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Abstract
We solve a second-order elliptic equationwith quasi-periodic boundary conditions defined on
a honeycomb lattice that represents the arrangement of carbon atoms in graphene. Our results
generalize those found by Kuchment and Post (Commun Math Phys 275(3):805–826, 2007)
to characterize not only the stability but also the instability intervals of the solutions. This
characterization is obtained from the solutions of the energy eigenvalue problem given by
the lattice Hamiltonian. We employ tools of the one-dimensional Floquet theory and specify
under which conditions the one-dimensional theory is applicable to the structure of graphene.
The systematic study of such stability and instability regions provides a tool to understand
the propagation properties and behavior of the electrons wavefunction in a hexagonal lattice,
a key problem in graphene-based technologies.
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1 Introduction

Graphene is a honeycomb lattice of carbon atoms. Recently, it has attracted a lot of atten-
tion due to its peculiar electronic and mechanical properties and broad range of applications
(Harris 2002; Katsnelson 2007; Kuchment and Post 2007; Saito et al. 1998). To predict
and understand this properties, mathematical models are not only useful but necessary. This
problem has been approached from different scientific fields such as quantum networks (e.g.,
Amovilli et al. 2004; Korotyaev and Lobanov 2007, 2006; Leys et al. 2004), also called
quantum graphs, in chemistry (Pauling 1936; Ruedenberg and Scherr 1953) and physics
(Alexander 1983; Avron et al. 1988; De Gennes 1981; Mills and Montroll 1970; Montroll
1970) (see also Kuchment 2002, 2004 and references therein). The characterization of the
dispersion relation of the honeycomb lattice is of particular interest for exploiting graphene
electronic properties. This is obtained from the solution of the energy eigenvalue problem
given by the latticeHamiltonian. Amethod to completely characterize the set of solutions is to
divide its analysis in stability and instability intervals, previously done for a one-dimensional
system in R (Allaire and Orive 2005).

We will present the graphene G defined as a graph, i.e., with its respective components:
a set of vertices V and a set of edges A. Then we will define two spaces in the geometrical
basis G, L2(G) and H2(G), that allow us to solve the Hamiltonian in the edges of G as
H : H2(G) ⊂ L2(G) → L2(G). Thus, the functions Ψ = (Ψa)a∈A such that HΨ = λΨ

have to satisfy the following conditions:

(i)
∑

a∈A ‖Ψa‖2H2(a)
< ∞.

(ii) For all v ∈ V , for all a1, a2 ∈ A, [v ∈ a1 ∩ a2 ⇒ Ψa1(v) = Ψa2(v)] (continuity
condition).

(iii) For all v ∈ V , ∑
v2∈V[v,v2]∈A

DΨ[v,v2](v; v2 − v) = 0, where DΨ[v,v2](v; v2 − v) is the

directional derivative of the function Ψ[v,v2] at the pointv in the direction of [v2 − v]
(flow condition).

From these special and particular conditions, we will obtain the important results presented
in this paper. We completely characterize the stability and instability intervals of a energy
eigenvalues problem in a honeycomb lattice G, showing the versatility of this approach.
However, remarkable difference is present in the structure of the stability regions raising
from the more complex structure of graphene-like systems.

The paper is structured as follows. Section 2 explains the results known as Floquet Theory
applied to our particular case as it is developed in Allaire and Orive (2005). In Sect. 3, the
graphene G is defined geometrically. Section 4 shows how the Hamiltonian operatorH acts
throughG and the parametrization that allows us to identify each edgewith the segment [0, 1].
From the given theoretical frame, in Sect. 5, we look for a characterization of the functions
Ψ = (Ψa)a∈A that satisfies the conditions of continuity and flow (ii)–(iii). To analyze the
graphene spectrum, in Sect. 6, we study the functions Ψ that satisfies such conditions, along
with the eigenvalue equation HΨ = λΨ and properties of quasi-periodicity. Finally, we
determine for which values of λ these solutions are bounded or unbounded, analyzing the
respective dispersion relation.
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2 Theoretical framework

We will center our analysis in the result shown by Allaire and Orive in Allaire and Orive
(2005), where the authors propose to find the stability and instability intervals of a second-
order elliptic equation on the real line with periodic coefficients (Hill’s equation). They
introduced a new family of non-self-adjoint operators, formally equivalent to the Bloch ones
(Bloch 1929; Conca 1995) but with an imaginary Bloch parameter, that they call exponential,
proving that the problem admits a countable infinite number of eigenvalues which, when they
are real, completely characterize the intervals of instability of Hill’s equation.

The closure of the stability intervals are called Bloch bands and the non-empty open
intervals between two Bloch bands are called gaps.

2.1 The Bloch spectrum

Let us consider the Hill’s equation defined in Eastham (1973) as

− u′′(x) + V (x)u(x) = λu(x). (1)

Here, the function V is real, piecewise-continuous and 1-periodic. We know that Eq. (1) has
a basis of two linearly independent solutions ϕ1(·; λ) and ϕ2(·; λ), functions of the parameter
λ, that satisfy

ϕ1(0; λ) = 1, ϕ′
1(0; λ) = 0, ϕ2(0; λ) = 0, ϕ′

2(0; λ) = 1. (2)

It is clear that any solution u of (1) can be written as a linear combination:

u(x) = u(0)ϕ1(x; λ) + u′(0)ϕ2(x; λ). (3)

The discriminant of (1) is given by

D(λ) = ϕ1(1; λ) + ϕ′
2(1; λ).

If the function V satisfies the symmetry relation V (1 − x) = V (x), then

ϕ′
2(1; λ) = ϕ1(1; λ), (4)

implying
D = 2ϕ1(1; λ). (5)

Furthermore, when we restrict ourselves to λ ∈ R (and since all coefficients in (1) are
real valued), it is possible to classify the solutions of (1): a solution is said to be stable if
it is uniformly bounded, and unstable if it is unbounded. According to Conca (1995) and
Eastham (1973), there exist a countably infinite sequence {αn}n∈N of real roots of D(λ) = 2
and a countably infinite sequence {βn}n∈N of real roots of D(λ) = −2 such that

· · · < α0 < β0 ≤ β1 < α1 ≤ α2 < β2 ≤ β3 < α3 ≤ α4 < · · ·
(see Fig. 1). The collection of disjoint open intervals

]α0, β0[, ]β1, α1[, ]α2, β2[, ]β3, α3[, · · ·
is called the stability intervals of (1) and their union

S =]α0, β0[ ∪ ]β1, α1[ ∪ ]α2, β2[ ∪ ]β3, α3[ ∪ · · ·
is called the region of stability. Analogously,
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α0 β0 β1 α1 = α2 β2 β3 α3 α4 β4

Fig. 1 The numbers αn and βn organized in stability and instability intervals

U =] − ∞, α0[ ∪ ]β0, β1[ ∪ ]α1, α2[ ∪ ]β2, β3[ ∪ · · ·
is called the region of instability. In consequence, |D(λ)| < 2 for λ ∈ S, and |D(λ)| > 2 for
λ ∈ U .

