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In this work, we propose to leverage the advantages of both the Artificial Neural Network (ANN) based Second
Order Reliability Method (SORM) and Importance sampling to yield an Adaptive Importance Sampling based
ANN, with specific application towards failure probability and sensitivity estimates of Variable Stiffness
Composite Laminate (VSCL) plates, in the presence of multiple independent geometric and material un-
certainties. The performance function for the case studies is defined based on the fundamental frequency of the
VSCL plate. The accuracy in both the reliability estimates and sensitivity studies using the proposed method were
found to be in close agreement with that obtained using the ANN based brute-force Monte Carlo Simulations
(MCS) method, with a significant computational savings of 95%. Moreover, the importance of taking into ac-
count the randomness in ply thickness for failure probability estimates is also highlighted quantitatively under
the sensitivity studies section.

1. Introduction

Composite materials belong to a class of advanced materials that is
made up of two or more chemically and physically different phases
separated by an interface. Due to their high strength-to-weight ratio
and ease of customization for various requirements, they have been
widely used in aerospace industries since the dawn of flight. However,
thanks to the inherent statistical nature of material properties of the
constituents and the unavoidable fabrication inaccuracies in ply layup
and fiber placements, none of the its performance parameters are de-
terministic in nature.

Composite materials are used extensively both in primary as well as
secondary structures of aerospace and mechanical structures. During
the course of a product lifetime, such components are exposed to harsh
environments, including mechanical vibration. They are found to ex-
hibit superior strength-to-weight and strength-to-stiffness ratios. Since
composites are an amalgamation of two or more constituent materials,
its effective properties are governed by its material mechanical prop-
erties, its density, the stacking sequence and thickness of each ply, or-
ientation angle and so on.

All the above mentioned parameters are not exempt of

uncertainties, mainly due to the stochasticity of the material con-
stituents and the unavoidable fabrication inaccuracies in ply layout and
fiber placements. In this context, the uncertainty associated to model
parameters is understood as incomplete information, facilitating their
probabilistic description grounded in the information theory. Hence, all
such mechanical and geometric uncertainties must be quantified and
taken into account for probabilistic prediction of composite structure
response. Natural frequencies of components within safety critical as-
semblies often tend to be so close to each other, that a small uncertainty
in the effective characteristics of any of its components can have a
catastrophic effect on the overall system performance. Therefore, we
must be able to quantify the uncertainty (at least in its first fundamental
frequency) of a critical component made of composites, and as a by-
product predict its failure reliability based on a set user-defined criteria.
It is also critical to perform a detailed sensitivity study of laminate
behaviour to the uncertainty in each input, modeled here as random
parameters.

Laminated fibre-reinforced composites [1,2] are made up of straight
and unidirectional fibers that are homogeneously distributed in each
lamina. For such materials, from a macroscopic sense, it is safe to
consider that its stiffness does not vary at the laminate level. However,
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from the early nineties, a shift in the general trend in composite man-
ufacturing has been observed, where the stiffness is purposely made to
vary within a lamina, which supposedly lead to more efficient designs
[3,4]. There exists several ways to achieve Variable Stiffness Composite
Laminates (VSCL). A few among them are by using curvilinear fibers
[5-71, by varying the volume fraction of fibers [8,9], or by adding and
dropping plies to the laminates [10,11]. There exists a few advantages
for going with variable fibre orientation over others, such as, con-
tinuous variation of the stiffness with membrane coordinates and
avoiding abrupt changes in the thickness which may lead to stress
concentrations, as reported in Ribeiro et al. [12]. One other reason that
complements the increasing availability of curved fibre laminates is the
capability of present tow-placement machines to control the fibre tow
placement individually.

The study of static and free vibration response of VSCL plates have
received considerable attention. The natural modes of VSCL plates with
curvilinear fibers using the p-version finite element, that follows a third
order deformation theory, was examined in [13]. Geometric non-linear
vibration studies of VSCL plates was studied using the first order shear
deformation theory (FSDT) in [14]. The dynamic instability of VSCL
plates using the Rayleigh-Ritz method was studied in [15]. Anand
et al., [16] studied the free vibration characteristics of VSCL plates
using a higher order accurate theory. The influence of environmental
effects and geometric discontinuities were also considered. All the
aforementioned studies assumed that the geometry and the material
parameters were deterministic.

Numerical investigation of the stochastic vibration behaviour of
Constant Stiffness Composite Laminate (CSCL) have been studied in
[17-19]. A mean-centered second-moment method to study the free
vibration and reliability study of composite cantilevers was done in
[20]. A stochastic finite element method for the analysis of composite
plates was proposed in [17]. A First Order Reliability Method (FORM)
to study shear deformable laminated composite plates was used in [21].
For more details, interested readers are referred to a comprehensive
review on the reliability studies of composite structures and references
therein.

Monte Carlo Simulations (MCS) are another brute-force method for
reliability analysis, given a large sample size and at the expense of
considerable computational time to achieve a reasonable accuracy.
Shaker et al. [22] was one of the first in using FORM and Second Order
Reliability Method (SORM) for reliability analysis of composite plates
under free vibration using the stochastic finite element method. How-
ever, the uncertainties in that study were limited to only laminae
stiffness properties, material density and ply orientation angles. The
SORM has been proven to be a superior tool over the MCS for stochastic
analysis of free vibrating composite plates. But, one of the major
drawbacks of the SORM is that it requires the second order derivative of
the performance function w.r.t each of the random parameters in the
system. This limitation could be partially circumvented using a sym-
bolic solver. However, such a circumvention can become obsolete when
the derivative of the performance function w.r.t the random parameters
like the ply thickness are required. [23] showed the importance of
considering uncertainty in the ply thickness for reliability analysis of
fiber-reinforced composites under multi-axial loads.

Structural reliability analysis using Artificial Neural Network (ANN)
has been in the mainstream research since past two decades. Hurtado
[24] gave a comprehensive overview on the use of neural networks in
stochastic mechanics. ANN has been successfully used in the structural
reliability and optimization studies in the past [25-30]. The art of
combining ANN with reliability methods like FORM, SORM or MCS is
termed as "Neural Network based Reliability”. A comparison of ANN
against other reliability methods was done in [31], wherein a sig-
nificant reduction in computational time was reported. A comparative
study between Multi-Layer Perceptron (MLP) and Radial-Basis Function
(RBF) based Neural Network architecture in replacing the FEM in the
probabilistic analysis of structures was provided in [24]. A new, higher
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order neuron was developed for the deep neural network model to
improve its prediction performance for the compressive strength of
foamed concrete, another form of composite material, in [32]. [33,34]
substituted FEM with a trained neural network to perform reliability
studies on composite plates under static loading.

However, to the best of knowledge of the authors, there exists very
few literature that deals with the reliability studies of VSCL plates using
FORM/SORM/MCS. Sohouli et al. [35] presented a detailed reliability
study on the VSCL plate structures using two different limit state
function definition, one based on the tip deflection and the other based
on the first-ply failure criterion by means of Tsai-Wu criterion. How-
ever, only uncertainties in the material were taken into account and the
analysis was being limited to only static concentrated/distributed load
cases. In the present work, the advantage of both the neural network
and the adaptive importance sampling in better approximating the
performance function at the Maximum Probability of failure Point
(MPP) are exploited to predict the failure probability of VSCL w.r.t its
first mode of free vibration, while taking into account both material and
geometric uncertainties. An MLP-based neural network architecture is
used to obtain an ANN-derived function between the input random
parameters and the output limit state function values.

The paper is organized as follows. Section 2 presents the finite
element formulation for the free vibration studies of a VSCL plate were
cutouts are modelled using eXtended Finite Element Method (XFEM).
Section 3 introduces the reader to the basics of both First Order and
Second Order based Reliability Methods and highlight certain limita-
tions in its applications pertaining to the chosen case study using VSCL
plates. ANN based surrogate modelling is introduced in Section 4 along
with its architecture terminology and the procedure to derive first and
second order derivatives of ANN approximated functions. After a short
exposition on its extension for deriving FORM/SORM estimates using
trained metamodel in Section 5, Section 6 discusses about the two main
methods adopted for sampling design points for training data, namely
the brute-force MCS and the importance sampling. Section 7 concludes
the theoretical discussions where global reliability based sensitivity
analysis procedure is discussed using ANN trained metamodel using
two different approaches. Finally, Section 8 puts all the theoretical
formulations into practice using the case study of VSCL plates with a set
of carefully chosen random input parameters and their distributions
taken mostly from literature. The main take-away points from this work
are summarised in Section 9.

