
Vol.:(0123456789)

Algorithmica
https://doi.org/10.1007/s00453-020-00722-6

1 3

Lempel–Ziv‑Like Parsing in Small Space

Dmitry Kosolobov1  · Daniel Valenzuela2 · Gonzalo Navarro3 · Simon J. Puglisi2

Received: 20 August 2019 / Accepted: 29 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Lempel–Ziv (LZ77 or, briefly, LZ) is one of the most effective and widely-used
compressors for repetitive texts. However, the existing efficient methods computing
the exact LZ parsing have to use linear or close to linear space to index the input
text during the construction of the parsing, which is prohibitive for long inputs. An
alternative is Relative Lempel–Ziv (RLZ), which indexes only a fixed reference
sequence, whose size can be controlled. Deriving the reference sequence by sam-
pling the text yields reasonable compression ratios for RLZ, but performance is not
always competitive with that of LZ and depends heavily on the similarity of the ref-
erence to the text. In this paper we introduce ReLZ, a technique that uses RLZ as a
preprocessor to approximate the LZ parsing using little memory. RLZ is first used to
produce a sequence of phrases, and these are regarded as metasymbols that are input
to LZ for a second-level parsing on a (most often) drastically shorter sequence. This
parsing is finally translated into one on the original sequence. We analyze the new
scheme and prove that, like LZ, it achieves the kth order empirical entropy compres-
sion nH

k
+ o(n log �) with k = o(log

�
n) , where n is the input length and � is the

alphabet size. In fact, we prove this entropy bound not only for ReLZ but for a wide
class of LZ-like encodings. Then, we establish a lower bound on ReLZ approxima-
tion ratio showing that the number of phrases in it can be Ω(log n) times larger than
the number of phrases in LZ. Our experiments show that ReLZ is faster than exist-
ing alternatives to compute the (exact or approximate) LZ parsing, at the reasonable
price of an approximation factor below 2.0 in all tested scenarios, and sometimes
below 1.05, to the size of LZ.

Keywords  Lempel–Ziv compression · Relative Lempel–Ziv · Empirical entropy

D. Kosolobov supported by the Russian Science Foundation (RSF), Project 18-71-00002 (for the
upper bound analysis and a part of lower bound analysis). D. Valenzuela supported by the Academy
of Finland (Grant 309048). G. Navarro funded by Basal Funds FB0001 and Fondecyt Grant
1-200038, Chile. S.J. Puglisi supported by the Academy of Finland (Grant 319454).

 *	 Dmitry Kosolobov
	 dkosolobov@mail.ru

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2909-2952
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00722-6&domain=pdf

	 Algorithmica

1 3

1  Introduction

The Lempel–Ziv (LZ77 or, shortly, LZ) parsing is a central algorithm in data com-
pression: more than 40 years since its development [49, 50], it is at the core of
widely used compressors (gzip, p7zip, zip, arj, rar...) and compressed formats (PNG,
JPEG, TIFF, PDF...), and receives much attention from researchers [3, 19, 21, 39,
40] and developers in industry [1, 47].

LZ parsing also has important theoretical properties. The number of phrases,
z, into which LZ parses a text has become the defacto measure of compressibility
for dictionary-based methods [14], which in particular are most effective on highly
repetitive sequences [36]. While there are measures that are stronger than LZ [23,
42], these are NP-complete to compute. The LZ parse, which can be computed
greedily in linear time [20], is then the stronger measure of dictionary-based com-
pressibility on which to build practical compressors.

Computing the LZ parsing requires the ability to find previous occurrences of text
substrings (their “source”), so that the compressor can replace the current occur-
rence (the “target”) by a backward pointer to the source. Parsing in linear time [20]
requires building data structures that are proportional to the text size. When the text
size exceeds the available RAM, switching to external memory leads to prohibitive
computation times. Compression utilities avoid this problem with different worka-
rounds: by limiting the sources to lie inside a short sliding window behind the cur-
rent text (see [13, 41, 46]) or by partitioning the input into blocks and compressing
them independently. These variants can greatly degrade compression performance,
however, and are unable in particular to exploit long-range repetitions.

Computation of LZ in compressed space was first studied—to the best of our
knowledge—in 2015: A (1 + �)-approximation scheme running in O(n log n) time1
with O(z) memory, where n is the length of the input, was proposed in [11], and
an exact algorithm with the same time O(n log n) and space bounded by the zeroth
order empirical entropy was given in [38]. The work [22] shows how to compute
LZ-End—an LZ-like parsing—using O(z + �) compressed space and O(n log�) time
w.h.p., where � is the length of the longest phrase. The recent studies on the Run-
Length Burrows–Wheeler Transform (RLBWT) [15] and its connections to LZ [3,
39] have enabled the computation of the LZ parsing in compressed space O(r) and
time O(n log r) via RLBWT, where r is the number of runs in the RLBWT.

Relative Lempel–Ziv (RLZ) [27] is a variant of LZ that exploits another
approach: it uses a fixed external sequence, the reference, where the sources are to
be found, which performs well when the reference is carefully chosen [16, 33]. Dif-
ferent compressors have been proposed based on this idea [6, 7, 33]. When random
sampling of the text is used to build an artificial reference the expected encoded size
of the RLZ relates to the size of LZ [16], however the gap is still large in practice.
Some approaches have done a second pass of compression after RLZ [6, 19, 45] but
they do not produce an LZ-like parsing that could be compared with LZ.

1  Hereafter, log denote logarithm with base 2 if it is not explicitly stated otherwise.

1 3

Algorithmica	

In this paper we propose ReLZ , a parsing scheme that approximates the LZ pars-
ing by making use of RLZ as a preprocessing step. The phrases found by RLZ are
treated as metasymbols that form a new sequence, which is then parsed by LZ to
discover longer-range repetitions. The final result is then expressed as phrases of
the original text. The new sequence on which LZ is applied is expected to be much
shorter than the original, which avoids the memory problems of LZ. In exchange,
the parsing we obtain is limited to choose sources and targets formed by whole sub-
strings found by RLZ, and is therefore suboptimal.

We analyze the new scheme and prove that, like LZ, it achieves the kth order
empirical entropy compression nHk + o(n log �) (see definitions below) with
k = o(log

�
n) , where n is the length of the input string and � is the alphabet size. We

show that it is crucial for this result to use the so-called rightmost LZ encoding [2, 4,
5, 10, 29] in the second step of ReLZ ; to our knowledge, this is the first provable
evidence of the impact of the rightmost encoding. In fact, the result is more general:
we show that the rightmost encoding of any LZ-like parsing with O(n

log
�
n
) phrases

achieves the entropy compression when a variable length encoder is used for
phrases. One might interpret this as an indication of the weakness of the entropy
measure. We then relate ReLZ to LZ—the de facto standard for dictionary-based
compression—and prove that the number of phrases in ReLZ might be Ω(z log n) ;
we conjecture that this lower bound is tight. The new scheme is tested and, in all the
experiments, the number of phrases found by ReLZ never exceeded 2z (and it was
around 1.05z in some cases). In exchange, ReLZ computes the parsing faster than
the existing alternatives.

The paper is organized as follows. In Sects. 2 and 3 we introduce some nota-
tion and define the ReLZ parsing and its variations. Section 4 contains the empirical
entropy analysis. Section 5 establishes the Ω(z log n) lower bound. All experimental
results are in Sects. 6 and 7.

2 � Preliminaries

Let T[1, n] be a string of length n over the alphabet Σ = {1, 2,… , �} ; T[i] denotes
the ith symbol of T and T[i, j] denotes the substring T[i]T[i+1]⋯T[j] . A sub-
string T[i, j] is a prefix if i = 1 and a suffix if j = n . The reverse of T is the string
T[n]T[n − 1]⋯T[1] . The concatenation of two strings T and T ′ is denoted by T ⋅ T ′
or simply TT ′.

The zeroth order empirical entropy (see [24, 35]) of T[1, n] is defined as
H0(T) =

∑
c∈Σ

nc

n
log

n

nc
 , where nc is the number of symbols c in T and nc

n
log

n

nc
= 0

whenever nc = 0 . For a string W, let TW be a string formed by concatenating all sym-
bols immediately following occurrences of W in T[1, n]; e.g., Tab = aac for
T = abababc . The kth order empirical entropy of T[1, n] is defined as
Hk(T) =

∑
W∈Σk

�TW �
n
H0(TW) , where Σk is the set of all strings of length k over Σ

(see [24, 34, 35]). If T is clear from the context, Hk(T) is denoted by Hk . It is well
known that log � ≥ H0 ≥ H1 ≥ ⋯ and Hk makes sense as a measure of string com-
pression only for k < log

𝜎
n (see [12] for a deep discussion).

