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Abstract
Endogeneity is a potential anomaly in econometric models, which may cause inconsist-
ent parameter estimates. Transport models are prone to this problem and applications that 
properly correct for it are scarce. This paper focuses on how to address this issue in the 
case of strategic urban mode choice models (i.e., the third stage of classic strategic trans-
port models), possibly the main tool for the assessment of costly transport projects. To 
address this problem, we propose and validate, for the first time, adequate instruments that 
may be obtained from data that is already available in this context. The proposed method 
is implemented using the Control Function approach, which we use to detect and correct 
for endogeneity in a case study in Valparaiso, Chile. The effects arising from the neglected 
endogeneity in this case study reflect on an overestimation between 26–49% of the subjec-
tive value of time and an underestimation of 33–75% of modal elasticities.

Keywords Endogeneity · Discrete choice models · Instrumental variables · Strategic urban 
mode choice models

Introduction and motivation

The term “endogeneity” is used in the literature when there is correlation between one or 
more of the observed explanatory variables and the error term of an econometric model. 
As a result, the parameter estimates of these variables may be inconsistent. Endogeneity 
is considered an unavoidable problem in econometric modelling as it may be caused by 
omitted attributes, measurement or specification errors, simultaneous determination and/or 
self-selection (Guevara 2015).

Endogeneity is not a new problem and was initially studied in areas such as marketing, 
in the context of the simultaneity problem between advertising and sales (Bass 1969). The 
correction of endogeneity in linear models has been widely addressed (Wooldridge 2010), 
but it is not possible to model certain phenomena using linear models. Discrete Choice 
Models (DCM) are an example of non-linear models, much used in econometrics when in 
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the phenomenon under study the dependent variable is not continuous but discrete; a classi-
cal case is when individuals must choose an alternative belonging to a finite set of options. 
In transport modelling, DCM play a fundamental role (Ortúzar and Willumsen 2011). If 
the effects of endogeneity are not considered, the analyst can arrive to wrong forecasts and 
conclusions (Guevara and Ben-Akiva 2006), leading to potentially faulty decision making.

Classic strategic transport models, such as the 4-stage classic transport model, are 
possibly the main tool for the assessment of costly transport projects (Ortúzar and Wil-
lumsen 2011). As any other econometric model, these tools are susceptible to endogene-
ity problems because when modelling transport, it is common to have omitted attributes, 
measurement or specification errors, and/or simultaneous determination. For example, the 
inaccuracy and/or complexity involved in the on-site data collection process may cause 
measurement errors in several variables (i.e. costs and travel times, among others) derived 
from the Origin and Destination survey. On the other hand, variables such as safety, com-
fort and/or reliability are often omitted in large scale models. These variables are usually 
significant in explaining this stage of the classic transport model, but they are difficult to 
measure and can additionally be correlated with cost and/or travel time, causing endogene-
ity. Another cause of endogeneity is the simultaneity since the level of service that defines 
the choice is a result of a demand–supply equilibration mechanism.

To the best of our knowledge, no mode choice model included in a classic strategic 
transport model has been corrected for endogeneity. This is a critical drawback because 
it implies that almost all strategic urban models are based on inconsistent estimates of the 
subjective value of time (SVT), modal elasticities and forecast, which are crucial for plan-
ning and the social evaluation of transport projects. Therefore, there is a need to develop 
methods to solve this problem and to quantify the effects of correcting the model param-
eters in model forecasts.

Having detected this gap in the literature, we intend to contribute to the state of knowl-
edge by solving the following three challenges: (i) How is endogeneity detected in strategic 
urban mode choice models? This stage includes correcting the model; (ii) Solving the prac-
tical difficulty of finding adequate instrumental variables (IV) or instruments (Hausman 
1978) to correct for endogeneity in this context (Bresnahan 1997; Guevara 2010; Mum-
bower et al. 2014); the problem comes from the fact that the instruments must fulfil two 
conflicting properties: be correlated with the endogenous variable, and be independent of 
the model error; (iii) Quantifying the impacts of neglecting the problem of endogeneity in 
the estimation of strategic urban modal choice model’s parameters.

The rest of the paper is organised as follows. The “Theoretical framework” section 
details the methodology used, with a focus on how endogeneity arises in DCM and the 
importance of defining appropriate instruments. The “Application” section describes the 
databank used and its general characteristics; we present an endogenous model, its cor-
rected version, the instruments used to correct it and a quantification of the impacts of 
using the corrected version. In the final section we discuss the main findings and conclu-
sions of our research.
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Theoretical framework

Endogeneity and DCM

DCM enjoy high applicability in econometrics (Train 2009; Ortúzar and Willumsen 2011). 
They are used when the dependent variable is discrete in the phenomenon studied, for 
example, when individuals must choose an alternative belonging to a finite set of options. 
The use of DCM is very common in areas such as transport demand (Yáñez et al. 2010; 
Bass et al. 2011; Jensen et al. 2013; Orozco-Fontalvo et al. 2018), road safety (Rizzi and 
Ortúzar 2006; Anderson and Hernandez 2017), marketing (Lam et al. 2010), spatial eco-
nomics (Hurtubia and Bierlaire 2014), tourism (Chou and Chen 2014), urbanism (Torres 
et al. 2013) and environmental economics (Hess and Beharry-Borg 2012).

Like other econometric models, DCM are not exempt from endogeneity, but methods, 
tests and effects differ from those observed in linear models. For example, the correction 
of endogeneity in DCM implies a change of scale in the estimated models, and this is not 
the case in linear models (Guevara and Ben-Akiva 2012). While the problem has been 
addressed for many types of DCM, to the best of our knowledge it has not been studied 
under the framework of strategic urban mode choice models, suggesting a research gap that 
we want to fulfil with this research.

DCM are based on Random Utility Maximization (RUM), whereby the utility, Uin, of 
a certain alternative i for an individual n, is explained by the analyst as the sum of an 
observed component (systematic, representative or measurable utility, Vin) and a random 
term (Domencich and McFadden 1975; Williams 1977), �in as shown in (1):

here, Vin is a function of a set of observable and measurable attributes Xikn, where the sub-
script k denotes the attribute; εin reflects individual tastes and idiosyncrasies not captured 
in Xikn, in addition to any measurement errors or attributes omitted by the modeller.

