data Science and Digital Business, Springer, 2019, pp. 263–283.

[18] A.L. Caison, Analysis of institutionally specific retention research: a comparison
between survey and institutional database methods, Res. High. Educ. 48 (4) (2007)
435–451.

[19] C.H. Yu, S. DiGangi, A. Jannasch-Pennell, C. Kaprolet, A data mining approach for
identifying predictors of student retention from sophomore to junior year, J. Data
Sci. 8 (2) (2010) 307–325.

[20] G. Johnes, R. McNabb, Never give up on the good times: student attrition in the UK,
Oxf. Bull. Econ. Stat. 66 (1) (2004) 23–47.

D. Olaya, et al. Decision Support Systems 134 (2020) 113320

9

http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0005
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0005
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0010
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0010
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0010
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0015
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0015
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0015
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0020
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0020
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0020
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0025
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0025
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0030
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0030
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0035
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0035
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0035
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0040
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0040
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0045
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0045
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0050
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0050
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0055
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0055
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0060
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0060
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0065
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0065
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0070
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0070
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0070
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0075
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0075
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0075
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0080
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0080
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0080
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0085
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0085
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0090
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0090
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0090
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0095
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0095
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0095
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0100
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0100


[21] M. Ferreira, Gender issues related to graduate student attrition in two science de-
partments, Int. J. Sci. Educ. 25 (8) (2003) 969–989.

[22] M. Saldaña, O. Barriga, An adaptation of tinto’s attrition model to the universidad
católica de la santísima concepción, chile, Rev. Ciencias Soc. 16 (4) (2016)
616–628.

[23] P.L. Peterson, E. Baker, B. McGaw, International Encyclopedia of Education,
Elsevier Ltd., 2010.

[24] G. Kostopoulos, S. Kotsiantis, P. Pintelas, Estimating student dropout in distance
higher education using semi-supervised techniques, Proceedings of the 19th
Panhellenic Conference on Informatics, Athens, Greece, 2015, pp. 38–43.

[25] N. Iam-On, T. Boongoen, Generating descriptive model for student dropout: a re-
view of clustering approach, Human-Centric Comput. Inf. Sci. 7 (1) (2017) 1.

[26] N. Iam-On, T. Boongoen, Improved student dropout prediction in thai university
using ensemble of mixed-type data clusterings, Int. J. Mach. Learn. Cybern. 8 (2)
(2017) 497–510.

[27] K. Imai, M. Ratkovic, et al., Estimating treatment effect heterogeneity in rando-
mized program evaluation, Ann. Appl. Stat. 7 (1) (2013) 443–470.

[28] M. Qian, S.A. Murphy, Performance guarantees for individualized treatment rules,
Ann. Stat. 39 (2) (2011) 1180.

[29] K. Kane, V.S. Lo, J. Zheng, Mining for the truly responsive customers and prospects
using true-lift modeling: comparison of new and existing methods, J. Market. Anal.
2 (4) (2014) 218–238.

[30] L. Guelman, M. Guillén, A.M. Pérez-Marín, Random forests for uplift modeling: an
insurance customer retention case, International Conference on Modeling and
Simulation in Engineering, Economics and Management, Springer, 2012, pp.
123–133.

[31] B. Hansotia, B. Rukstales, Incremental value modeling, J. Interact. Mark. 16 (3)
(2002) 35.

[32] V.S. Lo, The true lift model: a novel data mining approach to response modeling in
database marketing, ACM SIGKDD Explor. Newslett. 4 (2) (2002) 78–86.

[33] S. Jaroszewicz, P. Rzepakowski, Uplift modeling with survival data, ACM SIGKDD
Workshop on Health Informatics (HI-KDD14), New York City, 2014.

[34] Y. Zhao, X. Fang, D. Simchi-Levi, A practically competitive and provably consistent
algorithm for uplift modeling, 2017 IEEE International Conference on Data Mining
(ICDM), IEEE, 2017, pp. 1171–1176.