	 Algorithmica

1 3

The LZ parsing [49] of T[1, n] is a sequence of non-empty phrases (substrings)
LZ(T) = (P1,P2,… ,Pz) such that T = P1P2 ⋯Pz , built as follows. Assuming we
have already parsed T[1, i − 1] , producing P1,P2,… ,Pj−1 , then Pj is set to the long-
est prefix of T[i, n] that has a previous occurrence in T that starts before position
i. Such a phrase Pj is called a copying phrase, and its previous occurrence in T is
called the source of Pj . When the longest prefix is of length zero, the next phrase
is the single symbol Pj = T[i] , and Pj is called a literal phrase. This greedy parsing
strategy yields the least number of phrases (see [49, Th. 1]).

LZ compression consists in replacing copying phrases by backward pointers to
their sources in T, and T can obviously be reconstructed in linear time from these
pointers. A natural way to encode the phrases is as pairs of integers: for copy-
ing phrases Pj , a pair (dj,�j) gives the distance to the source and its length, i.e.,
�j = |Pj| and T[|P1 ⋯Pj−1| − dj + 1, n] is prefixed by Pj ; for literal phrases Pj = c , a
pair (c, 0) encodes the symbol c as an integer. Such encoding is called rightmost if
the numbers dj in all the pairs (dj,�j) are minimized, i.e., the rightmost sources are
chosen.

When measuring the compression efficiency of encodings, it is natural to assume
that � is a non-decreasing function of n. In such premises, if each dj component
occupies ⌈log n⌉ bits and each �j component takes O(1 + log�j) bits, then it is known
that the size of the LZ encoding is upperbounded by nHk + o(n log �) bits, provided
k is a function of n such that k = o(log

�
n) ; see [17, 24, 37]. In the sequel we also

utilize a slightly different encoding that, for each dj , uses a universal code [9, 32]
taking log dj + O(1 + log log dj) bits.

Other parsing strategies that do not necessarily choose the longest prefix of T[i, n]
are valid, in the sense that T can be recovered from the backward pointers. Those are
called LZ-like parses. Some examples are LZ-End [26], which forces sources to fin-
ish at the end of a previous phrase, LZ77 with sliding window [50], which restricts
the sources to start in T[i − w, i − 1] for a fixed windows size w, and the bit-optimal
LZ [10, 25], where the phrases are chosen to minimize the encoding size for a given
encoder of pairs.

The RLZ parsing [27] of T[1, n] with reference R[1,�] is a sequence of phrases
RLZ(T ,R) = (P1,P2,… ,Pz) such that T = P1P2 ⋯Pz , built as follows: Assuming
we have already parsed T[1, i − 1] , producing P1,P2,… ,Pj−1 , then Pj is set to the
longest prefix of T[i, n] that is a substring of R[1,�] ; by analogy to the LZ parsing,
Pj is a copying phrase unless it is of length zero; in the latter case we set Pj = T[i] ,
a literal phrase. Note that RLZ does not produce an LZ-like parsing as we have
defined it.

3 � ReLZ Parsing

First we present RLZpref [44], a variant of RLZ that instead of using an
external reference uses a prefix of the text as a reference to produce an LZ-
like parsing. The RLZpref parsing of T, given a parameter � , is defined as
RLZprefix(T ,𝓁) = LZ(T[1,𝓁]) ⋅ RLZ(T[𝓁 + 1, n], T[1,𝓁]) . That is, we first compress

1 3

Algorithmica	

T[1,�] with LZ, and then use that prefix as the reference to compress the rest,
T[� + 1, n] , with RLZ. Note that RLZpref is an LZ-like parsing.

The ReLZ algorithm works as follows. Given a text T[1, n] and a prefix size � , we
first compute the RLZpref parsing (P1,P2,… ,Pz�) (so that T = P1P2 ⋯Pz� ). Now we
consider the phrases Pj as atomic metasymbols, and define a string T �[1, z�] such
that, for every i and j, T �[i] = T �[j] iff Pi = Pj . Then we compress T �[1, z�] using LZ,
which yields a parsing (P�

1
,P�

2
,… ,P�

ẑ
) of T ′ . Finally, the result is transformed into an

LZ-like parsing of T in a straightforward way: each literal phrase P′
j
 corresponds to a

single phrase Pi and, thus, is left unchanged; each copying phrase P′
j
 has a source

T �[p, q] and is transformed accordingly into a copying phrase in T with the source
T[p�, q�] , where p� = |P1P2 ⋯Pp−1| + 1 and q� = |P1P2 ⋯Pq| . Figure 1 shows an
example.

Since both LZ [20] and RLZ [28] run in linear time, ReLZ can also be imple-
mented in time O(n).

Obviously, the first � symbols do not necessarily make a good reference for the
RLZ step in ReLZ . In view of this, it seems practically relevant to define the fol-
lowing variant of ReLZ : given a parameter � = o(n) , we first sample in a certain
way (for instance, randomly as in [16]) disjoint substrings of T with total length � ,
then concatenate them making a string A of length � , and apply ReLZ to the string
AT; the output encoding of T is the ⌈log n⌉-bit number � followed by an encoding of
the LZ-like parsing of AT produced by ReLZ . Nevertheless, throughout the paper
we concentrate only on the first version of ReLZ , which generates an LZ-like pars-
ing. This choice is justified by two observations: first, it is straightforward that the
key part in any analysis of the second ReLZ variant is in the analysis of ReLZ for
the string AT; and second, our experiments on real data comparing known sampling
methods (see Sect. 7.3) show that the first version of ReLZ leads to better compres-
sion, presumably because the improvements made by the sampling in the RLZ step
do not compensate for the need to keep the reference A.

4 � Empirical Entropy Upper Bound

Our entropy analysis relies on the following lemmas by Gagie [12], Ochoa and Nav-
arro [37] , and Gańczorz [17].

Fig. 1   An example of ReLZ , using prefix size � = 8 . The first line below the text shows the string T ′
corresponding to the RLZpref parsing. Note that the substring “GTC​CAA​” occurs twice, but RLZpref
misses this repetition because there is no similar substring in the reference. Nonetheless, both occur-
rences are parsed identically. The string T ′ is then parsed using LZ. The latter captures the repetition of
the sequence “fgh”, and when this parsing is remapped to the original text, it captures the repetition of
“GTC​CAA​”

	 Algorithmica

1 3

Lemma 1  ([12, Th. 1]) For any string T [1,n] and any integer k ≥ 0 ,
nHk(T) = min{log(1∕Pr(Q emits T))}, where the minimum is over all kth order
Markov processes Q.

Lemma 2  ([17] and [37, Lm. 3]) Let Q be a k th order Markov process. Any pars-
ing T = P1P2 ⋯Pc of a given string T [1, n] over the alphabet {1, 2,… , �}, where
all Pi are non-empty, satisfies:

where ci is the number of times Pi occurs in the sequence P1,P2,… ,Pc.

Recall that in this discussion � and k in Hk both are functions of n. Now we are to
prove that, as it turns out, the kth order empirical entropy is easily achievable by any
LZ-like parsing in which the number of phrases is O(n

log
�
n
) : it suffices to use the

rightmost encoding and to spend at most log dj + O(1 + log log dj + log�j) bits for
every pair (dj,�j) corresponding to a copying phrase (for instance, applying for dj
and �j universal codes, like Elias’s [9] or Levenshtein’s [32]). In the sequel we show
that, contrary to the case of LZ (see [24, 37]), it is not possible to weaken the
assumptions in this result—even for ReLZ—neither by using a non-rightmost
encoding nor by using log n + O(1 + log�j) bits for the pairs (dj,�j).

Lemma 3  Fix a constant 𝛼 > 0 . Given a string T[1, n] over the alphabet
{1, 2,… , �} with � ≤ O(n) and its LZ-like parsing T = P1P2 ⋯Pc such that c ≤ �n

log
�
n

, the rightmost encoding of the parsing in which every pair (dj,�j) corresponding to
a copying phrase takes log dj + O(1 + log log dj + log�j) bits occupies at most
nHk + o(n log �) bits, for k = o(log

�
n).