This form allows explaining how two individuals with the same attributes and the same 
set of alternatives (A) available, can choose differently, or why an individual does not 
always select the best alternative (from the modeller’s point of view, Ortúzar and Willum-
sen 2011). Thus, individual n will choose alternative Ai belonging to her set of choices A(n) 
if and only if (2) is fulfilled:

If it is assumed that the errors follow an independent and homoscedastic (IID) Gum-
bel distribution (also called Extreme Value Type I), the popular Multinomial Logit (MNL) 
model is obtained (Domencich and McFadden 1975); other assumptions about the nature 
and characteristics of the error term distribution will allow to define different models.

The control function (CF) method

It consists in identifying an auxiliary variable (or control function), such that when it 
is added to the systematic part of the DCM’s utility function, it makes the error of the 
model uncorrelated with the observed variables (Guevara and Ben-Akiva 2010). This 
auxiliary variable or CF is constructed by means of an instrumental variable (IV). The 

(1)Uin = Vin + �in

(2)Uin ≥ Ujn, ∀Ai ∈ A(n)
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CF method has been used and reported as a suitable approach for correcting endogene-
ity (Train 2009; Petrin and Train 2010; Wooldridge 2015). Besides the application of 
the CF method for correcting endogeneity at the individual level presents the advantage 
of being easy to apply and requiring low consumption of computational resources (Gue-
vara 2015).

Rivers and Vuong (1988) and Villas-Boas and Winer (1999) among others, show that 
the IVs needed for the application of the CF method in DCM are valid if they fulfil two 
properties: (i) be correlated with the endogenous variable, and (ii) be independent of the 
DCM’s error. However, identifying proper IVs in practice is always a difficult and even 
controversial process (see e.g. the debate in Bresnahan 1997). In particular, the CF method 
can be hard to apply in the case of strategic urban transport modelling suites, because it is 
not clear how to obtain proper IV to correct for endogeneity in these models.

For explanatory purposes, we will consider a DCM with endogeneity due to the omis-
sion of a certain variable q. Assume that its true linear utility function is represented by (3):

where ASCi is an alternative specific constant for alternative Ai; βx and βq are parameters to 
be estimated, Xin and qin are explanatory variables of the model, and ein is the exogenous 
error term. In particular, we will assume that Xin represents a set of known (measurable) 
attributes while the variable qin is unknown to the modeller.

Given the above, let us assume that the specification proposed by the modeller is as in 
(4):

where the new error term εin obviously contains both ein and qin. Now, let us consider that 
one of the elements of the set that makes up for Xin (for example, the kth term) is correlated 
with qin, as follows:

where φin is an exogenous error term, z1in and z2in are exogenous attributes, which then 
work as instruments or IV, since they partially explain Xkin, but are at the same time inde-
pendent from �in . For the model to be identifiable, there must be (at least) as many IV as 
endogenous variables in the model (Guevara and Ben-Akiva 2012). Following the assump-
tion that qin is a variable not considered by the modeller, a specification that can be set up 
to treat potential endogeneity would be:

where the error term δin contains both φin and qin. As it is now clear, endogeneity arises 
because the error terms εin (4) and δin (6) are correlated with each other, as qin was not 
included in the model specification originally proposed by the modeller.

Thus, if (6) is valid, such that z1in and z2in are truly exogenous, then �in will capture 
the entire part of Xkin that is endogenous. This way, the DCM corrected by endogeneity 
using the CF approach would have the functional form shown in (7), which implies using a 
proper estimator of �in:

Thus, in practice the CF method follows two-stages:

(3)Uin = ASCi + �xXin + �qqin + ein

(4)Uin = ASCi + �xXin + �in

(5)Xkin = �0 + �z1z1in + �z2z2in + �qqin + �in

(6)Xkin = �0 + �z1z1in + �z2z2in + �in

(7)Uin = ASCi + 𝛽xXin + 𝛽𝛿𝛿in + ẽin
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 (i) to obtain the residuals 𝛿in by applying an ordinal least squares (OLS) regression to 
Xkin on z1in, z2in and all the exogenous variables in Xin.

 (ii) to estimate the DCM considering 𝛿in and the Xin attributes within the utility function,

This allows obtaining consistent estimators 𝛽x for the βx in (7) up to a scale (Guevara 
and Ben-Akiva 2012), but the CF method can also be estimated simultaneously (Train 
2009). Theoretically, the two-stage estimation involves a loss of efficiency; however, as 
Rivers and Vuong (1988) show, this drawback may disappear when the error terms εin and 
δin in (4) and (6) are homoscedastic and not autocorrelated. The other drawback of the two-
stage version of the CF method is that standard errors cannot be obtained directly from the 
information matrix, requiring alternative methods, such as the bootstrap. Nevertheless, as 
discussed by Guevara (2015), the two-stage version of the CF method is more robust to 
misspecifications of the distributional assumptions of the model, as well as much easier to 
apply and requiring fewer computational resources.

It is  worth noting that there are other methods to correct for endogeneity in DCM, 
beyond the CF method. These include, among others, the use of Proxies (Guevara 2015), 
the Multiple Indicator Solution (Guevara and Polanco 2016; Guevara et al. 2018; Mariel 
et  al. 2018; Fernandez-Antolin et  al. 2016), the latent variables approach (Walker 2001) 
and the BLP method (Berry et al. 1995). Guevara (2015) makes a critical assessment of 
most of these methods.

Instrumental variables‑IV

A fundamental requirement that can turn into a real challenge for applying the CF method 
is the availability of proper IV. It is achieved if: (i) the IV are correlated with the endog-
enous variable, and (ii) the IV are independent of the DCM’s error. The former is known as 
relevance condition and the second as exogeneity condition.

Mumbower et al. (2014) distinguish four possible sources for IV. The first are the cost-
shifting instruments (Casey 1989), which correspond to variables that impact a product’s 
cost but are uncorrelated with demand shocks. The second are the so-called Hausman 
instruments (Hausman et al. 1994; Hausman 1996), which correspond to prices of the same 
brand in other geographic contexts. The third are the Stern instruments used like measures 
of the level of market power by multiproduct firms and measures of the level of competi-
tion (Stern 1996). Finally, the BLP instruments correspond to the average non-price charac-
teristics of other products supplied by the same firm in the same market (Berry et al. 1995).

Tests for the validity of instruments

As mentioned above, a crucial challenge in the correction of endogeneity with the CF 
resides in finding proper instruments that are sufficiently correlated with the endogenous 
variable (strong) and independent of the error term (exogenous).