[35] Y. Zhao, X. Fang, D. Simchi-Levi, Uplift modeling with multiple treatments and
general response types, Proceedings of the 2017 SIAM International Conference on
Data Mining, SIAM, 2017, pp. 588–596.

[36] D.B. Rubin, Estimating causal effects of treatments in randomized and non-
randomized studies, J. Educ. Psychol. 66 (5) (1974) 688.

[37] J. Pearl, Causality, Cambridge University Press, 2009.
[38] P.R. Rosenbaum, D.B. Rubin, The central role of the propensity score in observa-

tional studies for causal effects, Biometrika 70 (1) (1983) 41–55.
[39] D.B. Rubin, Bayesian inference for causal effects: the role of randomization, Ann.

Stat. (1978) 34–58.
[40] F. Devriendt, D. Moldovan, W. Verbeke, A literature survey and experimental

evaluation of the state-of-the-art in uplift modeling: a stepping stone toward the
development of prescriptive analytics, Big Data 6 (1) (2018) 13–41.

[41] A. Abadie, Semiparametric difference-in-differences estimators, Rev. Econ. Stud. 72
(1) (2005) 1–19.

[42] B. Zhang, A.A. Tsiatis, E.B. Laber, M. Davidian, A robust method for estimating
optimal treatment regimes, Biometrics 68 (4) (2012) 1010–1018.

[43] Y.-T. Lai, K. Wang, D. Ling, H. Shi, J. Zhang, Direct marketing when there are
voluntary buyers, Sixth International Conference on Data Mining (ICDM’06), IEEE,
2006, pp. 922–927.

[44] R.M. Gubela, S. Lessmann, S. Jaroszewicz, Response transformation and profit de-
composition for revenue uplift modeling, Eur. J. Oper. Res. 283 (2) (2020)
647–661.

[45] K. Rudaś, S. Jaroszewicz, Linear regression for uplift modeling, Data Min. Knowl.
Disc. 32 (5) (2018) 1275–1305.

[46] S. Athey, G. Imbens, Recursive partitioning for heterogeneous causal effects, Proc.
Natl. Acad. Sci. 113 (27) (2016) 7353–7360.

[47] S.R. Künzel, J.S. Sekhon, P.J. Bickel, B. Yu, Metalearners for estimating hetero-
geneous treatment effects using machine learning, Proc. Natl. Acad. Sci. 116 (10)
(2019) 4156–4165.

[48] X. Nie, S. Wager, Quasi-oracle estimation of heterogeneous treatment effects, arXiv
(2019) 1712.04912.

[49] L. Tian, A.A. Alizadeh, A.J. Gentles, R. Tibshirani, A simple method for estimating
interactions between a treatment and a large number of covariates, J. Am. Stat.
Assoc. 109 (508) (2014) 1517–1532.

[50] N.J. Radcliffe, P.D. Surry, Real-world uplift modelling with significance-based uplift
trees, White Paper TR-2011-1, Stochastic Solutions (2011) 1–33 http://
stochasticsolutions.com/pdf/sig-based-up-trees.pdf , Accessed date: 3 March 2019.

[51] J.L. Hill, Bayesian nonparametric modeling for causal inference, J. Comput. Graph.
Stat. 20 (1) (2011) 217–240.

[52] S. Wager, S. Athey, Estimation and inference of heterogeneous treatment effects
using random forests, J. Am. Stat. Assoc. 113 (523) (2018) 1228–1242.

[53] S. Powers, J. Qian, K. Jung, A. Schuler, N.H. Shah, T. Hastie, R. Tibshirani, Some
methods for heterogeneous treatment effect estimation in high dimensions, Stat.
Med. 37 (11) (2018) 1767–1787.

[54] S. Athey, J. Tibshirani, S. Wager, et al., Generalized random forests, Ann. Stat. 47
(2) (2019) 1148–1178.