2. Theoretical formulation of a VSCL plate

The First-order Shear Deformation Theory (FSDT), developed by
Reissner and Mindlin for thin and moderately thick plates assumes that
there exists a linear variation of the displacement through the thickness
of the plate and that the thickness does not change during the de-
formation. To illustrate the energy formulation for a VSCL plate, a
rectangular plate with an elliptic cutout is used, as shown in Figure 1.

The plate dimensions are taken as: length a along the x axis, width b
along the y axis and thickness h along the z axis. The geometry of the
elliptical cutout is represented using the major axis d and the minor axis
c. The field displacements using the FSDT theory can be expressed as
functions of the mid-plane displacements u,, vy, wy and rotations 5, and
B, of x-axis and y-axis of the plate respectively as follows:

u(x, y, z) = uox, y, ) + zB.(x, y, )
V0 y, 2, ) = vo(x, y, £) + 2B,(x, ¥, 1) €}
W(x’ Y, Z, [) = WO(x’ Y, t)

where t is the time. The linear strain—displacement relationship is given
by:
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Fig. 1. Composite Laminate plate with an elliptic hole. Cartesian coordinates are shown as x —y — z.
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The above strain-displacement relation can be rewritten as follows:

)

3
where
u 6x,x
vo,x 8 B, + wox
& =170y > € = 1 Pyy s & = B, + W
uo,y + vO,X Bx,y + ﬁy,x 7 Y (4)

where ¢, £, and ¢ are the mid-plain strain, bending strain and shear
strain. The subscript ‘comma’ represents the partial derivative w.r.t the
spatial coordinate that succeeds it. The membrane stress resultants N
and the bending stress resultants M can be related to the membrane
strain ¢, and bending strain &, through the following relation [36]:

Ny
N={Ny: = Ag, + Bg,
Ny
My
M = { Myt = Be, + Dyg,
My (5)

where the matrices A= A, B= B; and D, = D; (i,j = 1,2,6) are the
extensional, bending-extensional and bending stiffness coefficients de-
fined as:

h/2 _
{AU, By, D,-,-} = /:m Qij{l, 2z zz}dz

Similarly, the transverse shear force Q= {Qy, Q,;} is related to the
transverse shear strain ¢, as follows:

(6)

h/2 =
sz = K; Lh/z szdz = K;Qss (Bx + WO,x)

h/2 —~
Qyz = Ks Lh/z Ci'yzdz = KsQ44(ﬁy + WO,y) (7)
where K; is the shear correction factor. The global stiffness coefficients
Qy are derived from the local stiffness coefficients Q; defined along the
local coordinate system that aligns along with the fiber. The local
stiffness matrices Q; are defined as follows:

Ey By vy

Qu = s U2 = , Q=00 =—"—,Q1= Q%
1 —vvy 1—vpvy 1= vy
=0 (€)]
Qa4 = G2z, Qss = G13, Qs = G2 (C)]

where the subscript ‘1’ refers to the local material direction (fiber di-
rection), ‘2’ refers to that direction perpendicular to the local fiber di-
rection and lying within the plane of ply ‘12’. With the help of a co-
ordinate transformation matrix, the local stiffness coefficients can be
transformed to its global stiffness coefficients. However, the curvilinear
fibre laminates differ from straight fibre laminates, in the fact that the
orientation of the principal material axis does not remain constant in
the lamina domain. This means that the transformed stiffness coeffi-
cient matrix Q doesn’t remain constant and become function of spatial x
direction. For example, the first element of matrix, namely Qy; is:

Qu = Que()* + 2(Q12 + 2Q33)c(x)’s (x)* + Quz5(x)*

where ¢(x) = cos(6(x)) and s(x) = sin(6(x)) in which 6(x) is the fibre
orientation angle of the VSCL plate, measured from the x axis of the
plate to the fibre axis angle at position x. In this study, it is assumed that
the fibre path variation is represented as follows:

10

6(x) X

_ 20 — 6y +0,
a

an

where 0 is the angle between the fibre and the x axis at x = 0 and O is
the fibre angle at the panel ends (x = +a/2). The fibre orientation for
the k’th layer is then represented as <©f|@f> as shown in Figure 2.
However, due to manufacturing constraints, these sets of fiber ply an-
gles cannot take arbitrary combination of values, as was pointed out by
Akhavan et al. [13]. In his seminal work on natural modes of vibration
of composite structures with variable fibers, he proposed a relation
(c.f.Eq. (12)) wherein for a given set of fiber ply pair <©f|0"> to be
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Fig. 2. Curved fiber along with plate dimensions. As shown here, angle ©, has a negative value. Positive value for 6 (x) are defined in the counter-clockwise direction

[12].

feasible from a manufacturing perspective, the local curvature of the
fiber, x(x), should not exceed a value of 3.28.

K(x) = ZMCOS((GH - (’:‘)0)i + @0] < 3.28
a al/2

(12)
The strain energy function U is then given by:
_1 T T T
U(6)—5_/£;{£I,N+st+£SQ dQ
=1 f el Ag, + £l Bey + £/ Be, + £ De, + £l Eg, 1 dQ
9 Ja | PP P b Pep b s B 13)

where & = {uo, vo, wo, B,, B,} is the vector of degrees of freedom asso-
ciated to the displacement field in finite element discretization.
Following the procedure outlined in [37], the strain energy function
U (6) can be rewritten as:
1

U(§) = —6TKé

@) =3 a4
where K is the linear stiffness matrix. In a similar way, the kinetic en-
ergy of the plate is given by:

1 . . . 2 A2
T(6) = ) -/s; {Io(uo2 + Vg + Woz) +I1(9)C + Qy)}dﬂ

where Iy = [ ’;l//zz pdz and L = _};//22 z%0dz, p is the mass density. Sub-
stituting Eq. (14) and Eq. (15) in a Lagrangian equation of motion, one
obtains the following governing equation:

(15)

M§ +KS=0 16)

where M is the consistent mass matrix. After substituting the char-

acteristic of the time function § = w?5, following relation is obtained:
(K — 0®?M)§ =0 17)

where w is the natural frequency.
2.1. Spatial discretization
The plate element employed here is a %° continuous shear flexible

field consistent element with five degrees of freedom (u,, vo, Wo, By, B,)
at four nodes in a 4-noded quadrilateral (QUAD-4) element. The

displacement field within the element is approximated by:

4
ﬁ;} = Z M{uah Vo1, Wor, ﬁ)d, ﬁy]},

e e e e
{uo, vy, Wy, By,
J=1

a8
where Uy, Vos, Wos, Byy» /Sy, are the nodal degrees of freedom and N; are
the shape functions for the bi-linear QUAD-4 element. In this study, to
alleviate the shear locking phenomenon, field redistributed shape
functions [38,39] are employed. The finite element framework requires
the underlying finite element mesh to conform to the discontinuity
surface. The recent introduction of implicit boundary definition-based
methods, viz., the extended/generalized FEM (XFEM/GFEM), alleviates
the shortcomings associated with the meshing of the discontinuity
surface. In this study, the partition of unity framework is employed to
represent the discontinuity surface (cutout geometry) independent of
the underlying mesh.

(s v we's Bl B = D0 e NGOG, V3, w5, B B
FEM
+ D e < NGOH (b, b0, b, bfs, by);

Enriched part
19

where ./ "™ is a set of all the nodes in the finite element mesh and ./
is a set of nodes that are enriched with the Heaviside function. In Eq.