Proof  First, let us assume that k is a positive function of n, k > 0 . Since
k = o(log

�
n) , it implies that log

�
n = �(1) and � = o(n) . Therefore, all literal

phrases occupy O(� log �) = o(n log �) bits. For i ∈ {1, 2,… , c} , denote by ci the
number of times Pi occurs in the sequence P1,P2,… ,Pc . Let Pi1

,Pi2
,… ,Pici

 be the
subsequence of all phrases equal to Pi . Since the encoding we consider is rightmost,
we have di1 + di2 +⋯ + dici

≤ n . Therefore, by the concavity of the function log , we
obtain log di1 + log di2 +⋯ + log dici

≤ ci log
n

ci
= ci log

n

c
+ ci log

c

ci
 . Similarly, we

deduce log log d
i1
+ log log d

i2
+⋯ + log log d

ici

≤ c
i
log log

n

ci

 and
∑c

j=1
log�j ≤ c log

n

c∑c

j=1
log�j ≤ c log

n

c
 . Hence, the whole encoding occupies ∑c

i=1
(log

c

ci

+ O(log log
n

ci

))

+O(c log
n

c
) + o(n log �) bits. By Lemmas 1 and 2, this sum is upperbounded by

c∑

i=1

log
c

ci
≤ log

1

Pr(Q emits T)
+ O

(
ck log � + c log

n

c

)
,

(1)nHk + O(c log
n

c
+ ck log � +

c∑

i=1

log log
n

ci
) + o(n log �).

1 3

Algorithmica	

It remains to prove that all the terms under the big-O are o(n log �) . Since
k = o(log

�
n) and c ≤ �n

log
�
n
 , we have ck log � ≤ o(n log �) . As c log n

c
 is an increasing

function of c when c < n∕2 , we obtain c log n

c
≤ O(

n

log
�
n
log log

�
n) = o(n log �) .

Further, log log n

ci
= log(log

n

c
+ log

c

ci
) ≤ log log

n

c
+ O(log

c

ci
∕ log

n

c
) due to the ine-

quality log(x + d) ≤ log x +
d log e

x
 . The sum

∑c

i=1
log log

n

c
 is upperbounded by

c log
n

c
= o(n log �) . The sum

∑c

i=1
log

c

ci
∕ log

n

c
 is upperbounded by (c log c)∕ log n

c
 ,

which can be estimated as O((n log �)∕ log log
�
n) because c ≤

�n

log
�
n
 . Since

log
�
n = �(1) , this is again o(n log �).

Now assume that k = 0 ; note that in this case k = o(log
�
n) even for � = Ω(n) . It

is sufficient to consider only the case 𝜎 > 2
√
log n since, for � ≤ 2

√
log n , we have

� log � = o(n log �) and log
�
n ≥

√
log n = �(1) and, hence, the above analysis is

applicable. As � can be close to Θ(n) , the literal phrases might now take non-negli-
gible space. Let A be the subset of all symbols {1, 2,… , �} that occur in T. For
a ∈ A , denote by ia the leftmost phrase Pia

= a . Denote
C = {1, 2,… , c} ⧵ {ia ∶ a ∈ A} , the indices of all copying phrases. The whole
encoding occupies at most

∑
i∈C(log di + O(1 + log log d

i
+ log�

i
)) + �A� log �

+O(|A|(1 + log log �)) bits, which is upperbounded by ∑
i∈C log di + �A� log �A� + O(n + n log log n + c log

n

c
) + �A� log �

�A� . Observe that
n log log n ≤ o(n

√
log n) ≤ o(n log �) . Further, we have c log

n

c
≤ n and

|A| log �

|A| ≤ � , both of which are o(n log �) since � ≤ O(n) ≤ o(n log �) . It remains
to bound

∑
i∈C log di + �A� log �A� with nH0 + o(n log �).

Let us show that �A� log �A� ≤ ∑
a∈A log

n

cia
 . Indeed, we have

∑
a∈A log

n

cia
= log(n�A�∕

∏
a∈A cia) , which, since

∑
a∈A cia ≤ n , is minimized when all

cia are equal to n

|A| so that
∑

a∈A log
n

cia
≥ �A� log �A� . For i ∈ C , denote by c′

i
 the num-

ber of copying phrases equal to Pi , i.e., c�
i
= ci if |Pi| > 1 , and c�

i
= ci − 1 otherwise

(note that c′
i
> 0 for all i ∈ C ). As in the analysis for k > 0 , we obtain ∑

i∈C log di ≤
∑

i∈C log
n

c�
i

 . Fix i ∈ C such that |Pi| = 1 . Using the inequality
log(x − d) ≥ log x −

d log e

x−d
 , we deduce log n

c�
i

= − log(
ci

n
−

1

n
) ≤ log

n

ci
+

log e

c�
i

 . There-
fore, �A� log �A� +∑

i∈C log
n

c�
i

≤
∑c

i=1
log

n

ci
+ c log e =

∑c

i=1
log

c

ci
+ c log

n

c
+ O(n) .

By Lemmas 1 and 2, this is upperbounded by (1). As k = 0 , the terms under the
big-O of (1) degenerate to c log

n

c
+
∑c

i=1
log log

n

ci
 , which is

O(n log log n) ≤ o(n log �) . 	� ◻

It follows from the proof of Lemma 3 that, instead of the strict rightmost
encoding, it is enough to choose, for each copying phrase Pj of the LZ-like pars-
ing, the closest preceding equal phrase—i.e., Pi = Pj with maximal i < j—as a
source of Pj , or any source if there is no such Pi . This observation greatly simpli-
fies the construction of an encoding that achieves the Hk bound. Now let us return
to the discussion of the ReLZ parsing.

	 Algorithmica

1 3

Lemma 4  The number of phrases in the ReLZ parsing of any string T[1, n] over the
alphabet {1, 2,… , �} is at most 9n

log
�
n
 , independent of the choice of the prefix param-

eter �.

Proof  For � ≥ n1∕9 , we have 9n

log
�
n
≥ n and, hence, the claim is obviously true.

Assume that 𝜎 < n1∕9 . As � ≥ 2 , this implies n > 29 = 512 . Suppose that
T = P1P2 ⋯Pẑ is the ReLZ parsing, for a given prefix size � . We are to prove that
there are at most 1 + 2

√
n indices j < ẑ such that |Pj| <

1

4
log

𝜎
n and

|Pj+1| <
1

4
log

𝜎
n . This will imply that every phrase of length less than 1

4
log

�
n is fol-

lowed by a phrase of length at least 1
4
log

�
n , except for at most 2 + 2

√
n exceptions

( 1 + 2
√
n plus the last phrase). Therefore, the total number of phrases is at most

2 + 2
√
n +

2n

(1∕4) log
�
n
= 2 + 2

√
n +

8n

log
�
n
 ; the term 2 + 2

√
n is upperbounded by n

log
�
n

since n > 512 , and thus, the total number of phrases is at most 9n

log
�
n
 as required.

It remains to prove that there are at most 1 + 2
√
n pairs of “short” phrases Pj,Pj+1 .

First, observe that any two equal phrases of the LZ parsing of the prefix T[1,�] are
followed by distinct symbols, except, possibly, for the last phrase. Hence, there are
at most 1 +

∑⌊ 1

4
log

�
n⌋

k=1
�
k+1 ≤ 1 + �

2
�

1

4
log

�
n
≤ 1 + n2∕9n1∕4 ≤ 1 +

√
n phrases of

length less than 1
4
log

�
n in the LZ parsing of T[1,�] . Further, there cannot be two

distinct indices j < j′ < ẑ such that Pj = Pj� , Pj+1 = Pj�+1 , and |P1P2 ⋯Pj−1| ≥ 𝓁
(i.e., Pj and Pj′ both are inside the T[� + 1, n] part of T): indeed, the RLZ step of
ReLZ necessarily parses the substrings Pj , Pj+1 and Pj′ , Pj�+1 equally, and then, the
LZ step of ReLZ should have realized during the parsing of Pj�Pj�+1 that this string
occurred previously in PjPj+1 and it should have generated a new phrase comprising
Pj�Pj�+1 . Therefore, there are at most �

1

4
log

�
n
�

1

4
log

�
n
=
√
n indices j < ẑ such that Pj

and Pj+1 both are “short” and PjPj+1 is inside T[� + 1, n] . In total, we have at most
1 + 2

√
n phrases Pj such that |Pj| <

1

4
log

𝜎
n and |Pj+1| <

1

4
log

𝜎
n . 	� ◻

Lemmas 3 and 4 immediately imply the following theorem.

