
Science of Computer Programming 195 (2020) 102475
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Improving the success rate of applying the extract method 

refactoring

Juan Pablo Sandoval Alcocer a,∗, Alejandra Siles Antezana a, Gustavo Santos b, 
Alexandre Bergel c

a Departamento de Ciencias Exactas e Ingeniería, Universidad Católica Boliviana “San Pablo”, Cochabamba, Bolivia
b Federal University of Technology - Paraná, Brazil
c ISCLab, Department of Computer Science (DCC), University of Chile, Santiago, Chile

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 April 2019
Received in revised form 21 April 2020
Accepted 22 April 2020
Available online 30 April 2020

Keywords:
Refactoring
Usability

Context: Most modern programming environments support refactorings. Although refactor-
ings are relevant to improve the quality of software source code, they unfortunately suffer 
from severe usability issues. In particular, the extract method refactoring, one of the most 
prominent refactorings, has a failure rate of 49% when users attempt to use it.
Objective: Our main objective is to improve the success rate of applying the extract method 
refactoring.
Methods: First, to understand the cause of refactoring failure, we conducted a partial repli-
cation of Vakilian’s ICSE ’14 study about usability issues of refactoring using IntelliJ IDEA. 
Second, we designed and implemented TOAD, a tool that proposes alternative text selection 
for source code refactoring for the Pharo programming language. Third, we evaluated TOAD 
using a controlled experiment against the standard Pharo code refactoring tool. Seven pro-
fessional software engineers complemented with three undergrad students participated in 
our experiments.
Conclusion: The causes we identified of failed extract method refactoring attempts match 
Vakilian’s work. TOAD significantly reduces the number of failed attempts to run the ex-
tract method refactoring at a lower cognitive load cost.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Refactoring tools help developers to automatically perform many predefined source code transformations and refactorings 
[1,3,12]. However, besides the automated facilities provided by these tools, recent empirical studies show that develop-
ers face a variety of usability issues [16]. These issues range from unintuitive refactoring configuration to an unexpected 
outcome from what the developer wanted to achieve. Such usability issues ultimately discourage developers from using 
refactoring tools in the future.

First, to better understand usability issues that practitioners are experiencing, we conducted a partial replication of a 
study conducted by Vakilian et al. [16]. This first study allowed us to confirm that a wrong selection of code segments 
is a prominent pattern when one applies the Extract Method refactoring. We found that only 51% of the Extract Method 
refactoring attempts were successful, where incorrect source code selection is a major cause of misuse of the refactoring 

* Corresponding author.
E-mail addresses: sandoval@ucbcba.edu.bo (J.P. Sandoval Alcocer), aesa1@estudiantes.ucbcba.edu.bo (A. Siles Antezana), abergel@dcc.uchile.cl (A. Bergel).
https://doi.org/10.1016/j.scico.2020.102475
0167-6423/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2020.102475
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2020.102475&domain=pdf
mailto:sandoval@ucbcba.edu.bo
mailto:aesa1@estudiantes.ucbcba.edu.bo
mailto:abergel@dcc.uchile.cl
https://doi.org/10.1016/j.scico.2020.102475


2 J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475
tool. Such a pattern leads to a negative experience that defeats the main goal of programming environments, which is to 
assist practitioners in conducting laborious and repetitive tasks. We hypothesize some heuristics to guide the developer to 
properly select the source code segment to be refactored.

And second, we designed and implemented TOAD, a tool that searches for appropriate source code selection. An appro-
priate code selection is the one that satisfies the necessary preconditions to perform a specific refactoring; in our case, the 
Extract Method refactoring.

In this extension, we present a controlled experiment, in which we empirically compare TOAD with Pharo’s standard 
refactoring tool. Our results show that:

• When compared with the standard Pharo refactoring tool, TOAD significantly reduces the number of failed attempts to 
apply the Extract Method refactoring;

• Participants often consult alternative text selections (43% of the refactoring attempts) and they also used an alternative 
text selection instead of their first one (27%) when applying an Extract Method refactoring;

• Offering optional alternatives in the refactoring tools does not overload the refactoring process and reduces the partici-
pants cognitive load.

Outline. This paper is structured as follows. Section 2 presents a replication study on IntelliJ IDEA that highlights the 
usability issues related to Extract Method refactoring. Section 3 introduces TOAD, a tool that recommends alternative source 
code selections for Extract Method. Section 4 describes a controlled experiment that compares TOAD with Pharo’s standard 
refactoring tool. Section 5 discusses threats to validity and how we addressed them. Section 6 compares our work with 
related work. Section 7 concludes our overall results.

Previous work. This article is an extension of a short paper presented at the ICSE ’19 Student Research Competition Paper 
[13]. We extended our previous papers in numerous different ways: (i) we doubled the number of participants in our partial 
replication study (from 5 to 10); (ii) we detailed the categorization of the patterns found during our partial-replication (iii) 
we performed a controlled experiment to compare TOAD and the Pharo Standard Refactoring Tool.

2. Of usability and refactoring tools: a partial-replication study

In 2014, Vakilian et al. [16] reported 15 categories of usability issues that developers experienced while interacting with 
Eclipse refactoring tools. Motivated by this work, we performed a user study to replicate it and to better understand these 
usability issues. In particular, we focused on the tools provided by IntelliJ IDEA for Extract Method refactoring. We selected 
IntelliJ IDEA to complement Vakilian’s et al. work, which was done in Eclipse.

