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Abstract We construct finite time blow-up solutions to the 2-dimensional
harmonic map flow into the sphere S2,

ur = Au+ |VulPu inQx 0, 7T)
u=¢ ona2 x0,T)
u(-,0) =ug inQ,

where €2 is a bounded, smooth domainin R, u : @ x (0, T) — S%, up : @ —
S is smooth, and ¢ = uoim. Given any k points ¢y, . . ., gi in the domain, we
find initial and boundary data so that the solution blows-up precisely at those
points. The profile around each point is close to an asymptotically singular
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scaling of a 1-corotational harmonic map. We build a continuation after blow-
up as a H'-weak solution with a finite number of discontinuities in space—time
by “reverse bubbling”, which preserves the homotopy class of the solution after
blow-up. Furthermore, we prove the codimension one stability of the one point
blow-up phenomenon.

1 Introduction and main result

Let Q be a bounded domain in R? with smooth boundary 3. We denote by
S? the standard 2-sphere. We consider the harmonic map flow for maps from
Q into S2, given by the semilinear parabolic equation

ur=Au+|Vul’u inQx0,7T) (1.1)
u=q ondQ2 x (0,T) (1.2)
u(-,0) = ug in Q (1.3)

for a function u : Q x [0, T) — S2. Here ug : Q@ — S? is a given smooth
map and ¢ = ”0|asz' Local existence and uniqueness of a classical solution
follows from the works [3,10,26]. Equation (1.1) formally corresponds to the
negative L>-gradient flow for the Dirichlet energy Jo IVu |>dx. This energy is
decreasing along smooth solutions u(x, t):

9 N N
athWu(,m _ /th(,m.

Struwe [26] established the existence of an H !-weak solution, where just for
a finite number of points in space—time loss of regularity occurs. This solution
is unique within the class of weak solutions with decreasing energy, see Freire
[11] and also Lin-Wang [15] for another proof.

If T > 0 designates the first instant at which smoothness is lost, we must
have

[Vu(,t)|loo — +o00 as t 1 T.

Several works have clarified the possible blow-up profiles as ¢+ 1+ 7. The
following fact follows from results by Ding-Tian [9], Lin-Wang [13], Qing
[19], Qing-Tian [20], Struwe [26], Topping [27] and Wang [32]:

Along a sequence t, — T and points q1, ..., gx € €2, not necessarily dis-
tinct, u(x, t,) blow-up occurs at exactly those k points in the form of bubbling.

@ Springer



Singularity formation in the 2D harmonic map flow 347

More precisely, under some technical assumptions we have

k .
U b)) — () = Y [U,- (x — 4 ) _ U,-(oo)i| S0 in HY(Q) (1.4)

n
i=1 A
where uy, € H'(Q), q! — qi, 0 < A} — 0, satisfy fori # j,

/\;?+/\’,f+|q{‘—qf|2 .
4+ L4+ —t 5 400
P Y I VEV

The U;’s are entire, finite energy harmonic maps, namely solutions U : R? —
S? of the equation

AU 4+ |VU*’U =0 inR?, / IVU|? < +o0.
RZ

After stereographic projection, U lifts to a smooth map in §2, so that its value
U (00) is well-defined. It is known that U is in correspondence with a complex
rational function or its conjugate. Its energy corresponds to the absolute value
of the degree of that map times the area of the unit sphere, and hence

f IVU|? = 47m, m €N, (1.5)
RZ

see Topping [27].
In particular, u(-, t,) — u,in H 1(€2) and for some positive integers m;, we

have
k

VuC. )P = [Vu + ) dmm; 8, (1.6)

i=1
in the measures sense, were §; denotes the unit Dirac mass at g.

Topping [28] estimated the blow-up rates as A} = o((T — tn)%) (also valid
for more general targets), a fact that tells that the blow-up is of “type II”,
namely it does not occur at a self-similar rate.

A decomposition similar to (1.4) holds if blow-up occurs in infinite time,
T = +oo. In such a case one has the additional information that u, is a
harmonic map, and the convergence in (1.4) also holds uniformly in €2 (the
latter is called the “no-neck property”), see Qing and Tian [20]. Finer properties
of the bubble-decomposition have been found by Topping [27].
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A least energy entire, non-trivial harmonic map is given by

1 2x 2
W(X)_Tp(lz(b(lz—l), XER s (17)

which satisfies

/lVW|2=4n, W (00) =
RZ

—_ o O

Very few examples are known of solutions, which exhibit the singularity for-
mation phenomenon (1.6), and all of them concern single-point blow-up in
radially symmetric corotational classes. When 2 is a disk or the entire space,
a 1-corotational solution of (1.1) is one of the form

u(x, 1) = (eie sinv(r, ”) . x=ré°. (1.8)

cosv(r, t)
Within this class, (1.1) reduces to the scalar, radially symmetric problem

v,  SINVCOSV
U[:Urr+7—r—2. (19)

We observe that the function
w(r) = w — 2arctan(r)

is a steady state of (1.9) which corresponds precisely to the harmonic map W
in (1.7). Indeed,
i0 o
W(x) = (e sin w(r)) '

cos w(r)

Chang, Ding and Ye [4] found the first example of a blow-up solution of
problem (1.1)—(1.3) (which was previously conjectured not to exist). They
obtained the result in the 1-corotational class in a disk D by finding appro-
priate sub-super solutions to (1.9). Assuming that the initial energy satisfies
f D |Vug|?> < 87, the decomposition (1.4) implies that

X

u(x, 1) = W(m)

>+u*+0(1), (1.10)

with u, € H', o(1) — 0in H'-norm, and 0 < A(f) — Oast — T. No
information on the precise blow-up rate A(¢) is obtained. Angenent, Hulshof
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Singularity formation in the 2D harmonic map flow 349

and Matano [1] estimated the blow-up rate of 1-corotational maps as A(t) =
o(T — t). Using matched asymptotics formal analysis for problem (1.9), van
den Berg, Hulshof and King [30] demonstrated that this rate for 1-corotational
maps should generically be given by

T —1t

) A,
O~ g =P

(1.11)

for some k > 0. Raphael and Schweyer [23] succeeded to rigorously construct
an entire 1-corotational solution with this blow-up rate.

In this paper we deal with the general, nonsymmetric case in (1.1)—(1.3).
Our first result asserts that for any given finite set of points of €2 and suitable
initial and boundary values, a solution with a simultaneous blow-up at those
points exists, with a profile resembling a translation and rotation of that in
(1.10) around each bubbling point.

To state our result, we observe that the functions

Us.q.0(x) = QW()%)

with A > 0, ¢ € R? and Q an orthogonal matrix in R? do solve problem (1.5),
and all share the least energy property:

/Rz IVU;.q.01° = 4.

Let us consider the «-rotation matrix around the third axis given by

cosa —sina 0 0-10
e’* = | sina cosa 0|, J=|100
0 0 1 000

In all what follows, we consider problem (1.1)—(1.3) with the boundary
condition (1.2) given by the constant

o(x) = e3. (1.12)

Here and in what follows we denote

1 0 0
er=|(0|, ea=1|1], e3={0 (1.13)
0 0 1
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The constant boundary value es3 precisely corresponds to W(oco) where W
is the standard 1-corotational harmonic map (1.7). This choice is made for
convenience, in fact any sufficiently small perturbation of it is also admissible.
In the radial 1-corotational equation (1.9), this boundary condition in the disk
Q = D(0, R) simply corresponds to v(R, ¢t) = 0. All results below do apply
to a boundary condition which slightly perturbs (1.12), or in the case of entire
space R? where this value is set as a condition at infinity.

Theorem 1 Given points g = (q1, ..., qx) € Q¥ and any sufficiently small
T > 0, there exist uq such the solution uy(x, t) of problem (1.1)—(1.3), for ¢
given by (1.12), blows-up at exactly those k points as t 1+ T. More precisely,
there exist numbers k; > 0, af and a function u, € H Q) N C(Q) such that

k
uq(x,t)—u*(x)—ZeJ“;‘[W<x;cﬁ>—W(oo)] — 0 as t1T,

i

j=1
(1.14)
in the H' and uniform senses in Q where
ri(t) = K.*T—_(l +o(l) as t1T (1.15)
’ " log(T —1)I? ‘ ‘

In particular, we have

k
IVu(, 0> = |[Vus >+ 47y 8, as t 1 T.
qj
j=1

The blow-up solution we constructed in Theorem 1 has no necks. By the
results of Qing-Tian [20], (see also Lin-Wang [13,14]), this follows from the
directly checked fact that the L2 norm of the tension field 7 := u; is bounded
ast 1 T. Our construction suggests that no necks should be present in planar
solutions with isolated least energy blow-up points.

In the next result we analyze the stability of the solutions constructed in
Theorem 1. We recall that in the 1-corotational class in a disc, Chang-Ding-
Ye [4] provided robust conditions on initial and boundary data that guarantee
finite time blow-up. Raphael-Schweyer [23] established stability within the
1-corotational class in entire space for a solution blowing-up with the rate
(1.11). Merle-Raphael-Rodnianski [18] and Raphael-Schweyer [23] conjec-
tured instability outside the 1-corotational class. Van der Berg and Williams
[31] provided formal and numerical evidence that blow-up may indeed be
destroyed by small non-radial perturbations of a 1-corotational singularity.
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Singularity formation in the 2D harmonic map flow 351

Our proof of Theorem 1 yields codimension-one stability of the predicted
blow-up phenomenon in the case of a single blow-up point when no symmetries
are assumed. The meaning of this form of stability is as follows:

Theorem 2 Let u(x, t) be the solution predicted in Theorem 1 of the problem
(1.1)—(1.3) that blows-up at a point g € 2 and a time T > 0. Then there exists
aC! manifold M in C L(Q, §2) with codimension one that contains uo such
that for any uy € M close to ug, the solution u(x, t) of problem (1.1)—(1.3)
with initial datum iy blows-up at a point g € Q2 and a time T which are close
respectively toq and T.

We discuss the general reason for the codimension-1 stability in Remark 2.1
in §2. The generalization of the previous theorem to the solution with k£ blow-
up points of Theorem 1 is that there is a manifold in C' of codimension 2k — 1
of initial data that leads to k simultaneous blow-up points at a time 7.

The solutions in Theorems 1 are classical in [0, 7). Our next result concerns
the continuation of the solution after blow-up. As we have mentioned Struwe
[26] defined a global H I_weak solution of (1.1)—(1.3). Struwe’s solution is
obtained by just dropping the bubbles appearing at the blow-up time and then
restarting the flow. The energy has jumps at each blow-up time generated by
this procedure and it is decreasing. Decreasing energy suffices for uniqueness
of the weak solution, as proven in [11,15]. On the other hand the bubble-
dropping procedure modifies in time the topology of the image of the solution
map. Topping [28] showed a different way to construct a continuation after
blow up in the symmetric 1-corotational class. The solution in [4] is continued
after blow-up by attaching a bubble with opposite orientation, which unfolds
continuously the energy. The solution referred to is a reverse bubbling solu-
tion. As emphasized in [28], this continuation has the advantage that, unlike
Struwe’s solution, it preserves the homotopy class of the map after blow-up.
Formal asymptotic rates for 1-corotational reverse bubbling were found in
[30]. In [2] other forms of continuation of radial solutions were found.

We establish that Topping’s continuation can be made without symmetry
assumptions, with exact asymptotics, for the solution in Theorem 1. We define
the bubble w with reverse orientation to that of W as

_ _ 00 o
W) = /" W) = ! ( 2x ) — ( ¢ smw(r)). (1.16)

T+ 2\l =1 cos w(r)

Theorem 3 Let u,(x, t) be the solution in Theorem 1. Then u, can be contin-
ued as an H'-weak solution in Q x (0, T 4 8), which is continuous except at
the points (qi, T), with the property that, besides expansion (1.14), we have
”q(xs T) =us(x)
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k

uq(x,r)—u*(x)—zef“?‘[vv(x/\i_(;)]’) —W(o)] = 0 as )T,

j=1
inthe H' and uniform senses in 2, where

ri(t) = L (1.17)
= gt — DI '

We observe that the energy in this continuation fails to be decreasing: it has
a jump exactly at time 7T and it goes back to its previous level immediately
after.

We consider a question related to Theorem 3 treated in the 1-corotational
symmetric class in [28] and in [2]: the occurrence of perfectly smooth solutions
which spontaneously develop a singularity in finite time by the addition of an
infinitely concentrated bubble which instantaneously raises the energy in a
multiple of 477. We find that the typical rate for this backward bubbling is A(r)

of order Wiﬂl rather than (1.17). This was formally derived in [30].

Theorem 4 Given points qi, ..., qr in Q and any sufficiently small T > 0
there exists an H'-weak solutionu(x, t) of problem (1.1)=(1.3) in Qx (0, T+38)
which is continuous except at the points (q;, T), it is smooth in Q2 x (0, T] and
has spontaneous reverse bubbling at the points q; in the form

k

u(x,t)—u(x,T)—Z[W(x):(:)ﬁ)—W(oo)] 0 as 1T,
j= ’

in the H' and uniform senses in Q, where for some positive numbers k;

t—T

MO = g~

(1.18)

Before proceeding into the proof we make some further comments. It is
plausible that the solutions of the form described in Theorem 1 represent a
form of “generic” bubbling phenomena for the two-dimensional harmonic
map flow. For instance, it is reasonable to think that the limits along any
sequence should have the same elements in the bubble decomposition. On
the other hand, evidence in the literature suggests that typically only simple
blow-up is present, having as a profile scalings of the 1-corotational maps W
and W. Higher degree maps are represented by the d-corotational symmetry
class,d > 1,

dif o
e sinv(r, t i
ulx,t) = < r, )), x =re'?.

cosv(r,t)
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Steady states in this class correspond to scalings of v = wy(r) = 7 —
2 arctan(r?). It turns out that blow-up is not present in this class for d > 4.
See Guan-Gustafson-Tsai [12]. It is conjectured that no blow-up exists also
for d = 2, 3. This essentially discards higher degree blow-up. On the other
hand, no multiple blow-up (bubble trees) in the 1-corotational class exists. See
Van der Hout [29]. Infinite time multiple bubbling was found by Topping [27]
in a target different from s2. Bubbling rates faster than (1.15) do exist in the
1-corotational case, but they are not stable, see Raphaél and Schweyer [24].
Many other results on bubbling phenomena, and regularity for harmonic maps
and the harmonic map flow are available in the literature, we refer the reader
to the book by Lin and Wang [16].

In bubbling phenomena in this and related problems very little is known
in nonradial situations. The method in [23,24], was successfully applied to
very related blow-up phenomena in dispersive equations in symmetric classes.
See for instance Rodnianski-Sterbenz [25], Merle-Raphaél-Rodnianski [18],
Raphaél[21], Rapha&l-Rodnianski [22]. Our results share a flavor with finite
time multiple blow-up in the subcritical semilinear heat equation, as in the
results by Merle and Zaag [17]. Bubbling associated to the critical exponent
has been recently studied in [5,6]. Our approach is parabolic in nature. It
is based on the construction of a good approximation and then linearizing
inner and outer problems. An appropriate inverse for the inner equation is
then found (which works well if the parameters of the problems are suitably
adjusted) which makes it possible the application of fixed point arguments. The
general approach, which we call inner-outer gluing, has already been applied
to various singular perturbation elliptic problems, see for instance [7,8]. A
major difficulty we have to overcome is the coupled nonlocal ODE satisfied
by the scaling and rotation parameter. We now explain in more details below.

2 The 1-corotational harmonic maps and the ansatz for a blowing-up
solution

The harmonic map equation for functions U : R> — S is the elliptic problem
AU+ |VU*’U =0 inR?, |Ul=1. (2.1)

For & € R2, w € R, A > 0, we consider the family of solutions of (2.1) given
by the following 1-corotational harmonic maps

Urgo®) = Qo W(y), y= %
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354 J. Dévila et al.

where W (y) is the canonical 1-corotational harmonic map

1 2y 2
w = — , € R7,
0= e (Iyl2 - 1) ’

and Q,, is the w-rotation matrix

cosw —sinw 0
O, :=|sinw cosw 0
0 0 1

Our purpose is to build a smooth blowing-up solution u : Q x [0, T) — S>
of the problem

uy = Au+ |Vul’u inQx(,7T)
u=-e3 ond x (0, 7) (2.2)
u(-,0) =ug in Q.

In order to keep the notation to a minimum, we shall do this in the case
k = 1 of a single given bubbling point ¢ € Q2. The changes needed for the
general case of Theorem 1 are minor. More precisely for any sufficiently small
number T > 0 we look for an initial datum uq such that the solution u(x, t)
of problem (2.2) looks at main order like

x —&(1)
A1)

Ux,t) = Unt)e),o0)X) = Quy W), y= , (2.3)

for certain functions £ (¢), A(t) and w(z) of class C!([0, T]) such that

§(T)=q, MT)=0.
We shall find values for these functions so that for a small remainder v(x, 1)
we have that u = U + v solves (2.2). The condition |U + v| = 1 tells us that
u can be written as
ux,t)=U+Myio+alyie)U, (2.4)
where ¢ is a small function with values into R? and we denote

Myig:=¢—(¢p-NU, a@):=y1-¢ -1

The term a(IT;; 1 ¢) has a quadratic size in ¢ so it is of smaller order. We choose
to decompose the remainder ¢ (x, ¢) in (2.4) as the addition of an “outer” part,
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Singularity formation in the 2D harmonic map flow 355

better expressed in the global variable x, and an “inner” part which supported
near the singularity and it is naturally expressed as function of the slow variable
y. More precisely, we let

x —&(1)
A1)

px, 1) = "' (x,0) + ¢ (y, 1), y= (2.5)

where

", 1) =nr@) (V) Qi (. 1), ¢y, 1) - W(y) =0

and ng(y) :=1n (%l) with 7 (s) a smooth cut-off function so that

) 1 fors <1,
s) =
7 0 fors > 2.

The function ¢ (y, t) is defined for |y| < 3R(t) where R(t) — +00 and
A({t)R(t) — 0ast — T. With these definitions we see that IT;; 1 ¢'" = ¢'".
We choose to the decompose the outer part % (x, t) in (2.5) as

% (x, 1) = ®w, A, E1+ Z*(x, 1) + Y(x, 1), (2.6)

where ® and + Z* (x, t) are explicit functions chosen as follows: dDO[w, A E]
is a function (which will be precisely described in the next section) that at main
order eliminates the largest slow-decaying part of the error of approximation
U; in (2.2). Writing p(t) := A(0)e'®® and using polar coordinates x = &(¢) +
re'?, we require

2T (s 0if
m¢“-m@°w—PW” }xw.
r 0
On the other hand, we let Z* : Q x (0, c0) — R3 satisfy

ZF=AZ" inQ x (0,00),
Z*(¢,t) =0 in a2 x (0, 00), 2.7)
Z*(,0)=Z% inQ,

where

Zy(x) = [jg:gj})] s 20(x) = 20 (x) +izgp(x) (2.8)
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356 J. Dévila et al.

is a small, sufficiently regular function essentially satisfying
Z5(q) =0, divz(g) +icurlzg(g) # 0.
In summary, we make the ansatz
u=U+v, v=Iy (w2 &El+Z+ V) + nr0udp +alU (2.9)

for a blowing-up solution u(x, t) of (2.2), where ® and 1 are lower order
corrections. Our task is to find functions w (), A(¢), £(t), ¥ (x, t) and ¢ (v, 1)
as described above, such that the remainder v remains uniformly small.

We will define a system of equations that we call the inner-outer gluing
system, essentially of the form

{A%f =Lwl¢]l + H[p,&E,v.¢l, ¢-W=0 inR*>x(0,7)
% = Ax‘ﬂ + G[P» s? ‘ﬂ, ¢] in Q x (0, T)(z 10)

where
Lwlpl = Ayp + |[Vy W) +2(Vyop - Vi W)W, ¢-W =0

is the linearized operator for equation (2.1) around U = W, so that if the pair
of functions (¢ (y, 1), ¥ (x, t)) solves it then u given by (2.9) is a solution of
(2.2). The point is to adjust the parameter functions w, A, & such that the inner
problem can be solved for ¢ (y, t) which decays as |y| — oo. To fix the idea,
let us consider the approximate elliptic equation, where time is regarded just
as a parameter,

Lwl¢] + H[p,£,0,0] =0 inR?

As we will discuss, a space-decaying solution ¢ (y, t) to this problem exists if
a set of orthogonality conditions of the form

/ZH[p,S,O,O](y,t)Z(y)dy:O forall Ze Z (2.11)
R

where Z is a 4-dimensional space constituted by decaying functions Z(y) with
Lw[Z] = 0. These solvability conditions lead to an essentially explicit system
of equations for the parameter functions which will tell us in particular that
for some small 0 > 0
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Singularity formation in the 2D harmonic map flow 357

|log TI(T — 1)
log?(T — 1)
E(t) =g+ O((T —1)'™), (2.12)

p) = —(divzé(q) + icurlzé(q)) (1+ 0 10gT|_1+U)),

and we recall that we are consistently asking div z;(g) + icurl zj;(g) # 0.

Remark 2.1 In the case of blow-up at a single point, our codimension-1 sta-
bility result is directly connected to the solvability conditions (2.11). Indeed,
the solution we construct depends at main order on four parameters functions:
a scaling A(t) > 0, a rotation angle w(¢#) € R, and the concentration point
£(t) € Q, see formula (2.3). The presence of decaying functions in the ker-
nel of the operator Ly limits the decay of solutions to the inner linearized
evolution. Too slow decay could make the contribution to the error in the
remote regime too large. Sufficient decay in the linearized evolution can only
be achieved if the right hand side satisfies four solvability conditions at all
times ¢t € [0, T). These are conditions (2.11), which translate into a system
of integro-differential equations for A(¢), w(t), £(t). For £(¢) the equation
is almost a first order ODE, which imposes a constraint between £(0) and
&(T). The equations for A(¢) and w(¢) are better expressed for the combined
quantity p(r) = A(t)e'®® . Tt is an integro-differential equation, whose solu-
tion has the expansion (2.12). This relation evaluated at time r = 0 says that
A(0)e!*® = —(div z3(q) +icurl zg(q))llO—Tg’n(l +O(|log T|~'*7)). Consid-
ering z;; as fixed, this equation links A (0) with 7" and determines e (0) uniquely
in [0, 277). In other words in the initial condition we lose the freedom to choose
w(0). We also loose the freedom of choosing A(0) if T was fixed, but this is
recovered by letting 7 vary. In the 1-corotational case, the symmetries imply
that curl z;;(0) = 0 and @ = 0, and therefore there is no loss of stability in this
situation. The argument above considers z;j as fixed, but the analysis with all
variables taken into consideration is detailed in Sect. 10.

Remark 2.2 Let us explain why the numbers div z5(¢) and curl zj;(¢) appear
in expression (2.12). Let us restrict the analysis to the 1-corotational ansatz
(1.8) so that the harmonic map flow reduces to (1.9). We look for a solution that
approximately looks like the superposition of a bubble (2.3) with £(¢) = 0,
(t) = 0 perturbed by (2.6) consisting only of a term Z* of the form

200 =[]

with f satisfying 0 f = 0 f + 30,f — -5 f and (0, 1) = 0, namely we
propose an approximate solution v(r, t) = w(%) + f(r,t) of (1.9). With the
notation (2.8), we have that div z;(0) = 20, f(0, 0), curl z;;(0) = 0. Expanding
f@r,t) = 0, £(0,0)r we get that
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358 J. Dévila et al.

sin(2v) Ao lw, r
~ - ——23,f(0,0), p=—.
27 pWp— = - P »f(0,0), p .

