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Abstract
Lempel–Ziv (LZ77 or, briefly, LZ) is one of the most effective and widely-used 
compressors for repetitive texts. However, the existing efficient methods computing 
the exact LZ parsing have to use linear or close to linear space to index the input 
text during the construction of the parsing, which is prohibitive for long inputs. An 
alternative is Relative Lempel–Ziv (RLZ), which indexes only a fixed reference 
sequence, whose size can be controlled. Deriving the reference sequence by sam-
pling the text yields reasonable compression ratios for RLZ, but performance is not 
always competitive with that of LZ and depends heavily on the similarity of the ref-
erence to the text. In this paper we introduce ReLZ, a technique that uses RLZ as a 
preprocessor to approximate the LZ parsing using little memory. RLZ is first used to 
produce a sequence of phrases, and these are regarded as metasymbols that are input 
to LZ for a second-level parsing on a (most often) drastically shorter sequence. This 
parsing is finally translated into one on the original sequence. We analyze the new 
scheme and prove that, like LZ, it achieves the kth order empirical entropy compres-
sion nH

k
+ o(n log �) with k = o(log

�
n) , where n is the input length and � is the 

alphabet size. In fact, we prove this entropy bound not only for ReLZ but for a wide 
class of LZ-like encodings. Then, we establish a lower bound on ReLZ approxima-
tion ratio showing that the number of phrases in it can be Ω(log n) times larger than 
the number of phrases in LZ. Our experiments show that ReLZ is faster than exist-
ing alternatives to compute the (exact or approximate) LZ parsing, at the reasonable 
price of an approximation factor below 2.0 in all tested scenarios, and sometimes 
below 1.05, to the size of LZ.
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1  Introduction

The Lempel–Ziv (LZ77 or, shortly, LZ) parsing is a central algorithm in data com-
pression: more than 40 years since its development [49, 50], it is at the core of 
widely used compressors (gzip, p7zip, zip, arj, rar...) and compressed formats (PNG, 
JPEG, TIFF, PDF...), and receives much attention from researchers  [3, 19, 21, 39, 
40] and developers in industry [1, 47].

LZ parsing also has important theoretical properties. The number of phrases, 
z, into which LZ parses a text has become the defacto measure of compressibility 
for dictionary-based methods [14], which in particular are most effective on highly 
repetitive sequences [36]. While there are measures that are stronger than LZ [23, 
42], these are NP-complete to compute. The LZ parse, which can be computed 
greedily in linear time [20], is then the stronger measure of dictionary-based com-
pressibility on which to build practical compressors.

Computing the LZ parsing requires the ability to find previous occurrences of text 
substrings (their “source”), so that the compressor can replace the current occur-
rence (the “target”) by a backward pointer to the source. Parsing in linear time [20] 
requires building data structures that are proportional to the text size. When the text 
size exceeds the available RAM, switching to external memory leads to prohibitive 
computation times. Compression utilities avoid this problem with different worka-
rounds: by limiting the sources to lie inside a short sliding window behind the cur-
rent text (see [13, 41, 46]) or by partitioning the input into blocks and compressing 
them independently. These variants can greatly degrade compression performance, 
however, and are unable in particular to exploit long-range repetitions.

Computation of LZ in compressed space was first studied—to the best of our 
knowledge—in 2015: A (1 + �)-approximation scheme running in O(n log n) time1 
with O(z) memory, where n is the length of the input, was proposed in  [11], and 
an exact algorithm with the same time O(n log n) and space bounded by the zeroth 
order empirical entropy was given in  [38]. The work  [22] shows how to compute 
LZ-End—an LZ-like parsing—using O(z + �) compressed space and O(n log�) time 
w.h.p., where � is the length of the longest phrase. The recent studies on the Run-
Length Burrows–Wheeler Transform (RLBWT) [15] and its connections to LZ [3, 
39] have enabled the computation of the LZ parsing in compressed space O(r) and 
time O(n log r) via RLBWT, where r is the number of runs in the RLBWT.

Relative Lempel–Ziv (RLZ)  [27] is a variant of LZ that exploits another 
approach: it uses a fixed external sequence, the reference, where the sources are to 
be found, which performs well when the reference is carefully chosen [16, 33]. Dif-
ferent compressors have been proposed based on this idea [6, 7, 33]. When random 
sampling of the text is used to build an artificial reference the expected encoded size 
of the RLZ relates to the size of LZ [16], however the gap is still large in practice. 
Some approaches have done a second pass of compression after RLZ [6, 19, 45] but 
they do not produce an LZ-like parsing that could be compared with LZ.

1  Hereafter, log denote logarithm with base 2 if it is not explicitly stated otherwise.
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In this paper we propose ReLZ , a parsing scheme that approximates the LZ pars-
ing by making use of RLZ as a preprocessing step. The phrases found by RLZ are 
treated as metasymbols that form a new sequence, which is then parsed by LZ to 
discover longer-range repetitions. The final result is then expressed as phrases of 
the original text. The new sequence on which LZ is applied is expected to be much 
shorter than the original, which avoids the memory problems of LZ. In exchange, 
the parsing we obtain is limited to choose sources and targets formed by whole sub-
strings found by RLZ, and is therefore suboptimal.

We analyze the new scheme and prove that, like LZ, it achieves the kth order 
empirical entropy compression nHk + o(n log �) (see definitions below) with 
k = o(log

�
n) , where n is the length of the input string and � is the alphabet size. We 

show that it is crucial for this result to use the so-called rightmost LZ encoding [2, 4, 
5, 10, 29] in the second step of ReLZ ; to our knowledge, this is the first provable 
evidence of the impact of the rightmost encoding. In fact, the result is more general: 
we show that the rightmost encoding of any LZ-like parsing with O( n

log
�
n
) phrases 

achieves the entropy compression when a variable length encoder is used for 
phrases. One might interpret this as an indication of the weakness of the entropy 
measure. We then relate ReLZ to LZ—the de facto standard for dictionary-based 
compression—and prove that the number of phrases in ReLZ might be Ω(z log n) ; 
we conjecture that this lower bound is tight. The new scheme is tested and, in all the 
experiments, the number of phrases found by ReLZ never exceeded 2z (and it was 
around 1.05z in some cases). In exchange, ReLZ computes the parsing faster than 
the existing alternatives.