We qualify our experiment as a partial replication because we use a different programming language and programming 
environment.

2.1. Methodology

In our study we (i) identify the proportion of failed Extract Method attempts and (ii) classify these failed attempts. We 
use the following methodology:

S1 - selecting participants for our experiment;
S2 - defining relevant and representative tasks to be carry out by the participants;
S3 - executing and monitoring work sessions;
S4 - quantitatively and qualitatively analyzing the observations.

Our methodology differs from the one used in the original Vakilian’s study [16]. Vakilian et al. designed a tool that moni-
tored refactoring attempts. Since we focused on only one refactoring, we opted for a simpler methodology. Analyzing screen 
recordings and transcripts of each participant was considered enough to extract all the data necessary for our replication.

2.2. Experimental setup

Participants. Seven engineers and three undergrad students participate in our user study. The engineers work in two Boli-
vian software companies. Work experience ranges from two to seven years. The three students were in their 5th and last 
year of University when we conducted the experiment. The students have experience in refactoring tools acquired during 
their Software Engineering lectures. Among the ten participants, three are women. Engineers have experience in a large 
spectrum of different projects, including web applications and domain specific libraries and interpreters.

Tasks. We previously selected five long methods from the JFreeChart open-source project. Their size varies from 130 to 
356 lines of code. We randomly assigned one method to two participants separately (five methods, ten participants). We 



J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475 3
Table 1
Usability issues while using the extract method option by participants.

Category Participant TOTAL

1 2 3 4 5 6 7 8 9 10

Change as Expected 7 2 7 8 7 4 13 5 5 0 58 (50.9%)
Invalid Source Code Selection 1 0 0 2 0 1 1 3 4 4 16 (14,0%)
Unexpected Source Code Change 2 1 0 0 2 1 1 0 0 6 13 (11,4%)
Ambiguous Return Value 0 4 0 6 0 0 1 1 0 0 12 (10,5%)
Confusing Messages 3 0 0 0 3 1 0 0 0 0 7 (6,1%)
Other 1 0 0 0 2 1 0 0 0 4 8 (7,0%)

TOTAL 114 (100%)

Fig. 1. Example: Invalid Code Selection.

Fig. 2. Example: Multiple Return Values.

requested each participant to split up a long method into smaller ones using the tools provided by IntelliJ IDEA, i.e., using 
the Extract Method refactoring. The methods are available online for inspection.1

Data collection and analysis. We recorded the screen of each user work session. During the session, we asked participants 
to vocally and precisely describe their refactoring intentions and expectations. In total, we recorded 215 minutes of sessions, 
where participants performed 114 refactoring attempts. We consider a refactoring attempt to be each time the user selected 
the option “Extract Method” in the IDE. We analyzed and categorized each of these attempts according, but not restricted 
to Vakilian’s et al. study. Recorded videos are also available online.2

2.3. Findings

Out of the 114 refactoring attempts, 58 (50.8%) concluded with no errors and the participants were satisfied with the 
refactoring result. We carefully analyzed each attempt and categorized the usability issues they experienced. Table 1 shows 
the usability issues we found with the participants. We describe each category as follows: each one has a title, a brief 
description, followed by an illustration example.

Invalid code selection. In 16 attempts (14%), participants selected a code segment that did not meet the refactoring precon-
ditions, leading to a generic error message. For instance, consider the code selection in Fig. 1 and its corresponding error 
message.

In this particular case, the source code selection does not meet the preconditions because of the inclusion of the character 
“=”. If the selection began after the character, there would not be an error.

Multiple return values. In 12 attempts (10.5%), participants selected a code segment with two or more variables being ref-
erenced externally. Consequently, the extracted method should have more than one return value, which is not syntactically 
correct. For instance, consider the code selection in Fig. 2: to preserve the behavior the extracted method, it should return 
two values, as shown in the error message.

1 https://github .com /Aleli03 /LinksToMethods.
2 https://github .com /Aleli03 /TOAD.

https://github.com/Aleli03/LinksToMethods
https://github.com/Aleli03/TOAD


4 J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475
Fig. 3. Example: Invalid Code Selection.

The attempts to perform the Extract Method refactoring failed, however IntelliJ IDEA proposes an alternative refactoring: 
“Extract Method Object”.

Unexpected source code change. In 13 attempts (11.4%), participants were not convinced by the result of the refactoring and 
they rolled back the changes. This mainly happened when the IDE suggested that the participants to extract and move the 
method to a new class through the “Extract Method Object” refactoring option (Fig. 2). The fact that the IDE gives this 
option discourages the participants from continuing the refactoring.

Confusing message. In 7 attempts (6.1%), participants got a confusing error message. For instance, one participant extracted 
a code snipped to be moved to a new method and provided the name of an existing one. IntelliJ IDEA provided an error 
message that was perceived as confusing (Fig. 3). The participant canceled the attempt and provided a new name instead of 
opting for a guidance by the IDE. We define a confusing message a message that makes the participant cancel the current 
flow and change the selection or the method name.