In addition, from the Floquet’s Theory (Eastham 1973), we have

(i) For λ ∈ U , there exists θ ∈ R\{0} such that (1) has two linearly independent solu-
tions of the type eθx p1(x) and e−θx p2(x), with p1, p2 1-periodic and characteristic
multipliers ρ1 = eθ and ρ2 = e−θ ; or, with p1, p2 semi-periodic and characteristic
multipliers ρ1 = −eθ and ρ2 = −e−θ .

(ii) For λ ∈ S, there exists θ ∈]0, π [, or θ ∈] − π, 0[, such that (1) has two linearly
independent solutions of the type eiθx p1(x) and e−iθx p2(x), with p1, p2 1-periodic
and characteristic multipliers ρ1 = eiθ and ρ2 = e−iθ .

(iii) If α2k+1 = α2k+2, then for λ = α2k+1 = α2k+2, Eq. (1) has two linearly independent
solutions p1 y p2 1-periodic. If α2k+1 < α2k+2, then for λ = α2k+1 and for λ = α2k+2,
Eq. (1) has two linearly independent solutions of the type p1(x) and xp1(x) + p2(x),
with p1 and p2 1-periodic.

(iv) If β2k = β2k+1, then for λ = β2k = β2k+1, Eq. (1) has two linearly independent
solutions p1 y p2 semi-periodic. If β2k < β2k+1, then for λ = β2k and for λ = β2k+1,
Eq. (1) has two linearly independent solutions of the type p1(x) and xp1(x) + p2(x),
with p1 and p2 semi-periodic.

We recall other classical results of a theory on the eigenvalue structure of (1), known as
the Bloch Decomposition Theory (Aguirre and Conca 1988; Conca and Vanninathan 1997).
If we consider (1) as a spectral problem in L2(R), it is a natural question to determine its
spectrum. To this end, we consider the following Bloch spectral problem parameterized by
θ ∈ R:

⎧
⎨

⎩

Find λ = λ(θ) ∈ R and Ψ = Ψ (x, θ);
−Ψ ′′(x, θ) + V (x)Ψ (x, θ) = λ(θ)Ψ (x, θ) in R

Ψ (x + 1, θ) = eiθΨ (x, θ), ∀x .
(6)

It is well known that for each θ ∈]−π, π], the above spectral problem (6) admits a discrete
sequence of eigenvalues with the following properties

0 ≤ λ1(θ) ≤ · · · ≤ λm(θ) ≤ · · · → ∞,

for all m ≥ 1, λm(θ) is a Lipschitz’s function of θ ∈ Y ′ =] − π, π].
The Bloch spectrum (Aguirre and Conca 1988; Conca and Vanninathan 1997) is defined

as

σB = {λm(θ) : θ ∈ Y ′,m ≥ 1} =
⋃

m≥1

[
min
θ∈Y ′ λm(θ),max

θ∈Y ′ λm(θ)
]
.

Also, for all k ≥ 1, αk = λk(0), βk = λk(π) and

σB = [α0, β0] ∪ [β1, α1] ∪ [α2, β2] ∪ [β3, α3] ∪ · · · .

In particular, λ2k−1(0) is the minimum of λ2k−1(θ), while λ2k−1(π)is the maximum of
λ2k−1(θ), and λ2k(0) is the maximum of λ2k(θ), while λ2k(π) is the minimum of λ2k(θ).
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Thus, we have a characterization for the region of stability S of the Hill’s equation (1).
The closure of the stability intervals are precisely the called Bloch bands, i.e.,

[αm, βm] =
[
min
θ∈Y ′ λm(θ),max

θ∈Y ′ λm(θ)
]
.

The non-empty open intervals between two Bloch bands are called gaps. Their union,
together with the unbounded open interval below the first Bloch band, is exactly the unstable
region U .

2.2 The exponential spectrum

In this section, we define the exponential spectrum of Eq. (1). Let us consider the following
two spectral problems parameterized by θ ∈ R.

⎧
⎨

⎩

Find μ = μ(θ) ∈ R and Ψ = Ψ (x, θ);
−Ψ ′′(x, θ) + V (x)Ψ (x, θ) = μ(θ)Ψ (x, θ)

Ψ (x + 1, θ) = eθΨ (x, θ), ∀x .
(7)

⎧
⎨

⎩

Find ν = ν(θ) ∈ R y Ψ = Ψ (x, θ);
−Ψ ′′(x, θ) + V (x)Ψ (x, θ) = ν(θ)Ψ (x, θ)

Ψ (x + 1, θ) = −eθΨ (x, θ), ∀x .
(8)

We have the following results.

(i) For any θ ∈ R, there exists a minimal first eigenvalue μ0 of (7) which is real, simple
and such that θ �→ μ0(θ) is analytic, concave and even. Also,

limθ→+∞ μ0(θ) = −∞ and
maxθ∈R μ0(θ) = μ0(0) = λ0(0) = α0.

(ii) Assume that β2k ≤ β2k+1. Then there exists θ2k,2k+1 ≥ 0 such that, for θ ∈]−θ2k,2k+1,

θ2k,2k+1[, there exist ν2k(θ), ν2k+1(θ) real and simple eigenvalues of (8) which satisfy
θ �→ ν2k(θ), ν2k+1(θ) are analytic and even, andν2k(θ), ν2k+1(θ) are strictlymonotone
on [0, θ2k,2k+1]. Also,

minθ∈[0,θ2k,2k+1] ν2k(θ) = ν2k(0) = λ2k
(
π) = β2k,

maxθ∈[0,θ2k,2k+1] ν2k+1(θ) = ν2k+1(0) = λ2k+1
(
π) = β2k+1,

lim|θ |→θ2k,2k+1 ν2k(θ) = lim|θ |→θ2k,2k+1 ν2k+1(θ) = ν2k,2k+1,

{ν2k(θ) : θ ∈ [0, θ2k,2k+1]} = [b2k, ν2k,2k+1] and
{ν2k+1(θ) : θ ∈ [0, θ2k,2k+1]} = [ν2k,2k+1, b2k+1].