The paper is organized as follows. In Sects.  2 and  3 we introduce some nota-
tion and define the ReLZ parsing and its variations. Section 4 contains the empirical 
entropy analysis. Section 5 establishes the Ω(z log n) lower bound. All experimental 
results are in Sects. 6 and 7.

2 � Preliminaries

Let T[1, n] be a string of length n over the alphabet Σ = {1, 2,… , �} ; T[i] denotes 
the ith symbol of T and T[i,  j] denotes the substring T[i]T[i+1]⋯T[j] . A sub-
string T[i,  j] is a prefix if i = 1 and a suffix if j = n . The reverse of T is the string 
T[n]T[n − 1]⋯T[1] . The concatenation of two strings T and T ′ is denoted by T ⋅ T ′ 
or simply TT ′.

The zeroth order empirical entropy (see  [24, 35]) of T[1,  n] is defined as 
H0(T) =

∑
c∈Σ

nc

n
log

n

nc
 , where nc is the number of symbols c in T and nc

n
log

n

nc
= 0 

whenever nc = 0 . For a string W, let TW be a string formed by concatenating all sym-
bols immediately following occurrences of W in T[1,  n]; e.g., Tab = aac for 
T = abababc . The kth order empirical entropy of T[1,  n] is defined as 
Hk(T) =

∑
W∈Σk

�TW �
n
H0(TW ) , where Σk is the set of all strings of length k over Σ 

(see [24, 34, 35]). If T is clear from the context, Hk(T) is denoted by Hk . It is well 
known that log � ≥ H0 ≥ H1 ≥ ⋯ and Hk makes sense as a measure of string com-
pression only for k < log

𝜎
n (see [12] for a deep discussion).
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The LZ parsing [49] of T[1, n] is a sequence of non-empty phrases (substrings) 
LZ(T) = (P1,P2,… ,Pz) such that T = P1P2 ⋯Pz , built as follows. Assuming we 
have already parsed T[1, i − 1] , producing P1,P2,… ,Pj−1 , then Pj is set to the long-
est prefix of T[i, n] that has a previous occurrence in T that starts before position 
i. Such a phrase Pj is called a copying phrase, and its previous occurrence in T is 
called the source of Pj . When the longest prefix is of length zero, the next phrase 
is the single symbol Pj = T[i] , and Pj is called a literal phrase. This greedy parsing 
strategy yields the least number of phrases (see [49, Th. 1]).

LZ compression consists in replacing copying phrases by backward pointers to 
their sources in T, and T can obviously be reconstructed in linear time from these 
pointers. A natural way to encode the phrases is as pairs of integers: for copy-
ing phrases Pj , a pair (dj,�j) gives the distance to the source and its length, i.e., 
�j = |Pj| and T[|P1 ⋯Pj−1| − dj + 1, n] is prefixed by Pj ; for literal phrases Pj = c , a 
pair (c, 0) encodes the symbol c as an integer. Such encoding is called rightmost if 
the numbers dj in all the pairs (dj,�j) are minimized, i.e., the rightmost sources are 
chosen.

When measuring the compression efficiency of encodings, it is natural to assume 
that � is a non-decreasing function of n. In such premises, if each dj component 
occupies ⌈log n⌉ bits and each �j component takes O(1 + log�j) bits, then it is known 
that the size of the LZ encoding is upperbounded by nHk + o(n log �) bits, provided 
k is a function of n such that k = o(log

�
n) ; see [17, 24, 37]. In the sequel we also 

utilize a slightly different encoding that, for each dj , uses a universal code [9, 32] 
taking log dj + O(1 + log log dj) bits.

Other parsing strategies that do not necessarily choose the longest prefix of T[i, n] 
are valid, in the sense that T can be recovered from the backward pointers. Those are 
called LZ-like parses. Some examples are LZ-End [26], which forces sources to fin-
ish at the end of a previous phrase, LZ77 with sliding window [50], which restricts 
the sources to start in T[i − w, i − 1] for a fixed windows size w, and the bit-optimal 
LZ [10, 25], where the phrases are chosen to minimize the encoding size for a given 
encoder of pairs.

The RLZ parsing [27] of T[1, n] with reference R[1,�] is a sequence of phrases 
RLZ(T ,R) = (P1,P2,… ,Pz) such that T = P1P2 ⋯Pz , built as follows: Assuming 
we have already parsed T[1, i − 1] , producing P1,P2,… ,Pj−1 , then Pj is set to the 
longest prefix of T[i, n] that is a substring of R[1,�] ; by analogy to the LZ parsing, 
Pj is a copying phrase unless it is of length zero; in the latter case we set Pj = T[i] , 
a literal phrase. Note that RLZ does not produce an LZ-like parsing as we have 
defined it.

3 � ReLZ Parsing

First we present RLZpref    [44], a variant of RLZ that instead of using an 
external reference uses a prefix of the text as a reference to produce an LZ-
like parsing. The RLZpref  parsing of T, given a parameter � , is defined as 
RLZprefix(T ,𝓁) = LZ(T[1,𝓁]) ⋅ RLZ(T[𝓁 + 1, n], T[1,𝓁]) . That is, we first compress 
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T[1,�] with LZ, and then use that prefix as the reference to compress the rest, 
T[� + 1, n] , with RLZ. Note that RLZpref  is an LZ-like parsing.

The ReLZ algorithm works as follows. Given a text T[1, n] and a prefix size � , we 
first compute the RLZpref  parsing (P1,P2,… ,Pz� ) (so that T = P1P2 ⋯Pz� ). Now we 
consider the phrases Pj as atomic metasymbols, and define a string T �[1, z�] such 
that, for every i and j, T �[i] = T �[j] iff Pi = Pj . Then we compress T �[1, z�] using LZ, 
which yields a parsing (P�

1
,P�

2
,… ,P�

ẑ
) of T ′ . Finally, the result is transformed into an 

LZ-like parsing of T in a straightforward way: each literal phrase P′
j
 corresponds to a 

single phrase Pi and, thus, is left unchanged; each copying phrase P′
j
 has a source 

T �[p, q] and is transformed accordingly into a copying phrase in T with the source 
T[p�, q�] , where p� = |P1P2 ⋯Pp−1| + 1 and q� = |P1P2 ⋯Pq| . Figure  1 shows an 
example.