(19), (uf, vi, wi, [3;1, [3’;1] are the nodal unknown vectors associated

with the continuous part of the finite element solution, b; is the nodal
enriched degree of freedom vector associated with the Heaviside (dis-
continuous) function. In this study, a level set approach is followed to
model the cutouts. The geometric interface (for example, the boundary
of the cutout) is represented by the zero level curve ¢ = ¢(x, t) = 0.
The interface is located from the value of the level set information
stored at the nodes. The standard FE shape functions can be used to
interpolate ¢ at any point X in the domain as:

) =), N®
$(x) ; 1 (X)¢; ©20)

where the summation is over all the nodes in the connectivity of the
elements that contact X and ¢; are the nodal values of the level set
function. For circular cutout, the level set function is given by:
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¢1 =|Ixr =Xl — 1, (21)

where x. and 7, are the center and the radius of the cutout. Based on the
level set approach, the Heaviside function H (x) in Eq. (19) becomes:

[0, if $x) <0
He) = {1, if $(x) > 0 22)

2.1.1. Elements of stiffness and mass matrices

In this section, the elements of the stiffness and mass matrices are
derived using extended finite element formulation. Substituting Eq.
(19) in Eq. (4), one gets the following:

a 1[4 eyl

0 000 Hx)— 0 00 0ffb"0
ax v ¢ )5" bv0
oN; ; eyl
gg= 0 Tyl 00 o0[{ws! 4 0 H(X)T; 00 0[{b"0
. S j
ie. g fem NN oo B jewre | N o bPx
R 1) ooy Heog 00 ofliy )
. 1
N
: u = ONi
000 Mg | 000 H®ZL 0 b
ax vg x bv0
ON; N TN Wi
= Y Joooo EHwil s 3T Joooo H(x)— b0
fem o S i < > bPx
e 000 N N A e 000 AN A |8
ay ox ﬁ; i (X)W (X); bPy j
N
ug “o
ANj v gy B :
00 2% N oo ||v 00 H® HE@N; 0 b
h ax i ox pWO
S YR PO I B Ho H
ie. s fem E3 B jere |00 HEZE 0 HOON; || b
. By ).
ﬁ; bPy j

where the derivative of the Heaviside function w.r.t the spatial co-
ordinates exists only at the interface location and
PT(;) = H(x) — H(x;). The above set of equations can be rewritten in
the form of their respective strain displacement matrices as follows:
g =B3&° + B4, g =Bjo° +Bjo, & =B + BiS (23)
where B, B, and By are the membrance, bending and shear strain—
displacement matrices, respectively, the superscripts ‘s’ and ‘e’ stands
for the standard and enriched parts. Substituting Eq. (23) into Eq. (13)
and upon further simplification, one gets the following elemental
stiffness matrix:

- [ %]

K Ke (24)
where
K% = fng {[B;;TA[B; + B$"BB} + B§"BB}, + B§"DB}, + [Bg:TE[Bgi}dQ
K. = [, {[B;TA[B; + B3TBBj, + B§"BB¢, + Bj'DBj, + [B§TE[B§}dQ
K¢ = fﬂe {[B;TA[B; + B¢TBBj + B§"BB?, + B{"DB} + [BgTE[Bg}dQ
e}
N

K= /), {B;TA[B; + B¢TBB§ + B§"BB¢, + B{'DB{ + BEB¢ 1dQ
Similarly, Eq. (15) can be written as:

re=1 {SST, Sf}ME{%}
2 S (25)

Substituting Eq. (19) into the above relation, one gets to the element
mass matrix as follows:
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er NTpoNdQ fge N7p (H(x)N)dQ

- [M:S M;] )
CMg Mg |
er (H (x)N)ToNdQ fge (H®)N)Tp (H (x)N)dQ

(26)

where p consists of I and I;. Figure 3 shows a finite element mesh for a
plate with a hole, where both the enriched nodes in the presence of a
cutout and constrained nodes are highlighted.

A consequence of adding custom tailored enrichment functions to
the FE approximation basis, which are not necessarily smooth functions
is that, special care has to be taken in numerically integrating over the
elements that are intersected by the discontinuity surface. The standard
Gauf’quadrature cannot be applied in elements enriched by dis-
continuous terms, because Gauf3quadrature implicitly assumes a poly-
nomial approximation. In the present study, a triangular quadrature
with sub-division is employed along with the integration rules de-
scribed in Table 1. For the elements that are not enriched, a standard
2 x 2 Gaussian quadrature rule is used.

3. Structural reliability analysis

The analysis and design of complex engineering systems depend
heavily on the predictions from numerical models like finite element
analysis, while its accuracy depends on how close the digital re-
presentation approximates the real-world system. Structural Reliability
Analysis (SRA) aims to provide a rational framework to address un-
certainties in structural design so that the later can be more objective
and less dependent on unrealistic assumptions. The theory behind SRA
is formulated around the concept of probability of failure:

Py = Prob [g(x) < 0] = -/;;(x)sofx x)dx @7

where fy (x) is the joint Probability Density Function (PDF) of random
vector X and g (x) is the limit state function, where g (x) < 0 denotes the
failure domain and g(x) > 0 is the safe domain. Though the definition
in Eq. (27) looks simple, its exact integration through direct integration
is often intractable for two reasons: (1) dimension of integral is usually
too high in case of multiple input random parameters and (2) the shape
of the limit state function g(x) could be complicated with complex to-
pology, specially for low failure probabilities. SRA methods can be
broadly classified into three categories: Taylor series-based approaches
such as the First Order Reliability analysis Method (FORM) and Second
Order Reliability analysis Method (SORM), simulation based methods
such as MCS and its variants and surrogate methods such as the Re-
sponse Surface Method (RSM) and the Kriging meta-model [40]. In the
following subsections, we will briefly talk about the first two categories
followed by the rational in choosing the right approach with our pro-
blem in hand.

3.1. First order reliability method

In this section, a basic introduction to the conventional First Order
Reliability Method (FORM) along with its formulation is given. This
method is restricted to normal random parametric space. So, all the
input random parameters x; should be transformed to its reduced ver-
sion having a standard normal Gaussian distribution. This step is done
so as to simplify the integrand f, (x) in Eq. (27) so that its contours on
the random parameter space will be more regular and symmetric. As-
suming that all the n input random parameters in X space follows a
Gaussian distribution ./ (u;, o?),i=1,2, ---,n, where u; and of are the
mean and variance of the i input random parameter, they can be
transformed to a standard normal distribution space Z: =./7(0, 1)
using a linear transformation rule as given below:
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Fig. 3. Mesh for a square plate of dimensions 1 X 1m with a circular cutout of
radius 0.2m, marked with blue line. Enriched nodes associated with the ele-
ments containing the cutout boundary are shown in blue squares 0O, while
constrained nodes that lie within the cutout are marked as .

Table 1
Integration rules for enriched and non-enriched elements in the
presence of a cutout.

Element Type Gauf3points
Non-enriched element 4
Split element 3 per triangle
Split blending element 4
Xi — M .
Zi=——-, i=12 -n
e (28)

After the transformation, the failure probability integration be-
comes

Py = P(g(z) < o) = [ (02 20
where ¢, (z) is the joint pdf of all input parameters in standard normal
space. Once the transformation is done, the next step is to approximate
the integration boundary g(z) = 0. FORM is based on the first order
Taylor series expansion of the integration boundary as shown below:

g(2) ~ g(z") + Vg(z)(z — z°)" (30)

where z* is the expansion point and Vg (z*) is the gradient of g(z) at z*,
defined as

Vg(z*):(agm 5g(2) m,ag(z))

621 ’ aZZ ’ aZn

2 (3D

The point on g(z) = 0 that has the highest joint probability density
is termed as the Most Probable failure Point (MPP). In other words,
maximizing the joint pdf ¢, (z) along the limit state function g(z) = 0
gives the location of MPP. The above statement can be mathematically
formulated as follows:

T oo(-5%)
max exp|—=z; |, s-t. g(z)=0
z g 2 2 (32)

Since the function to be maximized is equivalent to minimizing
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i, %, the model for the MPP (Eq. (32)) can be re-written as follows:

z||, s.t. g(z)=0

e (33)
where ||-|| stands for the norm of a vector. The solution to the optimi-
zation problem given in Eq. (33) is the MPP and its denoted by
z* = (z{, ---,z;). As one can see from Figure 4 for a bivariate case, MPP
is the point along g(z;, z,) = 0 which has the shortest distance to the
origin of the 2 -space. Once the MPP is computed, the reliability index
can be computed as 8 = ||z*|.