—d;v+ Av —

Imposing that the right hand side above is L?-orthogonal to the kernel of the
linearized equation in a ball of radius /T — ¢ suggests that

|log(T — )| (t) ~ cf, (0, 0),

for a positive universal constant c¢. This derivation is not correct because sig-
nificant boundary terms appear in the integration. This issue is solved by the
addition of the nonlocal term ®°. On the other hand, this suggests the role
played by div zj(0) in the expression for A. The term curl z;(0) appears when
we introduce the rotation angle w, which is needed outside the 1-corotational
regime.

In the next sections we will carry out in detail the program for the construc-
tion sketched above. In Sect. 3 we will set up several facts about the elliptic
linearized operator that will be needed in all subsequent computations. In
Sect. 4 we will compute in precise way the error of approximation and define
the function ®° mentioned. We also introduce the precise terms appearing in
the inner-outer gluing system (2.10). In Sect. 5 we will perform the compu-
tations of the orthogonality conditions which lead to expressions (2.12). In
Sect. 6 we will carry out the full construction setting up the system as a fixed
point problem. We make precise statements of the necessary (major) steps
needed, in particular a subtle linear theory for the parabolic inner problem that
mimics the Fredholm alternative for the elliptic equation mentioned above,
which is developed in Sect. 7. Related Lipschitz estimates and linear bounds
for the outer problem are performed in Sect. 7.6 and § A. The adjustment of
the parameters to solve the full system is the purpose of Sect. 8. The stabil-
ity statement is proved in Sect. 10. Finally, we discuss the continuation and
reverse bubbling results in Sect. 11.

3 The linearized operator around the bubble
The linearized operator for (2.1) around U = U, ¢, is the elliptic operator
Lylp) = Ap + VU ¢ +2(Vg - VU)U.

Differentiating U with respect to each of its parameters we obtain functions
that annihilate this operator, namely solutions of Ly [¢] = 0. Setting y = %,

these functions are
1
8XUA,$,w(x) :XQwVW(y) Y,
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awUA,é,w(x) =(00 Q)W (),

1
aéj U)L,*;“,w(x) :z Qwayj W(y).

We observe that

1
(0w Qw) = OpJo, where Jy =

S = O

0
0

S OO

We can represent W (y) in polar coordinates,

. ¢'? sin w(p) _ T
W(y) = ( cosw(p) )’ w(p) =m — 2arctan(p), y = pe .
We notice that
=—-———>, sinw=-— =——, cosw= ,
We 1+ p2 v Pl = 1 2 YT 2

and derive the alternative expressions

1
WU ewx) = zQme(y), Zo1(y) = pwy(p) E1(y),
0wUs g.0(x) = QuwZn2(y), Zn(y) = pwy(p) E2(y),
1
0g; Up £,0(x) = XQwZn(y), Z11(y) = wy(p) [cosO E1(y) +sinf Ex(y)],

1
O Urg.w(*) = 7 QuZ12(y),  Z12(y) = wp(p) [sin6 E1(y) — cosd Ea(y)],
(3.1)

where
e 0

. cosw(p) (e
E(y) = (_Sinw(p)), Ex(y) = ( 0 )

The relation |Uj ¢ ,| = 1 implies that all the functions Z;; are pointwise
orthogonal to U, ¢ .. In fact the vectors E1(y), E2(y) constitute an orthonor-
mal basis of the tangent space to S? at the point W (y).

We have Lw/[Z;;] = 0 where for a function ¢ (y) we define

Lwlpl = Ayp + IVW)I2h +2(VW(y) - VOIW ().
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In addition to the elements (3.1) in the kernel of Ly there are also two other
relevant functions in the kernel, namely

Z_11= ,ozwp(,o)(cos OE1—sinbEy), Z_15 = ,ozwp(,o)(sineE]—i—cos@Eg).
3.2)

It is worth noticing the connection between this operator and Ly which is
given by

1 x—£
Lyle]l = ﬁQa)LW[d)]’ p(x) =¢(y), y= 5

The linearized operator at functions orthogonal to U
It will be especially significant to compute the action of L on functions with
values pointwise orthogonal to U. In what remains of this section we will
derive various formulas that will be very useful later on.

For an arbitrary function & (x) with values in R? we denote the projection

Hyi®:=o—(®-U)U.
A direct computation shows the validity of the following:
Lyl i ®] =Ty AP + Ly[d]
where
Ly[®] := |VU[*TI ;. ® —2V(® - U)VU,

and

V(®-U)VU = 0y (P-U) 9y, U.

A very convenient expression for I:U[GD] is obtained if we use polar coordi-
nates. Writing in complex notation

D(x)=dr,0), x=£&+re?,

we find

3 2 1
Ly[®] = —pr(/)) [(Cbr -U)QuwE — ;(% : U)Qsz} , P = %
(3.3)
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We single out two consequences of formula (3.3) which will be crucial for
later purposes. Let us assume that ®(x) isa C I function ® : @ — C x R,
which we express in the form

(1 (x) +iga(x)
d>(x)—( ) ) (3.4)

We also denote
p=¢1+ig, ¢=¢1—ig
and define the operators
divey = 0x,¢1 + 0r, 02, curlp = 3y, 2 — Ox, 91
We have the validity of the following formula
Ly[®] = Ly[®lo + Ly[®]i + Ly[®]2 (3.5)
where

Ly[®@]o =2~ "pw? [div (e "“p) QuE| + curl (¢"“¢) 0, E; |
Ly[®]; = —22"w, cosw [ (3x,03) cos 0 + (0x,93) sin 6 | Q0 Eq
— ZA_lwp cos w [ (0x;¢3) sin @ — (0y,¢3) cos O ] 0uE>,
Ly[®@] = 2~ pw? [ div (€'“@) cos20 — curl (¢'“$) sin20 | 0, E
+ 17 pw? [ div (€"°@) sin 20 + curl (e'“@) cos26 | O Es.
(3.6)

Another corollary of formula (3.3) that we single out is the following:
assume that

i0 .
d>(x)=(">(rge ) x=g4rd, p=7

where ¢ (r) is complex valued. Then

- 2 . 1 ;
Lyl®] = pr(/o)2 [Re (e7"“0,¢(r) QwEr + ~Im (6_'w¢(r))QwE2} :

(3.7)
A final result in this section is a computation (in polar coordinates) of the
operator L acting on a function of the form

D(x) = ¢1(0,0)QuE1 + ¢2(p,0)QpEr, x =& + rpe'®.
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We have:

- o1 Qe 1 2
Ly[®]=A"2 (Bf,cm + pT + ;—2 + 2wf, s 01— F(’)g(pzcosw 0,E

d 3R 1 2
+272 (3/%(” n ﬂp‘pZ + ;7‘;’ + (Zwﬁ - ?) o+ ?ngol cos w) 0wEs.

4 The error and the inner-outer gluing system
The linearized operator for (2.1) around U = U, ¢, is the elliptic operator
Lylg] = Ay + ViU +2(Vag - Vi U)U,

where ¢ = ¢(x, t). Consistently we denote for a function ¢ = ¢ (y, t). Let us
denote

S(u) :== —u; + Au + |Vu|2u

A useful observation that we make is that as long as the constraint |u| = 1 is
kept at all times and u = U + v with |v| < % uniformly, then for u to solve
equation (2.2) it suffices that

S(U 4+ v)=bx,t)U 4.1
for some scalar function b. Indeed, we observe that since |#| = 1 we have

1d

1
2 2
-A =0,
2dt|u| +2 [u|

b(U - -u)=Swu) u=-—

and since U - u > % we find that b = 0.
Using that

AU + |[VUPU =0
we find the following expansion for S(U + v) with v given by (2.4):

SWU+Tyig+al)=—U — T i¢+ Ly(Ty1¢) + Ny(Tyie)
+C(HUL(p)U

where for ¢ =19, a =a(g),

Ly(¢) = AL+ [VUPP¢ +2(VU - U
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Ny() =[2V(aU) V(U +¢) +2VU - V¢ + IVe1? + |V(aU)? ¢ —aU;
+2VavVU,
(€)= Aa —a; + (VU + ¢ 4+ aU)> = |VUP)(1 +a) —2VU - V¢

Since we just need to have an equation of the form (4.1) satisfied, we find that
u=U+Tyrp+a(lyLp)U
solves (2.2) if and only if ¢ satisfies
0=-U—0yio+ Ly(ITlyie) + Ny(Ilyie) + b(x, 1)U, 4.2)

for some scalar function b. The logic of the construction goes like this: We
decompose ¢ into the sum of two functions ¢ = ¢’ + ¢°, the “inner” and
“outer” solutions and reduce equation (4.2) to solving a system of two equa-
tions in (¢', ¢°) that we call the inner and outer problems.

The inner function ¢’ (x, t) will be assumed supported only near x = &(¢)

and better read as a function of the scaled space variable y = x;(—igt)

initial condition and such that ¢/ - U = 0, so that IT Uupi = ¢'. The outer
function ¢°(x, t) will be made out of several pieces and its role is essentially
to satisfy (4.2) far away from the concentration point x = £(¢).

We write equation (4.2) in the following way:

with zero

0=—3¢" + Lylg'1+ Lylg®] — My1[8:¢° — Ap® + Uyl (4.3)
+ Ny (' + Tyie®) + (¢° - U)U; + bU.

For the outer problem, we consider a function ®° that depends explicitly on
the parameter functions chosen in such a way that IT; 1 [0, — ADO + U]
gets concentrated near x = £(¢) by elimination of the terms in the first error
U, associated to dilation and rotation. Then we write

@ (x, 1) = ®Ox, 1) + U*(x, 1). (4.4)

For the inner solution, we consider a smooth smooth cut-off function ng(s)
with ng(s) = 1fors < 1and = 0fors > % We also consider a positive, large
smooth function R(#) — +o0o ast — T that we will later specify. We define

n(x. 1) :=no (RO7yl), y= x;(_f)(f)
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and let

x— &)
A1)

P, ) =n(x,0)Q0up(y, 1), y=

for a function ¢ (y, ) with initial condition ¢ (-, 0) = O that satisfies ¢ (-, 1) -
W = 0, defined for |y| < 2R(t) and that vanishes as t — T. Then we have

0_owLylg'l = 272 nLwld] + (Axm)d + 227 VinVy¢
0wl =n(pr — 27"y - Vyp — 271 - Vydp + 90000 0uwd) + ni.

Equation (4.3) then becomes

0=2"270u[-22¢; + Lwlp] +1*Q_,Ly[¥*]] (4.5)
+ 000 Ay - Vyp +ATIE Vi — &I )
+ Ly[®°] + T [8,0° — A, ®° + U]
— W* + AW* + (1 — Ly [V*] + Qul(Axn¢ + 2V, Vi — 0]
+ Ny Quo + My (Y + W*)) 4+ (¥* + %) - U)U, + bU.

Next we will define precisely the operator ®° and estimate the quantity
Ly[®° + TTy[0,9° — A, ®° 4 U;1. (4.6)

The idea is to choose ®° such that 8; ®° — A, ®°+ U, ~ 0 whenever lx—&| >

A, so that in particular the last error term in the outer equation (4.4) is of smaller

order.
Invoking formulas (3.1) to compute U; we get

U = 2,Us 6.0 + @00Us .0 + 35U .00 - € = E0 + &1,

where, setting y = % = pe'?

n , we have

A
Solx, 1) = =00 [Xpwp(p) Ei(y) + wpw,(p) Ez(y)}

Ei(x, 1) = —i—l Wy (p) Qul cost Er(y) +sin6 Ex(y)]
- i—z Wy (p) Qulsind E1(y) —cos Ex(y)].
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Since & has faster space decay in p than & we will choose ®° to be an
approximate solution of

Y — A+ & =0, (4.7)
For x = £ 4+ re!? and r >> A we have

2r . .
Eo(x, 1) = —m [}»QwEl + )\.C()Qa)EZ]

N 2r [+ ire)e! @t
Ay 0 '

Here and in what follows we let
p(1) = A(0)e' D,

Then

2 i+ iAd)el O+ 2 )] _ &
B r (A +ilw)e _ r p(ve =: &o(x, 1).
r2+ 22 0 r2 422 0

With the aid of Duhamel’s formula for the standard heat equation, we find that

the following function is a good approximate solution of CI>9 —AD'+& =0
and hence of (4.7). We define

0 i0

t
@, 1) = —f p(rk(z(r), t —s)ds
T

2

|
2(r) =Vr2+ A2, k(z,t) = 2—22 ,

where for technical reasons that will be made clear later on, p(t) is also
assumed to be defined for negative values of ¢.
A direct computation yields

®0 + A DY+ & =Ry + Ri. RO:(OO)’ R1=( 1)

where

) )\’2 t )
Ro := —relgz—4/ p(s)(zk; — 22k2)(z(r), t — s)ds
T
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and

t
Ry = —e'"Re (e 70&(1)) / p($) k(z(r), t — ) ds
-T

t
+ ;—ze” (MA(1) — Re (re'?£(1))) / p(s) 2k (z(r), t — 5)ds.
-T

We observe that R is actually a term of smaller order. Using formulas (3.5),
(3.7) and the facts

A%r 1 2 r 1 2
Z_4 = prp, 2_2(1 —cosw) = ﬁpwp,
we derive an expression for the quantity (4.6):
Ly[®°] 4 Ny [-U; + AD® — @]
= Ly[®°] — & + Ny [Eo] — & + My [Ro] + My [Ry]
= Kolp. §1+ Kilp. §1+ My1[Ry]

where

Kolp, &1 = Koilp, §1+ Koz2lp, &1
with

2 ! ; ;
Koilp, €1 := = pw; / . [Re (5(©)e™ ) 0y By +Im (5(5)e ™) 0, E |

~k(z,t —s)ds (4.8)

1 . ! .
Ko2lp. §]:= Xﬂw,zj [k - / TR‘:‘« (P()e™ Nk, (z,t — )z, ds] 0uE

1 4 .
— —pwf, cos w [/ Re (p(s)e D) (zk, — 2%k.2) (2, t — 5) ds] 0,E;

4 T
t
- ﬁpwﬁ |:/ Im (p(s)eiiw(t)) (zk; — ZZkZz)(L t—s) ds] OuwkEr, (49)
-T
1 . . . .
Kilp, €1 = 5w, [Re( - i£)e'") 0w Ey +1Im (€ — i&2)e') Q0 Ea]. (4.10)

We insert this decomposition in equation (4.5) and see that we will have a
solution to the equation if the pair (¢, W*) solves the inner-outer gluing system

32 = Lwlg]+ 220 [Lul®*] + Kolp. &1+ Kilp. €1] in Dag
¢-W=0 inDapg
$(.0)=0=¢(T),
(4.11)
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U= AW 4 g[p, &, ¥, 9] inQ2x(0,7) (4.12)
where

glp, €, W* @] := (1 — n) Ly [¥*] + (¥* - U)U,
+ Qu((Axmd +2VinVig — 1:9)
+1Qu(—dJ¢+ 17 Ay Vyp +17'E - Vy9)
+ (1 = [Kolp, &1+ Kilp. £ + My [Ri] + (97 - D) U,
+ Ny(nQuo + My (@0 + U*)), (4.13)

and we denote
Dyr=1{(y,0) e R* x (0, T) / Iyl < yR(®)}.
Indeed if (¢, V™) solves this system, then we have that

u(x, 1) = U + Myo[@° + U* + n0,p] + a(Ty[®° + * + 000U

solves equation (2.2). The boundary condition # = e3 amounts to @
My [@0 + W+ a(My[U + 00 + W)U = (e3 — U)
and then it suffices that we take the boundary condition for (4.12)
wr,, =e3— U — @ (4.15)

Since we want u(x, t) to be a small perturbation of U (x, ) when we stand
close to (g, T), it is natural to require that W* satisfies the final condition

W*(q.T) =0.

This constraint amounts to three Lagrange multipliers when we solve the prob-
lem, which we choose to put in the initial condition. Then we assume

U (x,0) = Z§(x) + cre) + crer + c3e3,

where c1, ¢2, ¢3 are undetermined constants and Za‘ (x) is a small function for
which specific assumptions will later be made.
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5 The reduced equations

In this section we will informally discuss the procedure to achieve our purpose
in particular deriving the order of vanishing of the scaling parameter A(¢) as
t—T.

The main term that couples equations (4.11) and (4.12) inside the second
equation is the linear expression

Qul(Axn)@ +2VinVid + n: ¢,

which is supported in |y| = O(R). This motivates the fact that we want ¢ to
exhibit some type of space decay in |y| since in that way W* will eventually be
smaller and in turn that would make the two equations at main order uncoupled.
Equation (4.11) has the form

Apr = Lwlp]l +hip, &, W*1(y, 1) in Dag
¢-W =0 inDp
¢(-,0) =0 in Byg(),

where, for convenience we assume that A(y, t) is defined for all y € R2
extending outside D, g as

hlp, &, W*] =22 Q_ o Ly[¥*1xpy, + A2 Q_oKolp, £]
+ 220 _oK1[p. ElxDop (5.1)

where x4 designates characteristic function of a set A, K is defined in (4.8),
(4.9) and Ky in (4.10). If A(¢) has a relatively smooth vanishing as r — T it
seems natural that the term A2¢, be of smaller order and then the equation is
approximately represented by the elliptic problem

Lwlpl+hip, &, ¥* =0, ¢-W =0 inR> (5.2)

Let us consider the decaying functions Z;;(y) defined in formula (3.1),
which satisfy Lw[Z;;] = 0. If ¢(y, 1) is a solution of (5.2) with sufficient
decay, then necessarily

f2 hlp, &, W* (v, 1) - Z;j(y)dy =0 forall re (0,7), (5.3)
R

for/ =0, 1, j = 1, 2. These relations amount to an integro-differential system
of equations for p(t), £(¢), which, as a matter of fact, detemine the correct val-
ues of the parameters so that the solution (¢, ¥*) with appropriate asymptotics
exists.
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We derive next useful expressions for relations (5.3). Let us first compute
the quantities

A
Bojlpl() = o /]RZ Q—olKolp, §1+ Kilp.§11- Zoj(y)dy.  (5.4)

Using (4.8), (4.9) the following expressions for By, By, are readily obtained:

! 2
801[[9](1‘) = / Re (p'(s)efiw(z)) r ()\(l‘) ) ds B 2)\‘(1‘)
_T PRERNY EPR
BOZ[P](I) = / Im (p(s)efta)(t)) r, ( (1) ) s
-T PRERNY EPR

where I'j (7), j = 1, 2 are the smooth functions defined as follows:

02

I(r)=— T 3[1{ 20Ky (0)—2—
1(7) /() pw, (¢)+2¢ {(4)14—,02

—4 COS(w)izK;;(C)] dp
;=t(14p?)

() = — fo pPw) [K(©) = Koo,y 14 p2) do

where
1— e_%
K()=2 :
¢
and we have used that fOOO p3wgdp = —2. Using these expressions we find
that
I'i(r) =11 <Ct(1 +|logz]) fort <1, (5.5)
C
IT'i(0)| < — fort >1,1=1,2.
T
Let us define
1 . )
Bolpl := 5¢"V Boi[pl + iBoal p) (5.6)
and
aolp,& W= =~ | 0 oLul¥*]- Zoj(dy, j =12,
T JBag
1 )
aolp, & W] = 2" (aoilp, & W71 +ianlp, € 7). (5.7)
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Similarly, we let

A

By [E1(0) = 2—/ O_o[Kolp, €1+ Kilp, €11- Z1; () dy, j = 1,2,
T JR2

BEN®) = Bu[E]() + iBral&](r).

Using (4.10), (3.1) and the fact that fooo pw%dp =2 we get

BilEN(r) = 2[& (1) +i& (1) ],

At last, we set

A -

aijlp, & V] = — 0_oLyl¥*l-Z1j(y)dy, j = 1,2,
27‘[ Bor

ailp, & V¥ = —e'*D(ay[p, &, V¥ +ianlp, £, ¥*).

We get that the four conditions (5.3) reduce to the system of two complex
equations

Bolpl = aolp,§, V1, (5.8)
Bilg] = ailp, &, V1. (5.9)

At this point we will make some preliminary considerations on this system

that will allow us to find a first guess of the parameters p(¢) and &£(¢). First,
we observe that

=22
Bolp] =/ P9 4 4 0(1plo)-
T t—3¢§

To get an approximation for ag, we analyze the operator Ly in ag. For this
let us write

=[] =i
From formula (3.5) we find that

Ly[W*1(y) = [Lulo[¥*] + [Luh [¥*] + [LyTa[W*],
where

2 Q-olLylol¥*] = pwy [ div (e~ “Y*) Ey + curl (¢™'“y™) Ex |
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AQ oLy [W*] = — 2w, cosw [ (3y,¥F) cos O + (3y,¥}) sin | E|

— 2w, cos w [(Bxllﬁ;) sinf — (dx,¥3) cos@] E>,
A0 _o[Lyla[W*] = pwy [ div (e"“9™) cos 20 — curl (¢/“¥*) sin20 | E

+ pwy, [ div (e"9*) sin26 + curl (') cos 20 | Es,
and the differential operators in W* on the right hand sides are evaluated at
(x,t)ywithx =&@) + 1(t)y,y = pe'? while E; = E(y),l=1,2.

From the above decomposition, assuming that W* is of class C! in space
variable, we find that

aolp,§, W' = [divy™ +icurl y*1(€, 1) + o(1),

where 0o(1) - OQast — T.
Similarly, we have that

a1(p, §) = 200 ¥ + 190 YD) E 1) /O coswwlpdp + o(1)
=o() as t—> T,

since [ wf) coswp dp = 0.
Let us discuss informally how to handle (5.8)—(5.9). For this we simplify

this system in the form

T pE) . :
[ P = v+ eurl I, 0 + o) + Ol

Et)=o0(l) as t > T. (5.10)

We assume for the moment that the function W*(x, ¢t) is fixed, sufficiently
regular, and we regard 7" as a parameter that will always be taken smaller
if necessary. We recall that we want £(T) = g where ¢ € Q is given, and
M(T) = 0. Equation (5.10) immediately suggests us to take £(f) = ¢ as a
first approximation. Neglecting lower order terms, we arrive at the “clean”
equation for p(r) = A(r)e'®®,

O jo(s)
/ ; ds = divy*(g,0) + icurl y* (g, 0) =: a; (5.11)
T — S

At this point we make the following assumption:

div y*(g, 0) < 0. (5.12)
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This implies that aj = —|a§|ei“’0 for a unique wy € (7, 7). Let us take
w(t) = wo. Then equation (5.11) becomes
=22 3
A
/ ©) s = _jatl. (5.13)
T t—=s
We claim that a good approximate solution of (5.13) as ¢t — T is given by
i = u
 logX (T —1)

for a suitable ¥ > 0. In fact, substituting, we have

=22 t—(T—1) 3
/ M) g = / M) 4 4 o) [log(T — 1) — 210gGu(0)]

-T tr—s -T tr—s
z—x(r)Z)'L _ it
+/ () ()ds
t

—(T—1) r—s

s A(s) J . .
~ s — () log(T — 1) =: B(1) (5.14)

T T —5
ast — T. We see that

d d .
log(T — r)d—‘f(r) = E(log%T — i) =0

from the explicit form of A(1). Hence B(¢) is constant. As a conclusion, equa-
tion (5.13) is approximately satisfied if « is such that

T
K = —lagl.