Since both LZ  [20] and RLZ [28] run in linear time, ReLZ can also be imple-
mented in time O(n).

Obviously, the first � symbols do not necessarily make a good reference for the 
RLZ step in ReLZ . In view of this, it seems practically relevant to define the fol-
lowing variant of ReLZ : given a parameter � = o(n) , we first sample in a certain 
way (for instance, randomly as in [16]) disjoint substrings of T with total length � , 
then concatenate them making a string A of length � , and apply ReLZ to the string 
AT; the output encoding of T is the ⌈log n⌉-bit number � followed by an encoding of 
the LZ-like parsing of AT produced by ReLZ . Nevertheless, throughout the paper 
we concentrate only on the first version of ReLZ , which generates an LZ-like pars-
ing. This choice is justified by two observations: first, it is straightforward that the 
key part in any analysis of the second ReLZ variant is in the analysis of ReLZ for 
the string AT; and second, our experiments on real data comparing known sampling 
methods (see Sect. 7.3) show that the first version of ReLZ leads to better compres-
sion, presumably because the improvements made by the sampling in the RLZ step 
do not compensate for the need to keep the reference A.

4 � Empirical Entropy Upper Bound

Our entropy analysis relies on the following lemmas by Gagie [12], Ochoa and Nav-
arro [37] , and Gańczorz [17].

Fig. 1   An example of ReLZ , using prefix size � = 8 . The first line below the text shows the string T ′ 
corresponding to the RLZpref  parsing. Note that the substring “GTC​CAA​” occurs twice, but RLZpref  
misses this repetition because there is no similar substring in the reference. Nonetheless, both occur-
rences are parsed identically. The string T ′ is then parsed using LZ. The latter captures the repetition of 
the sequence “fgh”, and when this parsing is remapped to the original text, it captures the repetition of 
“GTC​CAA​”



	 Algorithmica

1 3

Lemma 1  ([12, Th.  1]) For any string T  [1,n] and any integer k ≥ 0 , 
nHk(T) = min{log(1∕Pr(Q emits T))}, where the minimum is over all kth order 
Markov processes Q.

Lemma 2  ([17] and [37, Lm. 3]) Let Q be a k th order Markov process. Any pars-
ing T = P1P2 ⋯Pc of a given string T [1, n] over the alphabet {1, 2,… , �}, where 
all Pi are non-empty, satisfies:

where ci is the number of times Pi occurs in the sequence P1,P2,… ,Pc.

Recall that in this discussion � and k in Hk both are functions of n. Now we are to 
prove that, as it turns out, the kth order empirical entropy is easily achievable by any 
LZ-like parsing in which the number of phrases is O( n

log
�
n
) : it suffices to use the 

rightmost encoding and to spend at most log dj + O(1 + log log dj + log�j) bits for 
every pair (dj,�j) corresponding to a copying phrase (for instance, applying for dj 
and �j universal codes, like Elias’s [9] or Levenshtein’s [32]). In the sequel we show 
that, contrary to the case of LZ (see [24, 37]), it is not possible to weaken the 
assumptions in this result—even for ReLZ—neither by using a non-rightmost 
encoding nor by using log n + O(1 + log�j) bits for the pairs (dj,�j).

Lemma 3  Fix a constant 𝛼 > 0 . Given a string T[1, n] over the alphabet 
{1, 2,… , �} with � ≤ O(n) and its LZ-like parsing T = P1P2 ⋯Pc such that c ≤ �n

log
�
n

, the rightmost encoding of the parsing in which every pair (dj,�j) corresponding to 
a copying phrase takes log dj + O(1 + log log dj + log�j) bits occupies at most 
nHk + o(n log �) bits, for k = o(log

�
n).

Proof  First, let us assume that k is a positive function of n, k > 0 . Since 
k = o(log

�
n) , it implies that log

�
n = �(1) and � = o(n) . Therefore, all literal 

phrases occupy O(� log �) = o(n log �) bits. For i ∈ {1, 2,… , c} , denote by ci the 
number of times Pi occurs in the sequence P1,P2,… ,Pc . Let Pi1

,Pi2
,… ,Pici

 be the 
subsequence of all phrases equal to Pi . Since the encoding we consider is rightmost, 
we have di1 + di2 +⋯ + dici

≤ n . Therefore, by the concavity of the function log , we 
obtain log di1 + log di2 +⋯ + log dici

≤ ci log
n

ci
= ci log

n

c
+ ci log

c

ci
 . Similarly, we 

deduce log log d
i1
+ log log d

i2
+⋯ + log log d

ici

≤ c
i
log log

n

ci

 and 
∑c

j=1
log�j ≤ c log

n

c∑c

j=1
log�j ≤ c log

n

c
 . Hence, the whole encoding occupies ∑c

i=1
(log

c

ci

+ O(log log
n

ci

))

+O(c log
n

c
) + o(n log �) bits. By Lemmas 1 and 2, this sum is upperbounded by

c∑

i=1

log
c

ci
≤ log

1

Pr(Q emits T)
+ O

(
ck log � + c log

n

c

)
,

(1)nHk + O(c log
n

c
+ ck log � +

c∑

i=1

log log
n

ci
) + o(n log �).
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It remains to prove that all the terms under the big-O are o(n log �) . Since 
k = o(log

�
n) and c ≤ �n

log
�
n
 , we have ck log � ≤ o(n log �) . As c log n

c
 is an increasing 

function of c when c < n∕2 , we obtain c log n

c
≤ O(

n

log
�
n
log log

�
n) = o(n log �) . 

Further, log log n

ci
= log(log

n

c
+ log

c

ci
) ≤ log log

n

c
+ O(log

c

ci
∕ log

n

c
) due to the ine-

quality log(x + d) ≤ log x +
d log e

x
 . The sum 

∑c

i=1
log log

n

c
 is upperbounded by 

c log
n

c
= o(n log �) . The sum 

∑c

i=1
log

c

ci
∕ log

n

c
 is upperbounded by (c log c)∕ log n

c
 , 

which can be estimated as O((n log �)∕ log log
�
n) because c ≤

�n

log
�
n
 . Since 

log
�
n = �(1) , this is again o(n log �).