Theorem 1  Given a string T[1, n] over the alphabet {1, 2,… , �} with � ≤ O(n),
the rightmost encoding of any ReLZ parsing of T in which every pair (dj,�j) corre-
sponding to a copying phrase takes log dj + O(1 + log log dj + log�j) bits occupies
nHk + o(n log �) bits, for k = o(log

�
n).

For LZ, it is not necessary to use neither the rightmost encoding nor less than
log n bits for the dj components of pairs in order to achieve the kth order empirical
entropy with k = o(log

�
n) . In view of this, the natural question is whether the ReLZ

really requires these two assumptions of Theorem 1. The following example shows
that indeed the assumptions cannot be simply removed.

Example 1  Fix an integer b ≥ 3 . Our example is a string of length n = b22b + 2b over
the alphabet {0, 1, 2} . Denote by a1, a2,… , a2b all possible binary strings of length
b. Put A = a12a22⋯ a2b2 ( a1, a2,… , a2b separated by 2s). The example string is
T = AB1B2 ⋯B2b−1 , where each string Bh is the concatenation of a1, a2,… , a2b in a

1 3

Algorithmica	

certain order such that every pair of distinct strings ai and aj can be concatenated in
B1B2 ⋯B2b−1 at most once. More precisely, we have 2b − 1 permutations �h of the
set {1, 2,… , 2b} , for 1 ≤ h < 2b , such that Bh = a

�h(1)
a
�h(2)

⋯ a
�h(2

b) and, for every
integers i and j with 1 ≤ i < j ≤ 2b , at most one h satisfies �h(2b) = i and �h+1(1) = j ,
or �h(k) = i and �h(k + 1) = j , for some k < 2b.

Let us show that the permutations �h can be constructed from a decomposi-
tion of the complete directed graph K∗

2b
 with 2b vertices into 2b − 1 disjoint Ham-

iltonian directed cycles; Tillson [43] proved that such decomposition always exists
for 2b ≥ 8 . (Note that the number of edges in K∗

2b
 is 22b − 2b and every Hamiltonian

cycle contains 2b edges, so 2b − 1 is the maximal number of disjoint cycles.) Denote
the vertices of K∗

2b
 by 1, 2,… , 2b . Every Hamiltonian cycle naturally induces 2b per-

mutations � : we arbitrarily choose �(1) and then, for k > 1 , put �(k) equal to the
vertex number following �(k − 1) in the cycle. Since the cycles are disjoint, any two
distinct numbers i and j cannot occur in this order in two permutations correspond-
ing to different cycles, i.e., �h(k) = i and �h(k + 1) = j , for some k, can happen at
most in one h; further, we put �1(1) = 1 and, for h > 1 , we assign to �h(1) the vertex
number following �h−1(2b) in the cycle corresponding to �h−1 , so that �h−1(2b) = i
and �h(1) = j , for fixed i and j, can happen in at most one h.

Put � = |A| , the parameter of ReLZ . Clearly, the RLZ step of ReLZ parses
B1B2 ⋯B2b−1 into 2b(2b − 1) phrases of length b. By construction, all equal phrases
in the parsing are followed by distinct phrases. Therefore, the LZ step of ReLZ does
not reduce the number of phrases. Suppose that the source of every copying phrase
is in A (so, we assume that the encoding is not rightmost) and we spend at least log dj
bits to encode each pair (dj,�j) corresponding to a copying phrase. Therefore, the
encoding overall occupies at least

∑2b(2b−1)

i=1
log(ib) bits, which can be lowerbounded

by
∑22b−2b

i=1
log i = log((22b − 2b)!) = (22b − 2b) log(22b − 2b) − O(22b) . Recall that

n = b22b + 2b and, hence, b = Θ(log n) , 22b = o(n) , and 2b log(22b − 2b) = o(n) .
Thus, (22b − 2b) log(22b − 2b) − O(22b) ≥ 22b log(22b − 2b) − o(n) . By
the inequality log(x − d) ≥ log x −

d log e

x−d
 , the latter is lowerbounded by

22b log(22b) − O(22b2b∕(22b − 2b)) − o(n) = 2b22b − o(n) = 2n − o(n) . On the other
hand, we obviously have H0(T) ≈ 1 and, thus, nH0(T) = n − o(n) . Therefore, the
non-rightmost encoding, which forced us to use at least ∼ log n bits for many pairs
(dj,�j) , does not achieve the zeroth empirical entropy of T.

5 � Lower Bound

We have not been able to upper bound the number of phrases ẑ resulting from
ReLZ in terms of the optimal number z of phrases produced by the LZ parsing of
T. Note that, in the extreme cases � = n and � = 0 , we have ẑ = z , but these are
not useful choices: in the former case we apply LZ(T) in the first phase and in the
latter case we apply LZ(T �) , with T � ≈ T  , in the second phase. In this section, we
obtain the following lower bound.

	 Algorithmica

1 3

Theorem 2  There is an infinite family of strings over the alphabet {0, 1, 2} such
that, for each family string T[1, n], the number of phrases in its ReLZ parse (with
an appropriate parameter � = o(n)) and its LZ parse—respectively, ẑ and z—are
related as ẑ = Ω(z log n).

Proof  The family contains, for each even positive integer b, a string T of length
Θ(b22b) built as follows. Let A be the concatenation of all length-b binary strings in
the lexicographic order, separated by the special symbol 2 and with 2 in the end. Let
S be the concatenation of all length-b binary strings in the lexicographic order. (E.g.,
A = 002012102112 and S = 00011011 for b = 2 .) Finally, let Si be S cyclically
shifted to the left i times, i.e., Si = S[i + 1, |S|] ⋅ S[1, i] . Then, put T = AS1S2 ⋯ S b

2

and we use � = |A| as a parameter for ReLZ . So n = |T| = Θ(b22b) and log n = Θ(b) .
We are to prove that z = |LZ(T)| = O(2b) and ẑ = |ReLZ(T ,�)| = Ω(b2b) , which
will imply ẑ = Ω(z log n) , thus concluding the proof.

By [49, Th. 1], the LZ parse has the smallest number of phrases among all LZ-
like parses of T. Therefore, to show that z = O(2b) , it suffices to describe an LZ-
like parse of T with O(2b) phrases. Indeed, the prefix A can be parsed into O(2b)
phrases as follows: all symbols 2 form phrases of length one; the first length-b
substring 00⋯ 0 can be parsed into b literal phrases 0; every subsequent binary
length-b substring a1a2 ⋯ ab with ak = 1 and ak+1 = ak+2 = ⋯ = ab = 0 , for
some k ∈ {1, 2,… , b} , can be parsed into the copying phrase a1a2 ⋯ ak−1 (which
must be a prefix of the previous length-b binary substring a1a2 ⋯ ak−1011⋯ 1 ,
due to the lexicographic order in A), the literal phrase 1, and the copying phrase
ak+1ak+2 ⋯ ab = 00⋯ 0 . The string S1 can be analogously parsed into O(2b) phrases.
Each Si , i > 2 , can be expressed as two phrases that point to S1 . Thus, we obtain
z ≤ |LZ(A)| + |LZ(S1)| + 2(b∕2 − 1) = O(2b).

Now consider ẑ . The first phase of ReLZ(T ,�) parses T into phrases whose
sources are restricted to be within T[1,�] = A . Therefore, it is clear that, for any
i ∈ {1, 2,… ,

b

2
} , Si will be parsed into 2b strings of length b, because every length-

b string is in A separated by 2s. In what follows we show that the second phase of
ReLZ cannot further reduce the number of phrases and, hence, ẑ ≥ b

2
2b = Ω(b2b) as

required.
Let us consider Si and Sj , for some i < j , and let us denote their parsings by

R1,R2,… ,R2b and R�
1
,R�

2
,… ,R�

2b
 , respectively. Suppose that there are indices k and

h such that Rk = R�
h
 . We are to prove that Rk+1 ≠ R�

h+1
 (assuming Rk+1 is the length-b

prefix of Si+1 if k = 2b , and analogously for h = 2b ). This will imply that all phrases
produced by the second phase of ReLZ on the string of metasymbols are of length
one.