[55] F. Alemi, H. Erdman, I. Griva, C.H. Evans, Improved statistical methods are needed
to advance personalized medicine, Open Transl. Med. J. 1 (2009) 16.

[56] L. Guelman, Optimal Personalized Treatment Learning Models With Insurance
Applications, Universitat de Barcelona, Barcelona, Spain, 2015.

[57] D.M. Chickering, D. Heckerman, A decision theoretic approach to targeted adver-
tising, Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, Morgan Kaufmann Publishers Inc., 2000, pp. 82–88.

[58] P. Rzepakowski, S. Jaroszewicz, Decision trees for uplift modeling with single and
multiple treatments, Knowl. Inf. Syst. 32 (2) (2012) 303–327.

[59] S. Debaere, F. Devriendt, J. Brunneder, W. Verbeke, T. De Ruyck, K. Coussement,
Reducing inferior member community participation using uplift modeling: evidence
from a field experiment, Decis. Support. Syst. 113077 (2019).

[60] L. Zaniewicz, S. Jaroszewicz, Support vector machines for uplift modeling, 2013
IEEE 13th International Conference on Data Mining Workshops, IEEE, 2013, pp.
131–138.

[61] C. Li, X. Yan, X. Deng, Y. Qi, W. Chu, L. Song, J. Qiao, J. He, J. Xiong,
Reinforcement learning for uplift modeling, arXiv (2019) 1–22 1811.10158.

[62] P.W. Holland, Statistics and causal inference, J. Am. Stat. Assoc. 81 (396) (1986)
945–960.

[63] P. Gutierrez, J.-Y. Gérardy, Causal inference and uplift modelling: a review of the
literature, International Conference on Predictive Applications and APIs, 2017, pp.
1–13.

[64] N.J. Radclifte, R. Simpson, Identifying who can be saved and who will be driven
away by retention activity, Journal of Telecommunications Management 1 (2)
(2008) 168–176.

[65] J. Bowers, M. Fredrickson, B. Hansen, RItools: Randomization inference tools, R
package version 0.1-11, 2010.

[66] E.L. Fu, R.H. Groenwold, C. Zoccali, K.J. Jager, M. van Diepen, F.W. Dekker, Merits
and caveats of propensity scores to adjust for confounding, Nephrol. Dial.
Transplant. 34 (10) (2019) 1629–1635.

[67] R.B. DAgostino Jr., Propensity scores in cardiovascular research, Circulation 115
(17) (2007) 2340–2343.

[68] D.B. Rubin, Estimating causal effects from large data sets using propensity scores,
Ann. Intern. Med. 127 (8_Part_2) (1997) 757–763.

[69] Z. Khan, A. Gul, A. Perperoglou, M. Miftahuddin, O. Mahmoud, W. Adler, B. Lausen,
Ensemble of optimal trees, random forest and random projection ensemble classi-
fication, ADAC (2019) 1–20.

[70] Z. Zhao, T. Harinen, Uplift modeling for multiple treatments with cost optimization,
arXiv (2019) 1–10 1908.05372.

[71] K. Kori, M. Pedaste, E. Tõnisson, T. Palts, H. Altin, R. Rantsus, R. Sell, K. Murtazin,
T. Rüütmann, First-year dropout in ict studies, 2015 IEEE Global Engineering
Education Conference (EDUCON), IEEE, 2015, pp. 437–445.

Diego Olaya is a Ph.D. candidate at the Vrije Universiteit
Brussel. He received his bachelor's degree in Economics
from the Universidad Nacional de Colombia, and he holds a
M.Sc. in Management Science from the Vrije Universiteit
Brussel (VUB). His research interests include business ana-
lytics, data mining, and the intersection of machine
learning and causal inference.

Jonathan Vásquez received his B.S. and M.S. degree from
the University of Chile in 2012 and 2016 respectively. He is
currently academic at Ingenieria en Información y Control
de Gestión, Escuela de Auditoría, Universidad de
Valparaiso. His research focuses on the application of data
mining and machine learning in student desertion, students'
performance, educational data science, and profiles classi-
fication.