The strength of an instrument can be assessed by looking at the degree of correlation 
between the endogenous variable and the instrument, something that has been extensively 
investigated for linear models, but remains to be fully explored for DCM. Nevertheless, 
preliminary results suggest that this may be achieved looking at the F test of the first stage 
regression of the CF method, for which similar thresholds as those reported in linear mod-
els seem to be applicable (Guevara and Navarro 2015).
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Assessing the exogeneity of instruments is more challenging in some sense, because 
one needs to test independence with the error term, which is obviously not observed. This 
requirement may be guessed by the analyst based on his/her understanding of the data gen-
eration process but may also be formally tested with overidentification tests that rely on 
having more instruments than endogenous variables. In the case of linear models, the Sar-
gan test (Sargan 1958) is applicable. For DCM, the only test available until recently was 
the Amemiya–Lee–Newey test (Amemiya 1978; Newey 1987; Lee 1992) that requires esti-
mating an auxiliary generalized method of moments (GMM) model, making its application 
challenging. Guevara (2018) recently proposed two overidentification tests for the exogene-
ity of the instruments for DCM that are not only easier to apply, but also show better power 
and less size distortion1 than the previous tests: the Refutability Test (SREF) and its varia-
tion, the Modified Refutability test (SmREF).

Guevara’s (2018) Refutability Test (SREF) requires the following two stages:
Stage 1: Estimate the reduced form equation for Xkin in (6) by OLS to obtain the residu-

als 𝛿 , as shown in (8):

Stage 2: Estimate the DCM considering 𝛿in and the Xin attributes, but also one of the 
instruments (for example z1in) as an additional variable within the utility function and 
obtain the log-likelihood l(θ)CF_ Z1, consistent with the utility function shown in (9).

Given that in (9) only z1in is used, a log-likelihood l(θ)CF_Z1 is obtained. The same pro-
cess must be repeated using z2in as an additional variable within the utility function and 
obtain a log-likelihood l(θ)CF_Z2. In this way, two log-likelihood values are computed, by 
fixing each time all instruments to zero but one (in our case by fixing z2in first, and z1in 
second).

The second test, SmREF, can also be obtained in two stages. The first is the same as for 
the SREF test (8); the second stage proceeds as follows:

Stage 2: Estimate the DCM considering the ASCi, �′x and 𝛽𝛿 fixed. Then add all the 
instruments considered (i.e., z1in and z2in) as additional variables within the utility function 
and obtain the log-likelihood l(θ)CF_Zall, consistent with the utility function in (10):

The statistics of the Refutability Test—SREF (11) and (12), and its modified version—
SmREF (13)—used to test for exogeneity are the following:

(8)Xkin = 𝛾z1z1in + 𝛾z2z2in + 𝛿in yields
���������⃗

𝛿in

(9)Uin = ASCi + 𝛽�xXin + 𝛽𝛿𝛿in + 𝛽z1z1in +
̃̃ein

(10)Uin = ASCi + 𝛽�xXin + 𝛽𝛿𝛿in + 𝛽z1z1in + 𝛽z2z2in +
̃̃̃ein

(11)S
FixingZ1

REF
= −2

(

l(�)CF − l(�)CF_Z2
)

∼ �2

r

(12)S
FixingZ2

REF
= −2

(

l(�)CF − l(�)CF_Z1
)

∼ �2

r

1 The size distortion corresponds to the difference between the nominal significance of the tests, and the 
empirical size for the Type I error under the null hypothesis. This type of measure is a standard tool for the 
assessment of the statistical tests (Guevara 2018).
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where l(�)CF is the log-likelihood of the corrected model obtained in (7) and �2
r
 is the value 

of the chi-squared distribution with degrees of freedom (r) equal to the degrees of overi-
dentification of the model. For the reference tests described in (9) and (10), r is equal to 1 
because the model includes one endogenous variable and two instruments (z1in and z2in). 
The null hypothesis for the SREF and SmREF tests is that both z1in and z2in are valid; the alter-
native hypothesis is that either z1in and z2in, or both, are endogenous. Thereby, if SREF and 
SmREF are less than the critical value of �2

r
 at the required level of significance, the instru-

ments are exogenous and, therefore, they are independent of the DCM’s error.
It should be noted that overidentification tests for the exogeneity of the instruments are 

inconsistent, in the sense that there are null hypotheses for which the tests have no power. 
This means that there might be cases where the instruments are endogenous and these tests 
are unable to detect that failure, even if the sample size goes to infinity. Nevertheless, it has 
been shown that the hypotheses for which overidentification tests of this type are incon-
sistent, are very peculiar and can be narrowed to cases where both instruments are of the 
same origin, if they come from the same source. This is something we tried to avoid in the 
present application. The reader is referred to Guevara (2018, p. 242) for a review and dis-
cussion about this topic.

Subjective value of time (SVT) and elasticities

We will estimate the SVT and aggregate elasticities to quantify the impacts of neglecting 
the problem of endogeneity in the estimation of the parameters of a strategic urban modal 
choice model. As the representative utility function in most classical models is assumed 
to be linear and additive in the (fixed) marginal utility parameters, the SVT (Gaudry et al. 
1989) usually corresponds to just the ratio between the estimated parameters for travel time 
βt and for travel cost βc, yielding (14):

The aggregate elasticities ( EP̃i
kin

 ) can be calculated as in (15):

where EPn(i)

Xin
 is the disaggregate direct point elasticity with respect to variable Xin, and Pn(i) 

the probability that individual n chooses alternative i (Ben-Akiva and Lerman 1985).

Application

Great Valparaíso case study

The Great Valparaíso is a conurbation located in the Valparaiso Region of Chile, encom-
passing the municipalities of Valparaíso, Viña del Mar, Concón, Quilpué and Villa Ale-
mana, an area of some 1130  km2 (SECTRA 2014a). According to the National Statistics 

(13)SmREF = −2
(

l(�)CF − l(�)CF_Zall
)

∼ �2

r

(14)SVT =
�Vi∕�ti
�Vi∕�ci

=
�t
�c

(15)EP̃i
in
=

∑

n Pn(i)E
Pn(i)

Xin
∑

n Pn(i)
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Institute (INE 2013), it is the third most populated area in the country, after Great Santiago 
and Great Concepción, but given its strategic location and proximity to the capital, it is the 
second in importance.