Note that this category of failed refactoring was not reported in Vakilian’s original work. Since we directly monitored 
participants we were able to identify confusing messages while Vakilian’s instead monitored the actions performed in the 
IDE.

Others. In 8 of the attempts (7%), the IDE offered some options before applying the refactoring, which confused the par-
ticipants. For instance, a popup recommended participants to apply the same refactoring to another similar source code 
in the same class. However, after a few other attempts, the participants got familiar with it. Two participants selected a 
code segment and a refactoring option, but after a few minutes they canceled the refactoring. In three attempts, the par-
ticipants were curious about the refactoring option “type parameter”, but after proceeding it no change is perceived by the 
participants.

Overall, participants did not expect additional options. So, when an expected popup menu appears for the first time, 
they thought that the menu was not relevant to achieve their goals. As such, the participants quickly closed the popup. 
However, the refactoring was not performed, so they tried to do it again, and the second time the participants read the 
popup carefully and got familiar with it.

Summary: Only 51% of the extract method refactoring attempts are successful. The most prominent usability issues 
are related to the source code selection.

3. TOAD: a tool for recommending refactoring alternatives

To tackle the usability issues related to source code selection described in our replication study, we propose TOAD, a tool 
that proposes alternative text selection for source code refactoring. TOAD is a refactoring tool which provides refactoring 
alternatives implemented in the Pharo programming language. Our hypothesis is that providing valid source code selection 
alternatives improves the success rate of applying the extract method refactoring. As we saw in the previous section, a great 
portion of failing attempts are caused by invalid source code selections.

TOAD starts to operate when the user selects a code segment and then applies an Extract Method refactoring. TOAD uses 
the code selection as input and searches code sections that are syntactically correct and meet the refactoring preconditions. 
Within the scope of this paper, we only consider the Extract Method preconditions.

TOAD follows a three-step algorithm to show five valid source code selection alternatives.

• Step 1: Source Selection Candidate – First, TOAD searches for all possible code selection candidates in the method under 
analysis. For this, we use a string search based brute force algorithm. Consider that a method source code has n tokens 
and the extract method refactoring has m preconditions P = p1, . . . , pm . A selection candidate may be represented as a 
pair (i, j) where 0 ≤ i ≤ j ≤ n, where the source code between the interval (i, j) meet all preconditions in P . For our 
implementation in Pharo, we use the standard refactoring preconditions and the standard string tokenizer to identify 
(i, j) combinations.



J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475 5
Fig. 4. TOAD in action: five adequate selections are suggested from an invalid selection made by a user. The figure shows three of these suggestions.

• Step 2: Filtering – We filter out selection candidates that do not contain any character of the user selection. We focus on 
candidates that overlap the code selected by the user (the input).

• Step 3: Refactoring Alternatives –TOAD only provides to the user the five closest source selection candidates, prioritizing 
the ones that overlap a great portion of the initial user selection. They are sorted so that the closest alternative is 
shown in the middle, with shorter alternatives on the left and longer ones on the right. In case there are less than five 
alternatives, TOAD shows all of them. We limited the alternatives to five, so as to not overload users, but our algorithm 
it is not tied to this number.

This approach could easily generate a large number of refactoring alternatives, from one statement to the entire method 
to be refactored. Since we do not want to overload to the user with too many options, we design a user interface that only 
shows five alternatives. These alternatives may be selected using the buttons at the bottom of the interface. The middle 
button gives an alternative closest to the source code selection (i.e., Fig. 4 marked with 1), buttons on the right offer 
alternatives involving a larger code section than the selected one (i.e., Fig. 4 marked with 2), buttons on the left one offer 
alternatives involving less code than the selected one (i.e., Fig. 4 marked with 3).

Fig. 4 shows an example of TOAD usage. The selected source code does not meet the conditions to apply Extract Method 
correctly (i.e., the selected code is neither a set of statements nor an expression). TOAD (i) produces five different selections 
that are relatively close to the original selection made by the user and (ii) previews of the refactoring results for each 
alternative. Fig. 4 (right side) shows three alternatives that TOAD found that are close to the user’ selection in Fig. 4 (left 
side). TOAD also shows a preview of the extracted method and how the original method would be modified.

Note that TOAD implements a simple approach to display the refactoring alternatives to the user. The goal of TOAD is to 
show that a simple approach may reduce failing attempts while refactoring. TOAD is available online.3

4. Evaluation: a controlled experiment

This section describes the experiment we conducted to evaluate how TOAD’s recommendations were perceived by prac-
titioners. We conducted a controlled experiment and used Pharo’s standard refactoring tool as a baseline. We opted for a 
controlled experiment to verify whether the use of TOAD may be related to a reduction of failed attempts to perform the 
Extract Method refactoring.

3 https://github .com /Aleli03 /TOAD.

https://github.com/Aleli03/TOAD


6 J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475
Table 2
Participants (Pharo Exp. = Pharo Experience; Prev. Exp. Ref. = Previous Experience with Refactoring Tools).