While the procedure to determine the MPP will be detailed in
Section 3.2, further details in computing the reliability index using
FORM is detailed henceforth. Since at MPP z*, g(z) = 0, Eq. (30) be-
comes

L(z) = z M (zi - z[") =aqag + Z a;z;

i=1 9z i=1 (34)
where,
n
gz ., 9g(z)
Q== S| H w= T
Pt Zi | 20| (35)

Since L(z) is a linear function of standard normal parameters as per
Eq. (34), it is also normally distributed with a mean of y; = a, and
standard deviation given by

[ 2
\‘Zn ag
[ ]
\j i \ %zl (36)

|'n
|

gL:\jE a,-Z: |
i=1

Now using these two information, the probability of failure can be
computed as

9zi n
—M i= Z *

i=1 z"
(37)
where
sl g(z1,22) =0
pdf contour
5 -
L
ZQ 0 — AN
1+
-2 9(21722) <0
.q(zla 22) >0

737

! ! ! ! | | |

-3 -2 =T 0 I 2 3

Z1

Fig. 4. Probability integration using FORM.
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Fig. 5. Schematic representation of a MPP Search.

=T
' ) (38)

Let the collection of vectors a; be represented as follows

a=1ad, &, Ay | = M
Vg @Il (39)

The probability of failure can be finally written in the following
format:

- s
P = <I>(Z aiz,-*) = ®(az )
i=1

The MPP z*, reliability index 8 = ||z*|| and the direction of gradient
at MPP, a are therefore related to each other as

(40)

z*
Z__a
B (41)

Substituting Eq. (41) in Eq. (40), results in

P P(L(z) < 0) = @(azg) = @(—ﬁaaT) = cp(—ﬁ’]
(42)

Finally, the reliability of the system is given by
R=1-F=1-0(-p) =2(B) (43)

3.2. Search for MPP

Before proceeding with FORM/SORM, it has been made clear in
Section 3.1 that it is key to locate the MPP in the standard normal
space. In this section, the commonly used MPP search algorithm will be
discussed. The search is based on a recursive formula and on the line-
arization of the performance function, as highlighted in Figure 5 and
explained below.

Let MPP in the k’th iteration be z*. The performance function is
expressed in a linearized form at z* as shown by the lower line in Figure
S.

g(@) = g(@") + Vg(z)(z — 29" (44)

Letting the linearized function to be zero, then the MPP z‘*! in the
next iteration should be on the line as

g(@) = g(z") + Vg(ZH (@' - 29" =0 (45)
From Eq. (40),
7k = — prak
ZF = — pktigk (46)
Upon substituting Eq. (46) into Eq. (45), one gets the followings:
g(z") + Vg () @) (BF - g+ = g (@) + Vg (@O)IIB* - ) =0

k+1 _ pk 8@
=pk+
B B Vg @)l

2K+ — _ak(5k+ gz )

Vg (&)l

47)

The last equation in Eq. (47) gives the recursive formula in esti-
mating the MPP. As a starting point for the same, z° = 0 is chosen. For
the stopping criterion, the absolute change in the position of the
iteration points is checked against a user defined criteria:
i+ — 2% < e.

3.3. Second Order Reliability Method
The conventional Second Order Reliability Method (SORM) is based
on second-order Taylor series approximation of the nonlinear limit state

function so as to better approximate its curvature. The expansion about
the MPP z* is:

g(z) = g(z") + Vg(@)(z — )" + %(Z - Z*JH(Z*)(Z —-z)

(48)
where H(z*) is the Hessian matrix evaluated at MPP:
2 3% 3%
ozt 02122 8212
1 " " n
3% % 0%
H(z*) = | %2a " 623 " 8z22n
dzg Bzg ﬁ
dznz1 8znz2 822
R Wl ] (49)
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A simple closed-form solution for the failure probability computa-
tion is derived using the theory of asymptotic approximation in [41] as:

n—1
B= ©(—B) IT a+pros

i=1 (50)
where § is the reliability index obtained using FORM and x; are the
principal curvatures of the limit state at MPP. The procedure to obtain
the first (n — 1) curvatures is detailed next. First, the standard Gaussian
random parameters z are rotated to another set of coordinates, v, in
such a way that the last component of the new set v,, coincides with the
a measure, which is the unit gradient vector of the limit state at the
design point (see Figure 6 for the case of 2 random parameters). This
orthogonal transformation can be written as:

v=Rz (51)

where R is the rotation matrix. For the case of just 2 random para-
meters, the rotation matrix will be

_ [ cos(6)  sin(6) ]

— sin(6) cos(6) (52)

where 6 is the rotation angle about the origin of the random space, as
highlighted in Figure 6.

For the case of more than 2 random parameters, the transformation
matrix R is computed in two step:

stepl: Construct the R, matrix as follows:

Ro=| | 7
o o oy (53)

where aj, @, ---,at, are the components of the unit gradient
vector a at the design point, MPP.

step2: Once the matrix R, is computed, the Gram-Schmidt orthogona-
lization procedure is applied to R, whose rows are 1y, Iy,, -+, Xo,,
to get the matrix R whose rows are r, 1, ---,1,. The procedure
for the above may be written as follows. The n’th row of R is
simply ¥, = 1ry,, while the other rows are computed in a back-
ward order using the formula given below:

n
1‘k=1‘0k— Z

1rg,
T I;
j=k+1 | WX 54

Once the R matrix is obtained, a new matrix A, whose elements are
denoted by A; is computed as follows:

_ (RHR');
T Vgl (55)

where H is the Hessian matrix evaluated at the design point. Since v,
coincides with the $-vector, the last row and column of the A matrix
and the last row in the v vector are dropped. Finally the limit state
function can be written using a second-order approximation in the ro-
tated space v as:
1
Y, = ~YTAY
n=p+ (56)
where A is a matrix of size (n — 1) X (n — 1). Moreover, the curvatures
x; required for computing the probability of failure are just the eigen-
values of this reduced A matrix.

3.3.1. Limitation of conventional FORM/SORM for reliability analysis of
VSCL composites with cutouts

As it can be observed from Eq. (31) and all throughout the deriva-
tion for FORM/ SORM in the earlier section, one needs to have an
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Fig. 6. Rotation of coordinates for SORM.

explicit representation of all input random parameters z; within the
definition of the limit state function g(z). In our chosen particular
problem for reliability analysis of composite plates with cutouts and
including uncertainty in geometric parameters like the ply thickness, it
becomes unmistakably clear that the conventional approach with
FORM/SORM is not the one to be advocated for this particular appli-
cation. For example, by looking at Eq. (6), one can clearly infer that, in
case of random ply thickness, the integral limits become random, which
makes the process of deriving an explicit representation of limit state
function, g(z) to be nearly intractable. All the more, by looking at
Figure 3, it is would be impractical to derive the gradient of the limit
state function w.r.t the limit state function whose zero values defines
the cutout contour. Hence, there exists a clear need to come up with a
surrogate model that approximates the limit state function, whose
discussion will be taken up in the following section.

4. ANN based surrogate model for SRA

In the earlier section, we had highlighted the need for surrogate
modelling of limit state function for the problem in hand. Some of the
most commonly used surrogate models for SRA are the Response
Surface Method (RSM), Kriging [42-44], Moment method, Neural
Network based SRA, to name a few.