Sebastián Maldonado received his B.S. and M.S. degree
from the University of Chile, in 2007, and his Ph.D. degree
from the University of Chile, in 2011. He is currently Full
Professor at the Department of Management Control and
Information Systems, School of Economics and Business,
University of Chile. His research interests include statistical
learning, data mining and business analytics. Sebastián
Maldonado has published more than 70 scientific con-
tributions including more than 50 Thomson Reuters' ISI
papers in the last ten years.

D. Olaya, et al. Decision Support Systems 134 (2020) 113320

10

http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0105
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0105
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0110
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0110
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0110
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0115
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0115
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0120
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0120
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0120
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0125
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0125
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0130
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0130
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0130
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0135
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0135
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0140
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0140
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0145
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0145
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0145
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0150
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0150
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0150
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0150
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0155
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0155
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0160
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0160
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0165
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0165
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0170
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0170
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0170
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0175
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0175
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0175
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0180
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0180
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0185
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0190
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0190
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0195
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0195
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0200
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0200
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0200
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0205
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0205
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0210
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0210
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0215
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0215
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0215
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0220
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0220
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0220
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0225
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0225
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0230
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0230
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0235
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0235
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0235
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0240
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0240
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0245
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0245
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0245
http://stochasticsolutions.com/pdf/sig-based-up-trees.pdf
http://stochasticsolutions.com/pdf/sig-based-up-trees.pdf
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0260
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0260
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0265
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0265
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0270
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0270
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0270
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0275
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0275
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0280
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0280
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0285
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0285
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0290
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0290
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0290
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0295
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0295
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0300
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0300
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0300
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0305
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0305
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0305
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0310
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0310
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0315
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0315
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0320
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0320
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0320
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0325
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0325
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0325
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0330
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0330
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0335
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0335
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0335
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0340
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0340
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0345
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0345
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0350
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0350
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0350
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0355
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0355
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0365
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0365
http://refhub.elsevier.com/S0167-9236(20)30075-0/rf0365


Jaime Miranda is currently Associate Professor and Head
at the Department of Management Control and Information
Systems, University of Chile. He has an Industrial Engineer
B.S. degree, a M.S. degree in Operations Management and a
PhD. degree in Engineering Systems from the University of
Chile. In 2016 was president of the Association of Latin-
Iberoamerican Operational Research Societies (ALIO). His
research interests include Operation Research and Business
Analytics. He has published several articles and im-
plemented OR systems in Chile.

Wouter Verbeke, Ph.D., is associate professor of data
analytics at Vrije Universiteit Brussel (Brussels, Belgium).
He graduated in 2007 as a Civil Engineer and obtained a
Ph.D. in applied economics at KU Leuven in 2012. His re-
search is situated in the field of prescriptive and profit-
driven data analytics and is driven by real-life business
applications in fraud, customer relationship, credit risk,
supply chain, and human resources management. In 2014,
he won the distinguished EURO award for best article
published in the European Journal of Operational Research
in the category ‘Innovative Applications of O.R’. His work
has been published in established international scientific
journals such as IEEE Transactions on Knowledge and Data

Engineering, Information Sciences and European Journal of Operational Research. He has
authored two books, entitled ‘Fraud Analytics Using Descriptive, Predictive & Social
Network Techniques’ and ‘Profit-driven Business Analytics’, published by Wiley.

D. Olaya, et al. Decision Support Systems 134 (2020) 113320

11


	Uplift Modeling for preventing student dropout in higher education
	Introduction
	Prior work on student dropout
	The uplift modeling framework and student dropout
	Uplift modeling
	Important considerations for student dropout

	Experimental analysis
	Data set description
	Data preprocessing and transformation
	Results
	Preliminary analysis
	Uplift modeling techniques
	Uplift models performance


	Conclusions
	Acknowledgements
	Appendix A
	References