(iii) Assume that α2k+1 ≤ α2k+2. Then there exists θ2k+1,2k+2 ≥ 0 such that, for
θ ∈] − θ2k+1,2k+2, θ2k+1,2k+2[, there exist μ2k+1(θ), μ2k+2(θ) real and simple eigen-
values of (7) which satisfy θ �→ μ2k+1(θ), μ2k+2(θ) are analytic and even, and
μ2k+1(θ), μ2k+2(θ) are strictly monotone on [0, θ2k+1,2k+2]. Also,

minθ∈[0,θ2k+1,2k+2] μ2k+1(θ) = μ2k+1(0) = λ2k+1
(
π) = α2k+1,

maxθ∈[0,θ2k+1,2k+2] μ2k+2(θ) = μ2k+2(0) = λ2k+2
(
π) = α2k+2,

lim|θ |→θ2k+1,2k+2 μ2k+1(θ) = lim|θ |→θ2k+1,2k+2 μ2k+2(θ) = μ2k+1,2k+2,

{μ2k+1(θ) : θ ∈ [0, θ2k+1,2k+2]} = [a2k+1, μ2k+1,2k+2] and
{μ2k+2(θ) : θ ∈ [0, θ2k+1,2k+2]} = [μ2k+1,2k+2, a2k+2].

123



8 Page 6 of 21 C. Conca et al.

v0
0

e1

e2
v0
1

v1
1

v2
1

v0
2

v1
2

v2
2

v0
3

v1
3

v−1
2

v−1
3

v−2
3v−1

1v0
−1

v̂1
0 v̂0

2

v̂1
2

v̂2
1

v̂1
1

v̂0
1

v̂−1
2

v̂−1
1v̂0

−1

v̂0
0

v̂2
0

v1
0

v2
0

v3
0

v1
−1

v2
−1

v3
−1

v̂2
−1

v̂3
−1
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i representing the graphene G

Thus, the authors of Allaire and Orive (2005) conclude that

R = σB ∪ σe and σB ∩ σe =
+∞⋃

i=0

{αi } ∪ {βi }, (9)

where

σe = {μ0(θ) : θ ∈ R} ∪ {μ2k+1(θ), μ2k+2(θ) : θ ∈ [0, θ2k+1,2k+2]}
∪{ν2k(θ), ν2k+1(θ) : θ ∈ [0, θ2k,2k+1]}.

We can see that if ϕ1(·; λ) is the function defined in (2), then there exists three sets, A,B
y C, such that

λ ∈ A ⇔ |ϕ1(t; λ)| ≤ 1, ∀t ∈ R, (10)

λ ∈ B ⇔ ϕ1(t; λ) > 1, ∀t ∈ R, (11)

λ ∈ C ⇔ ϕ1(t; λ) < −1, ∀t ∈ R. (12)

3 The graphene

The graphene is a substance made of pure carbon, where the atoms follow a regular hexagon
pattern. This atoms are mathematically described by a set of vertices V ⊆ R

2 as Fig. 2 shows.
More precisely, let us introduce the vectors

e1 =
(
3
2 ,

√
3
2

)
and e2 =

(
0,

√
3
)

. (13)

Then, the set of vertices V is defined by

V = {
v
j
i , v̂

j
i : i, j ∈ Z

}
, (14)

where the family of vertices (v
j
i )i, j∈Z and (v̂

j
i )i, j∈Z are defined by the relations:

v
j
i = ie1 + je2, (15)

v̂
j
i = v

j
i + (1, 0). (16)
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Fig. 3 Edges ai, jE , ai, jN and ai, jS ,
and their respective vertices

v̂j
i

vj
i

v̂j
i−1

v̂j+1
i−1

ai,j
N

ai,j
S

ai,j
E

As Fig. 2 shows, these vertices are connected by a set of edges A defined by

A = {
ai, jE , ai, jN , ai, jS : ai, jE = [v j

i , v̂
j
i ], ai, jN = [v j

i , v̂
j
i−1], ai, jS = [v j

i , v̂
j+1
i−1 ], i, j ∈ Z

}
,

(17)
as it is displayed in Fig. 3. These set of edges and vertices constitute an hexagonal grid.

Using this notation, the structure of the graphene is represented by a non-oriented graph
G determined by the set of vertices and edges previously defined, i.e.,

G = (V,A).

We notice that each edge of the graphene is bijective to the segment [0, 1] ⊆ R. In fact, to
visualize this bijection, we consider the parameterization σ , oriented from v tow, defined by

σ : [0, 1] × R
2 × R

2 → R
2

(t; v,w) �→ σ (t; v,w) = v + t(w − v).
(18)

Thus, each edge [v1, v2] ∈ A can be written as σ ([0, 1]; v1, v2). The inverse function is such
that

x ∈ [v1, v2] �→ σ−1(x; v1, v2) = ‖ x − v1 ‖
‖ v2 − v1 ‖ . (19)

Using the parametrization (18), whose inverse is (19), for each edge [v1, v2] ∈ A we can
define the space L2(v1, v2) as follows:

L2(v1, v2) = {
Ψ̃ ◦ σ−1(·; v1, v2) : Ψ̃ ∈ L2(0, 1)

}
,

endowed with the norm ‖Ψ̃ ◦ σ−1(·; v1, v2)‖L2(v1,v2)
= ‖Ψ̃ ‖L2(0,1). Then we can define

L2(A) as

L2(A) =
{
(Ψa)a∈A ∈

⊕

a∈A
L2(a) :

∑

a∈A
‖Ψa‖2L2(a)

< ∞
}
. (20)

This space can be also called L2(G).
Similarly, for each edge [v1, v2] ∈ A we can define the Sobolev space H2(v1, v2) by

H2(v1, v2) = {
Ψ̃ ◦ σ−1(·; v1, v2) : Ψ̃ ∈ H2(0, 1)

}
,
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endowed with the norm ‖Ψ̃ ◦ σ−1(·; v1, v2)‖H2(v1,v2)
= ‖Ψ̃ ‖H2(0,1). Thus, the Sobolev

space H2(G) is defined as the subset of functions (Ψa)a∈A ∈ ⊕
a∈A H2(a) which satisfy

the three following conditions:
∑

a∈A
‖Ψa‖2H2(a)

< ∞, (21)

∀v ∈ V,∀a1, a2 ∈ A [v ∈ a1 ∩ a2 ⇒ Ψa1(v) = Ψa2(v)], (22)

∀v ∈ V
∑

v2∈V
[v,v2]∈A

DΨ[v,v2](v; v2 − v) = 0, (23)

wherewe have denoted by DΨ[v,v2](v; v2−v) the directional derivative of the functionΨ[v,v2]
at the point v in the direction [v2−v]. These conditions are usually calledNeumann conditions
of the grapheneorKirchhoff conditions. Equation (22) corresponds to the continuity condition
on each vertex going from one edge to the other. It implies that the electron wavefunction is
continuous throughout the lattice and its spatial derivative, related to the momentum of the
electrons, is alwayswell defined, a physically necessary condition. The secondEq. (23), states
that the sum of the outward fluxes from the vertex v must be zero. This zero-fluxes condition
for the wavefunction implies that the electrons in the lattice are not accumulating at the nodes.
This is analogous to the zero sum of flows in a pipe network where an incompressible fluid
circulates.