TT—S

And this finally gives us the approximate expression
M) = —|div (g, 0) + icurl (g, 0) A (1),

where
log T

i) = ——og 1l
® logZ(T —1)

Naturally imposing A,(7) = O we then have

|log T'|

O =

(T—t)(1+o(l)) as t— T.
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6 Solving the inner-outer gluing system

Our purpose is to determine, for a given ¢ € €2 and a sufficiently small 7 > 0,
a solution (¢, ¥*) of system (4.11)—(4.12) with a boundary condition of the
form (4.15) such that u(x, t) given by (4.14) blows up with U (x, t) as its main
order profile. This will only be possible for adequate choices of the parameter
functions &(7) and p(r) = A(t)é’ ®(") These functions will eventually be found
by fixed point arguments, but a priori we need to make some assumptions
regarding their behavior. For some positive numbers ay, a>, o independent of
T we will assume that

ailh ()| < |p@)] < a2l ()| forall ¢ e (0,7T), (6.1)
IE(D)] < 2(t)®  forall 7€ (0, 7). (6.2)

We also take
R(t) = 1.(0)"F, (6.3)

where g € (0, 1).
To solve the outer equation (4.12) we will decompose W* in the form

U= 7%+
where we let Z* : Q x (0, 00) — R3 satisfy (2.7) with Z(x) a function
satisfying certain conditions to be described below. Since we would like that
u(x,t) given by (4.14) has a blow-up behavior given at main order by that of
U (x, t), we will require

Vg, T) =0.

This constraint has three parameters. Therefore we need three “Lagrange mul-
tipliers” which we include in the initial datum.

6.1 Assumptions on Z;

To describe the assumptions on Z§, let us write

ZE(x) = [Zzgs(&))} o 20(x0) = 25, (x) Fizgy(x).

A first condition that we require, consistent with (5.12), is div z5(g) < 0. In
addition we require that Zj5(g) ~ 0 in a non-degenerate way.
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We want also Z* to be sufficiently small, but independently of T, so that
the heat equation (2.7) is a good approximation of the linearized harmonic
map flow far from the singularity. In order to achieve later the desired stability

property, it is convenient to split Z into two parts

Zs =73+ 73,

where Za‘o is sufficiently smooth and Z(’)‘1 allows more irregular perturbations.
More precisely, for Z(’)“O we assume that for some op > 0 small and some

a1, o > 0, all independent of 7', we have

12" 3 @) < @0

123%(g)| < 5T,

(Dz3%(q) "] < e,
— < divzéo(q) < —ws.

(The notation here is analogous to (2.8)).
To describe Z(’)kl we introduce the following norm

1ZEM s = sup |25 ()] + sup |V, Z3! (x))]
Q Q

|log &
T Tloge 172 P (X = qol + &) D272 (x)),
where
&x = Ax(0).
Then we assume that for some o > 0 fixed we have
125 < 77,

In summary, the conditions on Zj are the following:

78 =780 + 75" with 230, Z&! satisfying (6.4) and (6.7).

6.2 Linear theory for the inner problem

The inner problem (4.11) is written as
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2299 = Lwlg]+hlp, &, W*] inDag
¢-W =0 inDyp
#(-,0) =0 in Bar()
where h[p, &, W*] is given by (5.1). To find a good solution to this problem
we would like that k[ p, &, W*] satisfies the orthogonality conditions (5.3).
We split the right hand side A[p, &, ¥*] and the inner solution into compo-

nents with different roles regarding these orthogonality conditions.
Recall that

hip, & W =270 LylW* ] Xy +17 Q-0 Kol p, E1417 QoK1 p, E1XDsg
the decomposition of Ly given in (3.5):
Ly[W*] = Ly[¥*1o + Ly[¥*] + Ly[¥* ]2,
with L u[®]; defined in (3.6). Using the notation (3.4), we then define
Lyl®1® = =227 w, cosw [ (3y,¢3(£(1), 1)) cos 0
+ (B,93(E(0), 1)) sin0 | 0, Er

— 227w, cosw [ (3y,03(£(1), 1)) sin 6
— (0, 93(6(1), 1)) cos 0 | Qu Es .

We then decompose
h=hy+hy+h3

where

hilp, &, ¥ = 220, (Ly[¥*lo + Lu[¥* 1) xpyp + 22 0—uKolp, €1,
holp, &, ¥ =320 o LulW* 1 xpyp + 220 _0Kilp, E1xDog
halp, & ¥ =220 _o(Lul¥* 1 — Lul¥*1?) xpyp.

Next we decompose ¢ = ¢1 + ¢2 + ¢3 + ¢4. The function ¢; will solve the
inner problem with right hand side &[p, &, ¥*] projected so that it satisfies
essentially (5.3). The advantage of doing this is that /1 has faster spatial decay,
which gives better bounds for the solution. For this we let, for any function
h(y,t) defined in R? x (0, T) with sufficient decay,

cijlhl(t) == , h(y,t) - Z;j(y)dy. (6.9)

e
Jre w31 Zii 1 Jr
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Note that h[p, &, W*] is defined in R? x (0, T), and for simplicity we will
assume that the right hand sides appearing in the different linear equations are
always defined in R2 x (0, T).

We would like that ¢ solves

220,01 = Lwlg] + hilp, &, ¥*]
1 2
~ 3 S ailhi(p, £, W)W Zi; in Dag,
I=—1j=1

but the estimates for ¢ are better if the projections co;[h(p, &, ¥*)] are mod-
ified slightly.
Here is the precise result that we will use later. We define the norms

|h(y, 1)

Il = sup ——F—, (6.10)
T R MA+IyD
and
oy, D+ 1+ yDIVyd (y, 1)l
@ 1ls,v,a,5 = sup Y . 6.11)

§(5—a) 1
Dor v R )
A max ((1+|y|)3’ (D2

Proposition 6.1 Leta € (2,3),5 € (0, 1), v > 0. Assume ||\ h||,., < 00. Then
there is a solution ¢ = T, 1[h], co;[h] of

3o =Lwlpl+h— Y &,lhlZojxs, — Y cjlhZijxs, inDar

j=12 I=—1,1
j=1.2

¢-W =0 inDyp
¢(-,0) =0 in Byg(o)

where c; is defined in (6.9), which is linear in h, such that
@lls,v.a.8 < Cllallv,a
and such that
lcojh] = Goj A1l < CALR™ @D ]l .

The function ¢, solves the equation with right hand side i [ p, &, ¥*], which
is in mode 1, a notion that we define next (this is basically motivated by the
analysis of Sect. 7, where we consider the linearized parabolic equation and
use a Fourier decomposition of the right hand side and the solution).
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Let h(y, ) € R3, be defined in R? x (0, T') or Dag with i - W = 0. We say
that /2 is a mode k € Z if h has the form

h(y, 1) = Re(hi(|y|, 1)e™)Ey + Re(hr(|y|, 1)e'*") Ey,

for some complex valued function ftk(p, 1).
Consider then

W20 = Lwlgpl +h — Y cijlhw’Zy; inDag
i=1,2
| ! (6.12)
¢-W =0 inDyp

¢(-,0) =0 in Bag(o)

Proposition 6.2 Leta € (2,3), § € (0, 1), v > 0. Assume that h is in mode
1 and \|h|y,a < 00. Then there is a solution ¢ = T 2[h] of (6.12), which is
linear in h, such that

”¢||v,a—2 =< C”h ”v,a-

In the above statemen the norm ||¢||, ,—> analogous to the one in (6.10),
but the supremum is taken in Dy .

Another piece of the inner solution, ¢3, will handle h3[p, &, ¥*], which
does not satisfy orthogonality conditions in mode 0. We will still project it
to satisfy the orthogonality condition in mode 1. Let us consider then (6.12)
without any orthogonality conditions on % in mode 0. We define

D+ (1 + \ t
||¢||**,u=Sup Q. DI+ ( |)’|)| y¢(y )|

N
Dak A (OVR(2(1 + [y ~! (6.13)

Proposition 6.3 Let 1 < a < 3 and v > 0. There exists a C > 0 such that if
|hllay < 400 there is a solution ¢ = Ty 3[h] of (6.12), which is linear in h
and satisfies the estimate

[Pllss,0 = Clinlla,v-

Note that we allow a to be less than 2 in the previous proposition.
Next we have a variant of Proposition 6.3 when # is in mode -1.

Proposition 6.4 Let2 < a < 3 and v > 0. There exists a C > 0 such that
for any h in mode -1 with ||h||4,, < 400, there is a solution ¢ = T s[h] of
problem (6.12), which is linear in h and satisfies the estimate

@10 < Clihlla,v,
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where

9. DI+ A+ [y |[Vyp(y, 1)
||¢”>I<**v = sup
Dog Ax(2)” 1og(R(1))

All propositions stated here are corollaries of Proposition 7.1 and proved in
Sect. 7.

6.3 The equations for p = Ae'®

We need to choose the free parameters p, & so that ¢;;[h(p, &, ¥*)] = 0 for
[l =—-1,0,1, j =1, 2. This will be easy to do for / = 1 (mode 1), but mode
[ = 0 is more complicated.

To handle cp; we note that by definitions (5.1), (5.4), (5.7)

2T A
2

co.ilh(p,E, V)] = ————
07][ (Ps )] fRz wp|Zoj|2

(BO/ [P] — aopj [P» S’ \IJ*])

where By, ag are defined in (5.6), (5.7) and we recall that p = re'®.
So to achieve co;[h(p, &, ¥*)] = 0 we should solve

Bolpl(t) = aolp. &, ¥*1(1), t€[0,T], (6.14)

adjusting the parameters A(¢) and w(¢). This equation is delicate and we will
instead impose a modified version of this condition. The modification of (6.14)
consists in introducing another term in the equation, essentially modifying the
operator By.

To make this precise we define the following norms. Let / denote either the
interval [0, T] or [-T,T]. For ® € (0, 1),/ € R and a continuous function
g: 1 - Cwelet

lglle.s = sup (T — 1)~ log(T — n)'1g(1)], (6.15)

tel

and for y € (0, 1), m € (0, 00),and [ € R we let

118(1) — g(s)|

[gly.mi =sup (T —t)""|log(T —1)| i —s5)7

, (6.16)

where the supremum is taken over s < ¢ in / such thatt —s < %(T —1).
We have then the following result, whose proof is in Sect. 8.
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Proposition 6.5 Let o, y € (0, %), [ e R, Cy > 1. There is ag > O such that
if® € (0,ap) andm < © — y, then fora : [0, T] — C is such that

1
— < T)| <y,
C1_|a( = (6.17)

T 1og T""a() — a(T) o .11 + [alymi-1 < C1,

for some o > 0, then, for T > 0 small enough there are two operators P and
Ro so that p = Pla] : [-T, T] — C satisfies

Bolpl(t) = a(t) + Rolal(). 1 € [0, T}, (6.18)
with
(Rolal()
< (7 + o8 Ty o + talymi)
= |10gT| 0,/—-1 y.m,l—1

(T _ t)m+(1+a)y
|log(T —1)|!

(6.19)

for some o > 0.
We have additional properties of the solution to this problem.

Proposition 6.6 Let us make the same assumptions as in Proposition 6.5. Then
Plal can be written as

Pla] = po,cia) + P1lal + P2la]
where py . is defined in (8.2) and each term

Kk =klal, p1="Pilal, p2=Palal,

has the following bounds:

1
< = a(T)| (1+0 <|1ogT|)’

|log T|'~7 log(|log T'])?
|log(T — 1)]3—° ’
|log T|
|log(T —)|3(T — 1)’

. 1 @
Ip2lleos < C(T2777° + Jla() — a(T)llo.-1),

|p1(t) = po (D] =C

P =C
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olog|log T|

og 7 lla()

[P2lymi =C (I log T|'-31%0~™m~Y 4 T
—a(Mlle,i-1 +lalymi-1),

where oy > 0 is some fixed some constant and o > 0 is arbitrary (with C
depending on o).

Roughly speaking, to obtain the modified equation (6.18) we notice that the
main term in p in By[ p] is the integral operator

t—hi()?
f p(s) Js.

-T r—s

Thus we define

1= (1)?
ds.

Bolpl = Bolp] — f P(s)

-T r—ys

It will be sufficient to solve approximately equations (5.3) replacing in part
this integral operator by a “regularized” version of it following the logic of the
formal derivation of the rate (5.14). For o > 0 let us write

1= (1)? 5(s)
f P20 ds = Sulp] + Ralp)
-T t—s

where

Salg] == g(®)[—2log Ay (1) + (1 + &) log(T —1)]

t—(T—n)+e
+ / 86 4. (6.20)
-T r—s
t—22
* t) —
Rylg] == —/ 80 —86) )0 (6.21)
t—(T—t)H'O’ r—s

Thus equation (6.14) can be written in the form
Salpl+ Ralpl + Bolpl = a(t), in0, T],
for some function a(¢). The modified equation is

Selp1+ Bolpl = a(r) in [0, T1,
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and the remainder R is essentially R, [p]. This is a sketch of how we obtain
the modified equation and remainder. For more details see Sect. 8.

Another modification to equations (6.14) that we introduce is to replace
aolp, &, ¥*] by its main term. To do this we write

alp, & Wl =a)p,& ¥l +alp, &, W1+ ai”lp, &, V]

where
A g _ -
ay 1p. & W] = == fB (Q—a)LU[‘I’]l'ZOI +iQ oLyl - Zoz) dy
2R

for! =0,1, 2.
We define

colp, &, V(1)
4 A

 Jre w3l Zoil?

0 1p. & W10 — (Colhlp. & W1 — Gl p. &, W),

e (Ro[af1p. €. 01| () + 0 1p. £ 0110)

and
cg; = Re(cp), cpp :=Im(cyp),

where Ry is the operator given Proposition 6.5 and ¢y = ¢g; + iCop are the
operators defined in Proposition 6.1.

6.4 The system of equations

We transform the system (4.11)—(4.12) in the problem of finding functions
V(x,1),P1, ..., P4, parameters p(t) = A(t)e!“D £(t) and constants ¢1, ¢2, ¢3
such that the following system is satisfied:

Ve =AY+ 8P E,ZF+ Y, 1+ da+ 3+ ¢a) inQx (0,T)

V= (e —U)—®° on 92 x (0, T)
Y(,0)=(crer+crez+csed)x + (1—x)(e3—U — ") inQ
Vg, T)=-2"(q,T)

(6.22)

@ Springer



382 J. Dévila et al.

Wop1 = Lwlgi]+ milp. £. 91— > Gojlhilp. & W*w} Zo;
Jj=1.2

— > ajlhilp. & W wlZ;; in Dyg

I=—1,1
j=12

¢1-W =0 inDag
¢1(-,0) =0 1in Bg(o)
(6.23)

22890 = Lwlga] + halp, &, W*] — Z cijlhalp. &, W* w2 Zy; in Dy
=12

dr-W =0 inDyg
$2(-,0) =0 in Bag(o)

(6.24)
Wopy = Lwlgsl+hs— Y cijlhalp. & W wl Zy,
j=1,2
+ D chilp & Wy Zoj in Dog 625)
j=1.2
¢3 -W=0 in DQR
¢3(-,0) =0 in Bap()
Wb = Lwlpal+ Y co1jlhilp, & W w,Z 4,
j=12

¢4- W =0 in Dy (6.26)

¢4(-,1) =0 on dBag()
$4(-,0) =0 in Byg(o)

cojlh(p, &, ¥HI(t) — Cojlp, &, ¥*1(t) =0 forall € (0,T), j=1,2,
(6.27)

c1jlh(p, &, ¥")](@) =0 forall t€(0,7), j=12. (6.28)

In (6.22) x is a smooth cut-off function with compact support in €2 which is
identically 1 on a fixed neighborhood of ¢ independent of 7 and the function

g(p, &, W*, ¢) is given by (4.13).
We see that if (¢1, ¢2, @3, Pa, ¥, p, &) satisfies system (6.22)—(6.28) then
the functions

d=¢1+Pr+d3+da, V' =Z "+

solve the outer-inner gluing system (4.11)—(4.12).
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The way in which we will proceed to solve the full problem (6.22)—(6.28)
is the following. For given functions ¢q, ..., ¢4 and parameters p, £ in a
suitable class, we solve first the outer problem (6.22) in the form of an operator
v = VY[d1 + ¢ + ¢3 + ¢4, p, €] and denote V¥ [y + ¢ + ¢3, p, &] =
Z*+V[$1+d2+¢3+¢a, p, £]. Then we substitute V*[¢p1 +¢2+P3+¢a, p, &]
in (6.23)—(6.26) and solve for ¢1, ¢o, @3, Pa as operators of the pair (p, £).
Finally, we solve for p and & the remaining equations. All this will be done by
suitable control on the linear parts of the equation and contraction mapping
principle.

6.5 Choice of constants

We state here the constraints we impose in the parameters involved in the
different norms. The values assumed will be sufficient for the inner-outer
gluing scheme to work.

o B €(0,3)issothat R(r) = A.(t)P.

e o e (0, %) appears in Proposition 6.5. It is the parameter used to define the
remainder R, in (6.21).

e We use the norm || [|4,v;,4;,56 (6.11) to measure the solution ¢ in (6.23).
Here we will ask that v; € (0, 1), a1 € (2, 3), and § > 0 small and fixed.

e We use the norm || ||y, 4,—2 (6.10) to measure the solution ¢, in (6.24),
with vy € (0, 1), a2 € (2, 3).

e We use the norm || |45 (6.13) for the solution ¢3 of (6.25), with v3 > 0.

e We use the norm || ||sx,v, for the solution ¢4 of (6.26), with v4 > 0.

e We are going to use the norm || |4 @,, with a parameters ©, y satisfying
some restrictions given below.

e We have parameters m, [ in Proposition 6.5. We work with m given by

m=0 -2y —pB).

and / satisfying [ < 1 + 2m.

We will assume that
a—14+28>0

which ensures thatm + (1 + @)y > ©.
To get the estimates for the outer problem (6.22), we need (A.1) and

1
®<min(ﬁ,§—ﬁ,v1—1+,8(a1—1),1)2—1

+,3(a2—1),v3—1,V4—1+,3)
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© < min(vi = 8B(5 — ar) = B,v2 — B vs — 36, vy — )
and
® > 0.

Also to control the nonlinear terms in (6.22) we need 6 > 0in || [|«,v;,4;,5 tO
be small.
To find ® in the range above we need

v > max(l — Bla; — 1), 88(5 —ay) — ,3)
vy > max(l — Blar — 1), ﬂ)

v3 > max(1, 38)
vg > max(l — B, B).

To solve the inner system given by equations (6.23), (6.24), (6.25), and
(6.26) we will need

v <1,
vy < 1—B(ax —2),
1
vy < min(l +O+01. 146 +2yB,v1 + 3@ —2)),

vy <1,

where o1 € (0, y(a — 1 +28)).

6.6 The outer problem

Our main result for problem (6.22) is the existence of a small solution for all
small T, with certain precise absolute and Lipschitz estimates satisfied. To
obtain this result we need a suitable norm that we define next.

Given © > 0, y € (0, 3) we define

o = A (0 -© 0
1Vl e,y «(0) Tog 73 (0)R(0) 1V 1l Loo (2 (0, 7))
+ 20NV [l Lo @x0,7))

—0-1 —1 1 _
Fasin 0 RO g —p VD T Ve D
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+ sup A()O|Vepr(x, 1) — Ve (x, T)|
Qx(0,T)

Ve (x, 1) = Ve (&, )]
(Ix = x> + |t = ¢'])Y

+ sup A+ (1) @ (A ()R (1)
(6.29)

where the last supremum in taken in the region
/ / / / 1
x,x €, t,t' e (0, T), |x—x"| <2AR(@), |t—1]|< Z(T_t)'

We define the spaces

Ei1 ={¢1 € L (Dagr) : Vyp1 € LT (Dagr), [191ll5,v1,a1,6 < 00}
Ey = {¢2 € L (Dar) : Vy2 € L (D2R), ll¢2llvy,a < 00}
E3 ={¢3 € L (Dagr) : Vy3 € L (Dagr), 93 lsx,05 < 00}
E4 = {¢4 € L (D2R) : Vygps € L¥(D2R), lPallssx,vy < 00}

and use the notation

E=FE| x Ey x E3 X Ey4,

Q= ()1,92, 93, 94) € E
I®IE = llP1ll«v.a1.8 + D21lvs,a—2 + 193 1155,05 + D41l s, g

We define the closed ball

B={®ecE:|Plc =<1}
Proposition 6.7 Assume Z; satisfies (6.8). Let p(t) = A1)l D and E(1)
satisfy estimates (6.1), (6.2), ® € B. Then there exists C > 0 such that if

T > 0 is sufficiently small then there exists a solution y = V(p, &, @, Z§) to
equation (6.22) such that

”q”(p7 S? (bv Z(’)k)”ﬁ,("),]/

8 _ . . (6.30)
<CT°(|®lle + lIpllLe—7,1) + L0, 1) + 1 Zg1l5)-

Proof The proof consists in writing problem (6.22) in a fixed point form involv-
ing an inverse for the inhomogeneous linear heat equation
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Y = Ay + f(x,t) inx(0,7)
Y =0 ondQ2x (0,7T)

Vg, T)=0

Y(x,0) =(cr1e1+c2e2+c3e3)n inQ

(6.31)

for suitable constants ¢y, ¢2, ¢3, where eq, e, e; are defined in (1.13), and
g € Qand T > 0 is sufficiently small. The fixed smooth cut-off 1 has
compact support in €2 and is such that n; = 1 in a neighborhood of g. The
right hand side is assumed to satisfy || f||«+ < 0o where

Qx(0,T)

3 —
o= sip (1400 170l
i=1

and the weights are defined by

01 = )u(:)()h*R)_IX{rﬁRA*}

1—o09
*
2 Xr=Ra)

02 :=T7%
03:=T7,

where r = |x — ¢g|, ® > 0 and oy > 0 is small. (The factor 770 in front of o7
and o3 is a simple way to have parts of the error small in the outer problem.)
These weights naturally adapt to the form of the outer error g in (4.13). In
Proposition A.1 a solution of Problem (6.31) is built as a linear operator of f
with the estimate

A0 "© (L (0)R(0)) !
|log T'|

I¥llze,y + (il +le2l + lesl) = Cll fllsx

This fact and direct estimates for the outer error make the the contraction
mapping principle applicable in a suitable region, producing an operator as in
(6.30). To illustrate some of these estimates, letus write g = g1 + g2+ g3+ g4
where

g1 = Qu((Axm)d +2VinVid — nid)
+10u(—@Jp + 17 "hy - Vyp + 1716 - V,9)
g = (1 —nLy[¥*]+ (¥* - U)U,
g3 = (1 = )[Kolp. &1+ Kilp. €11 + Ty [Ri] + (@0 - U,
g4 =Ny(nQuo + My1(@° + ¥)").
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We claim that

g1l < CTO [P,

for some o > 0. Indeed, we have

|AnP1] < CAU T2 R™ xi1x—ql<30RIID1 .0y a8
|Axnga| < CALT*R™ X(x—gi<3r. 11620113022
|Axngs] < CAL T R Xx—gi=30, R1 193 s
|Axngal < CALT2R™210g RX[1x—g1<32, R 104 [l -

The norm || |4+ is actually motivated by the weights appearing above. If
@ < min(\)] - 1 +ﬁ(a1 - 1),1)2 - 1 +ﬂ(a2 - 1)7"‘3 - 17U4_ 1 +ﬂ)7

we find that forany j =1, 2, 3, 4:

O—1+
1Am¢;] < CTO0) ™ P yi—g <31 P s
for some o > 0. Then we have

| Qw(Axm@|lsx < CT°® 1Pl e

and similarly

103:m) Qo llss + | Quwd ™' Vi Vyplluw < CT | @]

The other terms g», g3, g4 can be estimated in the same way. In the estimate
for g5 it is important to have the property that W* = Z* -+ vanishes at (¢, T).
Lipschitz properties are proved using similar calculations. O

The operator W(p, &, ®, Z{j) satisfies Lipschitz properties with respect to
its arguments, which are consequence of its construction. See Corollaries C.1
and C.2 in the appendix.