ID Main Activity Soft. Dev. Experience (years) Pharo Exp. (years) Prev. Exp. Ref. Country

P1 Software Engineer 2 1 ✓ Bolivia
P2 Software Engineer 0.5 0.5 ✓ Bolivia
P3 Undergrad Student 5 1 ✗ Bolivia
P4 PhD. Student 4 4 ✓ Chile
P5 Software Engineer 6 2 ✓ Bolivia
P6 PhD. Student 6 2 ✗ Chile
P7 PhD. Student 6 6 ✗ Chile
P8 Software Engineer 5 5 ✓ Chile
P9 Software Engineer 10 5 ✓ Chile
P10 PhD. Student 15 6 ✓ Chile

Table 3
Project under Study (Part. = Participants).

Project Name Short Description Part.

GitMultipileMatrix A stacked adjacency matrix to visualize software evolution P1
TestDeviator A test case generation technique for GraphQL APIs P2
DrTest An extendable, plugins-based UI for testing Pharo projects P3
Regis A Conference Registration Website P4
SmallSuiteGenerator A Test Case Generator for Pharo P5
Roassal A script system for advanced interactive visualizations. P6, P9
Live Robot Programming A live programming language for robot behaviors using nested state machines P7
KerasBridge A Pharo bridge for Keras (a deep learning library) P8
GToolkit Documenter A tool for creating and consuming live documents inside the development environment P10

4.1. Experimental setup

Participants. We selected ten participants that have experience in the Pharo programming language. All of them are either 
authors of a Pharo project or deeply involved in the development of a Pharo core functionality. This is an important require-
ment for our experiment because we aim to reduce bias related to a poor understanding of the proposed refactoring tasks. 
Ensuring that participants have a fair comprehension of the code they will work with is therefore relevant.

Table 2 details participants’ experience in software development, Pharo and refactoring tools. Seven out of ten partici-
pants have experience using refactoring tools. Participants are currently working in academia and industry. Four are from 
Bolivia and six from Chile. These participants are different from the ones that participated in our replication study.

Projects under study. We asked each participant to select a Pharo project they were working on. Table 3 shows the projects 
we used in the experiment. Note that two participants (P6 and P9) were working on the Roassal project. Therefore, they 
performed refactoring tasks on the same project. All the other participants used different projects.

Setup. We previously determined the size of each method for each project under analysis. We then ordered the methods 
from the largest to the smallest. Each participant picked four methods to refactor. The list was later proposed to each of the 
participants and their respective projects. The refactoring task consisted of splitting up each of the four methods using the 
Extract Method refactoring. Note that we excluded methods from our list that are either data holders or tests. Only methods 
having a logic relevant to the application under analysis were proposed.

Task and treatments. Our experiment compares the refactoring experience between two treatments: PharoStandard, the 
standard Extract Method refactoring available on Pharo, and TOAD, the tool for recommending Extract Method refactoring 
alternatives. Participants were requested to refactor four large (previous selected) methods, two of them using the Pharo 
standard Extract Method tool and two using TOAD.

Work session. For each treatment {PharoStandard, TOAD}, we followed the next steps.

1. Learning material – We provided learning material to the participants. We also performed a demo to let participants get 
familiar with the tools.

2. The task – We requested each participant to refactor two large methods. We describe the method selection for each 
project in the experiment setup.

3. Video Recording – We recorded each refactoring session. We asked participants to follow the think-aloud protocol by 
vocally describing their refactoring intentions and expectations. The think-aloud protocol is a method used to collect 
data by encouraging participants to say whatever comes into their mind as they complete the task.



J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475 7
Table 4
Participants extract method refactoring attempts.

Participant Pharo Standard Attempts TOAD Attempts

Success Fail Total Success Rate (%) Success Fail Total Success Rate (%)

P1 6 7 13 46% 8 2 10 80%
P2 1 13 14 7% 6 2 8 75%
P3 6 4 10 60% 5 2 7 71%
P4 13 2 15 87% 12 8 20 60%
P5 5 4 9 56% 6 0 6 100%
P6 8 5 13 61% 3 0 3 100%
P7 8 15 23 35% 4 2 6 67%
P8 4 2 6 67% 8 2 10 80%
P9 6 5 11 54% 4 0 4 100%
P10 5 3 8 62% 5 3 8 63%

TOTAL 62 60 122 51% 61 21 82 74%

4. Task Load Index – After each session, we requested each participant to fill in the NASA Task Load Index4 [4] to assess 
the cognitive workload using six dimensions: mental demand, physical demand, temporal demand, performance, effort, 
and frustration. Each participant rates her/his perceived workload across these six dimensions to determine an overall 
workload rating. Participants assign to each dimension a value between 1 (low) to 20 (high).

5. Participants Feedback – At the end of each session we informally interviewed each participant and asked open questions 
to not pressure participants into giving an answer we expected.

Video analysis. We analyzed each video session and categorized all the Extract Method attempts based on categories defined 
in our replication study. Additionally, we measured how many times users inspect the alternative options and when they 
apply another alternative rather than the initially selected in the source code.

Pilot. Before running the work sessions with all participants, we performed a pilot with a refactoring expert that has 
academic and industrial backgrounds. This experiment helps us make some improvements:

• Source Code To Refactor – In the pilot, we provided to the participant the longest methods of Roassal project and asked 
her/his to refactor them. We noticed that: i) the user was not confident enough to refactor an unfamiliar method, and 
ii) some methods did not contain any logic (i.e., methods that contain long meta description) and some of them are 
expected to be long (i.e., script examples). For this reason, we refined our way of selecting the candidate methods to 
refactor. We developed a script to list the methods that have the most lines of code in the project and discarded the 
ones that do not have any application logic. Then we let the participant decide which ones are good candidates for 
refactoring.