4 The Hamiltonian of graphene

Let us now define the Hamiltonian of graphene in L2(G). Let V (t) be a function in L2(0, 1)
such that

V (t) = V (1 − t). (24)

TheHamiltonian of grapheneH : D(H) ⊂ L2(G) → L2(G) is the operator, with domain
D(H) = H2(G), that maps Ψ = (Ψa)a∈A ∈ H2(G) toHΨ ∈ L2(G),HΨ = ((HΨ )a)a∈A,
such that

(HΨ )a(x) = (−Ψ̃ ′′
a + V Ψ̃a

) ◦ σ−1(x; a), (25)

where, for each edge a ∈ A, Ψ̃a = Ψa ◦ σ (·; a) ∈ H2(0, 1).
The goal of this section is to study the spectrum of the operator H, characterizing the

functions Ψ which are bounded or unbounded solutions. In order to do this, we seek for non-
zero functions Ψ = (Ψa)a∈A satisfying (22)–(23) and the following differential equations:

− Ψ̃ ′′
a (t) + V (t)Ψ̃a(t) = λΨ̃a(t), ∀a ∈ A,∀t ∈ (0, 1), (26)

where λ ∈ R is a parameter.
Our goal is to classify the solutions of (26) according to the different values of λ, looking

for bounded and unbounded solutions of graphene. We see that the condition (21) is not
satisfied by our solutions since the operator H has continuous spectrum.

We are interested in studying the solutions of (26) that satisfy the properties

Ψ (x + e1) = R1Ψ (x),∀x ∈ G (27)

Ψ (x + e2) = R2Ψ (x),∀x ∈ G (28)

where R1 and R2 are real or complex numbers belonging to the set

DR = {R ∈ C : |R| = 1 ∨ R ∈ R − {0}}.
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vj
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vj−1
i+1
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v̂j
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Fig. 4 Adjacent edges to the vertices of type v̂
j
i (Case (a)) and type v

j
i (Case (b))

We notice that if |R1| = |R2| = 1, the solutions will be bounded in the graphene, whereas
if one of the two constants has modulus different than one, the solution will be unbounded
in the direction ±e1 o ±e2.

A periodic solution, of the type in Eqs. (27) and (28), is expected in a periodic system
such as graphene, as a consequence of Bloch theorem (Bloch 1929). When the environment
in which the electrons move around repeats periodically in space, like a crystal, the electrons
wave function will have the same period as the crystal, a property common for all solid states
systems with a crystalline lattice structure.

To study this situation we will proceed as follows: in Sect. 5, we will analyze how to
impose Kirchhoff’s conditions (22)–(23) and, in Sect. 6, we will characterize the values of λ

respect to the constants R1, R2.

5 Kirchhoff’s conditions

In this section, we will properly characterize the functions Ψ = (Ψa)a∈A that satisfy Kirch-
hoff’s conditions (22)–(23). First of all, we notice that each vertex v ∈ V has exactly three
adjacent edges, as Fig. 4 shows. Hence, continuity and flux conditions will be explicitly
written at the vertices of type v

j
i and v̂

j
i of V , where i, j ∈ Z (see 14).

The main result in this section will be split in two theorems separating the cases
ϕ2(1; λ) �= 0 and ϕ2(1; λ) = 0, where ϕ2(·; λ) is the function defined in (2). This sep-
aration is important because in the second case λ is included in the Dirichlet spectrum.
The first theorem completely characterizes the functions that satisfy the flux and continuity
conditions stated in (22)–(23).

Theorem 1 If ϕ2(1; λ) �= 0, then every function Ψ = (Ψa)a∈A satisfying (26), also satisfies
(22)–(23) if and only if, for each i, j ∈ Z, it holds

−3ϕ1(1; λ)Ψ (v
j
i ) + Ψ (v̂

j
i ) + Ψ (v̂

j
i−1) + Ψ (v̂

j+1
i−1 ) = 0, (29)

−3ϕ1(1; λ)Ψ (v̂
j
i ) + Ψ (v

j
i ) + Ψ (v

j
i+1) + Ψ (v

j−1
i+1 ) = 0, (30)

where ϕ1(·; λ) and ϕ2(·; λ) are the functions described in (2).
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8 Page 10 of 21 C. Conca et al.

Theorem 2 If ϕ2(1; λ) = 0, every function Ψ = (Ψa)a∈A satisfying (26), also satisfies the
(22)–(23) if and only if the following conditions hold:

(1) There exists kΨ ∈ R, depending on Ψ , such that

Ψ (v
j
i ) = kΨ and Ψ (v̂

j
i ) = kΨ ϕ1(1; λ), ∀i, j ∈ Z. (31)

(2) If on each edge a ∈ A, the functions Ψa can be written as

Ψ̃a(t) = Ψ̃a(0)ϕ1(t; λ) + caϕ2(t; λ), (32)

where the parameterization t is chosen such that the edge goes from left to right, then
the constants (ca)a∈A satisfy the relations:

2kΨ ϕ′
1(1; λ) + c[v̂ j+1

i−1 ,v
j
i ] + c[v̂ j

i−1,v
j
i ] = c[v j

i ,v̂
j
i ]ϕ1(1; λ), ∀i, j ∈ Z, (33)

kΨ ϕ′
1(1; λ) + c[v j

i ,v̂
j
i ]ϕ1(1; λ) = c[v̂ j

i ,v
j
i+1] + c[v̂ j

i ,v̂
j−1
i+1 ], ∀i, j ∈ Z. (34)

5.1 Proof of Theorem 1

We begin by enunciating the following lemma, where we introduce two auxiliary functions
that will be used in this section.

Lemma 1 If ϕ2(1; λ) �= 0, then there exist two solutions φ1(·; λ) and φ2(·; λ) of (1) that
satisfy the boundary conditions

φ1(0; λ) = 1, φ1(1; λ) = 0, (35)

and
φ2(0; λ) = 0, φ2(1; λ) = 1. (36)

Moreover, φ1(·; λ) and φ2(·; λ) are unique and are determined by

φ1(t; λ) = ϕ1(t; λ) −
(

ϕ1(1; λ)

ϕ2(1; λ)

)

ϕ2(t; λ), (37)

φ2(t; λ) =
(

1

ϕ2(1; λ)

)

ϕ2(t; λ). (38)

Proof Existence follows directly from evaluating (37)–(38) in t = 0 and t = 1. To prove
uniqueness of φ1(·; λ), let us assume that there exists a function φ1b(·; λ) solution of (1) that
satisfies (35). This solution can be written as a linear combination of ϕ1(·; λ) and ϕ2(·; λ) as
follows

φ1b(t; λ) = c1ϕ1(t; λ) + c2ϕ2(t; λ).