Consider the case k < 2b and h < 2b . Let us interpret the bitstrings of length
b as numbers so that the most and the least significant bits are indexed by 1 and
b, respectively2; e.g., in the string 01, for b = 2 , the least significant bit is the
second symbol and equals 1. In this way we can see S = Q1Q2 ⋯Q2b , where

2  To conform with the indexation scheme used throughout the paper, we do not follow the standard prac-
tice to index the least significant bit as zeroth.

1 3

Algorithmica	

|Q1| = ⋯ = |Q2b | = b , as generated by adding 1 to the previous bitstring, starting
from Q1 = 00⋯ 0 . Now, the (b − i) th symbols of Rk and Rk+1 are different since they
correspond to the lowest bit in Q1,Q2,… ,Q2b (thus, the (b − i) th symbol alternates
in R1,… ,R2b , starting from 0). Suppose that the (b − i) th symbols of R′

h
 and R�

h+1

also differ (otherwise our claim is trivially true). Since 0 < i < j , this implies that
the symbols b, b − 1,… , b − i + 1 in R′

h
 and 1, 2,… , b − j in R�

h+1
 all are equal to 1

(this cascade of ones triggers the change in the (b − i) th symbol of R�
h+1

 ), the sym-
bols b, b − 1,… , b − i + 1 in R�

h+1
 equal 0 (as a result of the “collapse” of the cas-

cade), and the (b − j) th symbol in R′
h
 equals 0 (since (b − j) th symbols alternate in

R�
1
,… ,R�

2b
 and the (b − j) th symbol in R�

h+1
 equals 1 as a part of the cascade).

In the following example b = 12 , i = 4 , j = 8 , ⋄ denotes irrelevant symbols (not
necessarily equal), x and x denote the flipped (b − i) th symbol, the (b − j) th symbol
is underlined:

When we transform Rk = R�
h
 to Rk+1 , we “add” 1 to the bit corresponding to the

(b − i) th symbol of Rk and the zero at position b − j will stop carrying the 1, so that
we necessarily have zero among the symbols b − i, b − i − 1,… , b − j of Rk+1 (in
fact, one can show that they all are zeros except for b − j ). Thus, the next “addition”
of 1 to the (b − i) th symbol of Rk+1 cannot carry farther than the (b − j) th symbol
and so the symbols b, b − 1,… , b − i + 1 will remain equal to 1 in Rk+1 whilst in
R�
h+1

 they are all zeros. Therefore, R�
h+1

≠ Rk+1.
In the case k = 2b,Rk = 11⋯ 100⋯ 0 , with b − i ones, is followed

by Rk+1 = 00⋯ 0 , with b zeros. But, since R�
h
= Rk and i < j , we have

R�
h+1

= 00⋯ 011⋯ 100⋯ 0 , with j − i ones, after “adding” 1 to the (b − j) th sym-
bol of R′

h
 . The case h = 2b is analogous. 	� ◻

6 � Implementation

To build RLZpref  , we first compute LZ(T[1,�]) and then RLZ(T[� + 1, n], T[1,�]) .
For both of them, we utilize the suffix array of T[1,�] , which is constructed using
the algorithm libdivsufsort [18, 48]. To compute LZ(T[1,�]) , we use the
KKP3 algorithm [20]. To compute RLZ(T[� + 1, n], T[1,�]) , we scan T[� + 1, n]
looking for the longest match in T[1,�] by the standard suffix array based pattern
matching.

The output phrases are encoded as pairs of integers: each pair (pj,�j) represents
the position, pj , of the source for the phrase and the length, �j , of the phrase (note

R�
h
= ⋄⋄⋄0⋄⋄⋄x1111,

R�
h+1

= 1111⋄⋄⋄x0000.

	 Algorithmica

1 3

that this is in contrast to the “distance-length” pairs (dj,�j) that we had for encod-
ings). We then map the output into a sequence of numbers using 2⌈log�⌉-bit inte-
gers with ⌈log�⌉ bits for each pair component. This is possible because we enforce
that our reference size is � ≥ �.

Finally, we compute the LZ parse using a version of KKP3 for large alphabets,
relying on a suffix array construction algorithm for large alphabets [18, 30]. We then
remap the output of LZ to point to positions in T as described.

6.1 � A Recursive Variant

When the input is too big compared to the available RAM, it is possible that after
the first compression step, RLZpref  , the resulting parse is still too big to fit in mem-
ory, and therefore it is still not possible to compute its LZ parse efficiently. To over-
come this issue in practice, we propose a recursive variant, which takes as input the
amount of available memory. The first step remains the same, but in the second step
we make a recursive call to ReLZ , ignoring the phrases that were already parsed
with LZ, and using the longest possible � value for the given amount of RAM. This
recursive process continues until the LZ parse can be computed in memory. It is also
possible to give an additional parameter that limits the number of recursive calls. We
use the recursive version only in the last set of experiments when comparing with
other LZ parsers in Sect. 7.4 (Fig. 2).

6.2 � A Better Mapping

When the recursive approach is used we need a better mapping from pairs of inte-
gers into integers: the simple approach described above requires 2 log� bits for the
alphabet after the first iteration, but in the following iterations the assumption � ≤ �
may not hold anymore and the amount of bits required to store the first values may
increase at each iteration. We propose a simple mapping that overcomes this prob-
lem. Let �i be the size of the alphabet used by the metasymbols after the ith itera-
tion. To encode the metasymbols of the (i + 1)-iteration we use first a flag bit to indi-
cate whether the phrase is literal or copying. If the flag is 0, then it is a literal phrase

Fig. 2   Example of the recursive ReLZ approach, assuming that the available memory limits the compu-
tation of LZ to sequences of length 5. The figure only shows the recursive parsing. The rewriting of the
phrases proceeds later, bottom up, in a similar fashion as depicted in Fig. 1

1 3

Algorithmica	

(c, 0) and log �i bits are used to store the c value. If the flag is 1, then it is a copying
phrase (pi,�i) and then 2 log� bits are used to store the numbers. In this way, after
each iteration the number of bits required to store the metasymbols increases only
by 1.

We implemented ReLZ in C++ and the source code is available under GPLv3
license in https​://gitla​b.com/dvale​nzu/ReLZ. The implementation allows the user to
set the value of � or, alternatively, to provide the maximum amount of RAM to be
used. Additionally, scripts to reproduce our experiments are available at https​://gitla​
b.com/dvale​nzu/ReLZ_exper​iment​s. For the experimental evaluation, we used col-
lections of different sizes and kinds. They are listed in Table 1 with their main prop-
erties. The experiments were run on a desktop computer equipped with a Intel(R)
Core(TM) i5-7500 CPU, with 4 cores, 3.60 GHz and 16 GB of RAM.

7 � Experimental Evaluation

7.1 � Entropy Coding

First we compare the encoded size of ReLZ with the k-order empirical entropy, and
also with the encoded size of LZ77. For both ReLZ and LZ77 we used Elias-gamma
codes. The results are presented in Table 2.

We observe that in the small and low-repetition collections (English and source)
ReLZ requires some extra space than Hk for higher values of k. This can be attrib-
uted to the o() term in our analysis. Also we observe the same behavior for LZ77. As
expected, for the highly repetitive collections, both ReLZ and LZ77 use less space
than the entropy. This is due to the known fact that for highly repetitive collections, z
is a better measurement of the compressibility than the empirical entropy. Therefore,
in the following sections, we proceed to study empirically how does ReLZ compare
to LZ77 in terms of number of phrases produced by the parsers.