Now assume that k = 0 ; note that in this case k = o(log
�
n) even for � = Ω(n) . It 

is sufficient to consider only the case 𝜎 > 2
√
log n since, for � ≤ 2

√
log n , we have 

� log � = o(n log �) and log
�
n ≥

√
log n = �(1) and, hence, the above analysis is 

applicable. As � can be close to Θ(n) , the literal phrases might now take non-negli-
gible space. Let A be the subset of all symbols {1, 2,… , �} that occur in T. For 
a ∈ A , denote by ia the leftmost phrase Pia

= a . Denote 
C = {1, 2,… , c} ⧵ {ia ∶ a ∈ A} , the indices of all copying phrases. The whole 
encoding occupies at most 

∑
i∈C(log di + O(1 + log log d

i
+ log�

i
)) + �A� log �

+O(|A|(1 + log log �)) bits, which is upperbounded by ∑
i∈C log di + �A� log �A� + O(n + n log log n + c log

n

c
) + �A� log �

�A� . Observe that 
n log log n ≤ o(n

√
log n) ≤ o(n log �) . Further, we have c log

n

c
≤ n and 

|A| log �

|A| ≤ � , both of which are o(n log �) since � ≤ O(n) ≤ o(n log �) . It remains 
to bound 

∑
i∈C log di + �A� log �A� with nH0 + o(n log �).

Let us show that �A� log �A� ≤ ∑
a∈A log

n

cia
 . Indeed, we have 

∑
a∈A log

n

cia
= log(n�A�∕

∏
a∈A cia ) , which, since 

∑
a∈A cia ≤ n , is minimized when all 

cia are equal to n

|A| so that 
∑

a∈A log
n

cia
≥ �A� log �A� . For i ∈ C , denote by c′

i
 the num-

ber of copying phrases equal to Pi , i.e., c�
i
= ci if |Pi| > 1 , and c�

i
= ci − 1 otherwise 

(note that c′
i
> 0 for all i ∈ C ). As in the analysis for k > 0 , we obtain ∑

i∈C log di ≤
∑

i∈C log
n

c�
i

 . Fix i ∈ C such that |Pi| = 1 . Using the inequality 
log(x − d) ≥ log x −

d log e

x−d
 , we deduce log n

c�
i

= − log(
ci

n
−

1

n
) ≤ log

n

ci
+

log e

c�
i

 . There-
fore, �A� log �A� +∑

i∈C log
n

c�
i

≤
∑c

i=1
log

n

ci
+ c log e =

∑c

i=1
log

c

ci
+ c log

n

c
+ O(n) . 

By Lemmas  1 and  2, this is upperbounded by (1). As k = 0 , the terms under the 
big-O of (1) degenerate to c log

n

c
+
∑c

i=1
log log

n

ci
 , which is 

O(n log log n) ≤ o(n log �) . 	�  ◻

It follows from the proof of Lemma  3 that, instead of the strict rightmost 
encoding, it is enough to choose, for each copying phrase Pj of the LZ-like pars-
ing, the closest preceding equal phrase—i.e., Pi = Pj with maximal i < j—as a 
source of Pj , or any source if there is no such Pi . This observation greatly simpli-
fies the construction of an encoding that achieves the Hk bound. Now let us return 
to the discussion of the ReLZ parsing.
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Lemma 4  The number of phrases in the ReLZ parsing of any string T[1, n] over the 
alphabet {1, 2,… , �} is at most 9n

log
�
n
 , independent of the choice of the prefix param-

eter �.

Proof  For � ≥ n1∕9 , we have 9n

log
�
n
≥ n and, hence, the claim is obviously true. 

Assume that 𝜎 < n1∕9 . As � ≥ 2 , this implies n > 29 = 512 . Suppose that 
T = P1P2 ⋯Pẑ is the ReLZ parsing, for a given prefix size � . We are to prove that 
there are at most 1 + 2

√
n indices j < ẑ such that |Pj| <

1

4
log

𝜎
n and 

|Pj+1| <
1

4
log

𝜎
n . This will imply that every phrase of length less than 1

4
log

�
n is fol-

lowed by a phrase of length at least 1
4
log

�
n , except for at most 2 + 2

√
n exceptions 

( 1 + 2
√
n plus the last phrase). Therefore, the total number of phrases is at most 

2 + 2
√
n +

2n

(1∕4) log
�
n
= 2 + 2

√
n +

8n

log
�
n
 ; the term 2 + 2

√
n is upperbounded by n

log
�
n
 

since n > 512 , and thus, the total number of phrases is at most 9n

log
�
n
 as required.

It remains to prove that there are at most 1 + 2
√
n pairs of “short” phrases Pj,Pj+1 . 

First, observe that any two equal phrases of the LZ parsing of the prefix T[1,�] are 
followed by distinct symbols, except, possibly, for the last phrase. Hence, there are 
at most 1 +

∑⌊ 1

4
log

�
n⌋

k=1
�
k+1 ≤ 1 + �

2
�

1

4
log

�
n
≤ 1 + n2∕9n1∕4 ≤ 1 +

√
n phrases of 

length less than 1
4
log

�
n in the LZ parsing of T[1,�] . Further, there cannot be two 

distinct indices j < j′ < ẑ such that Pj = Pj� , Pj+1 = Pj�+1 , and |P1P2 ⋯Pj−1| ≥ 𝓁 
(i.e., Pj and Pj′ both are inside the T[� + 1, n] part of T): indeed, the RLZ step of 
ReLZ necessarily parses the substrings Pj , Pj+1 and Pj′ , Pj�+1 equally, and then, the 
LZ step of ReLZ should have realized during the parsing of Pj�Pj�+1 that this string 
occurred previously in PjPj+1 and it should have generated a new phrase comprising 
Pj�Pj�+1 . Therefore, there are at most �

1

4
log

�
n
�

1

4
log

�
n
=
√
n indices j < ẑ such that Pj 

and Pj+1 both are “short” and PjPj+1 is inside T[� + 1, n] . In total, we have at most 
1 + 2

√
n phrases Pj such that |Pj| <

1

4
log

𝜎
n and |Pj+1| <

1

4
log

𝜎
n . 	�  ◻

Lemmas 3 and 4 immediately imply the following theorem.