Evaluating at t = 0 and using (35) we obtain c1 = 1. Now, by taking t = 1, from (35) and
(37), we get

−
(

ϕ1(1; λ)

ϕ2(1; λ)

)

ϕ2(1; λ) = c2ϕ2(1; λ) (39)

which leads to c2 = −
(

ϕ1(1; λ)

ϕ2(1; λ)

)

, i.e., φ1b(t; λ) = φ1(t; λ). Uniqueness of φ2(·; λ) can be

obtained similarly. ��
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Considering the functions φ1(·; λ) and φ2(·; λ) defined in Lemma 1, we can prove Theo-
rem 1 as follows.

Proof of Theorem 1 The condition (22) is satisfied if and only if the function Ψ = (Ψa)a∈A
has a well-defined and unique trace (independent on the edge) on each vertex v ∈ V of
graphene. In expressions (29) and (30) , we have explicitly used the values of traces of u at
each vertex of the form v

j
i , v̂

j
i ∈ V . To finish the proof, we focus on the flux property (23).

We will prove that the identity (29) is equivalent to the flux condition (23) at the vertices
v
j
i of Fig. 4-Case (a). To simplify the notation, we denote by f , g and h to restrictions of the

function u to the edges [v j
i , v̂

j+1
i−1 ], [v j

i , v̂
j
i−1] and [v j

i , v̂
j
i ], respectively; and by A, B, C and

D, the traces of the functionΨ at the vertices v
j
i , v̂

j+1
i−1 , v̂

j
i−1 and v̂

j
i , respectively (see Fig. 5).

Since the function Ψ = (Ψa)a∈A satisfies (26), its traces are well defined at the vertices
and ϕ2(1; λ) �= 0, we can use the functions φ1(·; λ), φ2(·; λ) defined in (35)–(36) to find its
values on each edge [v j

i , v̂
j+1
i−1 ], [v j

i , v̂
j
i−1] and [v j

i , v̂
j
i ] in terms of its corresponding values

at the vertices as follows:
⎧
⎨

⎩

f̃ (t) = Aφ1(t; λ) + Bφ2(t; λ)

g̃(t) = Aφ1(t; λ) + Cφ2(t; λ)

h̃(t) = Aφ1(t; λ) + Dφ2(t; λ),

(40)

where f̃ , g̃ and h̃ represent the composition of the functions f , g, h with the parameterization
σ defined in (18) for each edge. With this notation, the condition (23) written at the vertex
v̂
j
i is equivalent to

f̃ ′(0) + g̃′(0) + h̃′(0) = 0. (41)

Then taking derivatives in (40) and replacing in (41), we get

3Aφ′
1(0; λ) + (B + C + D)φ′

2(0; λ) = 0. (42)

The values φ′
1(0; λ) and φ′

2(0; λ) can be directly obtained by taking derivatives in the defi-
nitions (37)–(38), evaluating at t = 0 and using the properties (2). Thus, the identity (42) is
equivalent to

−3A

(
ϕ1(1; λ)

ϕ2(1; λ)

)

+ (B + C + D)

(
1

ϕ2(1; λ)

)

= 0.

Multiplying this expression by ϕ2(1; λ), we finally obtain

−3Aϕ1(1; λ) + B + C + D = 0,

which is exactly the identity (29) with the corresponding changes in nomenclature.
The proof for (30) is similar, since Eq. (30) is equivalent to the flux conditions (23)

established at the vertices v̂
j
i (Fig. 4-Case (b)). ��

5.2 Proof of Theorem 2

In this section, we study the particular case where ϕ2(1; λ) = 0. Since the function ϕ2(·; λ)

also vanishes at t = 0 (see 2), then ϕ2(·; λ) is a non-trivial solution of the following Dirichlet
boundary value problem:

{−ϕ′′
2 (x; λ) + V (x)ϕ2(x; λ) = λϕ2(x; λ), in (0, 1)

ϕ2(0; λ) = ϕ2(1; λ) = 0.
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C = u(vj
i ) A = u(v̂j

i )

B = u(vj
i+1)

D = u(vj−1
i+1 )

f

g

h

Fig. 5 Vertices where the values of function u are A, B, C and D

Hence, the case we are interested in this section corresponds to the values of λ of the spectrum
of the Dirichlet operator associated with the differential operator H.

In the following lemma, we summarize additional properties of the functions ϕ1(·; λ) and
ϕ2(·; λ) that are satisfied in this case.

Lemma 2 If ϕ2(1; λ) = 0, then

ϕ′
2(1; λ) = ϕ1(1; λ) = 1 and D(λ) = 2, or

ϕ′
2(1; λ) = ϕ1(1; λ) = −1 and D(λ) = −2,

where D(λ) has been defined in (5).

Proof From (24), we have that ϕ1(1−t; λ) and ϕ2(1−t; λ) are solutions of (1) and, therefore,
they can be written as a linear combination of ϕ1(·; λ) and ϕ2(·; λ) as follows:

ϕ1(1 − t; λ) = ϕ1(1; λ)ϕ1(t; λ) − ϕ′
1(1; λ)ϕ2(t; λ), (43)

ϕ2(1 − t; λ) = ϕ2(1; λ)ϕ1(t; λ) − ϕ′
2(1; λ)ϕ2(t; λ). (44)

Considering t = 1 in (43) and in the derivative of (44), we have

1 = ϕ1(1; λ)2 − ϕ′
1(1; λ)ϕ2(1; λ)

−1 = ϕ2(1; λ)ϕ′
1(1; λ) − ϕ′

2(1; λ)2,

i.e.,

ϕ′
1(1; λ)ϕ2(1; λ) = ϕ1(1; λ)2 − 1, (45)

ϕ′
1(1; λ)ϕ2(1; λ) = ϕ′

2(1; λ)2 − 1. (46)

From (45)–(46), we have
ϕ′
2(1; λ)2 = ϕ1(1; λ)2 = 1 (47)

and, from (4), we conclude

ϕ′
2(1; λ) = ϕ1(1; λ) = 1, or ϕ′

2(1; λ) = ϕ1(1; λ) = −1.