The databank comes from the Great Valparaiso 2014 Origin–Destination Survey and 
was used by SECTRA 2 (2014a) to estimate—among other things—the DCM embedded 
in the mode choice stage of ESTRAVAL, the strategic transport model for the Great Val-
paraiso. ESTRAVAL is a simultaneous supply–demand equilibrium model designed to 
analyse and evaluate multimodal urban transport systems with multiple user classes (De 
Cea et al. 2005). This type of approach is also used in packages such as EMME/2 (INRO 
1996) or CUBE (Citilabs 2016).

The aim of our research was not to change the model used in ESTRAVAL; we just 
wanted to examine the consequences of correcting it for endogeneity. The model contem-
plates seven transport modes: Car driver, Shared car, Bus, Train, Shared taxi, Walking and 
the combined mode Train/Bus. The survey considered three trip purposes: Work, Study 
and Other, but in the framework of this research we only considered the correction of the 
work trips mode choice model for the morning peak period. The sample available for this 
purpose comprised 2417 observations. A general descriptive statistical analysis of the sam-
ple shows that 36% of trips used private modes (Car driver and Shared car), while the most 
used public transport mode was Bus with 26% of the market shares.

Instrumental variables (IV) used for endogeneity correction

The instruments used to estimate the first stage of the CF method were built resembling 
what Mumbower et al. (2014) denominate Hausman type instruments, that is, values of the 
endogenous variable in “other markets”, that may share marginal costs, but are independ-
ent regarding demand shocks. For this mode choice model, we suspect the existence of 
endogeneity both in travel time and travel cost, and for this reason we propose the follow-
ing three instruments:

 (i) The average travel time of other origin–destination (O–D) pairs with similar length 
to the O–D pair of the considered trip (IV_GT).

 (ii) The average travel cost of other O–D pairs with similar length to the O–D pair of the 
considered trip (IV_C).

 (iii) The network trip distance between the trip’s origin and destination (IV_D).

As can be seen, each of these instruments should be correlated with the endogenous 
variables (cost, time or both) but they do not influence the individuals’ choice, being then 
independent regarding demand shocks. If both properties are fulfilled, the instruments are 
valid to correct appropriately for endogeneity using the CF approach (Rivers and Vuong 
1988; Villas-Boas and Winer 1999).

To verify that the proposed instruments fulfil the relevance condition, we considered 
the results described by Staiger and Stock (1997), which had been preliminary suggested 
to hold also for DCM by Guevara and Navarro (2015). In this case, if the value of the first 
stage’s F-statistic is less than 10, the instrument is weak (i.e., it does not satisfactorily fulfil 

2 SECTRA is the Chilean governmental agency for transport planning and policy formulation.
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the condition). However, it should be noted that as this result formally holds only for linear 
models, this is a limitation of this research, which we intend to explore in the future.

To guarantee the exogeneity of the instruments, we considered using the information 
of a geographical context different from the Great Valparaiso (i.e., Hausman-type instru-
ments), an approach which has been successfully used in several studies (Mumbower 
et al. 2014; Guevara and Ben-Akiva 2006; Petrin and Train 2010). In this case, the other 
geographical context data was the Santiago 2012 Origin–Destination Survey (SECTRA 
2014b) also in Chile. The procedure applied to find the instruments considered the zoning 
system used by SECTRA in their model for Santiago.

In this way, IV_GT and IV_C were calculated as the average travel time and travel cost, 
respectively, for every zone included in a band defined by a lower bound of ± 100 m and 
an upper bound of ± 2.1 km with respect to the distance of the O–D pair under considera-
tion. For example, consider a distance (Euclidean distance, measured between centroids for 
the given O–D pair) of 5 km; in this case, the lower and upper bounds defined would be as 
follows: [2.9–4.9 km] and [5.1–7.1 km]. Thereby, any O–D pair, the distance of which is 
inside any of these two bands, would be part of the average for IV_GT or IV_C. The argu-
ment to sustain the suitability of such instruments is equivalent to that used by Guevara and 
Ben-Akiva (2012), Hausman (1996) and Nevo (2001) in other modelling contexts.

The lower bound (100 m) guarantees that the O–D pair under consideration is not 
included because otherwise endogeneity would arise. On the other hand, the upper bound 
(2.1 km) ensures that every O–D pair has enough data to estimate an average. In this way, 
we make sure that every O–D pair has a set of O–D pairs inside the bands defined. This 
fact makes them share marginal travel costs (or travel times) and, therefore, their travel 
costs (or travel times) are correlated.

Finally, the third instrument used is the IV_D, known in the literature as a cost-shift-
ing instrument (Casey 1989). IV_D was calculated directly from the network defined for 
ESTRAVAL, thus, from the city of Valparaíso. Instruments of a similar nature (route dis-
tance) have also been used successfully for the case of air transport (Hsiao 2008; Granados 
et al. 2012). We argue that IV_D is correlated with the travel time and travel cost, but inde-
pendent of the error term of the mode choice.

It should be noted that any of the O–D pairs used to build the instruments (IV_GT and 
IV_C) could (or not) be overlapping among them. However, this is not an issue because 
the instruments were constructed as the attributes’ average of the O–D pairs that were part 
of the bands defined above. What may instead  be critical in general is that none of the 
O–D pairs used to build the instruments, overlapped with the O–D pair under analysis (i.e., 
the incumbent O–D pair for which we needed to address endogeneity). This is not neces-
sarily an issue for IV_GT and IV_C in this case study, since they come from a different 
city, but it was nevertheless further enforced by defining the band’s lower bound differ-
ent from zero (100 m) to avoid endogeneity arising due to reflection bias. Regarding the 
IV_D instrument, the overlapping is also possible, but it did not affect the instrument esti-
mation because it only depends on the route determined by the network topology used in 
ESTRAVAL.

Correction of endogeneity in the strategic urban mode choice models

We assumed that endogeneity affects the travel cost and travel time variables in the Great 
Valparaíso urban mode choice model because of, as mentioned earlier, the potential erro-
neous measurement of the relevant variables included in model, the omission of potential 
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relevant variables (such as comfort or reliability) and the fact that the model is embed-
ded in a simultaneous supply–demand equilibrium mechanism. Our hypothesis is that the 
measurement error due to aggregation may affect both travel time and travel cost. And the 
omission of attributes and the simultaneity issue may affect travel time further.