A seminal work in applying Artificial Neural Networks (ANN) in
SRA was by Deng et al. [27]. For structural reliability analysis purposes,
the two most commonly used ANN architectures are - multi-layer net-
work and radial basis functions (RBF) [45]. The reader may refer to the
works of Hurtadoet al. [24] for an extensive state of the art discussion
on general application of neural networks in stochastic mechanics.
Once an adequate surrogate model is defined between the random input
parameters and its corresponding stochastic output using ANN, it is
necessary to define a methodology wherein the probability of failure,
Py, can be computed using this ANN approximated meta-model. One
methodology is to run an ANN-based Monte Carlo simulations for
computing Py, wherein only a finite number of finite element calcula-
tions are required for building the data set needed for ANN training
process. Gradient-based methods like ANN coupled with FORM/SORM
are found to abate the convergence issues normally encountered in
conventional FORM/SORM (c.f. Section 3), especially when dealing
with highly non-linear limit state function.

In Section 4.1, the reader is introduced to the basics of a neural
network architecture, followed by the procedure to derive the first and
second order derivative of limit state function w.r.t each of the input
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random parameters.
4.1. Overview of an artificial neural network

In an Artificial Neural Network (ANN), each layer containing neu-
rons gets connected to the next layer. Figure 7 shows a schematic re-
presentation of a feedforward neural network with a two-layer per-
ceptron. As it can be seen from the outline sketch, a neuron in an ANN is
considered to be a processing element. For the case of Layer 1, the
output z; from the j neuron is calculated as follows: first, all its inputs
from the neurons in the preceding layer x; are multiplied with their
respective connection weights w;; and added up as shown below.

I
uj = Z wﬁx,-
i=1

Before passing this weighted sum to the activation function, a small
bias b; is added to the same. Finally, an activation function f(s) is
needed to transform this biased weighted sum of the inputs y; into the
output signal of the j™ neuron in Layer 1 as shown below.

I
= 1(3 wen 1)
i=1

where I is the number of neurons in the input layer. Similar computa-
tions are carried out at each neuron within each layer of a feedforward
neural-network until the output gets generated at the output layer.

The optimal design of an ANN depends on a number of parameters.
The setting up stage of an ANN can generally be divided into two stages:
training and testing phase. ANN training phase is when the weight and
biases of a user-defined ANN gets optimized/trained using a set of in-
put-output numerically generated samples, with sufficient variation for
each ANN input parameter from their respective distribution. In the
testing phase, the accuracy of trained ANN in predicting the response to
new unobserved data is checked for, so as to quantify the performance
of a trained ANN. Several hyperparameters influence the performance
of an ANN trained using back propagation. A detailed monologue for
the same can be found in the works of Goodfellow et al. [46]. For the
interest of the reader, a brief introduction to the same is provided
below.

Train/test ratio: Typically, the ratio of training to test dataset size
normally ranges between 80/20 to 95/5 [47]. In this work, a training
ratio of 80/20 is chosen (meaning 80% of samples are used for training
the ANN, while the rest 20% are used for testing).

Data normalization: It is a good practice to employ data normal-
ization so as to avoid any unwanted biases towards select dimensions in
the input-output space. Among several available pre-processing tech-
niques like Min-Max, Z-score and Decimal Scaling Normalization to
name a few, Min—-Max normalization is used in current studies.

ANN architecture: While the number of neurons in the input and
output layer of an ANN is known a priori, the choice of number of
hidden layers and the nodes per hidden layer remains open. It has been
proven by Cybenko [48] that a one-layer ANN can sufficiently ap-
proximate any nonlinear function. While we restrict ourselves to a
shallow one hidden layer ANN architecture, the choice of number of
neurons in the hidden layer is discussed in the numerical Section 8.

Activation function: Choosing the right neuron activation function
f(¢) in Eq. (58) is an appropriate consideration, because it directly
affects how the input data gets formatted. There exists several activa-
tion functions in the literature, depending on the range of normalized
input data. In this study, given that we use a Min-Max data normal-
ization wherein the input data gets normalized to within a range of
[—1,1], hyperbolic tangent function is used as activation function for
hidden layer neurons, while linear activation is used in the output layer
neuron.

Cost function: Training a feedforward ANN is more or less an op-
timization problem, for which a cost function has to be defined. There

(57)

(58)
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exists several cost functions to choose from, of which the Mean Squared
activation function is chosen in the present study. The mean squared
cost function is widely used in statistics, mainly for regression pro-
blems. The weights and bias of an ANN are optimized using stochastic
gradient descent algorithm [49].

With the help of a trained ANN, the expressions to compute both the
First Order Derivative (FOD) and the Second Order Derivative (SOD) of
the ANN derived function approximation w.r.t each of the input para-
meters are presented next. The detailed derivation for the same can be
found elsewhere [27,50]. However, a limitation of the back-propaga-
tion algorithm is that ANNs with the same architecture and training
data set, tends to give rise to different optimal solution depending on
the initialization of weights and biases.

4.2. ANN derived first order derivative

The first order derivatives can be computed by using the chain rule
of differentiation. With reference to the ANN architecture as in Figure
7, the derivative of the ANN output y, w.r.t. to its input x; can be ob-
tained as follows, using the assumption in our study that the transfer
function in the output layer is linear and that in the hidden layer is
hyperbolic tangential. Referring to Eq. (58) and Figure 7, the derivative
of the output y, w.r.t the input x; can be obtained using the chain rule of
differentiation as follows:

D WG
dx,- aZj axi (59)

where J is the number of neurons in the hidden layer.

Yy _

=k =

3z (60)
0z;

== Wii(l -3 )

0x; 61)

The term that multiplies the weight factor in Eq. (61) is the deri-
vative of the activation function (hyperbolic tangential). Substituting
Eq. (60) and Eq. (61) into Eq. (59), one gets the following relation for
FOD:

5 J
P _ z wigw;i| 1 — 27
ox; =t

(62)

4.3. ANN derived second order derivative

In a similar manner, the second order derivative of the ANN output
w.r.t the random inputs can be estimated using the chain rule [27]:

3%y, d 0z;

= —ww; (1 — z7) = wyw;(=2z)——

6xj<9xjr 6xjr ki ﬂ( Zj) ki jl( Zj 5le
=wyww;(=22)(A —2)  j.j =1, I (63)

5. ANN based probability of failure estimation for variable
stiffness composite laminate plates

With the aid of a brief overview over feed-forward ANN architecture
and its functional derivatives, the emphasis in this section is placed on
defining a suitable limit state function followed by its gradient inter-
pretation, which will later be used in ANN based FORM-SORM. In this
work, a limit state function, g(x), is defined based on the fundamental
free-vibration frequency of a VSCL plate, as shown below:

A

g(x) Py 64)

where A,(x) corresponds to the random fundamental frequency
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Fig. 7. Feedforward neural network with one hidden layer case.

computed for an input experimental point X of dimension n and 24,
stands for a user-defined critical value below which the structure is
considered to be failed. Figure 8 shows a sample PDF plot of the above
limit state function definition, where the probability of failure region is

also highlighted.
In ANN-based FORM-SORM, partial derivatives of the performance
function g(x) w.r.t each of the input random parameters x;, i = 1, ---,n

are required and are obtained as follows:

9g (x) _ aidlp(x) _ idlp(x) o1 Op (%)
ax; ap Ox; A o A\ ox ANN

2 - L2 1 (S) Bj=1,2n
ANN

One can see from the above equation that the partial derivatives of
the fundamental frequency of the system w.r.t each of the input random
parameters x; are required. The identities within the brackets (-) s4ny are
the ones that we try to approximate using the trained ANN, as detailed
in Section 4.2 and 4.3. Moreover, one should keep in mind that as per
the definition of FORM-SORM, the derivatives of the limit state function
w.r.t input parameters in their standard normal distribution space .Z is
required (c.f. Eq. (31)). However, the limit state function derivatives
that are obtained using the trained ANN is based on the original input
distribution of random parameters, say x =~ .4 (u;, g)i=1, -,n.

(65)

10

Hence, a transformation as defined in Eq. (66) is required, coupled with
Eq. (28).

& _ s (%)
8z axidz . \axi ANN
% %
Y e 0i0;j
0z0zj 0x; Oxj ANN (66)

6. Sampling method for ANN training set generation

In ANN based reliability method, the accuracy of reliability esti-
mates is strongly dependent on the quality of the samples used to train
the network [45]. The general approach adopted for generating training
data set is to randomly select the samples across the whole input
parameter domain and the weights and the biases of the ANN gets
iteratively adjusted until a required level of accuracy is achieved in
level set function approximation [51-53]. However, such traditional
approach has been found to be less efficient since only a low fraction of
the randomly generated samples lay in a region located close to
g(x) = 0 and that too next to the MPP.
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Fig. 8. Sample PDF plot of limit state function along with representation of failure region (g(x)<0).