Thus, from (5),

D(λ) = 2, or D(λ) = −2,

respectively. ��
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Proof of Theorem 2 To show part (1), we consider an arbitrary edge a = [v1, v2] ∈ A joining
the vertices v1, v2. Since Ψ satisfies (26), from (3), we can write

Ψ̃[v1,v2](t) = Ψ̃[v1,v2](0)ϕ1(t; λ) + Ψ̃ ′[v1,v2](0)ϕ2(t; λ), ∀t ∈ [0, 1].
Since ϕ2(1; λ) = 0, we get

Ψ̃[v1,v2](1) = Ψ̃[v1,v2](0)ϕ1(1; λ),

that is,
Ψ (v2) = Ψ (v1)ϕ1(1; λ). (48)

Since this relation is true on each edge and ϕ1(1; λ)2 = 1, we conclude that going through
two consecutive edges [v1, v2]–[v2, v3] there holdsΨ (v3) = Ψ (v1). Then using the notation
kΨ = Ψ (v00) andnoticing that all the verticesv

j
i are connected by the unionof two consecutive

edges, we get that

Ψ (v
j
i ) = kΨ ∀i, j ∈ Z.

Thus, (31) is obtained using this identity together with (48) which allows us to relate the
vertices v

j
i with v̂

j
i .

To prove (33), we study the flux condition on the vertices of type v
j
i ∈ V . To simplify

notation, we denote by f , g and h, the restriction of the function Ψ to the edges [v̂ j+1
i−1 , v

j
i ],

[v̂ j
i−1, v

j
i ] and [v j

i , v̂
j
i ], respectively, and by A, the trace of the function Ψ on the central

vertex v
j
i (see Fig. 6). Using (48), we obtain that the traces of Ψ on the external vertices

v̂
j+1
i−1 , v̂

j
i−1 and v̂

j
i , are equal to Aϕ1(1; λ). To use the notation in (32), we denote by c f , cg

and ch the corresponding constants c[v̂ j+1
i−1 ,v

j
i ], c[v̂ j

i−1,v
j
i ] and c[v j

i ,v̂
j
i ]ϕ1(1; λ).

Then using (32), we write
⎧
⎨

⎩

f̃ (t) = Aϕ1(1; λ) ϕ1(t; λ) + c f ϕ2(t; λ)

g̃(t) = Aϕ1(1; λ) ϕ1(t; λ) + cg ϕ2(t; λ)

h̃(t) = A ϕ1(t; λ) + ch ϕ2(t; λ),

(49)

where f̃ , g̃ and h̃ represent the composition of f , g, h with the parameterization σ defined
in (18) for each edge.

Thus, the flux condition (23) on the vertex v
j
i can be written as

− f̃ ′(1) − g̃′(1) + h̃′(0) = 0. (50)

Hence, taking derivative in (49) and replacing in (50), from (2), we get

2Aϕ1(1; λ)ϕ′
1(1; λ) + (c f + cg)ϕ

′
2(1; λ) = ch .

Multiplying by ϕ1(1; λ) and using (4) and (47), we conclude that

2Aϕ′
1(1; λ) + c f + cg = chϕ1(1; λ).

We have proved, with corresponding changes of notation, that the flux condition (23) written
at the vertex v

j
i is equivalent to the identity (33).

Similarly, we can prove that the flux condition (23) written at the vertex v̂
j
i is equivalent

to the identity (34).
Thus, the conditions (22)–(23) are satisfied if and only if the identities (31), (33) and (34)

are also satisfied. ��
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Ψ(v̂j
i−1) = Aϕ1(1;λ)

Ψ(vj
i ) = A

Ψ(v̂j+1
i−1 ) = Aϕ1(1;λ)

Ψ(v̂j
i ) = Aϕ1(1;λ)

f

g

h

Fig. 6 Verticeswhere the function u is A and Aϕ1(1; λ), and the respective orientation of the parameterization t

v̂j
i

vj
i

v̂j+1
i−1

v̂j
i−1

vj−1
i+1

vj
i+1

Fig. 7 Vertices v
j
i and v̂

j
i and their corresponding adjacent vertices

6 Spectral theory in the graphene

In this section, we are interested in characterizing all functions Ψ = (Ψa)a∈A that satisfy
(26), the continuity and flux conditions (22)–(23), and also the quasi-periodicity conditions
(27)–(28). The analysis in this section is restricted to the case where the values λ ∈ R satisfy
ϕ2(1; λ) �= 0.

We will use the result shown in Theorem 1, applied to the vertices v
j
i and v̂

j
i , for all

i, j ∈ Z (see Fig. 7).
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On the graphene Hamiltonian operator Page 15 of 21 8

From definitions (15)–(16), it holds that

v
j
i = v

j
i+1 − e1, v

j−1
i+1 = v

j
i+1 − e2

v̂
j
i = v̂

j
i−1 + e1, v̂

j+1
i−1 = v̂

j
i−1 + e2.

Hence, properties (27)–(28) transform the identities (29)–(30) to

−3ϕ1(1; λ)Ψ (v
j
i ) +

(
1 + R−1

1 + R−1
1 R2

)
Ψ (v̂

j
i ) = 0,

−3ϕ1(1; λ)Ψ (v̂
j
i ) +

(
1 + R1 + R1R

−1
2

)
Ψ (v

j
i ) = 0.

If we multiply the first equation by R1 and reorder the system leaving as variables the
quantities R1Ψ (v

j
i ) and Ψ (v̂

j
i ), we get

−3ϕ1(1; λ)R1Ψ (v
j
i ) +

(
1 + R1 + R2

)
Ψ (v̂

j
i ) = 0, (51)

(
1 + R−1

1 + R−1
2

)
R1Ψ (v

j
i ) − 3ϕ1(1; λ)Ψ (v̂

j
i ) = 0. (52)

These identities allow us to obtain the solutions in terms of λ, R1 and R2, as a homogeneous
linear system of equations. Thus, we conclude that it as a non-trivial solution if and only if
the determinant of the corresponding matrix is zero, i.e., if

9ϕ1(1; λ)2 = (1 + R1 + R2)(1 + R−1
1 + R−1

2 ). (53)

Equation (53) constitutes the dispersion relation of graphene for bounded or unbounded
solutions having the quasi-periodic behavior (27)–(28). This equation relates the type of
functions we seek, represented by the constants R1 and R2 (wave type), with the values of
λ ∈ C (frequencies) through the function ϕ1(1; λ).

In the following sections, we will investigate for which values of λ bounded or unbounded
solutions of the problem are obtained.

6.1 Bounded solutions

In this section, we study the dispersion relation (53) in the case where R1 and R2 are such
that the solutionΨ = (Ψa)a∈A is bounded. Clearly, R1 and R2 must satisfy |R1| = |R2| = 1.