What we do next is to take ® € E with |®||g < 1 and substitute
V*(p, &, ®,Z5) = Z* + V(p, &, @, Z) into (6.23)—(6.26). We can then
write equations (6.22)—(6.26) as the fixed point problem

d = F(P) (6.32)
where

F(®) = (FI(®), Fa®), F3(®), Fa(®)), F:BICE—E
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wiith

Fi(®@) = T1(hlp. &, ¥ (p. & @, Zp)D)
Fo(®@) = T 2(halp, &, 97 (p, &, @, Zp)])

Fo(@) = T(halp. & W (p. &, @, Z))]

2
+ chj[p’ %-v LII*(P, S, o, ZS)]w%)ZOJ)
j=1

2
Fa@) = Toa( Y eorjllp & W7 (p. &, &, ZDT02Z-1 ).
j=1

Although F also depends on p, &, Z; we will omit this dependence from the

notation for the moment.
Our next step is to solve problem (6.32).

6.7 The inner problem

Proposition 6.8 Assume that p and & satisfy estimates (6.1) and that Z sat-
isfies (6.8). Then the system of equations (6.32) for ® = (¢1, ¢2, ¢3, p4) has
a solution ®(p, &, Z(")‘) inB; CE.

Proof We estimate in detail the operator 7. The others are handled similarly.

We recall that we have decomposed Z} = Za‘o + Za‘l (c.f. 6.8). We claim that
for |®||g < 1 we have

[F1(D®) a0y < CA(0)OTO (| @ + 1Pl Ler.my + &l =0.7))
+CT N ZOx, (6.33)

and for || Py |g, [P20lr = 1
IF1(@D) = Fi( @) lear i < CT2e(0)? D1 — D2 . (6.34)
To prove (6.33), we recall that by Proposition 6.1 we have
IF1(@) 01,018 < Clihilp, & ¥ (p, &, @, Z)]llvy a -

From the definition of %; and recalling that W*(p, &, @, Zé‘) = Z* +
V(p, &, &, Z;) we get
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Ih1lp, & W*(p, &, D, ZD vy
< W20 o (Lyl¥(p, &, ®, ZDo + Lul¥(p, &, ©, Z)12) xDog vyl
+ 1M Q—o(LulZ*l0 + LulZ*12) xDog llvy.ar + 1M Q— Kol Py E1llvy . -

We claim that for j =0 and j = 2:
1220 Lul¥(p. &, @, Z)]j XDl

< CT 1O (I®N| g + Pl —T.1)
+ 1€l oo,y + 1 Z514)- (6.35)

Indeed, let ¥ = W (p, &, &, Z§). From (3.6) we get, for j =0 and j = 2:

W20 _oLylyljl < C IVl oo

(1+I I+ 1yD?

We use v; < 1 and a; < 3 to estimate for |y| < 2R

. Al
<

he (071
(L+1yD> = A+ [yh
Then for |y| < 2R and j =0, 2:
2 7 A 1-
122Q_wLyl¥]j] < C————1.(0) ™|V L.

(I+lyha
By the definition of the norm || [|4,@,, (c.f. (6.29)) and Proposition 6.7 we have
Vit lizee < CrOIW(p, &, @, Z)) 0.y
< CLO°T7 (|1 Pl + P11y + IEll*@.7) + 1 Z5]14)-

Hence for j = 0,2

220 _wLylyl;
< 1
- +| )ai

+11Z 1),

T 0O U@l e + 1Pl oo—1.1) + 1€l L 0.1)

and therefore we see that (6.35) is valid. Next we claim that

1020w Lu[Z*1 xDog lvy.ar < CT || Zolls, (6.36)
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for j = 0,2 and some o > 0. Indeed, we use estimate (10.8) of Lemma 10.2
to obtain for j = 0, 2:

- A
20 _wLulZ*1j Dyl < cm| log e[| Zol|

where ¢ > 0 is given by (6.6). Since v; < 1, we get
1220w LulZ*1j xDspllvr.ar < Che(0)' " [ Tog As(O)][[ Zo -
This implies (6.36). Next we estimate 220 _,Kol P, &]. We claim that

1220 _oKolp, Elllvy.ar < CTO I PllLeT.7). (6.37)

Indeed, consider g given in (4.8). We have

o[
320 Karlp. €11 = O / IPOKG. 1 =)l ds.

A direct computation shows that

1220 o LulKoi[p. ENxpopllvr.ar < Cre(O) ™ pll Lo 1.1y
< CT|pllLoe(=T.,1)s

for some o > 0. The estimate for K is similar, and we obtain (6.37). Com-
bining (6.35), (6.36), and (6.37) we finally obtain

lhilp, &, W (p, &, D, ZDWvy.ay < CT(I1PNlE + IPllLoo—7.1) + 1 Z5 1l)-

Then thanks to Proposition 6.1 we get (6.33). The proof of estimate (6.34) is
similar. O

Let ®(p, &, Z;) be the solution of (6.32) constructed in Proposition 6.8.
As a consequence of the construction above and the Lipschitz estimates for
the inner problem in Sect. 7.6 ® is Lipschitz in the parameters p, &, Z; in the
following sense.

Corollary 6.1 Assume that py, p and &1, & satisfy estimates (6.1) and that
Z(ﬁil, Zf)k,z have the form

z5, =20+ 28, 1=12,
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with Z{;O satisfying (6.4) and ||Z(>)"ll||* < TC. Let us write p; = Aje'® for
Jj =1,2. for some o > 0. Then

1D (p1, &1, Zg 1) — D(p2, &2, Z5 ) E

- ) . Al — A2
= 07 2201 = G)llow + | H
A Lo
L §&1 -5 &1 — &
+ A1 — Aallpe + R PR et 9N

+1Z5Y = Z8h1.].
for some possibly smaller o > 0.

With this we can now state the following result. Let ®(p, &, Z(’)") denote the
solution of (6.32) constructed in Proposition 6.8.

Proposition 6.9 Given Z of the form (6.8) there exists p = re'® and & such
that (6.27) and (6.28) are satisfied.

The proposition above yields the existence of a blow-up solution. The proof
is given in Sect. 9.

7 Linear theory for the inner problem

At the very heart of capturing the bubbling structure is the construction of an
inverse for the linearized heat operator around the basic harmonic map. We
consider the linear equation

2289 = Lyw[p] +h(y, 1) inDop (7.1)
¢(-,0) =0 in Byg(
¢-W =0 inDyg

where
Drp ={(y,0) /1t €(0,T), y € Bar(r)(0)}.

We assume that 4 (y, t) is defined for all (y, t) € R? x (0, T) and satisfies

v

h-W=0, |h(y, )| <C—"F—,
Y (I + Iyhe

where v > 0 and a € (2, 3) [so that ||k, < oo with the norm defined in
(6.10)].
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The parameter R is given by (6.3), that is R(1) = A.()7F, B € (3, %).
Also, we assume that the parameter function A(¢) satisfies we have that

are(t) < A(t) < bru(t) forall te (0,T)

for some positive numbers a, b, ¢ independent of T'.

We observe that a priori we are not imposing boundary conditions in problem
(7.1). Our purpose is to construct a solution ¢ that defines a linear operator of
h and satisfies uniform bounds in terms of suitable norms. In some sense this
is an extension of "Fredholm” theory for linear parabolic problem (7.1).

All functions A(y, t) with h(y, t) - W(y) = 0 can be expressed in polar form
as

h(y,t) = h'(p,0,0)E\(y) +h*(p,0,0)E2(y), y=pe?. (1.2

We can also expand in Fourier series

o0
h(p.0.0) :=h' +ih* = > u(p, )™, hi=ha +iha  (1.3)

k=—o00

so that

h(yvt): Z hk(yvt) ::hO(y’t)+h1(y’t)+h—l(yvt)+hl(yvt)’ (74)
k=—o00

where ~ . ~ '
hi(y, 1) = Re (hi(p, De'*) Ey +TIm (hi(p, 1)e™) E,. (7.5)

We consider the functions Zy;(y) defined in (3.1) and (3.2) and define for
k=-1,0,1,

X k]()))

h(x,t) - Zy; dz,
2 X1 Zi; 2 /R (1) 21 (@) dz

hi(y, 1) - —Zf

where

o) = 2<|y|) if [y| < 2R(),
K= if [y > 2R ().

The main result in this section is the following, where we use the norm |||,
defined in (6.10).
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Proposition 7.1 Let 2 < a < 3, v > 0 and let h with ||h||s, < +oc. Let
us write h = ho + hy + h_1 + h™ with h* = Zk;éo,il hi. Then there exists
a solution ¢[h] of problem (7.1), which defines a linear operator of h, and
satisfies the following estimate in Dyp:

(L+1yD [Vyp 0, D] + ¢ (. D]
5—a
@R
1+ |yl
Ae(t)Y _ ()R -
s | =k, , + = A
1+ |yl av 4y
2u()'R(1)2
1+ |yl
+ )»*(t)v IOgR(t) ||h—1 ”a,v
Ay (1)" 1
— ||k )
ENRE 17 1],

As(D)VR(1)?

S5—a -
min{l, R 2 “2Ylho — h +
{ [yI7“} 1o — holla,v T+ Dl

holla,v

. S—a -
min{l, R°2 [y| ™} -1 — h—1lla

+

The construction of the operator ¢[h] as stated in the proposition will be
carried out mode by mode in the Fourier series expansion. We shall use the
convention that a(y, t) = 0 for |y| > 2R(¢). Let us write

¢= > ¢ H(O.D=Relplp,Ne™) Er +1m (pr(p, )e'™?) Er.
k=—o00

We shall build a solution of (7.1) by solving separately each of the equations

220, = Lwlge] +he(y, 1) =0 in Dyg, (7.6)
$r(y,0) =0 in Byg(0)(0),

which, are equivalent to the problems

2200c = Lilor] + h(p, 1) in Dy,
ok(p,0) =0 1in (0,4R(0))

with
Dyr ={(p.1) /1 € (0,T), p € (0,4R(1))}
and we recall

0
Liloi] == 8,%(,0k + pT(Pk — (k2 + 2k cosw + cos(2w))%_
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We have the validity of the following result.
Lemma 7.1 Letv > 0and0 < a < 3, a # 1, 2. Assume that
1k (y, Dlla,p < +00.
Then problem (77.6) has a unique bounded solution ¢i(y, t) of the form
$(v. 1) = Re (pr(p, Ne'™”) Ey +Im (g (p, Ne') Ex
which in addition satisfies the boundary condition
Gr(y,t) =0 forallt € (0,T), y e dBgy)(0). (7.7)
These solutions satisfy the estimates

R*  if a<2,
(1+p)> if a>2,
R* % if a<2,

|6k (v, D] < CllAllap 2ok { ifk > 2.

lp—1(y, O] = Cllhlla,v Ay {

logR if a>2,
_ R if a>1
v 1 1)
(B0(y, )] < Cllllandl(1 + p) { ey

|61y, O] < Cllhllawdi( + p) 7> R?
with C independent of R and k.

Proof Standard parabolic theory yields existence of a unique solution to equa-
tion (7.6) that satisfies the boundary condition (7.7), for each k. Equivalently,
the problem

A0, pr = Lilor] + hi(p, 1) in Dag, (7.8)
or(t,4R) =0 forall t € (0,7)
9k(0, p) =0 in (0, 4R(0)),

9
Lilon] = 0201 + "T‘p" — (K% + 2k cos w + cos(2w))%

has a unique solution ¢ (p, t) which is bounded in p for each ¢.

We use barriers to derive the desired estimates. A first observation we make
is that for mode k = —1 the elliptic equation £L_{[¢] + g(p) = 0in (0, 4R)
with ¢(4R) = 0 has a unique bounded solution given by the variation of
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Singularity formation in the 2D harmonic map flow 395

parameters formula

4R

dr r
0(0) = Z_1(p) /p — /0 ¢ Z 1(s)sds.  (1.9)

Z_1(p) = —p*w, = :
1(p) = —p~w, p

Here we have used that £_{[Z_] = 0. Let us call ¢g(p) the function in (7.9)
with g(p) := 2(1 + p)~%. We readily estimate
2-a ifa <2,

ool =< {(1+p)2—a ifa>2.

Letus call ¢(p, t) = 1+(t)"@o(p). Then we see that

v

A
— A2 _1le Tk
@ (p, 1)+ L1l@(p, )] + )

v
_*
(14 p)*
< =221+ p) " [1 = CAR*™(1 + p)*]
<0

< Al Mileo(p) —

~ _1
in D4g. Indeed, since R(f) < A4 °, the inequality holds provided that T
was chosen sufficiently small. Thus for k = —1 the barrier ||A]l,,, ¢(p, 1)
dominates both, real and imaginary parts of ¢_1(p, t). As a conclusion, we
find

2-a ifa <2,

1, )| < Cllh|g oY
l[p—1(y, )| = Cllhlla,vh, (1402 ifa>2

in Dyg.

The cases k = 0, 1, —2 can be dealt with in exactly the same manner, by
replacing Z_1 in Formula (7.9) respectively by the functions

3

Jo
pr+1

Zo(p) = Zi(p) = Z2(p) = (7.10)

yo) 1

,02 +1 ’ ,02 +1 ’
The estimates for ¢, predicted in the lemma then readily follow for k =
—2,—1,0, 1. Finally, let us now consider k£ with |k| > 2 and k # —2 and the

function ¢(p, t) as above. Now we find
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223G (p, 1) + Lil@(p, D] < (Lk — L_1)[@(p, 1)]

V7,2 1 2—a
< —CHE — 1426k = 1)1+ )

AL ~
—C(k2 =142k —1)—=— inDyx.
< —=C( ( ))(l—i—p)“ 4R

The latter quantity is negative provided that |k| > 2 and k # —2 and hence
we get the estimate

C R* ifa <2
D < = hllg oA *in Dyp.
ey, O = 77 IR llavhs (14024 ifa>2, 4R
The proof is concluded. O

We can get gradient estimates for the solutions built in the above lemma by
means of the following result.

Lemma 7.2 Let ¢ be a solution of the equation

320, = Lwlgl+h(y, 1) inDayr (7.11)
¢(-,0) =0 in Bayr)-

Given numbers a, b, y, there exists a C such that if for some M > 0 we have
B, Ol + A+ YD, O] < Mau@®P (1 + |yD™* inDayr, (7.12)
then
(L4 yDIVyp(r, )] < CMiu()P(A+1yD™ inDayr (7.13)
and we recall
Dyr=A{(y,0) /Iyl <yR(®), 1€(0,T)}

If in addition we know that ¢ satisfies the boundary condition ¢(-,t) = 0
on dByyr(r) for all t € (0, T) then estimate (7.13) holds in the entire region

Duyk.

Proof To prove the gradient estimates, we change the time variable, defining

(1) = /Z ds (7.14)
0 As)?
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so that (7.11) becomes in the variables (y, 7)

0:¢ = Lw[gp] +h(y,7) in D4yR
¢(-,0) =0 in Byg()

Let 7y > O and y; € B3yp(s)(0). Let p = % + 1 so that B,(y1) C
B4y R(7))(0). Let us define

~ T
Bz 1) == ¢ + pz. T + p%5), 7€ B1(0), s> —p—;.

We distinguish two cases. First, when 77 > ,02, we use interior estimates
for parabolic equations, while for the case 71 < ,02, we use estimates for a
parabolic equation with initial condition.

Assume 7 > ,02. Then qg(z, s) satisfies an equation of the form

bs = Az + AV.¢p + B + h(z,s) in B1(0) x (—1,0]

with coefficients A(z, s) and B(z, s) uniformly bounded by O((1 + p)~?) in
B1(0) x (—1,0] and

h(z,s) = pzh(yl + pz,T1 + p°9).
Since p < CR(11) and R(11)? < 1 for 71 large we get
I (@) S A 4+ 9%9)" S k@)’ s € (=1,01.
Standard parabolic estimates and assumption (7.12) yield

IVplioos, x1.2) S 118, x©.2) + 12llLo@B, 0)x0.2))
4 2 2
S M)‘*(fl)bpz_a,

~

so that in particular
PIVy¢ (i, Tl = V240, DI S M hu(z)’ 0.
In the case 7] > p? the argument is similar, but the equation for ¢ holds
in B1(0) x (—%, 0] and has initial condition 0 at s = —%. Finally, for the

last assertion we argue in similar way but using boundary rather that interior
gradient estimates. m|
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In addition to estimate (7.13) we have a Holder gradient estimate which is
more natural to express using the variable T defined in (7.14) as follows. We
denote

Be(y,t) ={(y/,T) /Iy =Y [*+ 1/ — 7| < ).

For a function g(y, ), anumber 0 < o < 1, and a set A we let

|f(yv ‘E)z_f(y"[”g /(y,T), (y/,f/) EA}
(ly =y'=+ 1t =12

[g]a,A = sup{

Corollary 7.1 Let ¢ be a solution of the equation (7.11) with h(y, 1) =
div H(y, t). Given a € (0, 1) and constants a, b, y there is C such that

if

B DI+ A+ I1yDIHG. D+ A+ [yD T LH]B,0) (v, 000D 1
< M (D)1 + [yD~°

in D4y g, where £(y) = 1+ %, then

1+ 1yDIVy (. DI + (1 + [yD V@18, (0N Dy 1
< CMLMO (14 yD™  (7.15)

in D3y g. If in addition we know that ¢ satisfies the boundary condition
¢(-,t) = 0on 0Bayg() forallt € (0,T) then estimate (7.15) holds in the
entire region Dy g.

Our next goal is to construct an inverse for modes k = —1, 0, 1 with a better
control when subject to a certain solvability condition.

7.1 Modek =0

Let us consider again equation (7.6) for k = 0 and the functions Z; (y) defined
in (3.1) . We have the following result.

Lemma 7.3 Ler assume that2 < a < 3, k = 0 and

/2ho(y, 1)-Zoj(y)dy = 0 forall t€l0,T) (7.16)
R

for j = 1, 2. Then there exist a solution ¢q to equation (7.6) for k = 0 that
defines a linear operator of hy and satisfies the estimate in D3,

5—a _ . S—a _
1po(y, ] S lhollawRZ AL(1+ [y)™" min{l, R72 |y|7%}. (7.17)
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A central feature of estimate (7.17) is that it matches the size of the solutions
obtained in Lemma 7.1 for k # 0, 1 when |y| ~ R.

Proof We observe that conditions (7.16) can be written as

2R
/ ﬁo(p,t) Zo(p)pdp = 0 forall 7 e (0,T). (7.18)
0

Let us consider the complex valued functions

- 00 1 S
oo, 1) = —Zo(p)/p W/ fo(e, N Z0()c dg, k=0, 1.

They are well-defined thanks to (7.18). Then the function
Ho(y, 1) := Re (Ho(p, 1)) E1(y) + Re (Ho(p. 1)) E2(y)
solves
Lw[Ho(y, ©)]1 = ho(y, ) inDsg
and satisfies
[Ho(v. Dl S 20”1+ 1yD* llholla,y in D
Moreover, elliptic gradient estimates yield
IVyHo(y, DI S (0" (14 [yD'~“lIholla,p in Dig.
Let us consider the problem

A2®, = Lyw[®] + Ho(y, 1) in Dag, (7.19)
®(y,0) =0 in Byg(0)
d(y,t) =0 forallt € (0,T), ye aB4R(O)(O)

According to Lemma 7.1, this problem has unique solution ® = ®( that
satisfies the estimates

[@o(y. O < CllHolla-2024 (D) (L +|y)~" R7™ in Dag.
Applying Lemma 7.2 we deduce that, also,

IVy @0y, D] S 1Holla—2.02 (D) (1 + [y)) ™2 R in Dsg
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Let us write
Dp; = 3yjd>0, Hy; := 3yj Hy
Then we have

320,®0; = Lw[®Poj]+ dy; [VW > Do + 2V, WV Do + Ho;(y, T)
+2(V®ody, VW)W 4 2(VOVW)3y W in D3g,
CD()J'(y, O) =0 forall y € B3R(0)(0)

According to Lemma 7.2 and the above estimates we obtain that

A+ 1yDIVD0; (3, D] S l1hollawrs () (1 +yh R
+ Nhollawhs (D) (1 +1y)* ™ in D3g.

Then we define
¢o := Lw[Po]

so that ¢ = ¢q solves

22¢; = Lw[p] + ho(y,t) in Dsg,
¢(y, 0) =0 forall y € B3R(0)(0)

and defines a linear operator of the function /y. Moreover, observing that
ILwl®oll S |D3®0| + 0(p™) [Bo] + 0(672) | Dy |
we then get the estimate

100y, O] < 1hollaw RO ™A (1) (1 + |y]) 7. (7.20)

To complete the proof of estimate (7.17), we let ¢g be the complex valued
function defined as

po(y, 1) = Re(po(p, 1)) E1 +Im (po(p, 1)) E2

so that letting R’ = R

equation

<& R, using the notation in (7.8), ¢q satisfies the

228,00 = Lolwol + ho(p, 1) in Dgr, (7.21)
90(0, p) =0 in (0, R'),
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and from (7.20), we can find an explicit supersolution for the real and imaginary
parts of equation (7.21), which also dominates their boundary values at R’,
which yields

0y, DI S Mholla w2l IR'PA+ 1D, Iyl < R
Combining this estimate and (7.20) yields the validity of (7.17). |

We mention next a variant of Lemma 7.3, in which we weaken the hypothesis
on the right hand side, allowing it to be a divergence of Holder continuous
function. This will be needed when analyzing estimates of the derivative with
respect to A of operator 7, > (Proposition 6.3).

Lemma 7.4 Let assume that2 < a < 3, v > 0, and k = 0. Let hy have the
form

ho(y, ©) = div Hy(y, 7)
such that
(L4 [yDIHo(y, )| + (1 + [yD ™[ Hols,(y)(y.0)nDag < 2+ (@A +yD 74,

in Dyg, where a € (0, 1) and £(y) =1 + %. Assume also that

/ ho(y, 1) - Zoj(y)dy = 0 forall t€[0,T)
R2

for j = 1, 2. Then there exist a solution ¢q to equation (7.6) for k = 0 that
defines a linear operator of hy and satisfies

5-a 1 Sa
B0y, DI S lhollawR7Z A5(1+ [y ™" min{l, R [y| 7},

in Dip.