Theorem  1  Given a string T[1,  n] over the alphabet {1, 2,… , �} with � ≤ O(n), 
the rightmost encoding of any ReLZ parsing of T in which every pair  (dj,�j) corre-
sponding to a copying phrase takes log dj + O(1 + log log dj + log�j) bits occupies 
nHk + o(n log �) bits, for k = o(log

�
n).

For LZ, it is not necessary to use neither the rightmost encoding nor less than 
log n bits for the dj components of pairs in order to achieve the kth order empirical 
entropy with k = o(log

�
n) . In view of this, the natural question is whether the ReLZ 

really requires these two assumptions of Theorem 1. The following example shows 
that indeed the assumptions cannot be simply removed.

Example 1  Fix an integer b ≥ 3 . Our example is a string of length n = b22b + 2b over 
the alphabet {0, 1, 2} . Denote by a1, a2,… , a2b all possible binary strings of length 
b. Put A = a12a22⋯ a2b2 ( a1, a2,… , a2b separated by 2s). The example string is 
T = AB1B2 ⋯B2b−1 , where each string Bh is the concatenation of a1, a2,… , a2b in a 
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certain order such that every pair of distinct strings ai and aj can be concatenated in 
B1B2 ⋯B2b−1 at most once. More precisely, we have 2b − 1 permutations �h of the 
set {1, 2,… , 2b} , for 1 ≤ h < 2b , such that Bh = a

�h(1)
a
�h(2)

⋯ a
�h(2

b) and, for every 
integers i and j with 1 ≤ i < j ≤ 2b , at most one h satisfies �h(2b) = i and �h+1(1) = j , 
or �h(k) = i and �h(k + 1) = j , for some k < 2b.

Let us show that the permutations �h can be constructed from a decomposi-
tion of the complete directed graph K∗

2b
 with 2b vertices into 2b − 1 disjoint Ham-

iltonian directed cycles; Tillson [43] proved that such decomposition always exists 
for 2b ≥ 8 . (Note that the number of edges in K∗

2b
 is 22b − 2b and every Hamiltonian 

cycle contains 2b edges, so 2b − 1 is the maximal number of disjoint cycles.) Denote 
the vertices of K∗

2b
 by 1, 2,… , 2b . Every Hamiltonian cycle naturally induces 2b per-

mutations � : we arbitrarily choose �(1) and then, for k > 1 , put �(k) equal to the 
vertex number following �(k − 1) in the cycle. Since the cycles are disjoint, any two 
distinct numbers i and j cannot occur in this order in two permutations correspond-
ing to different cycles, i.e., �h(k) = i and �h(k + 1) = j , for some k, can happen at 
most in one h; further, we put �1(1) = 1 and, for h > 1 , we assign to �h(1) the vertex 
number following �h−1(2b) in the cycle corresponding to �h−1 , so that �h−1(2b) = i 
and �h(1) = j , for fixed i and j, can happen in at most one h.

Put � = |A| , the parameter of ReLZ . Clearly, the RLZ step of ReLZ parses 
B1B2 ⋯B2b−1 into 2b(2b − 1) phrases of length b. By construction, all equal phrases 
in the parsing are followed by distinct phrases. Therefore, the LZ step of ReLZ does 
not reduce the number of phrases. Suppose that the source of every copying phrase 
is in A (so, we assume that the encoding is not rightmost) and we spend at least log dj 
bits to encode each pair (dj,�j) corresponding to a copying phrase. Therefore, the 
encoding overall occupies at least 

∑2b(2b−1)

i=1
log(ib) bits, which can be lowerbounded 

by 
∑22b−2b

i=1
log i = log((22b − 2b)!) = (22b − 2b) log(22b − 2b) − O(22b) . Recall that 

n = b22b + 2b and, hence, b = Θ(log n) , 22b = o(n) , and 2b log(22b − 2b) = o(n) . 
Thus, (22b − 2b) log(22b − 2b) − O(22b) ≥ 22b log(22b − 2b) − o(n) . By 
the inequality log(x − d) ≥ log x −

d log e

x−d
 , the latter is lowerbounded by 

22b log(22b) − O(22b2b∕(22b − 2b)) − o(n) = 2b22b − o(n) = 2n − o(n) . On the other 
hand, we obviously have H0(T) ≈ 1 and, thus, nH0(T) = n − o(n) . Therefore, the 
non-rightmost encoding, which forced us to use at least ∼ log n bits for many pairs 
(dj,�j) , does not achieve the zeroth empirical entropy of T.

5 � Lower Bound

We have not been able to upper bound the number of phrases ẑ resulting from 
ReLZ in terms of the optimal number z of phrases produced by the LZ parsing of 
T. Note that, in the extreme cases � = n and � = 0 , we have ẑ = z , but these are 
not useful choices: in the former case we apply LZ(T) in the first phase and in the 
latter case we apply LZ(T �) , with T � ≈ T  , in the second phase. In this section, we 
obtain the following lower bound.
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Theorem  2  There is an infinite family of strings over the alphabet {0, 1, 2} such 
that, for each family string T[1, n], the number of phrases in its ReLZ parse (with 
an appropriate parameter � = o(n)) and its LZ parse—respectively, ẑ and z—are 
related as ẑ = Ω(z log n).

Proof  The family contains, for each even positive integer b, a string T of length 
Θ(b22b) built as follows. Let A be the concatenation of all length-b binary strings in 
the lexicographic order, separated by the special symbol 2 and with 2 in the end. Let 
S be the concatenation of all length-b binary strings in the lexicographic order. (E.g., 
A = 002012102112 and S = 00011011 for b = 2 .) Finally, let Si be S cyclically 
shifted to the left i times, i.e., Si = S[i + 1, |S|] ⋅ S[1, i] . Then, put T = AS1S2 ⋯ S b

2

 
and we use � = |A| as a parameter for ReLZ . So n = |T| = Θ(b22b) and log n = Θ(b) . 
We are to prove that z = |LZ(T)| = O(2b) and ẑ = |ReLZ(T ,�)| = Ω(b2b) , which 
will imply ẑ = Ω(z log n) , thus concluding the proof.