Table 1 presents the endogenous and corrected mode choice models estimated with the 
Great Valparaiso dataset. The left-hand side model (potentially endogenous) is the model 
currently used by SECTRA in ESTRAVAL. This is the model that we want to correct for 
endogeneity. It was estimated by SECTRA for two morning peak periods (AM1 and AM2), 
so 14 (seven modes by two periods) alternative specific constants (ASC) were estimated, 
fixing one (ASCWalking1) to zero, as reference. The parameter βCost/Income corresponds to the 
marginal utility of the variable Cost divided by Income. The model also includes three 
different parameters for Generalised Time (i.e. the sum of travel time, access time and 
waiting time): βGeneralised Time Car, βGeneralised Time Walking and βGeneralised Time Public transport, corre-
spond to the marginal utilities of the private modes (Car driver and Shared car), walk mode 

Table 1  Endogenous and corrected mode choice models for Great Valparaíso

a Standard errors determined using Bootstrap

Variable Endogenous model Corrected model

Value Std. error t-test Value Std.  errora t-test

ASCCar driver1 − 0.425 0.329 − 1.29 − 0.247 0.337 − 0.73
ASCShared car1 − 2.980 0.354 − 8.43 − 3.199 0.352 − 9.09
ASCBus1 − 1.140 0.341 − 3.35 − 1.035 0.331 − 3.13
ASCTrain1 − 2.780 0.682 − 4.07 0.839 0.448 1.87
ASCShared taxi1 − 2.180 0.356 − 6.12 − 1.705 0.349 − 4.89
ASCWalking1 fixed  fixed 
ASCTrain+Bus1 − 4.930 0.572 − 8.62 − 3.150 1.214 − 2.59
ASCCar driver2 0.826 0.322 2.56 1.002 0.328 3.05
ASCShared car2 − 1.670 0.328 − 5.09 − 1.878 0.334 − 5.62
ASCBus2 − 0.659 0.343 − 1.92 − 0.539 0.336 − 1.60
ASCTrain2 − 1.580 0.47 − 3.37 2.014 0.416 4.84
ASCShared taxi2 − 1.590 0.345 − 4.60 − 1.110 0.344 − 3.23
ASCWalking2 1.200 0.168 7.15 1.190 0.174 6.84
ASCTrain+Bus2 − 4.030 0.460 − 8.74 − 2.237 0.489 − 4.57
βCost/Income − 0.015 0.003 − 5.10 − 0.026 0.0067 − 3.94
βGeneralised Time Car − 0.031 0.0075 − 4.14 − 0.0308 0.0084 − 3.80
βGeneralised Time Walking − 0.113 0.011 − 10.35 − 0.115 0.011 − 10.45
βGeneralised Time Public transport − 0.0075 0.0017 − 4.44 − 0.0097 0.0017 − 5.71
βDistance travel ST1 − 1.560 0.475 − 3.28 − 1.952 0.479 − 4.08
βDistance travel TTB1 2.000 0.645 3.10 − 1.568 0.711 − 2.21
βDistance travel ST2 − 1.830 0.376 − 4.87 − 2.241 0.299 − 7.49
βDistance travel TTB2 1.660 0.382 4.34 − 1.888 0.457 − 4.13
βδ̂CI 0.014 0.007 2.00
βδ̂GT 0.002 0.0003 6.67
Sample size 2417 2417
Log-likelihood − 3266.32 − 3258.79
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(Walking) and public transport modes (Bus, Train, Shared taxi and Train + Bus), respec-
tively. Finally, βDistance travel ST1, βDistance travel TTB1, βDistance travel ST2 and βDistance travel TTB2 are 
parameters associated with dummy variables, which take the value of 1 for Shared taxi 
(βDistance travel ST1 and βDistance travel ST2 for the periods AM1 and AM2, respectively), and 
Train and Train + Bus (βDistance travel TTB1 and βDistance travel TTB2 for the same periods) if the 
trip had a distance greater than 10 km. All the level-of-service parameters of the poten-
tially endogenous model in Table 1 have correct signs and are statistically significant at the 
95% level. We note that trips with distances greater than 10 km are preferred by Train and 
Train + Bus users.

The right-hand side of Table 1 shows the model corrected for endogeneity. This includes 
the parameters 𝛽𝛿GT and 𝛽𝛿CI (residuals from the first stage of the CF approach) related 
to the variables Generalised Time and Cost/Income, respectively. The inclusion of these 
two parameters is required because of our initial hypothesis that the uncorrected model is 
endogenous in Cost/Income and in the Generalised Times. The verification of this hypoth-
esis is carried out following Rivers and Vuong (1988); so if 𝛽𝛿GT and 𝛽𝛿CI are significant 
in the second stage of the CF approach, then there is evidence that the model is endog-
enous in the variables related with these residuals. As can be seen from the right-hand side 
model, both 𝛽𝛿GT and 𝛽𝛿CI are significant.

One practical aspect of the application of the CF method to this case study,3 worth high-
lighting, is that the first stage of the CF method was estimated by mode, instead of stack-
ing the information from all available alternatives, as has been done in other cases. This 
approach was followed because the Shared Car and Walking alternatives have a travel cost 
of zero in this application, and this would preclude proper estimation of the residuals of 
a stacked first stage via an OLS if the dependent variable is zero. Nevertheless, the same 
coefficient for the residual was considered for all modes, as shown in Table 1. An extensive 
Monte Carlo simulation validated this approach for the practical problem of modes with 
zero cost.

The validity of the instruments was verified using the overidentification tests for the 
exogeneity of the instruments in DCM proposed by Guevara (2018). In this case, l(θ)CF is 
obtained directly from the model in Table 1 and l(θ)CF_Z was obtained by fixing one of the 
instruments to zero (for example IV_GT) in each case and including the other two instru-
ments (i.e. IV_C and IV_D) as additional variables within the utility function.