7.2 Mode k = -1

Let us consider equation (7.6) for k = —1 and the functions Z_;(y) defined
in (3.2) . We have the following result.

Lemma 7.5 Let assume that2 < a < 3, k =0 and

[ h100)- 2o 00dy =0 forall 1 e10.7)
R2
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for j = 1,2. Then there exist a solution ¢_ to equation (7.6) for k = —1 that
defines a linear operator of hy and satisfies the estimate in D3,

10— 1y, O] < 1h—1]lavr2 minflog R, R4 y|72}.

Proof The proof is essentially the same as that of Lemma 7.3. O

7.3 Modek =1

Now we deal with (7.6) for k = 1. For convenience we give the result for a
right hand side more general than strictly need for the proof of Proposition 7.1.
Let us assume that 4 is defined in entire R? x (0, 7)) and that

hi(y. 1) = divy G(y, 1) (7.22)
where
As ()Y 2
Gy, )| < ———, eR%, te(0,7), 7.23
|Gy, 1) Tty 0,7) (7.23)

for some v > 0, a € (2, 3). Then the following result holds.

Lemma 7.6 Let assume that2 < a < 3, k = 1, hy has the form (7.22) so that
(7.23) holds and

/ hi(y,0) - ZL(y)dy = 0 forall t€(0,T)
RZ

for j = 1,2. Then there exist a solution ¢ to equation (7.6) for k = 1 that
defines a linear operator of h| and satisfies the estimate in Dsp,

610y, D S Ae(D)” (14 [y
From this we get directly the next result.

Corollary 7.2 Let assume that2 < a < 3, k = 1 and
/ hi(y,0)- Zl(y)dy = 0 forall t € (0,T)
Byr

for j = 1, 2. Then there exist a solution ¢| to equation (7.6) for k = 1 that
defines a linear operator of h1 and satisfies the estimate in Dsp,

613,01 S Ihillawrae O+ [yD>
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Let us do the same change of the time variable as in (7.14) so that (7.6) for
k = 1 in entire R? becomes in the variables (y, 7)

3.6 = Lwl[p]l+h inR* x (0, c0), (7.24)
#(-,0)= 0 inR?%

Thus, we consider a function i(y, ) defined in entire R? x (0, +00) of the
form o o
h = Re (he'?) E| + Im (he'?) E, (7.25)

that satisfies the orthogonality conditions for j = 1, 2
f h(-,t)-Z1; = 0 forall 7 € (0,00) (7.26)
R2

and such that 4(y, ) = 0 for |y| > 2R(7).
By standard parabolic theory, this problem has a unique solution, which is
therefore of the form

¢ = Re (pe'”) E1 +1m (pe'”) Es, (7.27)
where the complex valued function ¢(p, t) solves the initial value problem

d@ = Lilpl+h(p,7) in (0, 00) x (0, 00), (7.28)
o(p,0) = 0 in (0, 00),

3,0
Lilp] = g + —= — (1 +2cosw + cos(2w))—
P

We have the validity of the following result.

Lemma 7.7 Let0 < o < 1, v > 0. Assume that h is mode 1, that is, has the
SJorm (7.25), satisfies the orthogonality conditions (7.26), and can be written
as in (7.22) with g; satisfying (7.23) where b = 1 + o. Then there exists a
constant C > 0 such that the solution ¢ of problem (71.24) satisfies the estimate

2s (1)”
L+ ylo

lp(y, 1) = C (7.29)

For the proof of this result we will use the following Liouville type result.

Lemma 7.8 Let 0 < o < 1. Suppose ¢ satisfies
¢ = Lwlg] inR* x (=00, 0],
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404
/ ¢(¢,7)-Z1; =0 forall te (—00,0],
RZ
(y. )| < inR% x (—00,0], j=1,2,
I+ |yl°
¢(y,7) = Re (§(p, 1)e'?) E1 +Im (¢(p, 7)e') En.
Then ¢ = 0.

Proof By standard parabolic regularity ¢ (y, 7) is a smooth function. A scaling

argument shows that
(1+1yD 7" Dy@l + |e| + DZP| < C(1 + |y ~>7°.

Differentiating the equation in 7, we also get 9;¢; = Lw[¢.] and we find the

estimates
A+ YD Dye| + 1feel + [D2ge] < C(UL+ [y

Testing suitably the equations (taking into account the asymptotic behaviors

in y in integrations by parts) we find

1 - - .
Eaf/ 162 + B(@e. §0) =0,
RZ

where

BG.h == [ Lwid-d= [ V3R - 9w

It is useful to observe the following: since
$(r.7) = Re(@(p, 1)) E1 +1m (§(p, 1)e'”) En

then we compute, using that £1[w,] = 0,

BG.h == [ illopdo = [ 10070 PuF0do = 0.

We also get
~ 5 1 -~ ~
lp|” = —0:B(p, ¢).
R2 2
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From these relations we find

0
ar/ 6.2 <0, / dr/ 162 < 400
R2 —00 R2

%nd hence qgf = 0. Thus qS is indeps:ndent of 7 and therefore Ly [q;] = 0. Since
¢ is at mode 1, this implies that ¢ is a linear combination of Z;;, j = 1, 2.
Since fJRZ q; +Z1; =0, j =1, 2 we conclude that q~§ = 0, a contradiction. O

Proof of Lemma 7.7 Let us write

Ipllpz = sup A(D) VI + [YI)P Lo ro)-
te(0,11)

We claim that for any 7; > 0 we have that
loll24o,5 < +00. (7.30)

Let us recall that with the transformations (7.27) we have that the complex
valued function ¢(y, 7) is radial in y and solves the initial value problem

3:¢ = Apag — (1 4+2cosw + Cos(2w))£2 +h(p,7) inR? x (0, 00),
P
¢(-,0)=0 inR?

where p = |y|,y € R? and / is related to h by (7.25). Letus write ¢ = ¢, +¢p
where ¢, is the unique solution to

d:0a = Agega +h(p, 7) inRR? x (0, 00),
¢a(-,0) =0 inR?

given by Duhamel’s formula. Using the heat kernel in R? one readily shows
that || ll240,7; < +00. Let

1
drp = Ag2gp — (1 +2cosw + COS(2IU))?(§0a +¢p) inR? x (0, 00),
o (-,0) =0 inR>.

By standard linear parabolic theory ¢ (v, T) is locally bounded in time and
space. More precisely, given R > 0 there isa K = K (R, t1) such that

| (y, )| = K in Br(0) x (0, 71].
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g

If we fix R large and take K sufficiently large, we see that K;p~ 7 is a

supersolution for the real and imaginary parts of the equivalent complex valued

equation (7.28) in the region p > R. As a conclusion, we find that |¢p| <

2K1p7?, and therefore ||¢||s,r; < 400 for any 71 > 0. This proves (7.30).
Next we claim that

f ¢(¢,1)-2Z1;=0 forall Te(l, 7)), j=12 (7.31)
R2
Indeed, let us test the equation against

Zyn, n(y) =no(Ry))

where 7 is a smooth cut-off function with ng(r) = 1 for r < 1 and = 0 for
r > 2 and R is an arbitrary large constant. We find that

/Rz¢>(-,f)'Z1ﬂ7 = fo dS/R2¢>(-,S)~(LW[nZ1j]+h-Z1jn)- (7.32)

On the other hand,

f ¢ - (LwlnZijl+h-Zijngr)
R2
:Az¢‘(leAU+2V7}'VZIj)—h‘le(1—TIR)

uniformly on 7 € (0, 7). Letting R — 400 1in (7.32) we get that (7.31) holds.
Now we claim that there exists a constant C such that for all 7; > 0 we
have the validity of the estimate

Iéllor, < C, (7.33)
so that in particular estimate (7.29) holds.

To prove (7.33) we assume by contradiction the existence of sequences
i — 400 and ¢,, h, of the form (7.25), (7.27) satisfying

detpn = Lwlpn] +hy inR* x (1, 7)),
/RZ $n(-,7)-Z1j =0 forall e (1)),

¢n(-,1) =0 inR?,
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so that
lnllo,zn =1 (7.34)
but
2
hp = Z3y,gj,n, Igjnlli+or = 0, asn — oo.
j=1
We claim first that
sup 7¥|¢u(y. )| = 0 (7.35)
1<r<rf

uniformly on compact subsets of y € R2. If not, for some M > 0 there are
|yal < M and 1 < 77 < 7{ so that

1
(@) A+ 1yl DIP s )| = >

Clearly we must have 73’ — +o00. Let us define
Py, T) = (1) eu(y. 4 + 7).
Then
0cn = Lwl$ul +hy inR? x (1 - 173, 0]

where ﬁn — 0 has the form

()" 1
(@3 + )" 1+ |yt

2
= Zang’j,n, 1j.n(y, )| < o(1)
j=1

and

~ 1 .
[pn(y, D] < m inR? x (1 — 75, 0].

From standard parabolic estimates, we find that passing to a subsequence,
On — ¢ uniformly on compact subsets of R? x (—oo, 0] where é # 0and

¢r = Ly[p] inR? x (—
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/ ¢(,7)-Z1; =0 forall T e (—o0,0],
RZ
5(y,7)] < ——— inR? x (=00,0], j=1,2,
9001 = T (—00,0], j
$(y.7) =Re (@(p. 1)e'”) Ey +Im (¢(p, 7)e'"”) Es.
But then Lemma 7.8 implies that q~5 = 0, which is a contradiction, and we

conclude that (7.35) indeed holds.
From (7.34), we have that for a certain y, with |y,| — oo and 73 > 0,

(@) 1ynl lpn (n, T3] >

| =

Now we let

Gz, T) = (@) 1yul” du(ynl ™2, ynl 2T + T3

so that
0cPn = Az + an - Vi + by + hy (2, 7)

where
- (1D 240 —1 -2 n
hy(z,7) = (72) |ynl ho(lynl™ 2, [ynl 7T + 72)’

and |ay,| 4 |by| — 0 uniformly on compact sets of R? \ {0}.
Note that

2
hy = Z azj'gj,n
j=1

where

140

§in(z,T) = (@)l g, Uynl " 2, lynl 72T + T2,

By assumption on g; , we find that g; , — 0 uniformly on compact sets of

(R?\ {0}) x (—o00, 0]. Besides |q~5n(%, 0)] > % and

16 (z, D) < 12177 (@) Hya 2 + 17V

As a conclusion, we may assume that ¢, — ¢ # 0 uniformly over compact
subsets of R? \ {0} x (—o0, 0] where
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¢ = A.¢ inR*\ {0} x (—o0, 0.
and
1$(z, )| < 12177 inR*\ {0} x (=00, 0].

Moreover, the mode 1 assumption for ¢, translates for ¢ into

i 2i6 4
P(z.7) = [‘p('o’g)e } . z=pe”’

for a complex valued function ¢ that solves

vp 4o
2

Yr = Qpp + 7 — p in (0, c0) x (—o0, 0], (7.36)

o

lp(p, )| < p~7 in(0,00) x (=00, 0].

Let us set
w(o, )= (P07 4
Then
i+ Au— ‘:—;’ < (p* 4+ 1)0/>1 [0(0 F2)— 4+ %] <0.

It follows that the function u(x, T + M) is a positive supersolution for the real
and imaginary parts of equation (7.36) in (0, co) x [—M, 0]. We find then that
lp(p, T)| <2u(p, T+ M). Letting M — 400 we find

2¢
lp(p, DI = —
P

and since ¢ is arbitrary we conclude ¢ = 0. Hence ¢ = 0, a contradiction that
concludes the proof of the lemma. O

Proof of Lemma 7.6 We take h to be the extension as zero of the function &
as in the statement of the lemma. Then we let ¢ be the unique solution of
the initial value problem (7.24), which clearly defines a linear operator of /.
From Lemma 7.7, expressing the resulting estimate in the variables (y, 1), we
have that for any #; € (0, T)

6, ] < Cre®)” (A + YD hll2to. forall e (0,n1), yeR”

Then letting ¢; := ¢|D3R and letting #; 1 T the result follows. O
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7.4 Proof of Proposition 7.1

We let h be defined in Dag with ||k, < 400, witha € (2,3), v > 0. We
consider the problem

A2, = Lw[p] +h inDyre (-, 0) in B4r(0),

(recall that & is assumed to be defined in R? x (0, T). Let ¢ be the solution
estimated in Lemma 7.1 of

W3 = Lwlge] + hi in Dayg
¢(,t) =0 ondByg forall t e (0,7T),
¢(-,0) =0 in Byr(0)-

In addition we let ¢g1, ¢11, p—11 solve

220, ¢ = L]+ e in Dag
¢r1(-,t) =0 ondByg forall te€ (0,7),
¢k1(', O) =0 in B4R(0)

fork = 0, 1, —1. Let us consider the functions ¢, constructed in Lemma 7.3,
¢_12 constructed in Lemma 7.5, and ¢ constructed in Lemma 7.6, that solve
fork=0,1, -1

A20,dr2 = Lwlgial +hx — by in Dag
¢r2(-,0) =0 in B3g(0).

We define

pi= Y Gutod+ Y. &

k=0,1,—1 k#0,1,—1
which is a bounded solution of the equation
22¢; = Lwlg] +h(y, 1) inDsg

that defines a linear operator of 4. Applying the estimates for the components
in Lemmas 7.1, 7.3, 7.5, and 7.6 we obtain

A()’log R(t) |
lp(y, 0 < BEGE 1A~ la,v
As(2)” - Ae(D)VRY | -
—— |h1—h —— | h
+ 1+ |yle2 H 1 1”u,v+ 1+ |y ” ]”v,a
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S5—a
AR sa . h(D)'R?
——————— min{l, R 2 ho —h + —
1] { (Y177} lho — holla,w T+ Dyl

+ AV min{log R, R*~|y| 72} |h—1 — h—1lla + *s(0)10g R[2—1]la.v,

”hO”a,u

in D3p. Finally, Lemma 7.2 yields that the same bound is valid for (1 +
|yDIVye|in Dyg. The function ¢ |D2R solves (7.1), it defines a linear operator
of h and satisfies the required estimates. O

7.5 Modified theory for mode 0

Let us consider the problem

3200 = Lwo +h(y.0)+ Y ;Zojw? inDag
j=12

¢-W =0 inDyp (7.37)
Y = 0 on 332R X (0, T)
@(-,0) =0 in Bapr(o),

in mode 0. The result here is the following.

Proposition 7.2 Let o € (0, 1), § € (0, 1), v > 0. Assume ||h|y 246 < 00.
Then there is a solution ¢, on of (7.37), which is linear in h, such that

B Iy < 2R
3 =
lo(y, O 4+ (1 + [yDIVyp(y, D] < CALlhlly 240 § TTPD ;
T e 2R® < |y| =R,
and such that
- fB]RZ h-Zo, Gl
Goilh] = — 22—~
! Jr2 w31 Zoj 7
where G is a linear operator of h satisfying the estimate
IGlRI < CALR™ Il 240, (7.38)

with) <o’ < 0.

We are using the terminology mode 0 from §7, which means that ¢ has the
form

¢ =Re(@e'’)Ey + Im(@e') Ey
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where @ is a complex valued function of p and 7. The equation A%¢; = Ly ¢+
h(y, t) (wit h also in mode 0) becomes

i o _ . 1_ _  cosCw) .
220,90 = Lo + h, where Lo[¢] := 3§¢+;3p¢_ /Ez )go,

and we have a similar definition for /. Note that the operator Lo at p = 0 and
p = 00 is given by 83)(/3 + %8,)(,23 — %gﬁ. The last equation can be written as a
regular parabolic PDE by setting ¢(y, 1) = @(p, 1)e™?, y = pe'?,

16¢

e O

)LZB,dA) = Ay@ +

Thus, instead of (7.37) we will construct a solution to (changing the notation
to ¢ and h)

2200 = Ayp + +h(y, 1) +Copw’ inDag

16
a+P2?
=0 ondBrg x (0,T)
¢(-,0) =0 in Byg(0),

(7.39)

with ¢ complex valued of the form ¢(y) = ei9¢(p, t) (and the same for h).
Here ¢y is complex and related to ¢o; in (7.37) by ¢ = ¢o1 + icCoo.
We will construct ¢ solving (7.39) of the form

p=np+y

where n(y, t) = m(%‘) and n (r) = 1forr <1,n1(r) =0forr > 2. Here

Ri = R’. We find a solution to (7.39) if we get ¢, ¥ solving the system

: 320 = Ap + B + BY + h(y. 1) + copw’ in Dag, (7.40)

¢(-,0) =0 in Bag,(0),
Aoy =AY + (1 —n)BY + Ap + (1 —n)h(y, 1) inDag

¥ =0 ondBg x (0, 7T) (7.41)
V¥ (-,0) =0 on Byg),

where

16

B=———>—, Ap=¢dAn+2VpVn—én,.
TFERBE ¢ =¢An+2VoVn —o¢n
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Consider

A2 = Ay + (1 —n)BY + h(y, 1) in Dag
Y =0 ondByr x(0,7), (7.42)
Y(y,0) =0 Vy e B,

with ¥ and & of the form ¢ = ¥ (p, t)e'?. Let

1w I1!), = sup{a" @O + [yD7 [ (v, Dl + (1 + [yDIVy ¥ (v, 01 ]}

Drr

Lemma 7.9 Leto € (0, 1), v > 0 and let  solve (7.42). If Ry is sufficiently
large, then

Il < Clallyato (7.43)

v,o —

Ifin (7.42) h is replaced by (1 — n)h we get the additional estimate

1
Wy, Ol + RiIVY(y, )| = C)»:F, Iyl < 2R.
1

Proof To prove this lemma, we first claim that for the equation

220, = AV + h(y,t) inDag
v =0 ondBg x (0, T),
Y(y,0) =0 Vy e Bag,
with ¥ and & of the form ¥ = v/ (p, 1)e'?. we have
IS < Cliklly24o- (7.44)

V,0 —

This is obtained using a barrier for the real and imaginary parts of v/, which
satisfies

-~ ~ 1 ~ 1 -~ -
A2 = W + ;apw — P‘” + h.

To find the estimate for the solution of (7.42) we need to estimate ||(1 —
N BY ||v.2+0. We have that

(1=mB Y| < (1=l + yD =y
< RiO)722A + Iy w1,
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and therefore

I(1 = mBY o4 < CRIO) [y L)

Then, if ¥ satisfies (7.42), using (7.44) we get

IS < CIlA =) BY + hllvase < CRIO) I + CllAl, 240
If R1(0) is large enough, we obtain (7.43). |

Proof of Proposition 7.2 We use Lemma 7.9 to find a solution ¥ [¢] of (7.42)
with & replaced by A¢, and a solution [h] of (7.42) with &k replaced by
(1 — n)h, so that ¥[¢] + ¥ [h] is the solution of (7.41).

Let o1 € (0, 1). We also get the estimate

11112, < ClAGl 240,- (7.45)

We take R; = R® and construct a solution of the system (7.40), (7.41). For
this it suffices to find ¢ such that

220 = Ap + B + BY[p] + Byr[h] + h(y. 1) + copw, in Dag,

@(-,0) =0 in Bag,(0)-
(7.46)

Let 7 denote the linear operator given by Lemma 7.3, Applied in Dy, . Then
to solve (7.46) we consider the fixed point problem

¢ =T[BY[¢]+ By[hl+ hl.

Leto € (0,1). By Lemma 7.3,

||T[g]||*,v,2+a =< ||g||v,2+6, (7.47)
where

A0 3
2O TP [l 4+ 0+ DIT, 00 0].

1

||¢”*,v,o = Ssup

We claim that if o1 < o then

[1A@Nlv, 2401 < CRIO)” (@ ll4,0,0- (7.48)
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Indeed, we have

1 R3 o o1—0
lpAn| < R2 iml Mmlllelle = CA”WIWII* V.o
< CRUO™ X e 19 e
Similarly
3 o o1—0
IVéVn| < ml Mmlell,v,o _C)»”WIWII*M
Similar estimates for the remaining terms in A prove (7.48).
From (7.45) and (7.48) we find
181185, < CRIOT 1§l .0- (7.49)
Now we claim that
I1BY llv,240 < ClIW I, (7.50)
Indeed,
v Av
BIVI = Cqpnima Ve = Cqypm VI,

s0 (7.50) follows. Combining (7.50) and (7.49) we get
IBYI¢llv.20 < CIYIBII, < CRIO) (@40
From the above inequality and (7.47) we then get

ITIBY 1,0 < CRIO) @00

which shows that the operator ¢ +— 7 [Bvr[¢] + Byr[h] + h] is a contraction
if R1(0) is sufficiently large, and we find a unique fixed point, which satisfies
the estimate

@llsv.0 < CITIBY Al + hlllsv.0-
Next we estimate || 7 [By[h] + h]|l«.v.o. We have by (7.47)

ITIBY 1]+ hlllsv.o < CIIBYIA] + hllvote
< ClIyIhlIY), + 1kl 2o < Clikllvoto.
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and hence

”d’”*,v,a =< C”h”v,2+0~

Similar to (7.49) we have

1O < Cldllino < Cllhllv 2o

and

I A1), < Clhllv2so-

Recalling that ¢ = n¢ + ¥ and R; = R®, we get

RSB—0)

lo(v, DI+ A+ [yDIVye(y, O] = CALRllv.240 {(1+Ily|)3
(D7

Finally, thanks to Lemma 7.3, we have that

1
cojlh] = —

(7.51)

|yl <2R°
2R® <|y| = R.

T 1Zoi2 h B By [h
fBl |Z0j|2 |:‘/;32R1 PL0p ¥ /Ble( viel+ Byl ])pwp:|

The last term is a linear operator of 4, which we estimate next. A similar

computation as in (7.48) shows that

||A¢||v+8(a—01),2+01 =< C||¢||*,v,a-
This implies
”W[‘b]”v—l—é(a—a]),al =< C||¢||*,v,a

and therefore

< CART 0,0

/ By[@] - Zo;
Bog,

and using (7.51)

CA R NAllv,240-

/ By[@] - Zo;
Bog,
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We have for |y| < 2R?
[ IRy, D+ (14 [yDIVy ¥ [y, )] < CRY [[hllv2+o-
Then for |y| < 2R?% we have
B YRl < CAL(L+ yDT* Ry 1Allv.2 40

and hence

< CALR Al 240-

f By [h]lpw,
BZRI

We would like to have the orthogonality condition defined as an integral in
R2. Note that

/ hpw, dy
(BZR{S)C

1
< Cllhllv,2+ )»V/ R
V,240 Ny (By )¢ (1+|y|)3+0

< Cllhllv 1ol RTOUHD.
Then, going back to the original notation, we get

fRZ h- Zoj

cojlh] = —+E———1s —
/ fR2 w/z)|ZOJ|2

Glh]
where G satisfies (7.38). |

7.6 Lipschitz bounds with respect to A

Let us consider the linear operator we constructed in Proposition 7.1 as a
solution ¢[h] = 7, 1[h] of problem (7.1),

)\23@ = Lwlpl+h(y,t) inDyg
(b(', 0) =0 in BZR(O)
¢ -W =0 in DZR

where Dogr = {(y,1) /t € (0, T), y € Bop)(0)}, and we assume h - W =0
in D, g. The purpose in this section is find estimates for directional derivatives
of the operator 7, 1[/] with respect to the parameter function A. Examining the
construction of 7 1 [/] as the superposition of the unique solutions of different
problems, it is not hard to see that the directional derivative
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d
¢1. = T DM = — T alhl]

satisfies the equation

A
223y = Lyl — 271(LW[¢] +h(y,1)) inDag
¢ (-,0) =0 in Byg(o)

with ¢ = 7, 1[h]. We will find estimates for this quantity inherited from those
we have already established for ¢. We assume that for some positive numbers
a, b, c independent of T we have that

ark(t) < A(t) < bA(t), |A1(t)] < chy(r) forall ¢ e (0, 7).