Table 1   Collections used for
the experiments, some basics
statistics, and a brief description
of their source

The first group includes medium-sized collections, from 45 to 202
MiB, while the second group consist of large collections, from 22 to
64 GiB. Each group has both regular collections and highly repeti-
tive collections, attested by the average phrase length n/z

Name � n n/z Type Source

English 225 200 MiB 15 English text Pizzachili
Sources 230 202 MiB 18 Source code Pizzachili
Influenza 15 148 MiB 201 Genomes Pizzachili
Leaders 89 45 MiB 267 English text Pizzachili
Wiki 215 24 GiB 90 Web pages Wikipedia dumps
Kernel 229 64 GiB 2439 Source code Linux Kernel
CereHR 5 22 GiB 3746 Genomes Pizzachili

https://gitlab.com/dvalenzu/ReLZ
https://gitlab.com/dvalenzu/ReLZ_experiments
https://gitlab.com/dvalenzu/ReLZ_experiments

	 Algorithmica

1 3

7.2 � Effect of Reference Sizes

We first study how the size of the prefix used as a reference influences the number
of phrases produced by RLZpref and ReLZ . These experiments are carried out only
using the medium-sized collections, so that we can run ReLZ using arbitrarily large

Table 2   Empirical entropy of order k of our collections for k = 1, 2,… 6 ; and encoded size of ReLZ and
LZ77. All values are expressed as bits per character (bpc)

Name Entropy H
k

ReLZ (bpc); � = LZ (bpc)

H0 H1 H2 H3 H4 H5 H6 10 MB 50 MB

English 4.52 3.62 2.94 2.42 2.06 1.83 1.67 3.53 3.02 2.65
Sources 5.46 4.07 3.10 2.33 1.85 1.51 1.24 2.97 2.64 1.94
Influenza 1.97 1.93 1.92 1.92 1.91 1.87 1.76 0.29 0.24 0.20
Leaders 3.47 1.95 1.38 0.93 0.60 0.40 0.32 0.15 0.13 0.13
Wiki 5.27 3.86 2.35 1.49 1.08 0.86 0.71 0.79 0.80 0.56
Kernel 5.58 4.14 3.16 2.39 1.92 1.58 1.32 0.02 0.02 0.018
CereHR 2.19 1.81 1.81 1.80 1.80 1.80 1.80 0.02 0.02 0.013

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 0.2 0.4 0.6 0.8 1

Sources

RLZPRE
ReLZ

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.2 0.4 0.6 0.8 1

English

RLZPRE
ReLZ

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

Influenza
RLZPRE
ReLZ

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

Leaders
RLZPRE
ReLZ

Fig. 3   Performance of RLZpref (green) and ReLZ (blue) for different prefix-reference sizes on medium-
sized inputs. The y-axis shows the approximation ratio ẑ∕z . The x-axis shows �∕n , the size of the prefix-
reference expressed as a fraction of the input size (Color figure online)

1 3

Algorithmica	

prefixes as references and without recursions. We ran both algorithms using differ-
ent values of � = n∕10, 2n∕10,… , n.

The results are presented in Fig. 3. By design, both algorithms behave as LZ
when � = n . RLZpref starts far off from LZ and its convergence is not smooth but
“stepped”. The reason is that at some point, by increasing � , the reference captures
a new sequence that has many repetitions that were not well compressed for smaller
values of � . Thus RLZpref is very dependent on the choice of the reference. ReLZ ,
in contrast, is more robust since the second pass of LZ does capture much of those
global repetitions. This results in ReLZ being very close to LZ even for � = n∕10 ,
particularly in the highly repetitive collections.

7.3 � Reference Construction

As discussed in Sect. 3, the idea of a second compression stage applied to the
phrases can be applied not only when the reference is a prefix, but also when an
external reference is used. This allows us to study variants of ReLZ combined with
different strategies to build the reference that aim for a better compression in the first
stage.

In this section we experimentally compare the following approaches:

PREFIX: Original version using a prefix as a reference.
RANDOM: An external reference is built as a concatenation of random samples of
the collection [16, 19].
PRUNE: A recent method [33] that takes random samples of the collections and
performs some pruning of redundant parts to construct a better reference.

An important caveat is that methods using an external reference also need to account
for the reference size in the compressed representation because the reference is
needed to recover the output. For each construction method, we measure the number
of phrases produced for the string “reference + text” (only “text” for the method
PREFIX) by the first stage ( RLZpref with prefix equal to the reference) and by the
second stage (LZ on metasymbols corresponding to the phrases), using three refer-
ence sizes: 8MB, 400MB, and 1GB. We compare the numbers to z, the number of
phrases in the LZ parsing of the plain text. This experiment was performed on the
large collections and the results are presented in Fig. 4.

We observe that the second stage of ReLZ reduces the number of phrases dra-
matically, regardless of the reference construction method. ReLZ with the origi-
nal method PREFIX achieves the best ratios as it does not need to account for the
external reference. Depending on the reference size, the approximation ratio in
Wiki ranges between 1.4 and 1.29, in CereHR between 1.84 and 1.63, and in Kernel
between 1.49 and 1.03.

Additionally, we observe that although PRUNE can improve the results of the
RLZpref stage, after the second stage the improvements do not compensate for the
need to keep an external reference. This is particularly clear for the largest reference
in our experiments.

	 Algorithmica

1 3

7.4 � Lempel–Ziv Parsers

In this section we compare the performance and scalability of ReLZ against other
Lempel–Ziv parsers that can also run in small memory (this time, using the recur-
sive version of ReLZ).

EMLZ [21]: External-memory version of the exact LZ algorithm, with memory
usage limit set to 4GB.
LZ-End [22]: An LZ-like parsing that gets close to LZ in practice.
ORLBWT [3]: Computes the exact LZ parsing via online computation of the
RLBWT using small memory.
RLZPRE : Our RLZpref algorithm (Section 3), with memory usage limit set to
4GB.
ReLZ: Our ReLZ algorithm (Section 3), with memory usage limit set to 4GB.

To see how well the algorithms scale with larger inputs, we took prefixes of dif-
ferent sizes of all the large collections and ran all the parsers on them. We meas-
ured the running time of all of the algorithms and, for the algorithms that do not
compute the exact LZ parsing, we also measured the approximation ratio ẑ∕z . The
results are presented in Fig. 5.

 1

 10

8MB

Wiki
RLZ

ReLZ

RandomPrunePrefix
 1

 10

 100

 1000

8MB400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB 400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB

CereHR
RLZ

ReLZ

RandomPrunePrefix

 1

 10

 100

 1000

8MB 400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB

Kernel
RLZ

ReLZ

RandomPrunePrefix

Fig. 4   Approximation ratio ẑ∕z for different methods to construct the reference and different reference
lengths: in green the results after RLZpref  , and in blue after ReLZ . Note that the highly repetitive collec-
tions (CereHR and Kernel) use logarithmic scale (Color figure online)

1 3

Algorithmica	

Figure 5 (left) shows that ReLZ is much faster than all the previous methods
and also that the speed is almost unaffected when processing larger inputs. Fig-
ure 5 (right) shows that the approximation ratio of ReLZ is affected very mildly
as the input size grows, especially in the highly repetitive collections. For the
normal collections, the approximation factor is more affected but it still remains
below 2.

7.5 � Compression Ratio

In this section we study the compression ratio of ReLZ . We store the pos and len
values in separate files, encoding them using a modern implementation of PFOR

 0

 5×10−7

 1×10−6

 1.5×10−6

 2×10−6

229 230 231 232 233 234

CereHR

EMLZ
LZ−End
ORLBWT
RLZPRE
ReLZ

 1

 2

 3

 4

 5

 6

229 230 231 232 233 234

CereHR

LZ−End
RLZPRE
ReLZ

 0

 5×10−7

 1×10−6

 1.5×10−6

 2×10−6

 2.5×10−6

 3×10−6

231 232 233

Kernel

EMLZ
LZ−End
ORLBWT
RLZPRE
ReLZ

 0

 1

 2

 3

 4

 5

 6

231 232 233 234 235 236

Kernel

LZ−End
RLZPRE
ReLZ

 0

 5×10−7

 1×10−6

 1.5×10−6

 2×10−6

 2.5×10−6

229 230 231 232 233 234

Wiki

EMLZ
LZ−End
ORLBWT
RLZPRE
ReLZ

 1

 1.2

 1.4

 1.6

 1.8

 2

229 230 231 232 233 234

Wiki

LZ−End
RLZPRE
ReLZ

Fig. 5   Performance of different LZ parsers in the large collections. The x axis is the size of the input:
increasingly larger prefixes of a given collection. Plots on the left show the running time in seconds per
MiB. Plots on the right show the approximation ratio ẑ∕z

	 Algorithmica

1 3

codes [31] in combination with a fast entropy coder [8]. We compare against state of
the art compressors (LZMA, Brotli) and also agains a very recent RLZ compressor
(RLZ-store). We measure compression ratios, compression times and decompres-
sion times of these tools in the large collections, whose size exceeds the available
RAM of the system.