The degree of overidentification for this test is equal to one because the model includes 
two endogenous variables (Travel Cost and Generalised Time) and three instruments (IV_
GT, IV_C and IV_D). It is worth noting that, although the model includes three parameters 
for Generalised Time, differentiated by mode, the variable is the same. Therefore, it is bet-
ter to consider it as just one parameter when analysing the degrees of freedom for testing 
instrument validity. Another alternative, technically also valid, would be to consider it as 
three different variables, but that would be misleadingly much laxer. Indeed, if we con-
sidered Generalised Time as three variables, we should do the same with the respective 
instrument and, therefore, we would have 1 + 3 = 4 endogenous variables and 1 + 6 + 1 = 8 

3 An additional issue that did not come out in this application, but may be relevant for other cases, is what 
to do when the endogenous variable interacts with exogenous variables, such as level of income or gender. 
Bun and Harrison (2018) formally show that, under such circumstances, the endogeneity bias will reduce to 
zero for the ordinary least squares estimator, as far as the interaction term is concerned. The same holds for 
the Control Function method in discrete choices, something that has been implicitly used, among others, by 
Petrin and Train (2010) and Guevara and Ben-Akiva (2006). We thank an anonymous reviewer for having 
asked this question.
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instruments. Such an approach would lead to four degrees of freedom instead of only one, 
implying a much laxer critical value of 9.49 instead of 3.84 for the tests shown in (16)–(18).

The results of the SREF in (16), (17) and (18) show that in all cases SREF < 𝜒2

1
 (3.84); so, 

we can conclude that all our instruments are indeed exogenous:

To apply the SmREF, we considered IV_GT, IV_C, and IV_D as additional vari-
ables within the DCM, fixed each of the β parameters of the right-side model 
of Table  1 and obtained the log-likelihood l(θ)CF_Zall (−3258.27). This gives, 
SmREF = −2 ∗ (−3258.79 + 3258.27) = 1.05,  less than the critical �2

1
= 3.84 value; there-

fore, we can conclude that all our instruments are valid. To the best of our knowledge, 
these instruments had not been suggested before to correct for endogeneity in modelling 
urban mode choice.

The corrected model in Table 1 also has parameters for the level-of-service variables 
with correct signs and statistically significant (at 95% level). An interesting fact is the 
change of sign in the parameters βDistance travel TTB1 and βDistance travel TTB2, which suggests 
that trips over 10 km are actually not preferred to be made by Train and Train + Bus, con-
trary to the potentially endogenous model. It is also interesting to note that the parameter 
βCost/Income in the corrected model is 73% higher than the one estimated in the endogenous 
model.

On the other hand, although the parameters βGeneralised Time Car and βGeneralised Time Walking 
are similar in both models, suggesting low bias (less 1%) in their estimation, the parameter 
βGeneralised Time Public transport is 30% higher in the corrected model. Thus, the percentage dif-
ferences between the generalised time parameters for the endogenous and corrected models 
are smaller in comparison with those of the cost parameter. This result suggests that the 
cost parameter appears to be more vulnerable to endogeneity than the time parameters and, 
thereby, it was more poorly estimated in the original model by SECTRA. This finding is in 
line with that shown by Varela et al. (2018). It also suggests that problems such as measure-
ment errors, perception errors and omitted variables, affect more the cost parameter than 
the time parameters. In practice, then, efforts should focus on improving the way the cost 
variable is collected and measured in our surveys, to achieve more consistent parameters 
during model estimation. In particular, the bias in the parameter βGeneralised Time Public transport 
can also be due to omitted variables that explain mode choice. If attributes like comfort and 
reliability, often correlated with travel cost and time, are excluded from the mode choice 
model, this is a potential source for endogeneity and, as a result, the SVT is overestimated 
(Tirachini et al. 2013). In any case, given the aims of this research we cannot ascertain how 
much endogeneity is due to some of the sources described previously. It is an interesting 
research question that is left for future research.

Now, given that the endogenous model is a restricted version of the corrected model, it 
is possible to apply the likelihood ratio (LR) test (Ortúzar and Willumsen 2011, page 281) 

(16)S
FixingIV_GT

REF
= −2(−3258.79 + 3258.14) = 1.31 < 3.84

(17)S
FixingIV_C

REF
= −2(−3258.79 + 3258.51) = 2.57 < 3.84

(18)S
FixingIV_D

REF
= −2(−3258.79 + 3257.99) = 1.59 < 3.84
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to investigate the presence of endogeneity.4 The null hypothesis, in this case, is that there 
is no endogeneity. Then both models are equivalent, rejecting it,  which implies that the 
restricted model is erroneous and then endogeneity is present. LR is asymptotically dis-
tributed �2

r
 with r degrees of freedom, where r is the number of linear restrictions required 

to transform the more general model into the restricted version, which in this case corre-
sponds to the number of residuals incorporated into the corrected model.

In our case, the degrees of freedom of the LR test are r = 2 (because the restrictions 
are that both 𝛽𝛿GT and 𝛽𝛿CI are zero). So, LR = −2(−3266.32 + 3258.79) = 15.07 , and this 
value must be compared with the critical value for two degrees of freedom at the 95% level 
( �2

2
= 5.99). As LR > �2

2
 the null hypothesis is confidently rejected, and we can conclude 

that the corrected model is superior.
It must be noted that CF approach tends to yield variances of the estimators that are 

often larger than those of the true model and usually also larger than those of the endog-
enous model; therefore, its confidence intervals could be wider. Thus, although the correc-
tion may be relatively poorer in this regard (at least in some cases), what is crucial is that 
the estimators will be consistent with the CF correction. Neglecting it may even result in 
reversing the effect of the attributes due to a change of sign. In the case study analysed, 
there was no change of sign. Still, the difference in point estimates were as large as 43% in 
some cases (see Fig. 1), implying that even if what one cares about is the MSE and not the 
finite sample bias, the CF results would be preferred. This recommendation is reinforced by 
the fact that, in strategic transport models the point estimate (i.e., the mean of the estimator 
distribution) is used for forecasting. For this reason, any bias on the base year values would 
be exacerbated in future simulations, resulting in poor model forecasting performance.

Quantification of effects due to endogeneity

In this subsection we quantify the impacts of endogeneity in the model. The measures used 
for this are SVT and aggregate Elasticities. These were calculated for the endogenous and 
corrected model and later compared. Detailed results are provided in Tables 2, 3 and 4. To 
estimate each of these measures, we divided the dataset into two samples: 80% for estima-
tion and 20% for validation (holdout sample). Additionally, the process was repeated 100 
times (i.e. 100 repetitions), with the aim of guaranteeing randomness in the estimates.

It should be noted that the estimation of the standard errors when applying the two-stage 
CF method comes with a caveat. Given that the proposed estimator is estimated in two 
stages, variances cannot be calculated directly from the Fisher-information-matrix. There-
fore, to make the inference, the variance–covariance matrix must be determined using non-
parametric methods such as bootstrapping (Petrin and Train 2002) or the approach pro-
posed by Karaca-Mandic and Train (2003), or by writing, instead, the full likelihood of 
both stages together (Train 2003).