The following estimate holds.

Proposition 7.3 The function ¢, is well defined and satisfies the estimate

(L+1yD) [Vydr(y. D] + 1da(y. D)]
JRTTlogR (R

Al
< min{ =——, 1} 141l
1+ ]yl |2 “r

in Dyg.

o0

Proof of Proposition 7.3 We recall that ¢[h] = 7, 1[h] was constructed mode
by mode. According to the decomposition (7.2), (7.3), (7.4), (7.5), we can
write

b=¢o+d1+¢_1+¢T, h=ho+h +h_|+ht,

where we can assume fork = 0,1, j =1, 2,
/ hi(y. 1) - Zij()dy = 0.
Bog

We will give the estimates for ¢, in each mode separately, writing

¢r = dor + P11+ P13 + b
We will estimate each of the terms ¢g;, @15, d—_1, ¢i‘ separately. O

First we give some estimates for the equation in entire space with some
suitable right hand side.
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Lemma 7.10 Let ¢ be the solution of

3 = Ay + g(y, 7) inR? x (0, 00)
$(-,0)=0 inR?

given by Duhamel’s formula. The following holds: let v € (0, 1), a € (2, 3).

= di .
Assume that g(y, t) = divyG(y, ) where |G (y, T)| < IEEDIERRIEE Then

C(1 +1log, 7))
+ V)1 4 |y[e=2)

<
lp(y, DI = a
wherelog, T = max(0, log 7). Ifinstead, g satisfies |g(y, T)| < m
then

C(l +log, 1))
POl =

Proof The proof of the first estimate directly follows from the representation
formula

1 Tl =z
Py, 1) = —/ / e 4e9div,G(z, s)dzds
47'[ 0 R2

T—S

1 _ly—zf? y—2z
= C/ / e 49 -G(z,8)dzds
0 T—S JRr2 T—S

The second estimate is treated similarly. O

7.7 Mode 0: estimate of ¢,

We claim that

(T+1yDIVoor(y, D) + [Poa(y, )] (7.52)
5—a 1
Al R logR [1  if|y| < R2
S ke ————== T ,
00 ly|+1 O if |y| > R2.

Proof We refer to the notation in the proof of Lemma 7.3 on the construction
of ¢o. We recall that g = Lw[Dg] where g is the unique solution of the
problem (7.19),

A2®, = Ly[®] + Ho(y, 1) in Dyg,
®(y,0) =0 in Bsg(0)
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®(y,7) =0 forallt € (0,T), y € dBsr)(0).

Then ¢g;, = Lw[Doy] where ®g; solves

Al .
229, ®g;. = Lw[Po;] — 2=~ (o + Ho(y, 1)) in Dar, (7.53)

Dpx(y,0) =0 in B4r(0)
Do (y,7) =0 forallr € (0,7T), y € dBsgr)(0).

We recall that we obtained
160y, O] < 1hollaw RO ™A (0)(1 + |y]) 7,

and a posteriori the better estimate

if [y] < R,

—

RZAY

I+yl | R
[yl

l$o(y, DI S lholla,

S5—a
2

if]y] > R

The use of an explicit barrier in (7.53) then yields

Al

R +2 log R
A

Do, | < Alllho
|Porl < Axllholla,w NN

and then, arguing similarly as in the construction of ¢9 we obtain the estimate
for ¢or = Lw[Poal,

Rs%aﬂlogR
oo LH P

Al

- (7.54)

601 (v, DI S Aillholla,v

Next we want to improve this estimate, as was done in Lemma 7.3. We have
that ¢, satisfies the equation

220,005, = Lwldon] + gy, 1)

where ;
g= —27‘<Lw[¢o] + ho(y, 1) (7.55)
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We have that g(y, 1) = divy Go(y, t) + G1(y, t) in D4g, where

L+ [yDIG1(, O + (1 + [yD¥IGol By, 1)nDar + 1Go(y, 1)l

—a . 5-a
A R |1 if [yl < R%,
Sl Mollawy——3 4 25 . . (7.56)
Moo 1+ [yl T if|y| > R .
We write
05 = Pp + ¢

where ¢}, is given by the Duhamel formula

T 1 1 —z|?
op(y, 1) = / ————ds f "3 g (2, 1(s)) dz
o 4n(t —s) R2
with g given by (7.55) and t by (7.14), and let ¢, solve

A28 = Lwldel + VW ¢y +2(VW - V)W in Dyg
¢c(-, 1) = —¢p ondByg forall te(0,T),
¢c(-,0) =0 in Bag()-

Using Lemma 7.10 we find that
Al b 5=a
lop(y, DI+ (1 + [yDIVoL(y, DI S 5 holla,w AR 2 log R (7.57)
o
for |y| < 5R. The above estimate implies that

5—a _
Iollaw ALR 2 log R(1 4 [y]) >
(7.58)

Al
VW 2 |gp| + 2 [(VW - Vo) W| < H7

o0

Let ¢, be the complex valued function defined by

¢c(y,1) = Re(gc(p, 1)) E1 +1m (¢c(p, 1)) E2

so that using the notation in (7.8), ¢, satisfies the equation

{ W20i¢e = Lolge] + &c(p. 1) in Dyg, (7.59)

9c(0,p) =0 in (0,4R),
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where by (7.58) g, satisfies

Al

S5—a _
| Wrollaw 2LR™ Tog R(1 + D) 3

o0

8l < H

We can find an explicit supersolution for the real and imaginary parts of equa-
tion (7.59) in D12 of the form

12
2R 1

Qe = d(l)ZO(P)f /r Zo()(1 + ) s dsdr
0

P ZO(r)Zr

where d(t) = ‘ % 120la.v AiRS%a log R and Zj is defined in (7.10). We
o

note that at p = R'/? the value of ¢, satisfies, by (7.54) and (7.57)

loc(RY2, )| < 1¢poa(RY2, 1) + |p(RY?, 1))

S Allholla,

Al 6-a

—| R 2 logR
)\' o0

and on the other hand

19 (RV2, 1) > ¢

Al 5—a
7” lhollaw A2R™2 log RR/?
o0
for some ¢ > 0. This yields
< [|M | -1 12
[pe(y, DI 'S o lholla,y AR 2 7" log R(1 + [y[) Iyl < RV~
o

and combining with (7.57) we get

M 5-a _
|p0r. (v, D] S ‘ | Mholley AeR7ZH og RO+ IyD ™! Iyl < RVZ.
o0
Using Schauder estimates together with (7.56) we obtain (7.52). |

7.8 Mode 1: estimate of ¢

From a similar argument we obtain the following estimate.

A+ 1yDIVyoin(y, Ol + o1 (y, D

Al

< Coa (L4 1YD* N lla in Dg.

o
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7.9 Estimate of ¢;" and ¢_i

We claim that for any o € (0, 1) we have

(1+ 1yDIVOE (&, 0] + 1833, 1)

_ _ Al
S () RTHog R(L+ [yD* 10t Nl | —
)\' o0
(1+yDIVo_12(y, D] + 51, (v, 1)
_ _ 1
S A R4 |y h—t gy | —
)\' o0

8 The A-w system

In this section we prove Proposition 6.5, on approximate solvability of the
equation

Bolpl(t) = a(), t€][0,T),

where By is the operator defined in (5.6) and @ : [0,T] — C is a given
continuous function. We will also derive Lipschitz estimates that will be crucial
in solving for the final adjustment of parameters p, & by a fixed point argument
in the next section.

Consistently with the discussion in Sect. 5, we assume that Cll <la(T)| <
C for some C independent of T. We will construct an operator P that to a
function « in a suitable class assigns p = P[a] such that

Bolpl(t) = a(t) + Rolal(), in[0,T). (8.1)

so that Rg[a](¢) is a suitably small.

We construct the function p in Proposition 6.5 by linearization, and the first
approximation is a function p, that deals with the case of constant a.

First we introduce some notation. We work with x € C and let pg , be the
function

poc () = k|10 T|/ B 82)
s log(T —s)P2
so that
0 (1) = k|logT| 83)
POt = o — P |
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We will always assume that for a large, fixed constant C; we have

1
C, ~ |K| = L] (8.4)

so that we also have C “y, < [Po.«l < C MAs. The first term in the function p
constructed in Proposition 6.5 is a function close to pg . that actually more or
less solves (8.1) in the case that a is constant.

Lemma 8.1 Given k € C satisfying (8.4), there is a function p, : [-T,T] —
C, a constant c(x) € C, and R (k)(t) such that

Bolpel(t) = c(k) + Ri(k) () (8.5)
fort € [0, T, where R1(k)(t) satisfies
R1(k) ()] < CAL° (8.6)

for some ag > 0.

We have additional estimates for p, and the remainder R («x) constructed
above. The function p, can be decomposed as

P = Pox + Pl

Here po « is defined in (8.2). The function p , satisfies: given k € (1, 2) there
is C such that

1P1cllksr < Cllog T1*~ " log?(|log T|) (8.7)
and
IP1ic = Pl sk < Cllog TIFMog®(|log T|) k1 — kol (8.8)
for k1, kp satisfying (8.4), where the norm || |/, is defined for g €
C(-T,T];C)nCY(~T, T); C) with
g(T)=0
and k£ > 0 by
Iglex = sup [log(T —)[*|g()l, (8.9)
te[-T,T]

(here ¢ = %g).

The remainder, satisfies together with (8.6) the estimate for the derivative
int:
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d
‘wa)(r) < g (8.10)

and Lipschitz estimates

IR1(kc1) (@) = Ri(k2) ()] = CAL k1 — 2 (8.11)

d d _
‘ERI(KI)(I) - ERl(Kz)(t) < CA Mkt — raal, (8.12)

for k1, k> satisfying (8.4). The proof of Lemma 8.1 and estimates (8.7), (8.8),
(8.10), (8.11), and (8.12) are in Sect. 8.3.

For the proof of Proposition 6.5 and Lemma 8.1 it will be useful to isolate the
main part of the operator By, defined in (5.6). Given the asymptotic expansion
of I'; in (5.5) we write

Bolpl = Zipl + Bipl,

where

t—)\*(t)2 p(S) . - -
Ilp] = /T P—_ ds,  Blpl:= Bilpl+ B2lp]l —Re(p(1)),
(8.13)

where

t—Ay ()2 . —iw(t) 2
Bilpl(r) = e® U Re(p@)e™™™) (rl (“” ) _ 1) ds

-T r—s t—=s

t Re( 7 —iw(t) A 2
. / e(p(s)e )rl( () ) ds}
tf)n*(t)z r—s r—s

Bo[pl(1) = ie'®® [ / HO Im(p(s)e ) (Fz (m)z) - 1> ds

-T r—s r—s
t Im(7p —iw(t) At 2
+/ (p(s)e )Fz( (1) )ds
t—)\.*(l‘)z r—3s t—s

and we use the notation p(t) = A1)V To prove Proposition 6.5, we take
p of the form

p:pl(+p29
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where p, is the function constructed in Lemma 8.1, for some x € C to be
determined. The function p»(¢) will have the property pa2(t) = o(pc(t)), as
t — T. We would like that

TIp 1) + ZIp2)(t) + Blpe + p21(1) ~ a(1). (8.14)

Given @ > 0, let us decompose Z[p] = Su[p] + Ry[p] where Sy, R, are
defined as in (6.20), (6.21), that is The idea is to replace Z[p2] by Sy[p2] in
(8 14) to make this equation more manageable, that is, we consider Sy [p2] +
Blpe + p2] — Blpel + Ri(k) = a(t), t € [0, T], where we have used (8.5).
We introduce one more modification, so as to have a more convenient problem
to treat. Let us split Sy[g] = Lolg] + L1[g] where

Lolg]l = (1 — a)|log(T —1)|g(1)
Lilg] = (4log(|log(T — 1)) —2log(k) — 2log(|log(T)]))g(t)

l*(T*I)Ha
+ / §() ds

-T t—s

We actually introduce one more modification to (8.14). For this, it is con-
venient that a is defined in [—T, T']. So, given a function a : [0, T] — C
satisfying the hypotheses of Proposition 6.5, we extend a continuously by
constant for r < 0.

Let n be a smooth cut-off function such that n(s) = 1 fors > 0, n(s) =
0 fors < —7. The equation that we are going to solve is the following one:

Lolpal + 1 (%) Li[p2] + Blp« + p2l — Blpi]
=a(t)—Rik)+c in[-T,T] (8.15)

for some constant c. Later on we shall show that it is possible to adjust ¥ so
that c = 0.

8.1 Construction of a solution to (8.15)

Since in (8.15) the terms a(#) and R (k) have similar behavior, we will con-
sider just

Lolp2]+n <L

T> Lilp2l + Blpe + p2l = Blpcl = a@®) + ¢ in [T, T]

(8.16)

Consider the norm || ||,,; defined in (6.15).
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Lemma 8.2 Let i, @ € (0, %) and! € R. Assume z‘hatci1 <la(T)| < C; and

TH[log T|"™™ a() — a(T)||p1-1 < C1, (8.17)

for some 0 > 0 fixed. Then if T > 0 is small there is a solution p> to (8.16)
for some ¢ € C. Moreover this solution satisfies

1p2llur = Clla() — a(T) -1 (8.18)

For the proof of this lemma we consider the linear equation

Lolgl+n <%> Lilgl=f+c in[-T,T]. (8.19)

We will assume that f(7T) = 0, and hence ¢ = L{[g](T) because all other
terms in the equation vanish at 7". Thanks to the cut-off function n (%), we need
only to consider the values of L{[g](z) for t > —%. Then in the definition of
Li[glit — (T =) >t — J(T —1) > =T of T > 0 is small.

For the right hand side of (8.19) we take the space C([—T, T]; C) with
f(T) = 0and the norm || fl,,;-1.

The next lemma asserts the solvability of (8.19) in the weighted spaces
introduced above.

Lemma 8.3 Let ¢« € (0, %) and T > 0 be sufficiently small. Assume
Il fllui—1 < oo where p € (0,1), 1 € R. Then for T > 0 small there is
a solution S| f] of (8.19) that defines a linear operator of f and such that

ISU Mt = CUflli—1- (8.20)

Proof We consider (8.19) as a fixed point problem of the form
_ t
g = Lol [f -1 <?) (Lilgl(®) — Ll[g](T))} ,

where L 1'is defined the formula

—1 _ Q)
Fo 0 = G Mo — o1
It is clear that
_ 1
Lo [ M < - If =1 (8.21)
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and a calculation shows that

Clog|logT|

IL11g1() — Lilgl(T) |l pe1—1 =< (0‘ + |log T'|

gl (822)

To estimate the integral term we decompose

r—(T—1)1te T
f 8(s) ds—f 86) gy — L+ b+ Iy
T r—s v T—s

where

t—(T—1)1te t—(T—1)/2 1 1
I =f 8©) 4, 12=f g(s) (—— )ds,
t—(T-1))2 L —8 -T r—s T —s

T
13:/ g(S) ds.
t

~r-np T —s
Then
t—(T—t)H'O‘ (T _ S)I’L
0 < lel ,zf
P —a—np Nog(T —s)IH(t —s)
< el—L =D Glog(T — 1) +©)
— (¥ | 10 — .
= 8l og(r — %
and similarly
Bl < Cliglu——=" 5 < Clglu
2= g = = T log(m =1

These estimates imply (8.22). Then this inequality combined with (8.21) shows
that

H Ly [n (%) (L1lg](t) — Ll[g](T))i|

1 ( C10g|logT|)|| ”
logr| /'8l

w,l

<
T 1l-«

Then for o € (0, %) and T > 0 sufficiently small this operator is a contraction
and we obtain the conclusion of the lemma. O

Proof of Lemma 8.2 Let S denote the linear operator constructed in Lemma 8.3.
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Then to find a solution to (8.16) it is sufficient to find a solution p; of the
fixed point problem

p2 = Alp2] (8.23)
where p = A[p»>] is defined by p(T) = 0 and

a5
@ _

at [—(B[PK + p2l = Blpel) + a(t) — a(T)] .

Let My = Colla(-) — a(T)||,,i—1, where Cy is a sufficiently large fixed
constant. We claim that if 7 > 0 is sufficiently small then .4 is a contraction
in ball EMl of the space of complex valued functions p, € CY[-T, T)) with
p2(T) = 0 and with the norm || p2 ||, ;. Note that with this norm we have

(T — prt!

N <C|p o -
Ip2(0)] < ||P2||u,l|10g(T !

In particular, thanks to (8.17), if || p2|l.,; < M, then

p2

Ase

P
s

+ <1

for T > 0 small. B o
Let us verify that A maps By, into itself. Let po € By, . By (8.20) we have

LAl < C(ué[pK + pal = Bipellls—t + la() — a(T)Ilu,z—1>-
(8.24)

After some computations, we can check the validity of the following esti-
mate: for p1, p» € By, we have

IBLp« + 11— Blpe + palllpi—1 < C Ip1 — pallus.  (8.25)

[log T'|

__Assuming for now this estimate let us continue with proving that .A maps
By, into itself. Let p; € By, . By (8.24) and (8.25)

M,
[log T

IAlp21llps = € + Clla() —a(M)llpi-1 = My,

if T > Ois small. Also thanks to (8.20) and (8.25) we see that A s a contraction
in By, . This finishes the proof of the lemma. O
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We also have a Lipschitz property of the solution constructed in Lemma 8.2.

Lemma 8.4 Let i, o € (0, %) andl € R. Assume thatfor j = 1, 2, a; satisfies
CL] <la;(T)| < Cy and (8.17), and let k1, k7 satisfy (8.4). Then for T > 0 is
small the solution p>|a, ] to (8.16) constructed in Lemma 8.2 satisfies

| p2lar, k1] — p2laz, k1l < Cllar(-) — ai(T) — (a2(-) — a2 (T)) | 10,11
| p2lar, k1] — palar, k2lll g < Cllai(-) — ar(T)llpi—1l61 — k2|, (8.26)

8.2 Holder estimate of the solution

We will show in this section that the solution constructed in Lemma 8.2 has
some Holder regularity inherited from the one of a.

We then have the following result, where the Holder semi norm [ ], ;,, ; is
defined in (6.16).

Lemma 8.5 Leta € (0, 1), s,y € (0,1), m < pu— y, | € R. Assume that

& <la(T)| < Cy and

THlog T la() — a(T) |l wi-1 + lalymi—1 < Ci,

for some o > 0. Then the solution p> constructed in Lemma 8.2 satisfies

TH
|log T'|
+[a() —a(D)lymi-1-

[P2)ymi S (T +log|log T|) lla(-) — a(T)|l i1

The proof follows from the fixed point representation (8.23) and estimates
in the weighted Holder norms for the operators involved there.

We will also need a Lipschitz estimate of p, as a function of ¥ and a(¢) in
the semi norm [ ]y, ;. ;.

Lemma 8.6 Ler o € (0, %), w,y € 0,1),m <u—vy,1 €R. Assume that
for j =1,2, we have Cll <la;j(T)| < Ciand

T log TI" " la; () — a;(T) =1 + [ajlymi—1 < Ci,

for some o > 0, and that k1, K satisfy (8.4). Then the solution p» = psla, k]
constructed in Lemma 8.2 satisfies
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[p2lar, k1] — palaz, k11ly,m,i
S [a1 — a2]y,m,l—1

_._.log|logT|
+ ey 228 T () — an (1) = (aa() — ax(T) it
|log T'|
and
. _ p—y—m
[PQUH,K1]—-P2UH,K2HymL1fEC-TﬂigfrﬂalC)—-aﬂjﬁﬂuJ—ﬂkl—-Kﬂ-

Proof of Proposition 6.5 By Lemma 8.2 there is p; satisfying (8.15), where
we have used this lemma with a replaced by a — R (k), with R () being the
remainder appearing in (8.5).

Note that by (8.6) and using the assumption ® < «g, we have

IR1 () loi—1 < T ©log T (8.27)
Therefore from (8.18) we find
Ip2lleo < C(T* ®llog TI'™ + [la() — a(T)lloi-1).

In equation (8.15) the constant ¢ depends on k and we claim that it is possible
to choose « satisfying (8.4) such that ¢ = 0. Evaluating (8.15) att = T we
find

T . .
/ P (s) + pa(s) ds = a(T) + c.

T T —s
We consider then the equation ¢ = 0 with « as an un known, that is, we

look for « satisfying

T . .
/ P+ p2S) oo, (8.28)

T T —s

Using (8.2), (8.8) and (8.26) we see that

T . .
f PO i) L g

T T —s

where f satisfies

|f k1) — flea)| <

K1 — K
|log7W|1 2|
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for k1, Kk satisfying (8.4). It follows that there exists a unique « so that (8.28)

holds. Moreover
=a(T){1+0 !
e [Tog T
as T — 0.

Now let us prove the estimate (6.19). For this we note that what we left out
in (8.15) is Ry[p2]. In other words, the remainder Rg[a] is just Ry[p2]. By
Lemma 8.5 we have

®
P2lymt = CliceT (T77" +log|log T1) la(-) — a(T)lle.s-1
®
C Tfyfm 1 1 T R .
- |logT|( +1log|log T'1) [R1 (k) lle,1-1

+ Cla() —a(D)ly,mi-1 + C[R1() ]y, mi-1.

Using (8.10) we see that for s < ¢in [0, T] such thatt — s < %(T — 1) we
have
IR1() — Ri(s)]

=37 < A (D)7

and since m < ® — y, ® < ap by hypothesis we get
[R1 (K)]y,m,l—l =< C)M*(O)U

for some o > 0. From this and (8.27) we obtain

)
|log T'|
+ laly m,i-1,

[p2lymi ST +C (T~ +1log|log T|) lla(-) — a(T)lle,i—1

for some o > 0. Then

l_)»*(t)z (1) — P
IRa[}'?z]IS/ | p2(2) P2(S)|ds
t—(T—t)l+e t—s

®
g T|
(T _ t)m—l—(l—i-a)y

|log(T —1)|!

= (717 + C— (177" + log [log T1) lla() — a(T) e.1-1

+ [a]y,m,1—1> :
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8.3 Proof of Lemma 8.1

To do this we look for p, of the form

Px = Pox + D1,

where po . is defined in (8.2), and we would like

ZIpos] +ZIpil + Blpox + pilt) — c(k) = O(T —1)*) fort € [0, T1.
(8.29)

The idea is to replace in (8.29) the operator Z[ p;] by Sq,[p1] defined in (6.20)

and try to solve the corresponding equation. We claim that if g > 0 is small,
then we can find p; such that

T1po.c] + Salp1l + Blpo + pil(t) — c(c) =0 in[0,T],  (8.30)
for some c (k). This means that instead of (8.29) we have obtained
Bolpo, .« + p1] — c(k) = Ryo[p1] in [0, T].