The results are shown in Fig. 6. In the normal collection (Wiki) the perfor-
mance of ReLZ is competitive with the state of the art compressors. In the highly
repetitive collections (Cere, Kernel) ReLZ gives the best compression ratios, with
very similar compression times and competitive decompression times.

Additionally, we run a comparisson again GDC2 and FRESCO. Both tools are
designed to compress a collection of files, using one (or more) as a reference,
and perform referential compression plus second order compression. GDC2 is

 0

 5000

 10000

 15000

 20000

 25000

 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11

Wiki

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 0

 50

 100

 150

 200

 250

 300

 350

 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11

Wiki

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 0.05 0.1 0.15 0.2 0.25 0.3

CereHR

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.05 0.1 0.15 0.2 0.25 0.3

CereHR

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Kernel

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Kernel

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

Fig. 6   Compression results for large collections. The x-axis is the ratio between output and input, and the
y-axis is the total compression time in seconds

1 3

Algorithmica	

specifically designed to compress collections of genomes in FASTA format, and
it exploits known facts about genomes collections (e.g. an important amount of
the variations are changes in a single character). For this, we use a 90 GB collec-
tion comprising 2001 different versions of chromosome 21. As expected, GDC2
was the dominant tool, with a compression ratio of 0.00020, compression time of
15 min and decompression time of 15 min. ReLZ compression ratio was 0.00047,
compression time was 49 min and decompression time was 50 min. We stopped
FRESCO execution after 8 hours, when it had processed slightly more than half
of the collection.

Acknowledgements  This work started during Shonan Meeting 126 “Computation over Compressed
Structured Data”. Funded in part by EU’s Horizon 2020 research and innovation programme under Marie
Skłodowska-Curie Grant Agreement No. 690941 (project BIRDS).

References

	 1.	 Alakuijala, J., Farruggia, A., Ferragina, P., Kliuchnikov, E., Obryk, R., Szabadka, Z., Vandevenne,
L.: Brotli: a general-purpose data compressor. ACM Trans. Inf. Syst. 37(1), 4 (2018). https​://doi.
org/10.1145/32319​35

	 2.	 Amir, A., Landau, G.M., Ukkonen, E.: Online timestamped text indexing. Inf. Process. Lett. 82(5),
253–259 (2002). https​://doi.org/10.1016/S0020​-0190(01)00275​-7

	 3.	 Bannai, H., Gagie, T., I, T.: Online LZ77 parsing and matching statistics with RLBWTs. In: Pro-
ceedings of the CPM 2018, LIPIcs, vol. 105, pp. 7:1–7:12. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik (2018). https​://doi.org/10.4230/LIPIc​s.CPM.2018.7

	 4.	 Belazzougui, D., Puglisi, S.J.: Range predecessor and Lempel–Ziv parsing. In: Proceedings of the
SODA 2016, pp. 2053–2071. SIAM (2016). https​://doi.org/10.1137/1.97816​11974​331.ch143​

	 5.	 Bille, P., Cording, P.H., Fischer, J., Gørtz, I.L.: Lempel–Ziv compression in a sliding window. In:
Proceedings of the CPM 2017, LIPIcs, vol. 78. Schloss Dagstuhl–Leibniz–Zentrum für Informatik
(2017). https​://doi.org/10.4230/LIPIc​s.CPM.2017.15

	 6.	 Deorowicz, S., Danek, A., Niemiec, M.: GDC 2: compression of large collections of genomes. Sci.
Rep. 5, 11565 (2015). https​://doi.org/10.1038/srep1​1565

	 7.	 Deorowicz, S., Grabowski, S.: Robust relative compression of genomes with random access. Bioin-
formatics 27(21), 2979–2986 (2011). https​://doi.org/10.1093/bioin​forma​tics/btr50​5

	 8.	 Duda, J.: Asymmetric numeral systems as close to capacity low state entropy coders. CoRR
abs/1311.2540 (2013). http://arxiv​.org/abs/1311.2540

	 9.	 Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory
21(2), 194–203 (1975). https​://doi.org/10.1109/TIT.1975.10553​49

	10.	 Ferragina, P., Nitto, I., Venturini, R.: On the bit-complexity of Lempel-Ziv compression. SIAM J.
Comput. 42(4), 1521–1541 (2013). https​://doi.org/10.1137/12086​9511

	11.	 Fischer, J., Gagie, T., Gawrychowski, P., Kociumaka, T.: Approximating LZ77 via small-space mul-
tiple-pattern matching. In: Proceedings of the ESA 2015, LNCS, vol. 9294, pp. 533–544. Springer
(2015). https​://doi.org/10.1007/978-3-662-48350​-3_45

	12.	 Gagie, T.: Large alphabets and incompressibility. Inf. Process. Lett. 99(6), 246–251 (2006). https​://
doi.org/10.1016/j.ipl.2006.04.008

	13.	 Gagie, T., Manzini, G.: Space-conscious compression. In: Proc. MFCS 2007, LNCS, vol. 4708, pp.
206–217. Springer (2007). https​://doi.org/10.1007/978-3-540-74456​-6_20

	14.	 Gagie, T., Navarro, G., Prezza, N.: On the approximation ratio of Lempel–Ziv parsing. In: Pro-
ceedings of the LATIN 2018, LNCS, vol. 10807, pp. 490–503. Springer (2018). https​://doi.
org/10.1007/978-3-319-77404​-6_36

	15.	 Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs bounded space. In: Pro-
ceedings of the SODA 2018, pp. 1459–1477. SIAM (2018). https​://doi.org/10.1137/1.97816​11975​
031.96

https://doi.org/10.1145/3231935
https://doi.org/10.1145/3231935
https://doi.org/10.1016/S0020-0190(01)00275-7
https://doi.org/10.4230/LIPIcs.CPM.2018.7
https://doi.org/10.1137/1.9781611974331.ch143
https://doi.org/10.4230/LIPIcs.CPM.2017.15
https://doi.org/10.1038/srep11565
https://doi.org/10.1093/bioinformatics/btr505
http://arxiv.org/abs/1311.2540
https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1137/120869511
https://doi.org/10.1007/978-3-662-48350-3_45
https://doi.org/10.1016/j.ipl.2006.04.008
https://doi.org/10.1016/j.ipl.2006.04.008
https://doi.org/10.1007/978-3-540-74456-6_20
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1137/1.9781611975031.96
https://doi.org/10.1137/1.9781611975031.96

	 Algorithmica

1 3

	16.	 Gagie, T., Puglisi, S.J., Valenzuela, D.: Analyzing relative Lempel–Ziv reference construction.
In: Proceedings of the SPIRE 2016, LNCS, vol. 9954, pp. 160–165. Springer (2016). https​://doi.
org/10.1007/978-3-319-46049​-9_16

	17.	 Gańczorz, M.: Entropy bounds for grammar compression. CoRR abs/1804.08547 (2018). http://
arxiv​.org/abs/1804.08547​

	18.	 Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with succinct data
structures. In: Proceedings of the SEA 2014, LNCS, vol. 8504, pp. 326–337. Springer (2014). https​
://doi.org/10.1007/978-3-319-07959​-2_28

	19.	 Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel–Ziv factorization for efficient storage and
retrieval of web collections. Proc. VLDB Endow. 5(3), 265–273 (2011). https​://doi.org/10.14778​
/20783​31.20783​41

	20.	 Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel–Ziv factorization: Simple, fast,
small. In: Proceedings of the CPM 2013, LNCS, vol. 7922, pp. 189–200. Springer (2013). https​
://doi.org/10.1007/978-3-642-38905​-4_19

	21.	 Karkkainen, J., Kempa, D., Puglisi, S.J.: Lempel–Ziv parsing in external memory. In: Proceed-
ings of the DCC 2014, pp. 153–162. IEEE (2014). https​://doi.org/10.1109/DCC.2014.78

	22.	 Kempa, D., Kosolobov, D.: LZ-End parsing in compressed space. In: Proceedings of the DCC
2017, pp. 350–359. IEEE (2017). https​://doi.org/10.1109/DCC.2017.73

	23.	 Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors. In: Proceedings
of the STOC 2018, pp. 827–840. ACM (2018). https​://doi.org/10.1145/31887​45.31888​14

	24.	 Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with Lempel–Ziv algorithms.
SIAM J. Comput. 29(3), 893–911 (1999). https​://doi.org/10.1137/S0097​53979​73311​05