• Learning Material – To complete the Extract Method refactoring, one must provide a new method name. Although ap-
parently simple and intuitive, we encountered some issues related to this. A candidate provided the argument names 
in addition to the method name. However, both the standard Pharo refactoring tool and TOAD expect the method name 
only, with semicolons to denote the location of an argument, and without spaces. Therefore, we updated the learn-
ing material to indicate the only the method name is compulsory. Additionally, we encouraged the pilot participant to 
refactor a toy method using the refactoring tools as a preliminary and learning task.

4.2. Results

4.2.1. Observations
Considering all refactoring sessions, our participants performed 204 Extract Method attempts. Table 4 summarizes the 

attempts for each participant.

Success rate. All participants have a different number of attempts. We define a metric Success Rate, which is the ratio 
between the number of times the participants use the extract method refactoring tool successfully and the total number of 
times the open the tool.

In total, 122 attempts were done using the Pharo Standard tool, from which only 51% of the attempts were consid-
ered successful. The remaining attempts ended with the participant canceling or closing the tool window, or undoing the 
changes. The remaining attempts, 82, were performed using TOAD, which represents 32% fewer attempts than with the 
Pharo standard tool. With TOAD, 74% of the attempts were successful. Fig. 5 presents the distribution of the success rate 
among all participants.

4 https://humansystems .arc .nasa .gov /groups /TLX/.

https://humansystems.arc.nasa.gov/groups/TLX/


8 J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475
Fig. 5. Extract Method Success Rate.

Table 5
Categorization of Extract Method attempts.

Pharo Standard Tool

Category Frequency

Change as expected 62 (50,82%)
Invalid source code selection 21 (17,21%)
First was sent to nil 15 (12,30%)
Canceled Operations 11 (9,02%)
Cannot extract assignments to temporaries 9 (7,38%)
New parameter required 2 (1,64%)

TOAD

Category Frequency

Change as expected 61 (74,39%)
Cascade message not allowed 11 (13,41%)
Operation canceled 7 (8,54%)
Different argument order required 2 (2,44%)
New parameter required 1 (1,21%)

We run the Mann Whitney statistical test (also called Wilcoxon rank-sum test) over the success rate of the two treat-
ments (two-tailed, confidence level = 95%). The null hypothesis is that the distributions of both groups are identical.5 The 
test indicates that the distribution is statistically different (P-value = 0.0154, Mann-Whitney U = 18.50). We can reject the 
null-hypothesis and conclude that there is a causal effect between the treatment (i.e., PharoStandard or TOAD) independent 
variable and the success rate dependent variable.

Categorization of attempts. To better understand the reasons behind failed refactoring attempts, we carefully analyzed and 
categorized each one of the attempts. Table 5 details the categories of failed attempts and their frequencies.

• Invalid source code selection – Attempts where Pharo provides error the messages such as “invalid source code selection” 
at the bottom left of the window. This error only appears when one uses the standard Pharo tools since TOAD proposes 
only valid alternatives.

• Errors – Both treatments have some errors that appeared during our experiment. In the case of the Pharo Tool, it 
mainly shows two errors: i) a null pointer exception and ii) cannot extract assignments to temporaries, which is an 
error triggered by the IDE itself, and not the refactoring engine.

• Operation canceled – When participants change their mind and simply cancel the refactoring by pressing the cancel
button in the user interface.

• Missing Options – In three attempts, participants wanted to add a method argument while creating the new extracted 
method, but Pharo did not allow this feature, despite the fact that our learning material explicitly mentions this re-

5 Having the two identical distributions means that there is a 50% probability that a success rate randomly picked for Pharo Standard is greater than a 
success rate randomly picked for TOAD.



J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475 9
Table 6
Participants Refactoring Alternative Usage Frequency.

Participant Total Attempts Alternative Inspection Alternative Selection

P1 10 5 2
P2 8 3 1
P3 7 5 4
P4 20 8 7
P5 6 5 2
P6 3 2 2
P7 6 2 0
P8 10 0 0
P9 4 3 3
P10 8 2 1

TOTAL 82 35 (43%) 22 (27%)

striction. Therefore, after extracting a new method, they manually added the argument they wanted. In the case of 
TOAD, users wanted to change the order of the arguments, but our prototype does not provide this capability. So, the 
participant manually performed this transformation.

When compared with the standard Pharo refactoring tool, TOAD significantly reduces the number of failed attempts 
to apply the Extract Method refactoring.

Refactoring alternatives. From the text selection provided by a participant, TOAD offers five possible text selections and their 
corresponding preview of the refactoring. When TOAD opens, the first proposed selection is the one made by the participant 
(or a close selection if the provided one is incorrect). After entering the name for the new extracted method, the user can 
either accept the selection provided by TOAD or choose an alternative one.

Table 6 details the number of times each participant inspected TOAD and how many times the participants changed their 
refactoring intentions to one alternative provided by TOAD. Overall, participants inspected an alternative text selection in 
43% of attempts and they selected an alternative selection in 27% of attempts.