The second step is to prove that there is k such that c(k) = A. The final
step is to show that

|Ra()[ﬁ1]| =< C(T - t)OlO’

and this implies (8.29).

Construction of a solution to (8.30)
To obtain a function p satisfying (8.30) we formulate a fixed point problem as

follows.
We decompose

Seolgl = Lolg]l + Lilg]
where

g(s)

~ t
Lolgl() = (1 — ao) log(T — 1)]g(1) + / £ g
-T — S
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and I:1 contains all other terms, that is,

. t—(T—1)1t20 t
Ll[g](r)zf 8(5) ds—/ g 4
t t

—(T—1) r—s —(T—1) T —s

t—(T—t1) 1 1
- d
+/—T g(s)<t—s T—s> >

+ (41og(|log(T —1)|) — 21og(|log(T)[))g(®).

Given a continuous function f in [—7, T'] with a certain modulus of conti-
nuity at 7', we would like to find g such that

Swl8l = f in[=T,T].

We will not quite obtain this, but we will solve a modified version of this
equation. Let  be a smooth cut-off function such that

1
ns)y=1 fors >0, n(s)=0 fors < T (8.31)

We will be able to find a function g such that

Lolgl+n (%) Li[gl=f +c in[-T,T]. (8.32)

We use the norm || ||, defined in (8.9) for the solution g of the above
equation. For the right hand side of (8.32) we take the space C([-T, T]; C)
with f(T) = 0 and the norm

Ifllei = sup [log(T —D)*| f@)]. (8.33)
te[~T,T]

Note that in (8.32) the expression n(%)lzl [g]1(¢) is well defined for g of

class C! in [=T, T). Indeed, because of the cut-off function, L, [£]() needs

to be computed only for ¢t > —%, and for r > —% the integrals appearing

in L1[¢] are well defined, since they start at either at — T or ¢ — %(T —1) =
34T > -T.
The next lemma gives the solvability of (8.32) in the weighted spaces intro-
duced above. Let
2 —

YT =
1—ap
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Lemma 8.7 Let Cy > 1 befixed, k satisfying (8.4), and assume thatk > Y —1.
Then, there is oo > 0, so that for 0 < ag < ag, and T > 0 small, there is
a linear operator Ty such that g = T1| f] satisfies (8.32) for some constant c
and

C
llglls k+1 + lc| < k—i—l——T”f”**’k' (8.34)

The constant C is independent of T, .
Let

E(t) :=TIpo1(t), (8.35)
E(t) = E(t) — E(T),

where 7 is given by (8.13), and consider the fixed point problem
p1 = Alp1] (8.36)
where
Alp1l = Ti[=nE — Blpo.c + p1l]. (8.37)

where 7 is the cut-off function defined in (8.31).
Note that if p; is a solution of (8.36) then p; satisfies

t

Lolp1]+1 (7) Li[p1] = nE — Blpo + p1l(t) + ¢

in [—T, T] for some constant c. This implies that p; satisfies
Swlp1]+ Blpo + pil —E =c¢

in [0, T'] for some possibly different constant c. This is precisely the equation
(8.30).

Proposition 8.1 Let k > 0, k < 2 close to 2 and oy > 0 small. Then for
T > 0 small there is a function p| satisfying (8.36) and moreover

Ipillskir < M
where
M = Co|log(T) ¥ log(| log(T)|)?, (8.38)

with Cq a fixed large constant.
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Moreover, if we denote by p1(x) the solution just constructed, we have, for
K1, k2 satisfying (8.4)

Ip1(k1) = pr&)lleks1 < Cllog T1* " log(|log T|)? liey — kal.  (8.39)

The rest of the subsection is devoted to the proof of Proposition 8.1.
We start with the construgtion of the linear operator 77 in Lemzna 8.7. We
want to find an inverse for Lo, namely given f find g such that Lo[g] = f.

To do this, we differentiate this equation and we get
2 — §(0) 1 f

= . (8.40)
1 —og (T —0)|log(T —1)] 1 —op]|log(T —1)]

g(n) +

Then we can write a particular solution for ¢ to (8.40) as

f@
(I = ao)[log(T — 1)

) =

YT -1 T log(T — s)| Y2
+ log(T — 1)~ ¥ / Hoa@ =N~ r(syas,  (3.41)
1 — ) t T — S

_ T-2 . .
where ¥ = %:—38 and where we have assumed that % f(s) is inte-

grable near T (for example f(s) = O(|log(T — s)|7%) with k > T — 1
suffices).
Define the operator

Tolf1=g. (8.42)

where g is such that ¢ is given by (8.41) and g(7') = 0. Note that g = To[ f]
solves (8.40) and therefore

Lolgl = f +e,

for some constant c.

Lemma 8.8 Assumek > Y —1. Thenfor f € C((—T,T]; C)with f(T) =0

IToLf Ml k+1 I Ml

< -
T k+1-70
The constant is independent of Y (if Y is bounded), k, T.

Proof This is direct from (8.41). O
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Proof of Lemma 8.7 We construct g as a solution of the fixed point problem

t\ -~
=T - — | L .
g="To [f U] <T) 1[g]}
where Tj is the operator constructed in (8.42) and 7 is the cut-off function

(8.31).
By Lemma 8.8

- C -
ITolL1[g]l k41 < m||Ll[g]||**,k-

A computations shows that

IToLL 1 [g1l s k41 <

n 1 n log|log T| el
— |« .
Sk 17 8llx,k+1

O Nog 7| |Tog T|

we get a contraction if &g > 0 is fixed small and then T > 0 is sufficiently
small. O

Next we need an estimate for the error E defined in (8.35).
Lemma 8.9 Let po . be given by (8.2) and assume k € C satisfies (8.4). Then

|log T'|log|log(T —1)] T
|E(t) — E(T)| = C , —— <t<T. (843
|log(T — t)|? 4

Proof By definition we have

t—hi(0)?
E(t):/ Pox(s) ;o
-T r—s

Letr € [—%, T] and let us write

PR P .
E(1) =/ pO,K(S) ds _/ pO,K(S) ds
v T ¢

- -5 T —s

t—(T—1)/5 1 1
) — d
+/_T po,K(s)<t_S T_s) s

=h 0 B0 (s
+/ PO« ( )ds.
t—(T—-1))5 L —S
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We estimate

/f P0.xc(5) ‘ Ck|logT|
ds| < ————,
and
=(T-n/5 1 1 Cr|log(T)|
./ pO,K(S) - ds| =< 2°
r t—s T—s | log(T — 1)

With the fourth term in £ we proceed as follows

t=ha(?
/ P,k (5) ds = po.c()(log(T — 1) — 21og(Ls))
t

—(r-n/5 =5

_ 2 . .

/’ 2 O™ Po e (1) = poe(s)

— ds.
t—(T—1)/5 r—s

But

S| = — )
—(T—1)/5 t—s |log(T —1)|?

2 . .
/l—l*(l) Dok (1) — Po.x(5) J ‘ - Ck|log(T)]
t

and therefore

o
E- / POG) 4 o (1) 0g(T — 1) — 2log(h))
—-T T —s

0 «|log(T)|
llog(T —1)? )"
‘We note that

.
ﬁo,x(l)llog(T—f)I—i—/o I’T"L“)ds _.

— S

for some constant c. Indeed, by (8.3)

" Posc(s) ds) _ diPox 0 log(T — 1))

d (.
& (poconios —oi+ [ Sy

dt

— S8
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This shows that

E) = E(T) 4.0 (|log T|[log(| log T'|) + log(| log(T —t)m)’

|log(T —1)|?
which implies the estimate (8.43). O

Proof of Proposition 8.1 Let T| be the operator constructed in Lemma 8.7 for
T > 0, ag > 0 small and A defined in (8.37).

We will apply inequality (8.34) with k < 2 close to 2. The constant in
this inequality remains bounded as ag — 0T, because T = %:—2‘8 — 2 as
g — 0.

For the poof we use the norm (8.33) with k < 2, k close to 2 so k +
1 < 3is close to 3. We work with pj in the space X = C([-T,T];C) N

CY([-T, T); C) with the norm || - || «.k+1 defined in (8.9). By Lemma 8.7

JAL i1 = € (IE s + 1BLpoc + p11E) = Blpo.c + i) s),
(8.44)

and by Lemma 8.9
INE ||k < Cellog T log(|log T1), (8.45)

for some Cg > 0. We take in X the closed ball B (0) of center 0 and radius
M given by (8.38) with Cy > 0 suitably large. The proof of Proposition 8.1
consists in showing that A : B(0) = B(0) is a contraction. The estimates
required for this are the following: for || p1|l«x+1 < M we have

1BLpos + pilllsss < Cllog(T)|F7 !, (8.46)

and for || p; |lsx.k+1 < M,i = 1,2 we have

I1BLpox + p1] — Blpox + palllck < Ip1 = pallsisr. (847

|log T'|

These inequalities are proved in a straightforward way. We omit the details
Form these estimates we see that A is a contraction in the ball B ;. Indeed,
from (8.44), (8.45) and (8.46) we have

IALp1 1l k41 < C - Cellog TI* " og(|log T|) + C|log(T) ™!
< Collog T log (| log T'])?

by fixing Cy large. Therefore A : By (0) — By (0).
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Next, for || pill«s.k+1 < M,i = 1,2, by Lemma 8.7 and (8.47) we get

IALp1] — Alp2llls i1 < CIBIpo« + pil — Blpox + palllssk

< —_ .
= Tlog 7| lp1 — pP2llsk+1

The proof of (8.39) will be given in Corollary 8.1 below. O
We also have the following estimates
Lemma 8.10 Let py be the solution constructed in Proposition 8.1. Then

|log T'|

| log(T = )P(T —1)
|log T'|

[log(T — )3T — )%

1P =C

d3
|ﬁpl(1)‘ <C

The proof is done by formally differentiating the equation and using suitable
estimates on the operators involved. We omit the details.

Proposition 8.1 defines a function that to « satisfying (8.4) associates pj(k),
which is the unique fixed point of A in the ball {||pi|lxr+1 < M}, M =
Col log(T)*~" log(|log(T)|)>.

The next result gives several Lipschitz estimates of this map.

Corollary 8.1 Let k € (0, 2). For k1, k> satisfying (8.4) we have
Ip1Ge1) = P11 < Cllog T log(|log T1) lic; — rea).

We will also need a Lipschitz estimate for p; in the norm || || 1,3 and 57 Pl
in the norm || || -2 3.

Lemma 8.11 For k1, k3 satisfying (8.4) we have

|p1(k1) — p1(k2) =13 < Cllog T'| |k1 — k2|
d3 d3
| 5160 = Zxpite)| = Cliog T = o]

Next we use the previous results on p; to obtain an estimate of R, [p1].

Lemma 8.12 Let py be the solution constructed in Proposition 8.1. Then

log T
Ry [11(1)] < C— 1% 'P(T—r)“o,

| log(T —1)
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and for k1, k3 satisfying (8.4) we have

[log T

Tiog(r —np |~k

|Rao[P1(k1)] — Ry [P1(K2)]] < C

Lemma 8.13 Let py be the solution constructed in Proposition 8.1. Then

& Ruglin1(0)] = € B gy
dr aolP1 = |10g(T —t)|3 s
d

| Raglpr6e010) — & Rl (6210
log T
< mé%gaﬂ — %k —kal.

9 Final adjustment of the parameters p and &

In this section we prove that the last equations of the gluing system (6.22)—
(6.28) can be solved, by adjusting the parameter functions p = A¢'® and &, as
stated in Proposition 6.9, thus concluding the proof of Theorem 1.

Proof of Proposition 6.9 Let W (p, &, ®, Z{) be the solution to equation (6.22)
constructed in Proposition 6.7. Let ®(p, &, Z;) denote the solution of
(6.32) constructed in Proposition 6.8. In (6.27)—(6.28) we replace W* by
V*(p, &, ®(p,&, Z;), Z;). Then to find a solution of the full system (6.22)—
(6.28) it is sufficient to find p, & such that

COj[h(pv Sv llj*(p’ S’ (I)(p, S’ ZS)’ ZE)k))](l)

forallt € (0,7),j =1,2.
We recall from Sect. 6 that (9.1) is equivalent to

Bolpl = a’[p. & W1+ Ro[a[p. &, 11|, re(0.T] (03

where W* = W*(p, &, ®(p, &, Z;), Z;). We recall that By is the integral
operator defined in (5.6) which has the approximate form

t—)\.
&m=/' ?ld+0mm@

-T
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In Proposition 6.5 we constructed an approximate inverse P of the operator
By, so that given a satistying (6.17), p := P [a], satisfies the equation

Bolpl = a + Rolal, inl0, T],

for a small remainder Rg[a]. The proof of that proposition gives the decom-
position

Plal = po,« + Pilal,

where pg . is defined in (8.2), k = «k[a] € C and the function p; = P;[a] has
the estimate

1p1ll+3-0 < Cllog T|'~7 log?(|log T),

where || || 3—¢ 1s defined in (8.9) and o € (0, 1). This leads us to define the
space X1 := C x X where

X :={p1 € C(-T,T;C)NC ([~T,T;C)) | pi(T) =0,

I P1lls,3—6 < 0O}.

Let us rewrite equation (9.2) as follows. By (6.9), (9.2) is equivalent to
/zh[p,s, ¥ Z1j(y)dy =0, t€(0,7T), j=1,2,
R
and recalling (5.1), this is equivalent to

A O_WLylW*1-Zij+ 1 | Kilp.£1-2Z1; =0,

Bor Bor

which yields the following equation

. 1 -
Ei=—1+02R7 Q_oLyl¥*1-Zy;, j=1,2. 9.4)
4

Bag

We reformulate (9.3)—(9.4) as the fixed point problem

[p.§]1=Alp.§] inB 9.5)

where the space B will be introduced below and the operator A = [A;, A>]
is defined by
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Ailp,§1=P [al1p. & " (. &, (.8, 7). 23]
T
Alp.g1=g~ [ blp. €1y ds
t
with

byjlp. §1(2)

1 -
= a4+ (2R)—2>/ 0oLyl (p, &, D (p. £, Z0). ZD1- Z1;.
44 Byr

To define B consider the closed ball
Bi = By, (ko) x B;,(0) C X1,
where ko = div zéo(q) + icurl zgo(q) with z(’go so that

250 (x)
263 (x)

Z0x) = [

] o200 = 00 + iz,

and Z = Z(’)‘O + Z(")" is the initial condition as described in (6.8). Here the
numbers [, [ are given by

1 =T°, I =CollogT|'" log*(|log T),

with o > 0 small and and Cy > 0 is a fixed large constant. We consider £ in
the space

Xo ={& e C' ([0, T;R?) : &(T) =0}
endowed with the norm

1€l x, = Il Lo, 1) + sup Ax(t) 7 IE()]
te(0,7)

where o € (0, 1) is fixed. In X, we consider the closed ball B, := B (%),
where £* = g € Q. We consider the Banach space X := X x X» and its
closed ball B := B; x B,. We formulate the fixed point problem (9.5) in B.
We claim that A(B) C B and that A is a contraction mapping on B for the
norm || ||x. This is consequence of the various bounds and Lipschitz estimates
derived in Sect. 8 for the operator P and in Sect. 6 for the operators W* and
D. O
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10 Stability of blow-up

In this section we discuss the stability of the blow-up phenomenon predicted
in Theorem 1 and prove Theorem 2. We consider the class of initial conditions
that lead to blow-up at a given point as described in Sect. 6.1. The solution has
the form

ulx,t) = Une),w@)e0) + @ + a(|§0|2)UA(t),w(t),€(t)
where a(s) = +/1 —s — 1 and

o(x.1) = TL [Z*(x, 1)+ O, w, E)(x, 1) + W(x, 1) + o (x, z)] ,

A1),0(1),86(1)

where the point £(T') € 2 is prescribed. Changing slightly the proof we can
achieve that the value £(0) = ¢ be prescribed. Let us denote ¢ = A(0). A
simple application of implicit function theorem to the system of equations
determining (A, w, &) leads to the fact that the blow-up time 7" and the final
point £(T') can be regarded as functions of arbitrary small values ¢ > 0 and
points g € 2.

The functions (A, w, &) as well as 1y and ¢ have Lipschitz dependence in
p = (&, ¢) and Z* in suitable topologies. We relabel

o(p) = w0), Up:=Ueup.g PP)x) =0, 0, &), 0)+¥(x,0)
so that the initial condition of the solution above becomes
uo(p) = Up + My [Z" + ()] +a( My [Z° + S(p)])U)p.
A generic initial condition close to
Up, + Myt 25+ S(po)] + a(ITly . [Z5 + D(po) )P Up,
with values in S? can be written in the form

v(x: 1) = Upy + My [Z5 + ®(po) + ¢1]
+a(MyL [Z5+ S(po) + 1] Up,
where ¢ is a small function, otherwise arbitrary. We shall show that if ¢
is sufficiently small in C2-topology and it lies on a certain codimension-1

manifold, then problem (2.2) with initial condition ug(x) = v(x; ¢;) has
blow-up as predicted. Thus what we need is that for suitable

@ Springer



Singularity formation in the 2D harmonic map flow 445

t=(e,q9,. 2" =00+, & =(1q,2Z))

we have that
v(-; 1) = uo(p). (10.1)

It is convenient to measure the size of {; with respect to the norm (see 6.5),
Ip1ll := Iq1] + ler] + 1 Z7 [+
We expand uo(p) around p = pg and get
uo(§) =Ugy +¢(¢) + a(lp(O)*) Uy,
where

p(¢) = “U#O[Z* + @) + Uy — Ug)(1 — y(¢) +a(p))],

y(@©) =U, - (Z* + @(¢))
a(p) =a(My:[Z" + D).

Therefore, equation (10.1) becomes

My 125 + PG0) + 911 = Ty [Z7+ S@) + (Up = Up)(1 =y +a)]
or, equivalently

My (27 + @) = $@0) + (Ur = Up)( =y (@) +a©) —¢1] = 0.
We will get a solution to this equation if we find a constant ¢ such that

Zi 4+ @0+ ¢1) — Do) + (U — Uy )(1 — y(£) +a(2)) = ¢1 + colUg

Let us consider the functions Z;;(y) defined in (3.1),/ =0, 1, j = 1, 2, with
y = x;q. We introduce the following intermediate problem: we want to find

a function Z7 and five constants co, ¢;; such that

Zi+®(Go+p1) = Do)+ (Ur = U ) 1=y () +a()) = @1 +coUgy +c1; Zi;
(10.2)
and the following five real constraints hold for the function Z i"(x):

divzi(20) =0, curl Z¥(qo) =0, Z7(qo) = 0. (10.3)

Summation convention is used in (10.2).
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To make the argument more transparent, we consider a simplified linearized
version of (10.2)—(10.3), in which lower order terms are neglected, and only
the constants associated to mode O (associated to dilations and rotations) are
considered. Thus we consider the model equation for Z7,

2
ZT+ dolZT]1 = o1 + coiZoi,
1 0L4q ®1 J; 0j40j (104)
div zj (g0, 0) =0, curl zj(go,0) = 0.
where
k
with
. 0 1 — e_%
Wz =re” [ ke 4~ ds. kien) = ==
-7
(10.5)

where p(t) = A(1)e'* D, r = |x — qol, ¢ = 1(0), and p = p[Z}] is such that
the following equation is satisfied

p(z)|log<T—r>|+/ b(s)
T

ds =divzi(q,t) +icurlzi(gq,1), te][0,T].

-8

p(T) =0,
(10.6)

where
8 Z1(x, 1) = AZ(x,1) inx(0,T)
Z1(x,0) = Zf(x) xeQ (10.7)
Zi(x,t) =0 (x,1) € dQ x (0,T),

and we use the notation

= *
ol Z Z
Zi=(1), zr=(3 ).

713 <13

The main result here is the solvability of (10.4).

Proposition 10.1 Assume ||@1|« is finite. Then for T > 0 sufficiently small
equation (10.4) has a unique solution Z7, co1, co,2 and moreover
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1 ZT 11« + lcot] + lcoal < Cllgt |l

We can obtain a similar result if all constraints and constants are considered,
with essentially the same proof as that below. On the other hand, to derive the
corresponding result to the full problem (10.2)-(10.3), we need to use the
linearized version and contraction mapping principle. For that we need to
use the precise Lipschitz estimates of the solution of the inner-outer gluing
system on the parameters involved as done in Sect. 6 and Sect. 8. The C'!
character of the manifold predicted in Theorem 2 follows from the fixed point
characterization and the implicit function theorem.

We devote the rest of this section to the proof of the proposition, whose
main step is the following estimate.

Lemma 10.1 Assume that
divzj(go) =0, curlzj(go) = 0.

Then

[P0l ZT 1l = IZ7 1l

|log T'|

To prove this we need a corollary of Lemma B.1 adapted to the norm || ||,
defined in (6.5) is the following.

Lemma 10.2 Suppose Z7 € C 2(Q) satisfies

Vi ZT(x)| < |logel, x €

1
loge|2
D2z7 0 < 0B g
lx —qo| + ¢

Then the solution Z, of (10.7) satisfies
IViZi(x,1)| < |loge|, >0, (10.8)

and

|log & if0 <t <ég?

V. Zi(x,t) = ViZi(x,T)| < C
VaZa 1) = Vi, 1)l llogel? T (1 + log(L)) ife <t <T.

Proof AsinLemma B.1 we consider the function given by Duhamel’s formula
in R? and then decompose the solution as a sum of the one in R? and a smooth
one in §2 with zero initial condition.
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From (B.2) and |V, Z(x)| < |loge| we get (10.8).
For0 <t < &? we get

Vi Zi(x,1) — Vi Z1(x, T)| < C|loge|

from (10.8). For ¢2 < ¢ < T from Lemma B.1 we obtain

5 .5 12NT =1 r
IV Z1(x, 1) — Vo Z1(x, T)| < C|log e = 1+10g<t).

O

Proof of Lemma 10.1 Let f(t) = divZi(q,t) +icurl 71 (g, t). Differentiating
(10.6) we find

d )
E@mm%a—nﬂ=u%a—nvm.

This can be integrated explicitly and we get

1

T
p(t) = _Ilog(T——t)IZ/; |log(T — s)| f(s)ds +

cllogT|
| log(T —1)|?

for some constant ¢ to be determined. Integrating by parts we find that

p(r)

_ S = f(TI) 1 /Tf(S)—f(T) cllogT|
= + ds + .
llog(T —1)|  |log(T — ) J; T—s |log(T —1)|?