In this application, we used the bootstrap approach to calculate the standard errors 
and the confidence intervals for the estimators reported in Table 1 and for the VST and 

4 Following Rivers and Vuong (1988), note that when using a two-step procedure, the test for the presence 
of endogeneity does not require correcting the standard errors with bootstrap. This holds because the test is 
evaluated under the null hypothesis that there is no endogeneity. Therefore, the population coefficient of the 
residuals is zero. This logic holds for Wald, Lagrange Multiplier and LR tests, when used to evaluate the 
presence of endogeneity, which is what we use in this section (see, for example, the discussion in Guevara 
2010, Ch. 2).
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elasticities reported in Tables 2, 3 and 4. Confidence intervals for both VST and elasticities 
were estimated using the percentile bootstrap method (Davison and Hinkley 1997). This 
approach considers using the percentiles of the bootstrap distribution directly (in our case 
2.5% and 97.5%), to represent a confidence interval at the 5% significance level.

Given that the cost variable is really Cost/Income, then SVT is expressed as [% Income/
min]. It was possible to estimate it separately for the private and public transport modes, 
given that the Generalised Time parameters were specific for these modes (see Fig. 1). As 
can be seen, the SVT of the original model was overestimated in comparison with that 
obtained for the corrected model. For the private modes, the SVT suffers an overestima-
tion of up to 43%, while in the case of the public transport modes this reaches 26%. These 
findings are in line with those shown by Varela et al. (2018), who used a case study for 
Stockholm commuters to assess the magnitude of the measurement errors in travel time 
and travel cost using latent variables. These differences are important, because measures 
such as SVT are critical in the social evaluation of transport projects. Given that the bias 
of the cost parameter is higher than the bias of the time parameters, it makes sense that the 
SVT estimates are overestimated. If the SVT is biased, the social evaluation of the project 
will likely be biased too.

Elasticities are frequently used in transport project evaluation (Ortúzar and Willumsen 
2011). In the case of the elasticities of the Generalised Times (Fig. 2) and Cost/Income 
(Fig.  3) for the original model, we can see that these are underestimated in comparison 
with those obtained using the corrected model. This finding is also consistent with the 
results of Varela et al. (2018) and Varotto et al. (2017), who observed increases of up to 
65% in the time elasticity value and of up to 50% of the price elasticity, when assessing the 

Table 2  Mean and confidence 
intervals for the VST

Confidence interval (in parenthesis)

Model Private Public

Endogenous 2.05 0.49
(1.02–4.19) (0.31–0.98)

Corrected 1.17 0.37
(0.18–2.16) (0.17–0.63)

Fig. 1  SVT for private and public modes



Transportation 

1 3

Ta
bl

e 
3 

 M
ea

n 
an

d 
co

nfi
de

nc
e 

in
te

rv
al

s f
or

 th
e 

ge
ne

ra
lis

ed
 ti

m
e 

el
as

tic
iti

es

C
on

fid
en

ce
 in

te
rv

al
 (i

n 
pa

re
nt

he
si

s)

M
od

el
\m

od
e

C
ar

 d
riv

er
1

Sh
ar

ed
 c

ar
1

B
us

1
Tr

ai
n1

Sh
ar

ed
 ta

xi
1

W
al

ki
ng

1
Tr

ai
n +

 B
us

1

En
do

ge
no

us
−

 0
.3

47
−

 0
.4

13
−

 0
.5

04
−

 0
.7

51
−

 0
.5

23
−

 1
.9

6
−

 0
.8

07
(−

 0
.5

33
 to

 −
 0

.2
11

)
(−

 0
.6

32
 to

 −
 0

.2
57

)
(−

 0
.7

97
 to

 −
 0

.3
58

)
(−

 1
.1

87
 to

 −
 0

.5
32

)
(−

 0
.8

58
 to

 −
 0

.3
84

)
(−

 2
.2

58
 to

 −
 1

.6
92

)
(−

 1
.2

66
 to

 −
 0

.5
59

)
C

or
re

ct
ed

−
 0

.3
46

−
 0

.4
36

−
 0

.6
57

−
 0

.9
74

−
 0

.6
65

−
 1

.9
98

−
 1

.0
74

(−
 0

.4
22

 to
 −

 0
.0

63
)

(−
 0

.5
17

 to
 −

 0
.0

88
)

(−
 0

.7
81

 to
 −

 0
.3

39
)

(−
 1

.1
64

 to
 −

 0
.5

02
)

(−
 0

.8
46

 to
 −

 0
.3

68
)

(−
 2

.2
48

 to
 −

 1
.6

81
)

(−
 1

.2
6 

to
 −

 0
.5

5)

M
od

el
\m

od
e

C
ar

 d
riv

er
2

Sh
ar

ed
 c

ar
2

B
us

2
Tr

ai
n2

Sh
ar

ed
 ta

xi
2

W
al

ki
ng

2
Tr

ai
n +

 B
us

2

En
do

ge
no

us
−

 0
.2

68
−

 0
.4

68
−

 0
.4

51
−

 0
.5

55
−

 0
.4

8
−

 1
.3

36
−

 0
.7

71
(−

 0
.4

08
 to

 −
 0

.1
62

)
(−

 0
.6

92
 to

 −
 0

.2
95

)
(−

 0
.7

2 
to

 −
 0

.3
17

)
(−

 0
.9

34
 to

 −
 0

.4
14

)
(−

 0
.8

36
 to

 −
 0

.3
71

)
(−

 1
.5

02
 to

 −
 1

.1
34

)
(−

 1
.2

18
 to

 −
 0

.5
37

)
C

or
re

ct
ed

−
 0

.2
69

−
 0

.4
94

−
 0

.5
88

−
 0

.7
22

−
 0

.6
04

−
 1

.3
65

−
 1

.0
29

(−
 0

.3
25

 to
 −

 0
.0

53
)

(−
 0

.5
68

 to
 −

 0
.1

01
)

(−
 0

.7
08

 to
 −

 0
.3

02
)

(−
 0

.8
53

 to
 −

 0
.3

68
)

(−
 0

.8
23

 to
 −

 0
.3

54
)

(−
 1

.4
92

 to
 −

 1
.1

28
)

(−
 1

.2
12

 to
 −

 0
.5

28
)