Participants consulted, in a large proportion, alternative text selections (43% of the refactoring attempts) and used 
an alternative text selection instead of their selection (27%) when doing an extract method refactoring.

4.2.2. Task load & participants feedback
The NASA-Task Load Index (TLX) is a widely used technique for measuring subjective mental workload [4]. The NASA 

TLX is a questionnaire in which participants estimate their cognitive workload using numerical scales. Six different scales 
are considered: mental demand, physical demand, temporal demand, performance, effort, and frustration. Fig. 6 summarizes 
the participant perception about the task they were asked to do.

Mental demand. Five participants indicated that the task was more demanding while using the Pharo standard tool. Some 
participants reported some effort in selecting a correct code segment for extraction, mainly because the method they were 
refactoring was complex to analyze. Four of them indicated they had the same mental demand with both tools. One of 
them indicated that it was easier to refactor with the standard tool since the code was easy to understand and he/she knew 
exactly what to extract.

Think-aloud protocol. We encouraged the participants to follow the think-aloud protocol to collect information that were 
not apparent from the interactivity. Some participants felt uncomfortable with this, and preferred to stay quiet instead.

Performance and temporal demand. Since we did not impose a time limit on the participants, all the participants performed 
the activity until they were satisfied with the new version of the method. There is no notable difference in terms of 
performance and temporal demand. All of them indicated that they performed the task at almost the same level of success.

Effort and frustration. Nine out of ten participants indicated that they required less effort using TOAD and had less frus-
tration. They manifested that TOAD helped focus on which parts they should refactor instead of focusing on whether the 



10 J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475
Fig. 6. Task Load: Participant Perceptions.

Fig. 7. Total cognitive load (lower is better).

source code selection met the refactoring preconditions. Even when some of them did not choose the alternatives provided 
by TOAD, the tool shows the closest code segment that satisfies the preconditions.

Total cognitive load. Fig. 7 presents the distribution of the total cognitive load. After using a treatment we asked the partic-
ipant to fill the NASA TLX. We collected two data points for each participant: the cognitive footprint for TOAD and another 
footprint for the PharoStandard refactoring tool. Each participant has an overall score defined as the sum of each workload 
scale. A low value indicates that the task was not cognitively demanding while a high value indicates that the task was 
cognitively demanding.

We executed Wilcoxon matched-pairs signed-rank test over the total cognitive load (two-tailed, confidence level = 95%). 
The null hypothesis is that the distribution of the cognitive load across participants is the same for both TOAD and Pharo-
Standard. The test indicated that the distribution is statistically different (P-value = 0.0391, Sum of signed ranks (W) =
35). Therefore, we can reject the null hypothesis and conclude that there is a causal effect between the treatment (i.e.,
PharoStandard or TOAD) independent variable and the total cognitive load.

Adding the refactoring alternatives as an option in the refactoring tools does not perceptibly overload the refactoring 
process and reduce the participants’ cognitive load.



J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475 11
5. Threats to validity

5.1. Internal validity

Participants. Participants’ experience with Pharo may influence the results. If we compare Table 1 and Table 4, we see that 
P2 (0.5 years of experience) has a significantly high failure rate using Pharo tools (93%), but a much lower failures rate (25%) 
using TOAD. P10 (15 years of experience) has an almost identical failure rate using Pharo tools (38%) and TOAD (37%). This 
suggests that experience has a relevant influence on the results.

Baseline. We compare our tool against the Pharo standard refactoring tool which has a different way to display the refac-
toring preview than TOAD has. During the feedback session, we asked participants about the source code preview. Although 
they manifested that TOAD has a good preview visualization, they did not feel that the preview influences the refactoring 
task. Also, two participants manifested that they focused on analyzing the source code they selected instead of the preview 
both tools provide.

Refactored method. The size and complexity of candidate methods to refactor may be a bias in our results. To mitigate this 
issue, we first selected the longest methods in each project together with each participant. Then, we randomly assigned the 
order in which these methods should be refactored without favoring any tool.

Required task effort. We did not want to pressure participants in a way that could hamper the representativity of our 
experiment. As a consequence, we did not monitor the time to complete those tasks. From our pre-experimental pilot and 
after having run the experiment, we did not find evidence that the tasks require different efforts to complete. We therefore 
conclude that the tasks are comparable.

Learning effect. To reduce the learning effect between experiments, during each session, we randomly selected which treat-
ment will be used first. In the end, we had five participants that used TOAD at first, and five participants that used the 
Pharo Standard Tool.

TOAD implementation. TOAD implements a simple approach to show a number of source code selection alternatives for 
extracting methods. There are different options to compute the selection alternatives and show them to the participant. 
However, the goal of TOAD is to show that a simple approach is enough to gain in usability.

Unexpected errors. As reported in the result section, both TOAD and the standard Pharo refactoring tool raised a number of 
errors during the experiment. From one side, the Pharo tool reports a number of null pointer exceptions, on the other side 
TOAD report a number of parsing errors due that the standard Pharo parser could not handle particular AST combinations 
with cascade messages. However, we believe that these errors do not jeopardise our results since these errors rarely appear 
and in almost the same frequency.

Cognitive load. The comparison of the survey of cognitive load suggests that TOAD has lower cognitive load. It is likely 
that looking for alternate code selections reduces cognitive load, while previewing the alternate refactoring increases the 
cognitive load. However, this increase, if it exists, it is not perceptible by the participant.