	25.	 Kosolobov, D.: Relations between greedy and bit-optimal LZ77 encodings. In: Proceedings
of the STACS 2018, LIPIcs, vol. 96, pp. 46:1–46:14. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik (2018). https​://doi.org/10.4230/LIPIc​s.STACS​.2018.46

	26.	 Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Proceedings of the
DCC 2010, pp. 239–248. IEEE (2010). https​://doi.org/10.1109/DCC.2010.29

	27.	 Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel–Ziv compression of genomes for large-
scale storage and retrieval. In: Proceedings of the SPIRE 2010, LNCS, vol. 6393, pp. 201–206.
Springer (2010). https​://doi.org/10.1007/978-3-642-16321​-0_20

	28.	 Kuruppu, S., Puglisi, S.J., Zobel, J.: Optimized relative Lempel–Ziv compression of genomes.
In: Australasian Computer Science Conference, pp. 91–98. Australian Computer Society, Inc.
(2011)

	29.	 Larsson, N.J.: Most recent match queries in on-line suffix trees. In: Proceedings of the CPM
2014, LNCS, vol. 8486, pp. 252–261 (2014). https​://doi.org/10.1007/978-3-319-07566​-2_26

	30.	 Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theor. Comput. Sci. 387(3), 258–272 (2007).
https​://doi.org/10.1016/j.tcs.2007.07.017

	31.	 Lemire, D., Boytsov, L.: Decoding billions of integers per second through vectorization. Softw.
Pract. Exp. 45(1), 1–29 (2015)

	32.	 Levenshtein, V.I.: On the redundancy and delay of decodable coding of natural numbers. Syst.
Theory Res. 20, 149–155 (1968)

	33.	 Liao, K., Petri, M., Moffat, A., Wirth, A.: Effective construction of relative Lempel–Ziv diction-
aries. In: Proceedings of the WWW 2016, pp. 807–816. International World Wide Web Confer-
ences Steering Committee (2016). https​://doi.org/10.1145/28724​27.28830​42

	34.	 Mäkinen, V., Navarro, G.: Compressed full-text indexes. ACM Comput. Surv. 39(1), 2 (2007).
https​://doi.org/10.1145/12163​70.12163​72

	35.	 Manzini, G.: An analysis of the Burrows–Wheeler transform. J. ACM 48(3), 407–430 (2001).
https​://doi.org/10.1145/38278​0.38278​2

	36.	 Navarro, G.: Indexing highly repetitive collections. In: Proceedings of the IWOCA 2012, LNCS,
vol. 7643, pp. 274–279 (2012). https​://doi.org/10.1007/978-3-642-35926​-2_29

	37.	 Ochoa, C., Navarro, G.: RePair and all irreducible grammars are upper bounded by high-order
empirical entropy. IEEE Trans. Inf. Theory (2018). https​://doi.org/10.1109/TIT.2018.28714​52

	38.	 Policriti, A., Prezza, N.: Fast online Lempel–Ziv factorization in compressed space. In: Pro-
ceedings of the SPIRE 2015, LNCS, vol. 9309, pp. 13–20. Springer (2015). https​://doi.
org/10.1007/978-3-319-23826​-5_2

	39.	 Policriti, A., Prezza, N.: LZ77 computation based on the run-length encoded BWT. Algorithmica
80(7), 1986–2011 (2018). https​://doi.org/10.1007/s0045​3-017-0327-z

https://doi.org/10.1007/978-3-319-46049-9_16
https://doi.org/10.1007/978-3-319-46049-9_16
http://arxiv.org/abs/1804.08547
http://arxiv.org/abs/1804.08547
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.14778/2078331.2078341
https://doi.org/10.14778/2078331.2078341
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1109/DCC.2014.78
https://doi.org/10.1109/DCC.2017.73
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1137/S0097539797331105
https://doi.org/10.4230/LIPIcs.STACS.2018.46
https://doi.org/10.1109/DCC.2010.29
https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1007/978-3-319-07566-2_26
https://doi.org/10.1016/j.tcs.2007.07.017
https://doi.org/10.1145/2872427.2883042
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1145/382780.382782
https://doi.org/10.1007/978-3-642-35926-2_29
https://doi.org/10.1109/TIT.2018.2871452
https://doi.org/10.1007/978-3-319-23826-5_2
https://doi.org/10.1007/978-3-319-23826-5_2
https://doi.org/10.1007/s00453-017-0327-z

1 3

Algorithmica	

	40.	 Puglisi, S.J.: Lempel-Ziv compression. In: Kao, M.-Y. (ed.) Encyclopedia of algorithms, pp.
1095–1100., Springer, New York (2016). https​://doi.org/10.1007/978-1-4939-2864-4_634

	41.	 Shields, P.C.: Performance of LZ algorithms on individual sequences. IEEE Trans. Inf. Theory
45(4), 1283–1288 (1999). https​://doi.org/10.1109/18.76128​6

	42.	 Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM 29(4), 928–951
(1982). https​://doi.org/10.1145/32234​4.32234​6

	43.	 Tillson, T.W.: A hamiltonian decomposition of K∗
2m

 , 2m ≥ 8 . J. Combin. Theory Ser. B 29(1),
68–74 (1980). https​://doi.org/10.1016/0095-8956(80)90044​-1

	44.	 Valenzuela, D.: CHICO: A compressed hybrid index for repetitive collections. In: Proceedings of
the SEA 2016, LNCS, vol. 9685, pp. 326–338. Springer (2016). https​://doi.org/10.1007/978-3-319-
38851​-9_22

	45.	 Wandelt, S., Leser, U.: FRESCO: referential compression of highly similar sequences. IEEE/ACM
Trans. Comput. Biol. Bioinf. 10(5), 1275–1288 (2013). https​://doi.org/10.1109/TCBB.2013.122

	46.	 Wyner, A.J.: The redundancy and distribution of the phrase lengths of the fixed-database Lempel–
Ziv algorithm. IEEE Trans. Inf. Theory 43(5), 1452–1464 (1997). https​://doi.org/10.1109/18.62314​
4

	47.	 Yann Collet: Zstandard. (2016). Retrieved from: https​://faceb​ook.githu​b.io/zstd/. Accessed
2018-09-17

	48.	 Yuta Mori: libdivsufsort. https​://githu​b.com/y-256/libdi​vsufs​ort/. Accessed 22 May 2020
	49.	 Ziv, J., Lempel, A.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22(1), 75–81

(1976). https​://doi.org/10.1109/TIT.1976.10555​01
	50.	 Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory

23(3), 337–343 (1977). https​://doi.org/10.1109/TIT.1977.10557​14

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Dmitry Kosolobov1  · Daniel Valenzuela2 · Gonzalo Navarro3 · Simon J. Puglisi2

	 Daniel Valenzuela
	 dvalenzu@cs.helsinki.fi

	 Gonzalo Navarro
	 gnavarro@dcc.uchile.cl

	 Simon J. Puglisi
	 puglisi@cs.helsinki.fi

1	 Ural Federal University, Ekaterinburg, Russia
2	 Department of Computer Science, University of Helsinki, Helsinki, Finland
3	 CeBiB, Department of Computer Science, University of Chile, Santiago, Chile

https://doi.org/10.1007/978-1-4939-2864-4_634
https://doi.org/10.1109/18.761286
https://doi.org/10.1145/322344.322346
https://doi.org/10.1016/0095-8956(80)90044-1
https://doi.org/10.1007/978-3-319-38851-9_22
https://doi.org/10.1007/978-3-319-38851-9_22
https://doi.org/10.1109/TCBB.2013.122
https://doi.org/10.1109/18.623144
https://doi.org/10.1109/18.623144
https://facebook.github.io/zstd/
https://github.com/y-256/libdivsufsort/
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1109/TIT.1977.1055714
http://orcid.org/0000-0002-2909-2952

	Lempel–Ziv-Like Parsing in Small Space
	Abstract
	1 Introduction
	2 Preliminaries
	3 ReLZ Parsing
	4 Empirical Entropy Upper Bound
	5 Lower Bound
	6 Implementation
	6.1 A Recursive Variant
	6.2 A Better Mapping

	7 Experimental Evaluation
	7.1 Entropy Coding
	7.2 Effect of Reference Sizes
	7.3 Reference Construction
	7.4 Lempel–Ziv Parsers
	7.5 Compression Ratio

	Acknowledgements
	References