6.1. Monte Carlo Simulation (MCS)

The integral in Eq. (27) can be evaluated by sampling large number
of samples from the input parametric space as shown below:

X
Ples = ﬁz ﬂ(g(xi) < 0]

i=1

(67)

where 1 («) stands for the indicator function and N stands for the number
of samples. The samples are chosen from the joint PDF f, (x). However,
one of the major drawbacks of naive MCS estimator is that they tend to
have an extremely high variance in Py prediction, especially when
failure probability is large only on a small fraction of samples [33]. To
study the convergence of failure probability estimates as a function of
number of samples, a coefficient of variation measure for Eq. (67) is
used as given below [54]:

cov. _ \/Vélr(PfM(:s) _ L= Ppes ~ 1
Piues =~ p Y2 = /NP
fuces fvcs NI fues (68)

For example, for a 10% of coefficient of variation, one would require
a minimum number of sample size of N = 10¥+2 for estimating a failure
probability of order 107* [55].

6.2. Importance sampling and its adaptive variants

To overcome this limitation, numerous variants have been devel-
oped, like the Subset Sampling (SS) and Importance Sampling (IS), to
name a few. Importance sampling simulates from a biasing distribution
that may be different from the true underlying joint distribution of
input random parameters; however a correction is made for this mis-
match by weighing the samples with an appropriate ratio of densities
[56]. By focusing samples in regions where the integrand in Eq. (27) is
large, IS can reduce the variance of a Monte Carlo estimator of an in-
tegral [57]. In short, Eq. (27) gets modified as follows:

AW
Py = L/gl(x)éo hy (%)

hy (x)dx

x (X) 69)
where hy (x) is the bias distribution or also termed as the instrumental
density. The unbiased importance sampling based P; estimator then
becomes

N .
Pis= 5 2 "(gofi) < 0) f; Zﬁ;
i—1 i

(70)

11

where {x;, ---,xy} are set of samples drawn from the instrumental den-
sity hyx (x). As per the central limit theory, the IS estimator is unbiased
and and its quality can be predicted using the variance of estimation
which is given below [58]:

N 32
Var[Py ] = ﬁ[% > ﬂ(g(x,-) < o)ig‘;z - P}IS]

i=1

(71)

The effectiveness of IS depends on the selection of an appropriate
hx (%), also known as the instrumental density in literature, such that
the probability sampling in Eq. (70) can be prioritized onto the region
of greatest importance. Auet al. [59] proposed the concept of sampling
from the instrumental density as states of a Markov chain, which
asymptotically converges to the optimal instrumental sampling desnity
to be represented with increase in samples. Afterwards, a kernel sam-
pling density was constructed using these samples which was then later
used as hy (x) in IS. Dubourg et al. [55] proposed a meta-model based
importance sampling method where the meta-model to approximate the
limit state function is based on the kriging approach. However, the
probabilistic nature of the meta-model was used to construct a quasi-
optimal hy (x).

7. Global reliability sensitivity analysis using artificial neural
network

Apart from predicting the failure probability of a structure, it is
equally important as to how to reduce the failure probability by car-
rying out a total sensitivity studies. Several work have been published
along these lines. Broadly there exists two ways to compute the relia-
bility based sensitivity studies, namely the Parametric Reliability
Sensitivity (PRS) and Global Reliability Sensitivity (GRS). For example,
Dubourg et al. [58] used the score function approach to derive the
sensitivity of the failure probability w.r.t the parameter set. Assuming
each of the input random parameters are Gaussian, the parameter set
for the problem consists of 6; = (u;, 6);i = 1, ---,n, where y; and g;
corresponds to the mean and standard deviation of the i input random
parameter. Recently, Zhang et al. [60] proposed the concept of using
the principle of maximum entropy (MaxEnt) to approximate the relia-
bility based sensitivity index using a performance function approxi-
mated using the multiplicative dimensional reduction method. Pengfei
et al. proposed a method to estimate both PRS and GRS, based on im-
portance samples obtained using quasi-optimal importance sampling
passed through an Adaptive Kriging approximated performance func-
tion. However, what we are interested here is to compute the total
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Table 2
Natural frequency, @ (rad/s) for a square simply supported VSCL plate without
a cutout
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Table 3
Statistical distribution of basic random parameters used for validation of NN
based FORM/SORM Matlab code validation [50].

Ref. [12] Mesh size (Present work) Property Ep Ex Gz Ga3 Gi3 Y12 P A8

10 X 10 20 X 20 30 x 30 BA30%30 Mean 16.48 1.4 0.87 0.45 0.87 0.334 1000 0°

Std Dev 0.61 0.05 0.052 0.014 0.052 0.01 36 1.8°

309.1 315.0 309.9 309.1 0.0136
503.3 530.5 509.3 505.9 0.5245
852.1 954.0 867.4 854.3 0.2627
11435 1203.4 1144.0 11343 0.8053 Table 4
1297.3 1416.1 1324.8 1296.2 0.0805 MPP for a square simply supported composite laminate with [0°/45°/—45°/90°]

sensitivity indices and for that, we will be using the procedure outlined
in [61]. The reader is advised to refer to the work of Wei et al. [61] for
the detailed derivations and procedures to be followed for both MCS
based and Importance Sampling based Total Sensitivity Index estima-
tion for each input random parameters on the structural failure prob-
ability.

8. Numerical examples

In this section, the proposed ANN based methodology for predicting
the failure probability of a VSCL plate in the presence of both geometric
and material uncertainties is studied. An in-house code was developed
to numerically estimate the first natural mode of vibration of a VSCL
plate with an explicit cutout representation using the XFEM, given a
deterministic set of input parameters. The influence of various geo-
metric parameters, viz., plate aspect ratio, a/b, ply thickness f, fiber
orientation angle <®f|©¥> and the geometry of the cutout on the
probability of the failure is systematically studied. The plate is assumed
to be simply supported on all edges and is discretized using four noded
shear flexible structured quadrilateral element with five dofs per node
(Uo» Vo» Wo, By 6y). All computations were carried out on a desktop with
Intel Quad Core i7, 2.40 GHz CPU with 8 GB RAM.

8.1. Validation of deterministic code with literature results

Before proceeding with a systematic parametric study, the de-
terministic results from the present work is validated against the results
in the literature for a square VSCL plate (a = b=1 m) without cutouts.
All parameters are assumed to be deterministic and the plate is made up
of three layers with the following layup:
[<30°, 0° >, < 45° 90° >, < 30° 0°>]. Total thickness of the plate is
taken as 0.01 m. The material properties are: E; =173 Gpa,
E, = 72GPa, Gy, = G13 = Gy3 = 3.76 GPa, vy, = v13 = vp3 = 0.29 and
p = 1540 kg/m?3. Table 2 presents the convergence of the first five fun-
damental frequencies with mesh refinement. Based on a progressive
refinement, a structured mesh of 30x30 is found to be adequate to
model the plate.

Next, the probability of failure predicted using the ANN trained
FORM/SORM method is validated with the results available in the lit-
erature for Constant Stiffness Composite Laminate (CSCL) [50] in the
absence of a cutout. The plate is assumed to be a square with thickness
h = 0.1. Table 3 summarizes the statistical distribution of all the input
parameters. All units are in SI. A stacking sequence of [0°/45°/—45°/90°]
is considered. A 1000 samples were generated using the statistical
distribution of the input parameters given in Table 3. Out of these 1000
samples, 500 were used for training the ANN with an architecture of
[11-10-1] (similar to [50]), while the remaining 500 samples were
shared between testing and validation phase. Hyperbolic tangent acti-
vation function was used for the hidden layer (Logistic Sigmoid acti-
vation function was used for the hidden layer in Tawfik et al. [50]),
except for the output layer where a linear activation function is used
and w,/w, = 0.97 is used in this study.