5.2. External validity

Pharo programming language. Our experiment focused on the Pharo programming language. Although refactoring tools 
have similar user interfaces and options along most IDEs in different programming languages, we have no evidence about 
the impact of refactoring alternatives in other IDEs. However, as we see in our replication study, IntelliJ IDEA has similar 
usability issues than the Pharo Standard refactoring tools. Therefore, our findings will be useful for IDEs other than Pharo.

Other refactoring options. The notion of refactoring alternative presented in this article is likely to be applicable to other 
refactorings, including pushing / pulling refactoring, extract temporal variables. We have no evidence that it is not the case. 
However we leave this as future work.

6. Related work

Previous researchers investigated the lack of trust in refactoring tools. In addition to usability problems investigated in 
our replication study, developers do not understand what most of the refactorings do [11], and they regularly face overly 
strong preconditions in current IDEs [8]. Consequently, developers prefer to perform changes manually and sometimes 
repetitively, even though there is automated support in the IDE.



12 J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475
Previous studies on the usability of refactoring tools [10,15,16] record Eclipse IDE usage information from developers, for 
instance, which commands they executed, failures from automated refactorings, the context of the failure, among others. 
Complementary to these studies, we video-recorded refactoring sessions from participants, where we asked participants to 
speak about their refactoring intentions and expectations (i.e., following the think aloud protocol). Additionally, we experi-
mented with the IntelliJ IDE and the Pharo Programming Environment.

These challenges lead researchers to improve the experience of wizard-based refactoring, such as the ones proposed in 
most IDEs. Lee et al. [5] proposed drag-and-drop actions to invoke the refactoring tool. Ge et al. [2] proposed to detect 
manual refactoring actions and recommend additional code changes to automatically complete the refactoring. Maruyama 
and Hayashi [6] proposed to record a failed refactoring attempt; then the tool automatically resumes the refactoring when 
preconditions are satisfied by further code editions.

Identifying refactoring opportunities have also been proposed in the past. Tsantalis et al. [14] proposed an approach to 
help developers to identify code fragments that may be extracted to new methods. Mkaouer et al. [7] proposed a tool that 
suggests refactoring opportunities to developers based on their feedback and introduced code changes.

Our tool takes a different stance by guiding the developer to achieve a correct code selection. Murphy-Hill and Black [9]
proposed a similar approach to assist code selection by highlighting the entirety of a partially selected statement, such as the 
one presented in Fig. 4. However, the correct selection of a statement may not be sufficient to meet all the preconditions 
of the Extract Method refactoring. External access to variables and ambiguous return values may also trigger refactoring 
errors. TOAD searches and proposes multiple code selections including the one selected by developer, and not only the 
closest selection. The recommended code selections are previously tested, thus the tool guarantees that the preconditions 
are satisfied.

7. Conclusions

This article investigated the usability issues from the classical Extract Method refactoring. We first presented a replication 
study to highlight and analyze usability issues that developers face using IntelliJ IDEA’s refactoring tools. Our results are 
comparable with the original study by Vakilian et al. [16], in which they found similar usability issues. Their experiment 
was conducted on Eclipse and they did not associate usability issues with the practitioner’s perception, such as unexpected 
source code modifications or confusing error messages.

We then described TOAD, our solution to address the issue of wrongly selecting code to be refactored. TOAD recommends 
refactoring alternatives, which tackles some of these usability issues, such as invalid code selections and unexpected source 
code changes. Our evaluation of TOAD indicates that it has a significant impact on reducing the number of failed refactoring 
attempts, while participants benefit from a decrease of cognitive load when compared with the standard Pharo refactoring 
engine.

As a future work, we plan to research on the consequences of having a preview window. In particular, we will measure 
how the preview window impacts practitioners when picking particular alternate refactorings.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

We are deeply grateful to Lam Research (4800054170 and 4800043946) and the FONDECYT project 1200067 for having 
partially sponsored the work presented in this article. We thank Renato Cerro for his help in reviewing an early draft of the 
manuscript.

References

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, Boston, MA, USA, 1999.
[2] X. Ge, Q.L. DuBose, E. Murphy-Hill, Reconciling manual and automatic refactoring, in: 2012 34th International Conference on Software Engineering, 

ICSE ’12, ACM, June 2012, pp. 211–221.
[3] W.G. Griswold, Program restructuring as an aid to software maintenance, Ph.D. thesis, Seattle, WA, USA, uMI Order No. GAX92-03258, 1992.
[4] S.G. Hart, L.E. Staveland, Development of nasa-tlx (task load index): results of empirical and theoretical research, Human Mental Workload 1 (3) (1988) 

139–183.
[5] Y.Y. Lee, N. Chen, R.E. Johnson, Drag-and-drop refactoring: intuitive and efficient program transformation, in: 2013 35th International Conference on 

Software Engineering, ICSE ’13, ACM, 2013, pp. 23–32.
[6] K. Maruyama, S. Hayashi, A tool supporting postponable refactoring, in: Proceedings of the 39th International Conference on Software Engineering 

Companion, ICSE-C ’17, IEEE Press, 2017, pp. 133–135.
[7] M.W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. Ó Cinnéide, Recommendation system for software refactoring using innovization and interac-

tive dynamic optimization, in: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, ACM, 2014, 
pp. 331–336.