 Transportation

1 3

Ta
bl

e 
4 

 M
ea

n 
an

d 
co

nfi
de

nc
e 

in
te

rv
al

s f
or

 th
e 

co
st/

in
co

m
e 

el
as

tic
iti

es

C
on

fid
en

ce
 in

te
rv

al
 (i

n 
pa

re
nt

he
si

s)

M
od

el
\m

od
e

C
ar

 d
riv

er
1

B
us

1
Tr

ai
n1

Sh
ar

ed
 ta

xi
1

Tr
ai

n +
 B

us
1

En
do

ge
no

us
−

 0
.3

18
−

 0
.0

82
−

 0
.0

89
−

 0
.1

45
−

 0
.1

11
(−

 0
.4

22
 to

 −
 0

.2
07

)
(−

 0
.1

14
 to

 −
 0

.0
51

)
(−

 0
.1

18
 to

 −
 0

.0
52

)
(−

 0
.2

13
 to

 −
 0

.0
97

)
(−

 0
.1

53
 to

 −
 0

.0
66

)
C

or
re

ct
ed

−
 0

.5
4

−
 0

.1
39

−
 0

.1
5

−
 0

.2
41

−
 0

.1
92

(−
 0

.8
21

 to
 −

 0
.3

04
)

(−
 0

.2
16

 to
 −

 0
.0

76
)

(−
 0

.2
32

 to
 −

 0
.0

84
)

(−
 0

.4
11

 to
 −

 0
.1

43
)

(−
 0

.2
93

 to
 −

 0
.1

02
)

M
od

el
\m

od
e

C
ar

 d
riv

er
2

B
us

2
Tr

ai
n2

Sh
ar

ed
 ta

xi
2

Tr
ai

n +
 B

us
2

En
do

ge
no

us
−

 0
.1

96
−

 0
.0

66
−

 0
.0

71
−

 0
.1

33
−

 0
.1

12
(−

 0
.2

61
 to

 −
 0

.1
25

)
(−

 0
.0

91
 to

 −
 0

.0
42

)
(−

 0
.1

 to
 −

 0
.0

45
)

(−
 0

.2
02

 to
 −

 0
.0

92
)

(−
 0

.1
59

 to
 −

 0
.0

68
)

C
or

re
ct

ed
−

 0
.3

33
−

 0
.1

12
−

 0
.1

2
−

 0
.2

2
−

 0
.1

97
(−

 0
.5

16
 to

 −
 0

.1
89

)
(−

 0
.1

74
 to

 −
 0

.0
63

)
(−

 0
.1

9 
to

 −
 0

.0
66

)
(−

 0
.3

88
 to

 −
 0

.1
36

)
(−

 0
.3

04
 to

 −
 0

.1
05

)



Transportation 

1 3

magnitude of the measurement errors in these variables (using latent variables), in a large-
scale travel demand model.

In our case, the Generalised Time elasticities are underestimated up to 33%, while the 
Cost/Income elasticities are underestimated up to 75%. The mode with the highest gener-
alised time elasticity is Walking (in both periods). On the other hand, the smallest gener-
alised time elasticity is registered for Car driver (in both periods), but the generalised time 
elasticities for both private modes (Car driver and Shared car) show no differences between 
the endogenous and the corrected model.

Cost/Income elasticities for the AM1 period (−  0.54) are higher in the Car driver 
mode than in the public transport modes (where they vary between − 0.139 and − 0.241). 
These results are also consistent with findings from other studies (Varela et  al. 2018). 
Given that the parameter βCost/Income and βGeneralised Time Public transport were underestimated 
in the endogenous model, the underestimation of elasticities was expected. Note that the 
Generalised time elasticities calculated for both models and for the modes Car driver, 

Fig. 2  Generalised time elasticities

Fig. 3  Cost/income elasticities
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Shared car and Walking, are also similar because both parameters βGeneralised Time Car and 
βGeneralised Time Walking have a rather low bias.

Conclusions

Endogeneity is an anomaly that also arises in urban mode choice models at the strate-
gic level. It affects the consistency of the model parameters estimated, especially those 
related to the travel cost and travel time variables. As these are key explanatory variables 
in strategic mode choice models, not correcting the endogenous models may lead to faulty 
decision-making.

This paper provides a framework that uses the CF method to correct for the endogeneity 
of mode choice models at the strategic level using appropriate instrumental variables. The 
CF method can be considered an adequate methodology in this case. The instruments used 
were: (i) The average travel time of other origin–destination pairs that have a similar length 
than the origin and destination of the considered trip; (ii) the average travel cost of other 
origin–destination pairs that have a similar length than the origin and destination of the 
considered trip, and (iii) the network trip distance between the origin and the destination 
for each mode. Defining these instruments is a relevant finding, and they can be considered 
valid. Government planning agencies (central or local) should begin to consider the CF 
approach and the instruments used in this research as a guide to correct mode choice mod-
els that may present endogeneity.

The confidence in strategic urban mode choice models based on level-of-service vari-
ables, such as travel cost and travel time, must be questioned. Our results show that the 
cost parameters could be more poorly estimated than the time parameters. This may be due 
to the fact that urban mode choice models at the strategic level may be affected by three 
sources of endogeneity: measurement errors, omitted variables and simultaneous estima-
tion. We recommended: (i) to use instruments within the framework shown in this paper to 
improve the estimations, and (ii) to focus the efforts in improving the way the cost variable 
is collected and measured in surveys, to achieve more consistent parameters during model 
estimation.

We quantified the effects of endogeneity in strategic urban mode choice models. We 
found that the SVT was overestimated by 43% and 26% for private and public modes, 
respectively in our case study. This fact may have a strong influence in the social evaluation 
of transport projects where the SVT is critical. We also showed the impact on model elas-
ticities, finding that these were underestimated. In particular, the Generalised Time elas-
ticities showed underestimations of up to 33%, while the Cost/Income elasticities reached 
underestimations of up to 75%.

Three areas for further research can be identified. First, we believe it is important to 
study how correcting for endogeneity would work in forecasting when the variables that 
change are endogenous, such as travel times and cost in a strategic transport planning 
model. We also recommend examining in greater depth how the social evaluation of trans-
port projects may be affected by endogeneity, especially given our findings regarding the 
changes in SVT. Finally, an exciting topic for further research is the identification of weak 
and strong instruments for correcting endogeneity, because this has been solved for linear 
models (Stock and Yogo 2005) but not yet fully extended for DCM.
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