Tables 4 and 5 compares the predicted Most Probable Point (MPP) for

12

layup.

Random parameters Present Work Tawfik et al. [50]

E1p (GPa) 16.098 16.099
E>; (GPa) 1.3903 1.3828
G2 (GPa) 0.8556 0.8399
Gz (GPa) 0.4494 0.4496
Gz (GPa) 0.8618 0.8641
V12 0.3335 0.3337
o (kg/m?) 1038 1036.6
61(°) 0.543 0.258
6,(°) 44,928 44,525
63(°) —45.075 —45.480
64(°) 90.543 90.258
Table 5

Comparison of the safety index (8) and probability of failure (P;) for SSSS
[0°/45°/—45°/90°] square laminate.

Method B By
FORM Present Work 1.3545 0.0878
Tawfik et al. [50] 1.3248 0.0926
SORM Present Work 1.3519 0.0882
Tawfik et al. [50] 1.4187 0.0780
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Fig. 9. Training, Validation and Testing errors of ANN. Case for the reliability
estimates w.r.t the first mode of vibration studies for a SSSS [0°/45°/—45°/90°]
composite plate using a [11-10-1] ANN architecture with randomness in input
parameters as given in Table 3.

failure, the probability of failure P; and the reliability index 8 using our
in-house built MATLAB code with the results available in [50]. It is
evident that a good agreement in predictions is achieved. The small
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Table 6
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Random parameters in the analysis of the limit state function w.r.t the first mode of vibration for VSCL plate with cutout.

Material uncertainties

SL.No. Random parameters Symbols Mean Value CoV Distribution type
1. Longitudinal modulus (Pa) Ey 1.73el1 0.03701 2 LogNormal
2. Transverse modulus (Pa) Ex 7.2e9 0.03571 2 LogNormal
3. In-plane shear modulus (Pa) Gy 3.76e9 0.05977 2 LogNormal
4. Density (kg/m3) P 1540 0.036 2 LogNormal
Geometric uncertainties
5. Cutout major axis (m) d 0.4 0.00025 2 Normal
6. Cutout ellipticity (-) c/d 1 0.005 2 Normal
7. Cutout center location (m) X 0.0 0.001 ' Normal
8. Cutout center location (m) Y 0.0 0.001 ! Normal
9. Ply thickness (m) tk 0.0033 0.04 2 LogNormal
10. Ply angle () <@§|®11<> <0°, 45°> < — 45°, —60°> <0°, 45°> 1.8 Normal
! Standard deviation values are defined for zero mean valued parameters.
2 CoV used in [50].
3 Internal communication with an expert in composite machining.
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Fig. 10. Time spent on the training set preparation and ANN accuracy as function of the size of the training set.

differences in the magnitude can be attributed to: (a) the difference in
the activation function selection for the hidden layer and (b) the choice
of the plate deformation theory (FSDT is used in the current work,
whilst, the reference work [50] is based on Third order Shear De-
formation Theory (TSDT)). The training, validation and testing errors
are plotted against the iteration number in Figure 9. After nearly 105
iterations, the training, validation and testing error were found to be
1.86 x 1072, 3.96 x 107 and 1.01 x 10~ respectively.

8.2. Probability of failure and global reliability sensitivity analysis for VSCL
plate with cutouts

Next, the Neural Network based probability of failure prediction
using the FORM/SORM is extended to VSCL plates with cutouts. As a
note to the reader, no benchmark reliability studies of Variable Stiffness
Composite Laminate plates based on its fundamental frequency, existed
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in the literature at the time of writing this paper. To begin with, Table 6
summarizes the input parameters that are treated to be random for the
case of a 3 ply VSCL composite plate (a/b = 1) along with their mean
values, Coefficient of Variation (CoV) and distribution type. As it can be
seen, 4 random parameters associated with material, 4 w.r.t the cutout
shape, size and location and 3 w.r.t the ply angle and its thickness are
considered for the reliability analysis.

A lognormal distribution is considered for all the material para-
meters and the ply thickness as it is not logical for them to be assigned
with a negative value. Moreover, tighter control in dispersion, i.e. lower
value of CoV, is assigned for geometric parameters as it would be ex-
pected in any manufacturing setting. Since the FORM-SORM formula-
tion is based on non-correlated standard normal space, any lognormal
random parameter need to be first converted to its normal space using
the following relation:



T.V. Mathew, et al.

Composite Structures 245 (2020) 112344

014 T T T T T T T T
\ = € = ANN MCS Mean
\ —====Cl
\
L)
0.135 % .
\
A )
\
L)
\
1 -—_f ~,
013Fy N .= "~ .
\ - .~.
N e ———————
_ \ —- ——
\ -, ~ o - - _o- - —— -
01257y g <~ - ¢
\ ".~.~ -——
. R bl T pmm—— I
AN R ST
\, RS
s ’
\, e
012 \ '/' 4
o
0-115 1 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of samples in training set x 104

Fig. 11. Estimated probability of failure as a function of the number of elements in the training data set. CI stands for confidence interval.

By = 2In(uy) — 1/2)In(f + p))
ox = —2in(uy) + In(o3 + uy)

where subscript X and Y refers to the random parameter in the normal
and lognormal space respectively, while u, and o, stands for the mean
and standard deviation.

For the user defined set frequency in Eq. (64), a value of
Ay = 0.97Aean is chosen, where A,,.q, is the deterministic value of first
frequency mode of the VSCL plate computed using the mean value for
all parameters and plate geometries.

8.2.1. ANN based reliability analysis by Monte Carlo simulation

One of the first approaches in using the ANN for reliability esti-
mation is in approximating the Limit State Function (LSF), followed by
MCS for reliability assessment. We consider data sets of different
sample sizes, ranging from 2000 to 20000 samples, so as to check their
influence on the capacity of ANN in approximating the LSF and the
reliability analysis error. The training samples are generated using Latin
Hypercube Sampling (LHS). Figure 10 plots the mean square error in
ANN approximation of limit state function, total computational time
involved in generating the samples and training the ANN metamodel
and the average k-fold cross-validation error (k = 10), against the
sample size.

It can be observed that the error in the network approximation for
LSF approaches to zero with increasing number of samples in the input
data set. However, larger the data set, more computational time is re-
quired for generating those samples. Moreover, looking at the decay
trend of the average k-fold cross-validation error (k = 10) against the
sample size, one can observe no further improvement in model gen-
eralization for sample size beyond 10, 000. Hence, to perform the ANN
based reliability studies using MCS, we choose the ANN trained using
8000 samples, beyond which no significant improvement in ANN ap-
proximation of LSF was observed. Figure 11 plots the estimated failure
probability along with the Confidence Interval (CI is defined as twice
the standard deviation) (c.f. Eq. 68) as a function of number of sampling
points. As one can observe, the CI turns out to be narrower as the
number of samples in the training set increases, due to the effect of
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reducing standard error of the probability of failure estimations by
MCS. From Figure 11, it can be observed that a converged failure
probability prediction of 0.1251 is obtained using an ANN trained with
a data set of 12000 samples, within a prediction uncertainty of 2.4%.

8.2.2. ANN based reliability analysis by Monte Carlo based Importance
Sampling

One of the main drawbacks of ANN based MCS is that it’s efficiency
depends on the magnitude of the failure probability, meaning, smaller
the failure probability, larger the number of samples required.
However, this drawback of MCS based reliability can be overcome by
forcing the sampling of experimental points using a different prob-
ability density function that is centered around the failure domain. This
is the fundamental concept behind importance sampling, which was
briefly introduced in Section 6.2. Here, we plan to implement an ANN
for failure probability estimation that gets trained adaptively using
samples chosen from an importance sampling density centered around
the MPP estimates in each iterative FORM/SORM step. To make the
steps involved more clearer to the reader, as a first step, the network
with a given architecture gets trained with a much reduced sample size
generated using Latin Hypercube Sampling, centered around the mean
values of input parameters. We choose three different training sample
set size, namely Nyyppies = 50, 100, 200, to train ANN in each iterations.
The trained ANN in first stage is then used to find the MPP in the first
iteration using FORM/SORM as detailed in Section 5. In the second
step, an additional Nygpis samples in the surroundings of the previous
MPP from the first iteration are generated using Latin Hypercube
Sampling and added to the training sample set and the procedure gets
repeated. The process gets terminated once the MPP generated at the
i’th iteration within a hypercube that was centered at the MPP from the
(i-1)’th iteration and with a width that equals the standard deviation of
input random parameters. Once the ANN has been iteratively trained,
failure probability is finally computed using the above trained ANN
coupled with MCIS around the most recent MPP. Fig. 12 plots a sche-
matic sketch of the flow diagram of the proposed adaptive ANN based
MCIS. Table 7 presents the results obtained using the above approach.