For this analysis, it is convenient to introduce the auxiliary variables θ1, θ2 ∈ [−π, π]
such that

R1 = eiθ1 R2 = eiθ2 . (54)

In this way, the dispersion relation of graphene (53) becomes

9ϕ1(1; λ)2 = (1 + eiθ1 + eiθ2)(1 + e−iθ1 + e−iθ2). (55)

Noticing here that the right-hand side is the product of a complex number and its conjugate,
we can write

ϕ1(1; λ)2 = F(θ1, θ2) := 1
9

∣
∣1 + eiθ1 + eiθ2

∣
∣2. (56)

Simple calculations show that

0 ≤ F(θ1, θ2) ≤ 1, ∀θ1, θ2 ∈ [−π, π].
In addition,

{
F(θ1, θ2) : θ1, θ2 ∈ [−π, π]

}
= [0, 1].
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This result is summarized in the following lemma.

Lemma 3 For each θ1, θ2 ∈ [−π, π], the solutions ϕ1(1; λ) of (26) that satisfy (2) also
satisfy

ϕ1(1; λ) ∈ [−1, 1].
This result, together with the theory developed in Sect. 2, implies the following corollary.

Corollary 1 For each θ1, θ2 ∈ [−π, π], the values of λ associated with the solutions ϕ1(1; λ)

of (26) that satisfy (2) are given by

λ ∈ ϕ−1
1

(√
F(θ1, θ2)

)
∪ ϕ−1

1

(
−√

F(θ1, θ2)
)

,

where ϕ−1
1 denotes the preimage set of the function ϕ1(1; λ).

Remark 1 From (10), (11) and (12), it follows that

λ ∈ Aθ ∪ Aπ−θ ,

where

θ = cos−1
√
F(θ1, θ2)

and the sets Aθ are defined by

Aθ = {λi (θ) : i ∈ N}.

6.2 Unbounded solutions

We study now the dispersion relation (53) when R1, R2 ∈ R
∗. In this case, the expression

on the right-hand side can have different values for different R1 and R2. That is why we are
interested in characterizing the regions:

RS =
{
(R1, R2) ∈ R

2 : 0 ≤ (1 + R1 + R2)(1 + R−1
1 + R−1

2 ) < 9
}

(57)

RU =
{
(R1, R2) ∈ R

2 : 9 ≤ (1 + R1 + R2)(1 + R−1
1 + R−1

2 )
}
. (58)

We will show Theorem 3.

Remark 2 We are not interested in the analysis in the region (1+R1+R2)(1+R−1
1 +R−1

2 ) <

0, because in this case the system (51)–(52) does not have a non-trivial solution.

Theorem 3 The regions RS and RU defined in (57)–(58) are not empty. Moreover, they are
characterized by (see Fig. 8)

(i) If R1, R2 > 0, then (R1, R2) ∈ RU .
(ii) If R2 ∈ (−∞,−1), then

(R1, R2) ∈ RS ⇐⇒ R1 ∈
[ −R2

1 + R2
, R1,2

)

∪ [−(1 + R2), R1,1)

(R1, R2) ∈ RU ⇐⇒ R1 ∈ [R1,2, 0) ∪ [R1,1,+∞).

(iii) If R2 = −1, then (R1, R2) ∈ RS.
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−2

−1

0

R1,1

α

β

R1,1

R1,2

R1,1
α

R1,2

Zone (vi)

Zone (vii)

Zone (iv)

Zone (ii)

7+4
√
3

7-4
√
3

Zone (v)

γ

Fig. 8 RegionsRS (red) andRU (yellow), separated by the curves α : R1 = −(1+ R2), β : R1 = −R2
1 + R2

,

γ : R1 = 0, R1 = R1,1 and R1 = R1,2. The white regions are not interesting (see Remark 2)

(iv) If R2 ∈ (−1, 0), then

(R1, R2) ∈ RS ⇐⇒ R1 ∈ (R1,1,−(1 + R2)] ∪
(

R1,2,
−R2

1 + R2

]

(R1, R2) ∈ RU ⇐⇒ R1 ∈ (−∞, R1,1] ∪ (0, R1,2].

(v) If R2 ∈ (0, 7 − 4
√
3), then

(R1, R2) ∈ RS ⇐⇒ R1 ∈ [−(1 + R2), R1,1) ∪
(

R1,2,
−R2

1 + R2

]

(R1, R2) ∈ RU ⇐⇒ R1 ∈ [R1,1, R1,2] ∪ (0,+∞).

(vi) If R2 ∈ [7 − 4
√
3, 7 + 4

√
3], then

(R1, R2) ∈ RS ⇐⇒ R1 ∈
[

−(1 + R2),
−R2

1 + R2

]

(R1, R2) ∈ RU ⇐⇒ R1 ∈ (0,∞).

(vii) If R2 ∈ (7 + 4
√
3,∞), then

(R1, R2) ∈ RS ⇐⇒ R1 ∈ [−(1 + R2), R1,2) ∪
(

R1,1,
−R2

1 + R2

]

(R1, R2) ∈ RU ⇐⇒ R1 ∈ [R1,2, R1,1] ∪ (0,+∞).
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In (ii), (iv), (v) and (vii), R1,1 and R1,2 are given by

R1,1 = −
(
R2
2 − 6R2 + 1

2(R2 + 1)

)

+
(R2 − 1)

√
R2
2 − 14R2 + 1

2(R2 + 1)

R1,2 = −
(
R2
2 − 6R2 + 1

2(R2 + 1)

)

−
(R2 − 1)

√
R2
2 − 14R2 + 1

2(R2 + 1)
.

Proof To show (i), it is enough to notice that

(1 + R1 + R2)(1 + R−1
1 + R−1

2 ) = 3 + (R1 + R−1
1 ) + (R2 + R−1

2 ) +
(
R1

R2
+

(
R1

R2

)−1
)

.

Thus, if R1, R2 > 0, each term in parenthesis of the right-hand side is greater or equal than
two; hence, (R1, R2) ∈ RU .

To study the other cases, let us begin by characterizing those points that belong toRU∪RS ,
i.e., those points in the plane that satisfy

G1(R1, R2) := (1 + R1 + R2)(1 + R−1
1 + R−1

2 ) ≥ 0. (59)

First, it is convenient to reorder the expression G1(R1, R2) from (59) as follows:

G1(R1, R2) = (R1 + R2 + 1)(R1(R2 + 1) + R2)

R1R2
.