[8] M. Mongiovi, R. Gheyi, G. Soares, M. Ribeiro, P. Borba, L. Teixeira, Detecting overly strong preconditions in refactoring engines, IEEE Trans. Softw. Eng. 
44 (5) (May 2018) 429–452.

http://refhub.elsevier.com/S0167-6423(20)30085-X/bib5FF5A312875044558C36A2830A51FFEBs1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibA1FCAFE341BFBAF4F6D01B71CEAC7188s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibA1FCAFE341BFBAF4F6D01B71CEAC7188s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib3A46F27DD547B6CA5A387F3E53DE9A86s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibD8CA258A4A8A6100A36573B20F734372s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibD8CA258A4A8A6100A36573B20F734372s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib1B272941792A584A8560E7F17EA545A0s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib1B272941792A584A8560E7F17EA545A0s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibC3B3E76E96F03F8C0D74E39A6A211D7As1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibC3B3E76E96F03F8C0D74E39A6A211D7As1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibA584A63B5B554A03FEBD58A0476127F4s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibA584A63B5B554A03FEBD58A0476127F4s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibA584A63B5B554A03FEBD58A0476127F4s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibCC5CE7845A13FCF582AADFF2B3AE2E96s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibCC5CE7845A13FCF582AADFF2B3AE2E96s1


J.P. Sandoval Alcocer et al. / Science of Computer Programming 195 (2020) 102475 13
[9] E. Murphy-Hill, A.P. Black, Breaking the barriers to successful refactoring: observations and tools for extract method, in: Proceedings of the 30th 
International Conference on Software Engineering, ICSE ’08, ACM, 2008, pp. 421–430.

[10] E. Murphy-Hill, C. Parnin, A.P. Black, How we refactor, and how we know it, IEEE Trans. Softw. Eng. 38 (1) (Jan 2012) 5–18.
[11] S. Negara, N. Chen, M. Vakilian, R.E. Johnson, D. Dig, A comparative study of manual and automated refactorings, in: Proceedings of the 27th European 

Conference on Object-Oriented Programming, ECOOP’13, Springer-Verlag, Berlin, Heidelberg, 2013, pp. 552–576.
[12] W.F. Opdyke, Refactoring object-oriented frameworks, Ph.D. thesis, Champaign, IL, USA, uMI Order No. GAX93-05645, 1992.
[13] A. Siles Antezana, Toad: a tool for recommending auto-refactoring alternatives, in: Companion Proceedings of the 41th International Conference on 

Software Engineering, ICSE Companion 2019, 2019.
[14] N. Tsantalis, A. Chatzigeorgiou, Identification of extract method refactoring opportunities for the decomposition of methods, J. Syst. Softw. 84 (10) 

(2011) 1757–1782.
[15] M. Vakilian, N. Chen, S. Negara, B.A. Rajkumar, B.P. Bailey, R.E. Johnson, Use, disuse, and misuse of automated refactorings, in: Proceedings of the 

34th International Conference on Software Engineering, ICSE ’12, IEEE Press, Piscataway, NJ, USA, 2012, pp. 233–243, http://dl .acm .org /citation .cfm ?id =
2337223 .2337251.

[16] M. Vakilian, R.E. Johnson, Alternate refactoring paths reveal usability problems, in: Proceedings of the 36th International Conference on Software 
Engineering, ICSE ’14, ACM, 2014, pp. 1106–1116.

http://refhub.elsevier.com/S0167-6423(20)30085-X/bib2C995FC6FC78799AD4AA5CB0CAFD8A26s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib2C995FC6FC78799AD4AA5CB0CAFD8A26s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib586B689353E476C3BF278DEE9AAE5CC1s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib4045B738CCFDF66D91C9B0E389279C64s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib4045B738CCFDF66D91C9B0E389279C64s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib8B54FBCF37177830828CECDA1BBED93Fs1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibC56CE441F431B169794E8280CE6ECAA9s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibC56CE441F431B169794E8280CE6ECAA9s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibA025A757D97CBF0ED923C24B9FCE7075s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bibA025A757D97CBF0ED923C24B9FCE7075s1
http://dl.acm.org/citation.cfm?id=2337223.2337251
http://dl.acm.org/citation.cfm?id=2337223.2337251
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib345DBE2A9AAFA60E00B43DD7F2BCF2D1s1
http://refhub.elsevier.com/S0167-6423(20)30085-X/bib345DBE2A9AAFA60E00B43DD7F2BCF2D1s1

	Improving the success rate of applying the extract method refactoring
	1 Introduction
	2 Of usability and refactoring tools: a partial-replication study
	2.1 Methodology
	2.2 Experimental setup
	2.3 Findings

	3 TOAD: a tool for recommending refactoring alternatives
	4 Evaluation: a controlled experiment
	4.1 Experimental setup
	4.2 Results
	4.2.1 Observations
	4.2.2 Task load & participants feedback


	5 Threats to validity
	5.1 Internal validity
	5.2 External validity

	6 Related work
	7 Conclusions
	Acknowledgements
	References