By [49, Th. 1], the LZ parse has the smallest number of phrases among all LZ-
like parses of T. Therefore, to show that z = O(2b) , it suffices to describe an LZ-
like parse of T with O(2b) phrases. Indeed, the prefix A can be parsed into O(2b) 
phrases as follows: all symbols 2 form phrases of length one; the first length-b 
substring 00⋯ 0 can be parsed into b literal phrases 0; every subsequent binary 
length-b substring a1a2 ⋯ ab with ak = 1 and ak+1 = ak+2 = ⋯ = ab = 0 , for 
some k ∈ {1, 2,… , b} , can be parsed into the copying phrase a1a2 ⋯ ak−1 (which 
must be a prefix of the previous length-b binary substring a1a2 ⋯ ak−1011⋯ 1 , 
due to the lexicographic order in A), the literal phrase 1, and the copying phrase 
ak+1ak+2 ⋯ ab = 00⋯ 0 . The string S1 can be analogously parsed into O(2b) phrases. 
Each Si , i > 2 , can be expressed as two phrases that point to S1 . Thus, we obtain 
z ≤ |LZ(A)| + |LZ(S1)| + 2(b∕2 − 1) = O(2b).

Now consider ẑ . The first phase of ReLZ(T ,�) parses T into phrases whose 
sources are restricted to be within T[1,�] = A . Therefore, it is clear that, for any 
i ∈ {1, 2,… ,

b

2
} , Si will be parsed into 2b strings of length b, because every length-

b string is in A separated by 2s. In what follows we show that the second phase of 
ReLZ cannot further reduce the number of phrases and, hence, ẑ ≥ b

2
2b = Ω(b2b) as 

required.
Let us consider Si and Sj , for some i < j , and let us denote their parsings by 

R1,R2,… ,R2b and R�
1
,R�

2
,… ,R�

2b
 , respectively. Suppose that there are indices k and 

h such that Rk = R�
h
 . We are to prove that Rk+1 ≠ R�

h+1
 (assuming Rk+1 is the length-b 

prefix of Si+1 if k = 2b , and analogously for h = 2b ). This will imply that all phrases 
produced by the second phase of ReLZ on the string of metasymbols are of length 
one.

Consider the case k < 2b and h < 2b . Let us interpret the bitstrings of length 
b as numbers so that the most and the least significant bits are indexed by 1 and 
b, respectively2; e.g., in the string 01, for b = 2 , the least significant bit is the 
second symbol and equals 1. In this way we can see S = Q1Q2 ⋯Q2b , where 

2  To conform with the indexation scheme used throughout the paper, we do not follow the standard prac-
tice to index the least significant bit as zeroth.
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|Q1| = ⋯ = |Q2b | = b , as generated by adding 1 to the previous bitstring, starting 
from Q1 = 00⋯ 0 . Now, the (b − i) th symbols of Rk and Rk+1 are different since they 
correspond to the lowest bit in Q1,Q2,… ,Q2b (thus, the (b − i) th symbol alternates 
in R1,… ,R2b , starting from 0). Suppose that the (b − i) th symbols of R′

h
 and R�

h+1
 

also differ (otherwise our claim is trivially true). Since 0 < i < j , this implies that 
the symbols b, b − 1,… , b − i + 1 in R′

h
 and 1, 2,… , b − j in R�

h+1
 all are equal to 1 

(this cascade of ones triggers the change in the (b − i) th symbol of R�
h+1

 ), the sym-
bols b, b − 1,… , b − i + 1 in R�

h+1
 equal 0 (as a result of the “collapse” of the cas-

cade), and the (b − j) th symbol in R′
h
 equals 0 (since (b − j) th symbols alternate in 

R�
1
,… ,R�

2b
 and the (b − j) th symbol in R�

h+1
 equals 1 as a part of the cascade).

In the following example b = 12 , i = 4 , j = 8 , ⋄ denotes irrelevant symbols (not 
necessarily equal), x and x denote the flipped (b − i) th symbol, the (b − j) th symbol 
is underlined:

When we transform Rk = R�
h
 to Rk+1 , we “add” 1 to the bit corresponding to the 

(b − i) th symbol of Rk and the zero at position b − j will stop carrying the 1, so that 
we necessarily have zero among the symbols b − i, b − i − 1,… , b − j of Rk+1 (in 
fact, one can show that they all are zeros except for b − j ). Thus, the next “addition” 
of 1 to the (b − i) th symbol of Rk+1 cannot carry farther than the (b − j) th symbol 
and so the symbols b, b − 1,… , b − i + 1 will remain equal to 1 in Rk+1 whilst in 
R�
h+1

 they are all zeros. Therefore, R�
h+1

≠ Rk+1.
In the case k = 2b,Rk = 11⋯ 100⋯ 0 , with b − i ones, is followed 

by Rk+1 = 00⋯ 0 , with b zeros. But, since R�
h
= Rk and i < j , we have 

R�
h+1

= 00⋯ 011⋯ 100⋯ 0 , with j − i ones, after “adding” 1 to the (b − j) th sym-
bol of R′

h
 . The case h = 2b is analogous. 	�  ◻

6 � Implementation

To build RLZpref  , we first compute LZ(T[1,�]) and then RLZ(T[� + 1, n], T[1,�]) . 
For both of them, we utilize the suffix array of T[1,�] , which is constructed using 
the algorithm libdivsufsort [18, 48]. To compute LZ(T[1,�]) , we use the 
KKP3 algorithm  [20]. To compute RLZ(T[� + 1, n], T[1,�]) , we scan T[� + 1, n] 
looking for the longest match in T[1,�] by the standard suffix array based pattern 
matching.