Here the numerator is a quadratic expression when R2 �= −1. In this case, G1(R1, R2)

changes sign at the points

−(1 + R2),
−R2

1 + R2
, 0

and, towards −∞, has the same sign as R2+1
R2

. With this information, we can solve inequality
(59) for R2 in different intervals:

If R2 < −1, it holds R1 ∈
[ −R2

1 + R2
, 0

)

∪ [−(1 + R2),∞). (60)

If R2 ∈ (−1, 0), it holds R1 ∈ (−∞,−(1 + R2)] ∪
(

0,
−R2

1 + R2

]

. (61)

If R2 > 0, it holds R1 ∈
[

−(1 + R2),
−R2

1 + R2

]

∪ (0,∞). (62)

If R2 = −1, inequality (59) becomes

G1(R1,−1) := 1 ≥ 0, (63)

which is valid for all R1 ∈ R
∗.

To find the separation between the regions RS and RU , it is enough to find the solution
to the inequality

G2(R1, R2) := (1 + R1 + R2)(1 + R−1
1 + R−1

2 ) − 9 ≥ 0,

which is equivalent to

G2(R1, R2) = 1

R1R2

(
R2
1(R2 + 1) + R1(R

2
2 − 6R2 + 1) + R2(R2 + 1)

) ≥ 0. (64)
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Once again, the case R2 = −1 can be isolated and (64) becomes

G2(R1, R2) = −8 ≥ 0,

which is false for all R1 ∈ R
∗. This, together with (63), implies (iii).

In the general case R2 �= −1, if we factor out R2 + 1 in (64), we have

G2(R1, R2) = R2 + 1

R1R2

(

R2
1 + R1

R2
2 − 6R2 + 1

R2 + 1
+ R2

)

. (65)

Then to solve inequality (64), we can see that it is convenient to factorize the quadratic
expression

R2
1 + R1

R2
2 − 6R2 + 1

R2 + 1
+ R2, (66)

whose discriminant is

� = (R2 − 1)2(R2
2 − 14R2 + 1)

(R2 + 1)2
=

(R2 − 1)2
(
R2 − (7 + 4

√
3)

)(
R2 − (7 − 4

√
3)

)

(R2 + 1)2
.

Thus, if R2 ∈ [7− 4
√
3, 7+ 4

√
3] ⊆ R

+, the quadratic expression (66) is always greater or
equal than zero, and then inequality (64) is equivalent to

1

R1
≥ 0, (67)

whose solution belong to (0,∞). This, together with (62), implies (vi).
If R2 /∈ [7 − 4

√
3, 7 + 4

√
3], the quadratic (66) can be written as

(R1 − R1,1)(R1 − R1,2),

where R1,1 and R1,2 are given by

R1,1 = −
(
R2
2 − 6R2 + 1

2(R2 + 1)

)

+
(R2 − 1)

√
R2
2 − 14R2 + 1

2(R2 + 1)
,

R1,2 = −
(
R2
2 − 6R2 + 1

2(R2 + 1)

)

−
(R2 − 1)

√
R2
2 − 14R2 + 1

2(R2 + 1)
.

Hence, we can factorize (65) as follows:

G2(R1, R2) = R2 + 1

R1R2
(R1 − R1,1)(R1 − R1,2).

In this case, G2(R1, R2) changes sign at the points

R1,1, R1,2, 0

and, towards−∞, has the same sign as R2+1
R2

. Using this information we can solve inequality
(64) for R2 in different intervals as follows:

If R2 < −1, it holds that R1 ∈ [R1,2, 0) ∪ [R1,1,+∞),

If R2 ∈ (−1, 0), it holds that R1 ∈ (−∞, R1,1] ∪ (0, R1,2],
If R2 ∈ (0, 7 − 4

√
3), it holds that R1 ∈ [R1,1, R1,2] ∪ (0,+∞),

If R2 > 7 + 4
√
3, it holds that R1 ∈ [R1,2, R1,1] ∪ (0,+∞).

123



8 Page 20 of 21 C. Conca et al.

Comparing this result and (60)–(61), we obtain the cases (ii), (iv), (v) and (vii). ��
Remark 3 From (10), (11) y (12), the following cases hold:

– If (R1, R2) ∈ RS , then λ ∈ Aθ ∪ Aπ−θ , with θ = cos−1 √
G(θ1, θ2) ∈ (0, π/2]

– If (R1, R2) ∈ RU , then λ ∈ Bθ ∪ Cθ , with θ = cosh−1 √
G(θ1, θ2) ∈ (0,∞).

Here the sets Aθ , Bθ and Cθ are defined by

Aθ = {λi (θ) : i ∈ N}, Bθ = {μi (θ) : i ∈ N}, Cθ = {νi (θ) : i ∈ N},
where λi (θ), μi (θ) and νi (θ) are the eigenvalues mentioned in problems (6), (7) and (8),
respectively, and the function G is given by

G(θ1, θ2) = 1

9
(1 + R1 + R2)(1 + R−1

1 + R−1
2 ).

Remark 4 The eigenvectors obtained for each value of λ = λ(R1, R2) satisfy (51) and (53).
Then it values at the vertices (v

j
i ) and (v̂

j
i ) satisfy the relation

Ψ (v̂
j
i ) = ±R1

√
1 + R−1

1 + R−1
2

1 + R1 + R2
Ψ (v

j
i ). (68)

Using (27)–(28) and (68), we obtain that the eigenvectors are characterized by

Ψ (v
j
i ) = Ri

1R
j
2Ψ (v00),

Ψ (v̂
j
i ) = ±Ri+1

1 R j
2

√
1 + R−1

1 + R−1
2

1 + R1 + R2
Ψ (v00).

7 Conclusions

We solved the eigenvalues problem for the Hamiltonian of the electron wave function in
graphene considering Kirchhoff conditions, characterizing the stability of the solution.

Knowing that the spectrum of the Hill equation (1) can be completely characterized in
one dimension by (9), we looked for an analogous result for the spectrum of the Hamiltonian
H, defined in (25), in the hexagonal network G for graphene.

We divided the problem into two cases depending on the boundary condition: Dirichlet
conditions when one of the basis functions of the Hill equation is equal to zero, ϕ2(1, λ) = 0;
and a non-trivial case otherwise, ϕ2(1, λ) �= 0. The analysis of both cases led us to the two
main theorems of this work 1 and 2, respectively.

We obtained bounded solutions when considering normalized imaginary characteristic
multipliers (54), which are two-dimensional analogs of the one-dimensional Bloch spectrum.
We explicitly obtained the dispersion relation of the problem (53). From this, we verified that
the basis function ϕ1(1; λ) is greater than minus one and less than one, as established by the
Lemma 3. Thus, this result coincides with the theory developed in one dimension (Allaire
and Orive 2005). However, when we consider real characteristic multipliers, R1, R2 ∈ R

∗,
the analogy breaks down. In one dimension, all the solutions are unstable, while in graph
G, we obtained different regions where the solutions can be stable or unstable depending
upon the eigenvalues. These regions are completely defined as indicated in Theorem 3 and
the spectrum of H is completely determined.
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