This function is defined for r € [0, T'] and we need to extend it to [— T, T'] to
make sense of (10.6). A possible extension is p(t) = p(0) fort € [T, 0] but
this makes this lemma too simple and not useful to adapt to the real situation.
For this reason we make the analysis with the following extension. Define

. [ = f(D) 1 T f(s) = f(T)
pi(t) = og(T — 1) + |10g(T—t)|2/t s ds (10.9)
so that
o cllogT|
pt) =p1(®) + Toe(T — 11 fort € [0, T]
Then define
o cllogT| B
p() = p1(0) + Tog™ — 0 '€ [T, 0]. (10.10)
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We want to estimate

_5
e 4

0 _
210 =re” [ ok + e —s)ds, k(;,o:le,

which, thanks to (10.10) depends only on p;(0) and c. Therefore we need to
estimate these quantities. We claim that

PO = Tog 7| Tog 7]
(10.11)
1 1
¢=/m (1 O <|logT|)) O (|1ogT|> 1O
log(|log T'|) N
0 (W) 1Z5].. (10.12)

To obtain these estimates we note that evaluating equation (10.6) at = 0
we get

$1(0)(|log T| +log2) + ¢ <1 +0 ( )) = £(0) (10.13)

|log T'|

and evaluating equation (10.6) at t = T we get

T .
pi(s) 1
d 1+ 0 = f(T). 10.14
L7 ”C( " (IIOgTI)) 7 (101
: T pi(s) ‘e o
Thus we need to estimate f_T 7—. ds where pj is given (10.9). We have

/T pis) o /0 prs) +/T prs)
7T —s 7T —s o T —s
T .
= p1(0) log2+/ P1(s) ds.
0 — S
To estimate fOT % ds we write

D1 = Dla + P1b
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with
. o= fM)
PO = log T — 1]
o 1 T fGs) = f(T)
P10 = log(r —t>|2/t T—s "
We compute

. T
/T P1a(s) dS:/logT ...—I—/T
o T —s 0 T

By Lemma 10.2 we have that

l/2T—t T
log(|log T'|)|log T'| , <t<T
" T |log T|
| f ()= f(T)|=CIIZT ||«
|log T|, 0<t < .
|log T'|
(10.15)
which in particular implies
log(|logT|)|logT|1/2T_[ T _ i<r
) 1Z7 11« T ' |logT| ~— ~
|P1a(t)|fcm T
g [log T, 0<t< )
|log T'|
Therefore
el | pra(s)] c
0, S
/g Pal o 1Z5 .
0 T—5s |log T|
and
T p log(|log T|)|log T'|'/?
f |pla(s)|ds§C0g(| ogT|)|logT| 1Z .
r T —s |log T|
[log T
It follows that
T .
1 log T
f P ;o _ clogdloeTD) o\ (1016)
o T —s |log T|1/2
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Singularity formation in the 2D harmonic map flow 451

By (10.15), we find that

log(|log T|log T|"/2 T

1 T b T loa T <t<T
0 —t 0
P16 < ClIZT ]l [ log( )] |log T'|
log(|log T')) 0<1<
|log T|3/% ° ="' =TlogT|’
This implies that
T .
|P15(5)] log(| log T'|)
/0 T—s ds—wll 1l (10.17)
From (10.16) and (10.17) we find that
T -
1(5) log(]log T'|)
| A as) < EE Tz
o T'—s |log T|!/

Therefore (10.14) gives

log(|log T'|)
| log T|'/2

1
151(0)10g2+0< )IIZTII*-l-c(l-l—O( )) = f(T).
[log T'|

(10.18)
Equations (10.13) and (10.18) form a system
llog T| +log2 1+ O (Ilong) [1‘71(0)]
log2 140 ( c
Q)
T+ o (BellErly 7z,

for p1(0) and ¢, and solving we get (10.11), (10.12).
We use (10.11), (10.12) to estimate ¢ given by (10.5): and obtain

Mog 7]

Pl Z} I1Z7 1

”*_W
O

Proof of Proposition 10.1 We look for a solution of (10.4) in the space of
functions

={Z} € CH(Q) : | Z}|lx < 0o, divzi(go) =0, curl z}(go) = 0}.
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To determinte cp; we apply divergence and curl (10.4) at g¢ to obtain

cor = & (div ol Z{1(go0. 0) — div ¢1(q0)) ,
coz = € (curl ¢o[ ZT1(q0. 0) — curl @1 (qo)) -

With this equation (10.4) becomes the fixed point problem
Z{ = FIZ71 + o1 + divoi1(q0)e Zo1 + curl ¢1(q0)e Zoo. (10.19)
where
FIZ71 = —=®olZT] — div ¢ol Z11(q0, 0)e Zo1 — curl go[ZT1(q0, 0)e Zo2
By Lemma 10.1 we get

| div ¢l Z71(qo, 0) + icurl pol Z{1(qo, 0)| < Cllog e[| PolZ{1llx < ClIZ]lls-

But

e2pills < ————-
|| 0]“* — |10gT|]/2

This and Lemma 10.1 shows that

C
||-7:[ZT]||* = W”ZTH*-

By the contraction mapping principle, equation (10.19) has a unique fixed
pointin Z. O

11 Reverse bubbling
The proofs of Theorems 3 and 4 follow very similar lines to those of Theorem 1,
with a “backwards” construction. In Theorem 3 we consider the exact ansatz
asin (4.14) for u(x, t) in (0, 2T), extended for T < t < 2T in the form

u(x, 1) = U+ [0 + ¥* + 90, +a(My [0 + ¥* + nQ,¢)T

where A(t) is defined in the interval (—7, 2T') and satisfies A(T") = 0, while

_ _(x—EQ)
U(x.1) = Qo (OW (x o )
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and W(y) is the reverse bubble as in (1.16). A main point is that the linear
theory for the inner problem, corresponding to ¢ (y, t) has to be performed
for ¢t > T for “ancient solutions”, which exactly mirror the forward theory
of Sect. 7. More precisely, we need to consider a problem of the form We
consider the linear equation

220,¢ = Lwl¢l+ h(y.1) inDag
¢(-,0) =0 1in Byg()
¢ -W=0 in DQR

where
Dar = {(y,1) / t € (T,2T), y € Bar((0)}.

We assume that 4 (y, t) is defined for all (y, t) € RZ x (0, T) and satisfies

hoa ()"
h-W=0, [h(y,1)]<C—"2_,
I+ 1yD?
where we extend the definition of A,(z) for r > T as A.(t) = %.

Inverses for the linear problem with right bounds (which vanish as ¢ | T') are
found as before.

In the full construction a major ingredient is the adjustment of the parameter
A(t) for timest > T.

The main term in the error (the one due to the effect of dilations) has now
the extended form

Lpw, ~—2% if0<i<T
Lpw, ~2%  ifT <t <2T.

Therefore we extend ®° by considering the function ®°[w, b, £], where

1 s<T
b(s) = -
() {—1 s>T.

W*(x,t) has Z*(x,t) as its main term. Testing the error as before by the
generator of dilations, we get the approximate equation

r—A(1)? X(s)
f b(s)t Sds = —|[div¥* + icurl W*](q, 1)|. (11.1)
0 _
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We would like to find a solution such that A(T") = O,)l(t) <0ift <T, i(t) >
0ift > T. The solution for + < T is the one of the forward bubbling of
Theorem 1, which we recall is given at main order by

|logT|(T —1t)

MO = e =i

<T,

For ¢t > T the approximate equation reads

=22 ;
f bs)2 ) a5 = _idiv gt + icurl v*)(q. T)|

-T t—=s
T 1 1 t—kz)'\‘
+/ Ms)( - )ds—/ ©) 4.
0 t—s T —s T t—s

Equation (11.1) then approximately reads

=22 3 (s) T 1 ]
ds= | i(s)(— - ——)ds forr>T,
T t—s 0 t—s T —s

The integral in the left hand side is approximately A(7)| log(t — T')|, while

Ti 1 1 d
fo (s)<t—s_T—S> §
T 1
= (t — T)kx|log T|/0 (t —$)(T — s)|log(T — s)|2 o

Arguing as before we get

r 1
/ ds
o (& —=s)T —s)|log(T —s)|?

1 1 1
- o(— ).
[T logt —T)] (u%a—TW>

Hence, for ¢t > T we get the apprximate equation

. 1
A |log(t — T)| = ky———
Ol loglt = T)| = ks
which gives
t —T)|logT
Alt) = K*w, fort > T
| log(t — T)|?
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as desired. This computation can be made fully rigorous with the same argu-
ments already employed in the forward bubbling construction, leading to the
proof of Theorem 3.

For the proof of Theorem 4 we proceed in exactly the same way however,
now with an ansatz that does not include a bubble for # < T'. In that case the
approximate equation for A takes the form

=2 () . .
/ ds = —|[divy”™ +icurly™1(g, T)|
T t—s

for ¢t > T. From this equation we get

D) T —1t
= K* ’

[log(z — 1)

as desired.

It is interesting to notice that this continuation, even at the level of the
parameter A(¢), does not seem to exhibit analyticity near t = T, even one-
sided, in terms of (7" — ¢) or the natural parameter s = log(%t). It is not hard
to check for instance that, even though formal improvements of approximation
in powers of s are possible for A(?), they so not lead to a power series with
positive convergence radius.
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Appendix A: The heat equation with right hand side

We are going to measure the solution to (6.31) in the norm || |30,y , (c.f. 6.29)
with ® and B (recall that R = A, p ) satisfying:

B e (0, %) ® € (0, ) (A1)

Our main result in this section is the following, where we use the norm || |4, 0,y
defined in (6.29).

Proposition A.1 Assume (A.1). For T, ¢ > 0 small there is a linear operator

that maps a function f : Q2 x (0, T) — R3 with | flls«x < 0O into ¥, cy, c2, 3
so that (6.31) is satisfied. Moreover the following estimate holds
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2+ (0) "€ (W, (0)R(0)) !
Wlse, + O G ORONT (1) < Cllf s (A2)
log 7|

where y € (0, %).

Remark A.1 The condition 8 € (0, %) is a basic assumption to have the sin-
gularity appear inside the self-similar region. The condition ® > 0 is needed
for Lemma A.1. The assumption ® < f is so that the estimates provided by
Lemma A.2 are stronger than the ones of Lemma A.1.

To prove Proposition A.1 we consider
V=AY +f inQx©O7T)

Y(x,00=0, xeQ (A.3)
Y(x, 1) =0, xe€dQ,te,T),

and let g be a point in 2.
We always assume that R is given by (6.3).

Lemma A.1 Assume 8 € (0, %) and © > 0. Let  solve (A.3) with f such

that
1f (e, )] < Aal®)® e O R ™ Y 1x—gl <300 0) RO)) -
Then
1Y (x, )] < Crs(0)®1i(0)R(0)| log T, (A4)
1Y (x, 1) — ¥ (x, T)| < Aa(D) @0 (1) R(D)| Tog(T — 1)1, (A.5)
IV (x, )] < Crs(0)®, (A.6)
VY (x, 1) — ¥ (x, T)| < Crse()®, (A7)

and for any y € (0, %),

VY, 0 = Vol _ o A0

A.8
lt 1|y T (R A8
forany x, and0 <t' <t < T suchthatt —t' < %(T — 1), and
V _ V / / )\' @
IV (x, 1) Y, )| -C «(1) (A9)

lx —x'|2 T OR@)

forany |x — x'| <2A)R(t) and0 <t < T.
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The proof is in Sect. A.1.

Lemma A.2 Assume f € (0, %) and m € (3, 1). Let ¥ solve (A.3) with f
such that

Ay ()™
|f(x, 0] < |Z*_7X{|qulzk*(z)1?(t>}-

Then
[¥(x, )| < CT™|log T|*™™,

1Y (x, 1) — Y (x, T)| < Cllog T|™(T — )" |log(T — 1)|*~*",
T log T|* "

VY (x, )| =C R(T) ;
hs ()" log(T — 1)
IV (x, 1) =V (x, T)| = C R()
and for any y € (0, %).‘
IV (x,t) — Vi (x/, )] - 1 Ao (D) Tog(T — 1)
(x =X+t =17 = " Gu(OR(@)> R(1)

forany |x —x'| < 204 (t)R(t) and0 <t' <t < T suchthatt—1t < %(T—t).
The proof is in Sect. A.1.
Lemma A.3 Let i solve (A.3) with [ such that

If(x, 0] <1,
Then
lv (x,1)] < Ct,
[ (x, 1) — ¥(x, T)| < C(T —1)|log(T —1)|,

VY (x, )| < T2V (x, 1) = Vi (x, T)| < C(T —0)'/?
VY (x, 1) — Vi (x, 11)] < Clea — 11]'/2.
IV (x1, 1) — Vi (xa, )] < Clx; — x2|| log(|x1 — x21).
The proof is in Sect. A.1.

Proof of Proposition A.1 Let Y[ f] denote the solution of (A.3) where f sat-
isfies || f ||« < 00.
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We claim that ||[Y¥o[ f]ll« < C|| fl+«. Indeed, given f with || f|l«x < 00 we
decompose f = Z?:l fi with | fi| < C|| fll««0i. By linearity it is sufficient
to prove that when f is each of the g;, the corresponding ¥ has finite || ||«
norm.

The case f = o1 is direct from Lemma A.1. Using the hypothesis ® <
we can find o small so that the case f = p» follows from Lemma A.2. The
case f = o3 follows from Lemma A.3.

Finally, let us show that in problem (6.31) we can choose ¢; so that that
¥ (g, T) = 0. To do this we let v; the solution

i = Ay inQ x (0,7)
Yi=0 onad2x (0,T)
Yi(x,0) =ein in

Let
3
v =vo+ Y civi.
i=1

Then for T > 0 small there is unique choice of ¢; such that ¥(¢, T) = 0.
Moreover |¢;| < CA4(0)"R(0)>~“|1log T||| f |l+« and hence v satisfies (A.2).

O
A.1 Proof of Lemmas A.1, A.2, and A.3
The proof of the estimates is done by analyzing the solution 1 of
o= Avo+ f inR* x (0,7),
1Yo Yo f2 0,7) (A.10)
Yo(x,00=0 x e R,

defined by Duhamel’s formula

e 4([ Y)
wen= [ [ S dyds
assuming

|f (6, ] < X{ly|<20u ) Res) A ()2 R (1) 7.

The solution to (A.3) is then given by ¢ = v + ¥ where ¥| solves the
homogeneous heat equation in €2 x (0, 7') with boundary condition given by

@ Springer



Singularity formation in the 2D harmonic map flow 459

—10. In the sequel we prove that the estimates (A.4)—(A.S) are valid for .
Then the conclusion for v; follows from standard parabolic estimates. In what
follows we denote by ¥ the solution to (A.10) given by Duhamel’s formula.

Proof of (A.4) We have, using the heat kernel,

t A U—2R —a e ,|2
Yot = C / +()" 7 R(s) / 575 dyds
0 r—s |y1<224(s)R(s)

t ~
- c/ A*(s)”_zR(s)_“/ e =2 gzds
0 2] <214 () R(s)(t—s)~1/2

where ¥ = x(r — s) /2. First we estimate

t—(T—1) S 12
f )\*(S)V—ZR(S)—"/ e =" dzds
0 |2 <214 (s)R(s) (t—s)~1/2

t—(T—t) A VR 2—a
<C f Ma’s < CA4(0)"R(0)>~°. (A.11)
0 — S
2
Consider the integrals tz__(kT*ft)) and ftt—x*(t)Z- We have
1= () - o
/ A*(s)”_zR(s)_“/ e W4 qzds
t—(T—1) 2] <2A4 () R(s)(1—s)~1/2
< Crs())"R(1)*~% log(T — 1)|. (A.12)

For the second part we have
! < 2
/ )»*(S)V_ZR(S)_“/ e W dzds
1=2x(1)? |z <224 ()R (s) (1 —5)"1/2

t
< c/ Ae()"ZR(s) "% ds < Cr(t)"R(t)™“. (A.13)
1=As ()2

From (A.11), (A.12), (A.13),we deduce
[ (x, )| < CA(0)"R(0)]log T'.

which is the desired estimate. Estimates (A.4), (A.5), (A.6), (A.7), (A.8), (A.9)
follow in similar manner. ]

The proofs of Lemmas A.2 and A.3 follow similar lines to those above, and
we omit them.
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Appendix B: The heat equation with initial condition

In this section we consider the heat equation

8 Z1(x,1) = AZi(x,1) inQ x (0, T)
Z1(x,0) = Z}(x) xeQ (B.1)
Z1(x, ) =0 (x,1) € 9Q x (0, T),

and derive estimates assuming, roughly speaking, that Z} behaves like (r +
¢)|log(r + ¢)|.

Lemma B.1 Suppose Z] € C 2(Q) satisfies

1
DZx < — x €.
DOl = e

Then the solution Z, of (B.1) satisfies
- T 5
IV Z1(x, 1) — ViZi(x, T)|<C— 1 4 log ifec<t<T.

Proof We do the computation when €2 is R? and we deal with the solution
given by Duhamel’s formula. The general case follows by the decomposing
the solution as a sum of the one in R? and a smooth one in . Then

1 v
Vo Z1(x, 1) = yorll *’Ttvxz;"(x —y)dy. (B.2)

Assume ¢2 < ¢ < T. Then, using (B.2), we have
IV Z1(0,1) = Vi Z1(0, T)|

! 1
L/ e_'\4|2/ VXZT(—sﬁy+(1—s)\/;y)dsdy
T | JR2 0
2 1
= [ [ 1D (-sVTy + (1= WNIWT — Vol dsdy
R 0
b2 ! T = JDly|
C 4 dsd
/Rze /o ST — Vil + iyl +e

12
C/ N (x/_lyl—i-s)dy
R Vilyl +e
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= /()we_flog<fp +8)

Vip +
2 1
_ CWT — Ve f o d
0 WTp+e)ip+e)
Using this representation, after some computation the desired result follows.
O
Similar computations leads us to the following estimates.
Lemma B.2 Suppose Z] € C 2(Q) satisfies
|D>ZF(x)| < . eQ
T x —qol + &
Then the solution Z 1 of (B.1) satisfies
|ID2Z1(x,1) < ¢
X 1 ’ — e + \/Z
Lemma B.3 Suppose Z} € C*(Q) satisfies
|D2Z%(x)| < - xeQ
T —qol e
Then the solution Z1 of (B.1) satisfies for 0 < to < t1:
ff‘flog( ‘) ifty > &*
\VeZi(x, 1) — ViZi(x, 10)| < C fff log (2 ) iftg < €2, 1] > &>
V= ; 2
— ify <e¢

Let us recall the norm || ||, defined in (6.5). As a corollary of the previous
estimates we have.

Lemma B.4 Suppose Z; € C 2(Q). Then the solution Z* of (B.1) satisfies

IVeZ*(x,1)| < |loge|||zz;||* 1>0,

|Z*(x, 1) = Z*(x, T))| <CIIOgTI IIZOII*

f
- - |log ¢| ifo<rtr<eg?
VoZi(x, 1) = ViZi(x, T)| < C||Z&
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Appendix C: Derivatives for the exterior problem

Corollary C.1 Let W(p, &, ®, Z) be the solution to equation (6.22) con-
structed in Proposition 6.7. Let py, & satisfy (6.1), (6.2) and p; = re'®,
|®illg < 1, and | Z|l« < 00, I = 1,2. Then

< CT7(|®1 — Pallg + k(@1 — @2) oo + 1 25 — Zgall)-

Corollary C.1 gives a partial Lipschitz property of the exterior solution
W(p, &, ¢) of (6.22) with respect to p, namely it only considers variations of
p = Are'® with respect to w. We will need Lipschitz estimates for variations
of p = Ae'® in A and also variations with respect to £. These estimates are
obtained for W(p, &, ¢) when considered as a function of the inner variable
(v, 1) € Dag.

For this let us introduce some notation. Suppose that ¥ (x, t) is defined in
Q x (0, T). We let

Yy, 1) = Y ED + Ay, 1), (v,1) € Dag.

The following expression is |||z @, expressed in terms of ¥ (and restricted
to DaR):

I ® = )\.* 0 -0 s 00
191520,y (0) g TP RO 19 oo (Dag)
+ 20OV W | oo (Do)
1 - -
+sup Ae() O IRO) T ——— U (3, 1) — (., T)|
P llog(T —1)]
+ sup A OV (0, 1) — Vg (v, T

(v,0)€D2R
IVy ¥ (y, 1) = Vyur (', 1)l

+ sup (D) OTTROY

(v,),(,1)€Dag ly — y'|?Y
o Vo (v, 1) — Vo (x', 1)
+sup ()70 () Ry P lt)_t,lyy‘” s

where the last supremum is taken in the region

1
(y’t)7 (yat/), € D2R9 |t - t/| = E(T _t)
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Corollary C.2 Let W( p &, ¢) be the solution to equation (6.22) in Proposi-
tion 6.7. Let p; = Me'®, & satisfy (6.1), (6.2) and ||@|lx.q.v < 1. Then for
® € (0, ®) we have
1O (p1, &1, 8) = ¥(p2, &2, D)l 6,
A — A
=c[|=57

+||A1—A2||Loo+) é‘_ézu ]

|~ 2l |

Let f(y, t) be a function satisfying

[f (. O] < ()" RE) ™ XBr(t)»

and let [, £] be the solution of
_ —§ -
wt_Axw—l-Mt)zf( ,t) in R“ x (0, T)
Y (x,0) =0 x eR?,

given by Duhamel’s formula.
Let

VL ENy, 1) = Y ENE@) + A1)y, 1.

We consider the directional derivative with respect to A of ¥ in the direction
of A1, defined by

. 1 /-~ .
Dl §104] = lim — (VD + sh1. €1 = P, £1)
s—>0 §

and also the directional derivative with respect to £ of v in the direction of &,
defined by

D, 1) = lim (T + 58]~ 1, £1)

C.1 Derivative with respect to A

The proofs of the estimates below are based on Duhamel’s formula for the
solution:

|x—x’|2
eXP A —s) ) 1 x' —&(s) ,
v(x,t) _/ /RZ P—— )\(S)Zf( ) ,s) dx'ds.
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We change variables writing x = &(¢) + A(t)y and x’ = &£(s) + A(s)y’. Then

_EO=EG) M) y—A(s)y|?
exp ( 0, )
V(0= P— fO 9 dyds,

and we obtain the following formula for the directional derivative:

Dy [a]1(y, 1)

REHOE é(s)+k(t)y A(s)y’ |2)

_ exp 2(—s)
B "/ /Rz (t —s)2

C(E@) —E(s) + A1)y — A(s)Y)
Ay =MV O, s) dy'ds.

Lengthy but direct computations show the validity of the following esti-
mates.

Lemma C.1 We have

D70 €100 01 = (| 2]+ lhales )10 RO,
and

DAY [, EX) (. 1) — D[, E10) (v, T))

< (5] + Wi o R

for|y| < R(t),t € (0, T). On the other hand, for any o > 0, y € (0, %) there
is a C such that

IV Dayr[h, E1) (0, 1) — Vi Dayr[A, E10) (v, T)|
A .
= (|, i o RO,
Ve Dy W[, E1O) 1, 1) — Vi Dar 4, E1(A) (v2, 1))
|y1_))2| v—1—0o 1— a
<c(H2 e ) (H H Il )7 RO
Ve Dy [, EXAD) (0, 12) — Ve Dar [, E100) (0, 1)

(th — 1) 1 . L -~
= o R \I % Aillpse ) a(12)" ™ 7T R(12) '™
B ()»*(l‘z)R(tz))%/( oo TR ) «(12) (1)
fort1, 12 in [0, T\ with0 < 1o — 11 < 15(T — 1) and |y| < R(12).
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We can derive a similar expression for the derivative with respect to £ and

obtain the following estimates.

Lemma C.2 Assume that|é (t)| < C, |A(1)] < C, Ciaxe(t) < A1) < Cads (1),

in

(0, T)andlet R(t) = 1. (1) P, B < %, C,C1,Cy > 0. Then there is C such

that

|V DeWr [, E1(E1) (v, 1) — Vi De WA, E1ED (v, T)

(| BOE D ], ko

forly| < R(t), t €(0,T).
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