In the current case, the design point was found to converge within
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Fig. 12. Schematic sketch showing the flow diagram of the proposed Adaptive ANN based MCIS.

Table 7
Results of ANN based MCIS.
Training set (Stepl + Step2) ANN-training Py (FORM/SORM + MCIS) Total time [s] ANN MSE
P frorm P fsorm Prvers Stddevpg, o
50 + 50 0.0924 0.0912 0.1012 0.0016 1290 3.47 x 1074
100 + 100 0.1695 0.1698 0.1152 0.0013 2587 1.67 X 1074
200 + 200 0.1753 0.1736 0.1156 0.0013 5076 1.25 x 10~4

the first two steps of iteration. The estimated failure probability con-
verges to a value of Py .= 0.1156 with a variance of (0.0013)? com-
puted using Eq. (71). By adopting an adaptive ANN + MCIS approach,
we see that the total computational time has been reduced to 5076 s, a
reduction factor of roughly 95% when compared against the procedure

adopted in Section 8.2.1.

Figure 13 plots the total sensitivity index of the failure probability
to the input random parameters. In the figure, the sensitivity indices for
each of the ply thickness and for the ply fibre angle orientation both at

15
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Fig. 13. Estimated total sensitivity index for each of input parameters on the failure probability of aVSCL composite plate. ANN-MCS is based on the ANN metamodel
trained using 8000 samples, while ANN-MCIS is based on the metamodel obtained using the proposed adaptive importance sampling method.

Table 8

Different types of VSCL composites identified for failure probability and reliability estimates using proposed adaptive ANN-MCIS.

Composite Type Aspect ratio (a/b)

Ply angle orientation

Remarks

Composite 1 a/b =1

Composite 2 a/b =1/2 <0°, 45°
Composite 3 a/b=1

Composite 4 a/b =1/2

<0°, 45°> < — 45°, —60°> <0°, 45°>
> < — 45°, —60°> <0°, 45°>
<0°, 45°> < —45°, —60°> < — 45°, —60°> <0°, 45°>
<0°, 45°> < — 45°, —60°> < — 45°, —60°> <0°, 45°>

Square plate with unsymmetric ply
Rectangular plate with unsymmetric ply
Square plate with symmetric ply
Rectangle plate with symmetric ply

Table 9

Results of failure probabilities of four different types of VSCL plate configurations using the proposed adaptive ANN based MCIS.

Composite Type Ejer [rad/s) ANN-training Pr(FORM/SORM + MCIS) Pfvics
P frorm P fsorm P fucrs Stddevpp o

1 1193.5 0.1753 0.1736 0.1156 0.0013 0.1205

2 406.08 0.1898 0.1901 0.1897 0.0016 0.1965

3 1820.4 0.1674 0.1690 0.1014 0.0012 0.1048

4 589.06 0.1842 0.1843 0.1813 0.0015 0.1880

the mid and edge locations have been coupled together, respectively.
The results corresponding to ANN-MCS is obtained using the ANN
metamodel trained using 8000 samples (see Section 8.2.1), while the
one corresponding to ANN-MCIS are obtained using the ANN meta-
model that was adaptively trained, as detailed above. One can observe
that an excellent agreement is observed between both the predicted
total sensitivity indices for each of the input random parameters.
Moreover, the failure probability was found to be the most sensitive on
upon the randomness in input ply thickness, followed by ply angle and
density uncertainties.
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8.2.3. Application of adaptive ANN based MCIS for failure prediction and
reliability sensitivity studies for different composite plates

In this section, we extend our proposed adaptive ANN based MCIS
for failure prediction and reliability estimates of four different com-
posite plates. Table 8 summarizes four different types of VSCL com-
posites considered for this study, with variations in aspect ratio and ply
angle orientations.

Table 9 summarises the failure probabilities of the identified 4
different types of composites w.r.t the given input random parameters
(c.f. Table 6). The failure probabilities were computed using the pro-
posed adaptive ANN based MCIS, which was trained using 200 samples
for each iteration.
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Fig. 14. Estimated total sensitivity index for each of input parameters on the failure probability for four different VSCL composite plate (c.f. Table 8).

The second column of Table 9 contains information on the de-
terministic fundamental frequency of respective composite types,
computed at mean values of input random parameters. A value which is
97% of these deterministic values serves as 4, in Eq. (64), which defines
there respective limit-state function definition. The failure probability
estimates obtained using the proposed method for the four difference
composite cases, are now compared with that of MCS based failure
estimates obtained using multiple finite element simulations with
10000 random samples (c.f. last column in Table 9. One can observe
that a reasonable agreement is achieved between Py, . and Py, ...

Fig. 14 plots the total sensitivity index of each of the input para-
meters on the failure probability, for each of the four different VSCL
plate configurations considered. The total sensitivity index are com-
puted using the adaptive ANN based MCIS metamodel. From Table 9, it
is clear that for a given input random parametric data, the rectangular
plate with unsymmetric ply layup was found to show the maximum
probability of failure, followed closely by its symmetric ply layup
counterpart. Square plates, irrespective of the ply layup, was found to
exhibit a lower failure probability by roughly a factor of 40%, compared
to its rectangular counterpart.

Furthermore, by having a closer look at Fig. 14, we first see that the
failure probability remains least sensitive to changes in certain input
random parameters, irrespective of the VSCL plate configurations,
namely, E,, Gy, d, x.and y, (Total sensitivity index below 5%). On the
other spectrum of sensitivity values, we see that the total uncertainty in
ply thickness dominates in its contribution towards the failure prob-
ability, across all the 4 VSCL configurations considered. This observa-
tion matches very well with the results published in the work of Tawfik
et al. [50], where the importance of taking into account the uncertainty
of ply thickness on failure estimates of straight fiber composite case
studies was emphasised. Moreover, changing the plate configuration
from a square to a rectangular configuration was only found to ex-
acerbate the contribution of uncertain ply thickness to the overall
failure probability. However, the reverse trend was observed in the
failure sensitivity w.r.t the ply angle orientation, such that for a given
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ply layup (un/symmetric), play angle uncertainties in square plates
were found to be more sensitive to the failure probability than its
rectangular counterpart.

Among the material parametric uncertainties, only E; and p was
found to have a significant contribution, where the later was found to
consistently exhibit greater impact on the failure probability over the
former across the VSCL configurations. Finally, as far as the effect of
uncertainty in hole parameters on the failure probability, its ellipticity
(c/d) was found to be the most dominant of them all, especially in the
case of square plates.

9. Conclusion

In this paper, both the failure probability estimates and sensitivity
studies of various configurations of VSCL plates for a given set of
random input parametric values has been thoroughly discussed, ana-
lyzed and its performance validated with that of conventional MCS. The
geometric uncertainties in the cutout geometry was incorporated into
the studies using the stochastic level set method. Aside from the con-
ventional methods of ANN based reliability estimates for composites
where randomly large number of samples are drawn from the input
parametric space, our proposed method of adaptive ANN based
Importance Sampling shows promise in delivering accurate results for
failure predictions and total sensitivity indices, but at a cost of sig-
nificant computational savings by an observed factor of nearly 95%
compared to that of MCS. Moreover, the importance of having to take
into account the uncertainties in ply thickness for failure probability
estimates is also highlighted, irrespective of the plate aspect ratio or the
ply layup sequence.
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