The output phrases are encoded as pairs of integers: each pair (pj,�j) represents 
the position, pj , of the source for the phrase and the length, �j , of the phrase (note 

R�
h
= ⋄⋄⋄0⋄⋄⋄x1111,

R�
h+1

= 1111⋄⋄⋄x0000.
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that this is in contrast to the “distance-length” pairs (dj,�j) that we had for encod-
ings). We then map the output into a sequence of numbers using 2⌈log�⌉-bit inte-
gers with ⌈log�⌉ bits for each pair component. This is possible because we enforce 
that our reference size is � ≥ �.

Finally, we compute the LZ parse using a version of KKP3 for large alphabets, 
relying on a suffix array construction algorithm for large alphabets [18, 30]. We then 
remap the output of LZ to point to positions in T as described.

6.1 � A Recursive Variant

When the input is too big compared to the available RAM, it is possible that after 
the first compression step, RLZpref  , the resulting parse is still too big to fit in mem-
ory, and therefore it is still not possible to compute its LZ parse efficiently. To over-
come this issue in practice, we propose a recursive variant, which takes as input the 
amount of available memory. The first step remains the same, but in the second step 
we make a recursive call to ReLZ , ignoring the phrases that were already parsed 
with LZ, and using the longest possible � value for the given amount of RAM. This 
recursive process continues until the LZ parse can be computed in memory. It is also 
possible to give an additional parameter that limits the number of recursive calls. We 
use the recursive version only in the last set of experiments when comparing with 
other LZ parsers in Sect. 7.4 (Fig. 2).

6.2 � A Better Mapping

When the recursive approach is used we need a better mapping from pairs of inte-
gers into integers: the simple approach described above requires 2 log� bits for the 
alphabet after the first iteration, but in the following iterations the assumption � ≤ � 
may not hold anymore and the amount of bits required to store the first values may 
increase at each iteration. We propose a simple mapping that overcomes this prob-
lem. Let �i be the size of the alphabet used by the metasymbols after the ith itera-
tion. To encode the metasymbols of the (i + 1)-iteration we use first a flag bit to indi-
cate whether the phrase is literal or copying. If the flag is 0, then it is a literal phrase 

Fig. 2   Example of the recursive ReLZ approach, assuming that the available memory limits the compu-
tation of LZ to sequences of length 5. The figure only shows the recursive parsing. The rewriting of the 
phrases proceeds later, bottom up, in a similar fashion as depicted in Fig. 1
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(c, 0) and log �i bits are used to store the c value. If the flag is 1, then it is a copying 
phrase (pi,�i) and then 2 log� bits are used to store the numbers. In this way, after 
each iteration the number of bits required to store the metasymbols increases only 
by 1.

We implemented ReLZ in C++ and the source code is available under GPLv3 
license in https​://gitla​b.com/dvale​nzu/ReLZ. The implementation allows the user to 
set the value of � or, alternatively, to provide the maximum amount of RAM to be 
used. Additionally, scripts to reproduce our experiments are available at https​://gitla​
b.com/dvale​nzu/ReLZ_exper​iment​s. For the experimental evaluation, we used col-
lections of different sizes and kinds. They are listed in Table 1 with their main prop-
erties. The experiments were run on a desktop computer equipped with a Intel(R) 
Core(TM) i5-7500 CPU, with 4 cores, 3.60 GHz and 16 GB of RAM.

7 � Experimental Evaluation

7.1 � Entropy Coding

First we compare the encoded size of ReLZ with the k-order empirical entropy, and 
also with the encoded size of LZ77. For both ReLZ and LZ77 we used Elias-gamma 
codes. The results are presented in Table 2.

We observe that in the small and low-repetition collections (English and source) 
ReLZ requires some extra space than Hk for higher values of k. This can be attrib-
uted to the o() term in our analysis. Also we observe the same behavior for LZ77. As 
expected, for the highly repetitive collections, both ReLZ and LZ77 use less space 
than the entropy. This is due to the known fact that for highly repetitive collections, z 
is a better measurement of the compressibility than the empirical entropy. Therefore, 
in the following sections, we proceed to study empirically how does ReLZ compare 
to LZ77 in terms of number of phrases produced by the parsers.

Table 1   Collections used for 
the experiments, some basics 
statistics, and a brief description 
of their source

The first group includes medium-sized collections, from 45 to 202 
MiB, while the second group consist of large collections, from 22 to 
64 GiB. Each group has both regular collections and highly repeti-
tive collections, attested by the average phrase length n/z

Name � n n/z Type Source

English 225 200 MiB 15 English text Pizzachili
Sources 230 202 MiB 18 Source code Pizzachili
Influenza 15 148 MiB 201 Genomes Pizzachili
Leaders 89 45 MiB 267 English text Pizzachili
Wiki 215 24 GiB 90 Web pages Wikipedia dumps
Kernel 229 64 GiB 2439 Source code Linux Kernel
CereHR 5 22 GiB 3746 Genomes Pizzachili

https://gitlab.com/dvalenzu/ReLZ
https://gitlab.com/dvalenzu/ReLZ_experiments
https://gitlab.com/dvalenzu/ReLZ_experiments
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7.2 � Effect of Reference Sizes

We first study how the size of the prefix used as a reference influences the number 
of phrases produced by RLZpref  and ReLZ . These experiments are carried out only 
using the medium-sized collections, so that we can run ReLZ using arbitrarily large 

Table 2   Empirical entropy of order k of our collections for k = 1, 2,… 6 ; and encoded size of ReLZ and 
LZ77. All values are expressed as bits per character (bpc)

Name Entropy H
k

ReLZ (bpc); � = LZ (bpc)

H0 H1 H2 H3 H4 H5 H6 10 MB 50 MB

English 4.52 3.62 2.94 2.42 2.06 1.83 1.67 3.53 3.02 2.65
Sources 5.46 4.07 3.10 2.33 1.85 1.51 1.24 2.97 2.64 1.94
Influenza 1.97 1.93 1.92 1.92 1.91 1.87 1.76 0.29 0.24 0.20
Leaders 3.47 1.95 1.38 0.93 0.60 0.40 0.32 0.15 0.13 0.13
Wiki 5.27 3.86 2.35 1.49 1.08 0.86 0.71 0.79 0.80 0.56
Kernel 5.58 4.14 3.16 2.39 1.92 1.58 1.32 0.02 0.02 0.018
CereHR 2.19 1.81 1.81 1.80 1.80 1.80 1.80 0.02 0.02 0.013
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Fig. 3   Performance of RLZpref  (green) and ReLZ (blue) for different prefix-reference sizes on medium-
sized inputs. The y-axis shows the approximation ratio ẑ∕z . The x-axis shows �∕n , the size of the prefix-
reference expressed as a fraction of the input size (Color figure online)
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prefixes as references and without recursions. We ran both algorithms using differ-
ent values of � = n∕10, 2n∕10,… , n.

The results are presented in Fig.  3. By design, both algorithms behave as LZ 
when � = n . RLZpref  starts far off from LZ and its convergence is not smooth but 
“stepped”. The reason is that at some point, by increasing � , the reference captures 
a new sequence that has many repetitions that were not well compressed for smaller 
values of � . Thus RLZpref  is very dependent on the choice of the reference. ReLZ , 
in contrast, is more robust since the second pass of LZ does capture much of those 
global repetitions. This results in ReLZ being very close to LZ even for � = n∕10 , 
particularly in the highly repetitive collections.

7.3 � Reference Construction

As discussed in Sect.  3, the idea of a second compression stage applied to the 
phrases can be applied not only when the reference is a prefix, but also when an 
external reference is used. This allows us to study variants of ReLZ combined with 
different strategies to build the reference that aim for a better compression in the first 
stage.

In this section we experimentally compare the following approaches:

PREFIX: Original version using a prefix as a reference.
RANDOM: An external reference is built as a concatenation of random samples of 
the collection [16, 19].
PRUNE: A recent method [33] that takes random samples of the collections and 
performs some pruning of redundant parts to construct a better reference.

An important caveat is that methods using an external reference also need to account 
for the reference size in the compressed representation because the reference is 
needed to recover the output. For each construction method, we measure the number 
of phrases produced for the string “reference + text” (only “text” for the method 
PREFIX) by the first stage ( RLZpref  with prefix equal to the reference) and by the 
second stage (LZ on metasymbols corresponding to the phrases), using three refer-
ence sizes: 8MB, 400MB, and 1GB. We compare the numbers to z, the number of 
phrases in the LZ parsing of the plain text. This experiment was performed on the 
large collections and the results are presented in Fig. 4.

We observe that the second stage of ReLZ reduces the number of phrases dra-
matically, regardless of the reference construction method. ReLZ with the origi-
nal method PREFIX achieves the best ratios as it does not need to account for the 
external reference. Depending on the reference size, the approximation ratio in 
Wiki ranges between 1.4 and 1.29, in CereHR between 1.84 and 1.63, and in Kernel 
between 1.49 and 1.03.

Additionally, we observe that although PRUNE can improve the results of the 
RLZpref  stage, after the second stage the improvements do not compensate for the 
need to keep an external reference. This is particularly clear for the largest reference 
in our experiments.
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7.4 � Lempel–Ziv Parsers

In this section we compare the performance and scalability of ReLZ against other 
Lempel–Ziv parsers that can also run in small memory (this time, using the recur-
sive version of ReLZ).

EMLZ [21]: External-memory version of the exact LZ algorithm, with memory 
usage limit set to 4GB.
LZ-End [22]: An LZ-like parsing that gets close to LZ in practice.
ORLBWT [3]: Computes the exact LZ parsing via online computation of the 
RLBWT using small memory.
RLZPRE : Our RLZpref  algorithm (Section  3), with memory usage limit set to 
4GB.
ReLZ: Our ReLZ algorithm (Section 3), with memory usage limit set to 4GB.

To see how well the algorithms scale with larger inputs, we took prefixes of dif-
ferent sizes of all the large collections and ran all the parsers on them. We meas-
ured the running time of all of the algorithms and, for the algorithms that do not 
compute the exact LZ parsing, we also measured the approximation ratio ẑ∕z . The 
results are presented in Fig. 5.
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Fig. 4   Approximation ratio ẑ∕z for different methods to construct the reference and different reference 
lengths: in green the results after RLZpref  , and in blue after ReLZ . Note that the highly repetitive collec-
tions (CereHR and Kernel) use logarithmic scale (Color figure online)
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Figure 5 (left) shows that ReLZ is much faster than all the previous methods 
and also that the speed is almost unaffected when processing larger inputs. Fig-
ure 5 (right) shows that the approximation ratio of ReLZ is affected very mildly 
as the input size grows, especially in the highly repetitive collections. For the 
normal collections, the approximation factor is more affected but it still remains 
below 2.

7.5 � Compression Ratio

In this section we study the compression ratio of ReLZ . We store the pos and len 
values in separate files, encoding them using a modern implementation of PFOR 
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Fig. 5   Performance of different LZ parsers in the large collections. The x axis is the size of the input: 
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codes [31] in combination with a fast entropy coder [8]. We compare against state of 
the art compressors (LZMA, Brotli) and also agains a very recent RLZ compressor 
(RLZ-store). We measure compression ratios, compression times and decompres-
sion times of these tools in the large collections, whose size exceeds the available 
RAM of the system.

The results are shown in Fig.  6. In the normal collection (Wiki) the perfor-
mance of ReLZ is competitive with the state of the art compressors. In the highly 
repetitive collections (Cere, Kernel) ReLZ gives the best compression ratios, with 
very similar compression times and competitive decompression times.

Additionally, we run a comparisson again GDC2 and FRESCO. Both tools are 
designed to compress a collection of files, using one (or more) as a reference, 
and perform referential compression plus second order compression. GDC2 is 
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y-axis is the total compression time in seconds



1 3

Algorithmica	

specifically designed to compress collections of genomes in FASTA format, and 
it exploits known facts about genomes collections (e.g. an important amount of 
the variations are changes in a single character). For this, we use a 90 GB collec-
tion comprising 2001 different versions of chromosome 21. As expected, GDC2 
was the dominant tool, with a compression ratio of 0.00020, compression time of 
15 min and decompression time of 15 min. ReLZ compression ratio was 0.00047, 
compression time was 49 min and decompression time was 50 min. We stopped 
FRESCO execution after 8 hours, when it had processed slightly more than half 
of the collection.
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