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Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic food pathogens associated with foodborne diarrheal illness, 
hemorrhagic colitis, and complications such as hemolytic uremic syndrome (HUS). The ability to adhere to epithelial cells 
is an important virulence trait, and pathogenicity islands (PAIs) play an important role on it. Some STEC carrying a PAI 
named locus of enterocyte effacement (LEE-positive) have been frequently associated to HUS; however, STEC that do not 
carry LEE (LEE-negative) have also been associated with this outcome. The burden of disease caused by LEE-negative 
STEC has increased recently in several countries like Argentina, Chile, and Paraguay. A new PAI –the Locus of Adhesion 
and Autoagregation (LAA)—has been associated to severe disease in humans. In this study, we aimed to analyze the distribu-
tion of LAA and its possible predictor, the gene hes, in LEE-negative STEC strains isolated from Chile and Paraguay from 
different sources. The presence of the different LAA modules and hes were detected by PCR. LAA was found in 41.6% and 
41.0% of strains isolated from Chile and Paraguay, respectively. Strains were isolated from diverse origins and belonged to 
several serogroups including O91, O103, and O113. The hes gene was detected in 50% of the isolates from Paraguay and 
Chile. Therefore, the detection of LAA and hes in STEC could complement current genetic evaluation schemes, allowing 
to classify LEE negative STEC strains as LAA-positive or LAA-negative STEC strains.

Introduction

Foodborne pathogens are an important public health issue in 
many countries and are responsible for a substantial burden 
of disease in the developed world. In developing countries, 
such as Argentina, Paraguay, and Chile, this problem is of 
great concern [1]. One of the microorganisms involved in 
foodborne diseases is Shiga toxin-producing Escherichia 
coli (STEC), a diverse group of bacteria capable of caus-
ing severe human diseases such as hemorrhagic colitis (HC) 
and the hemolytic-uremic syndrome (HUS) [2]. Cattle are 
the main reservoir of STEC; however, pigs, dairy products, 
nuts, seeds, water -which has increasingly become a concern 
as a source of contamination for fruits and vegetables-, and 
person to person contact have been shown to commonly par-
ticipate in transmission [3–5]. STEC surveillance systems 
are different in each Latin American country. In general, dis-
ease incidence data relies primarily on either the foodborne 
disease surveillance system (Argentina and Paraguay) and/
or through the acute diarrheal surveillance system (Argen-
tina, Chile, and Paraguay, among others). Argentina has the 
highest number of cases caused by STEC worldwide: HUS 
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incidence is 8.4 cases per 100,000 children less than 5 years 
old [6]. On the other hand, the incidence is 3.4 cases per 
100,000 children in Chile (Metropolitan Region) [7]. In both 
countries HUS represents one of the main causes of acute 
renal failure in children with lethality ranges from 2 to 6% 
[8]. In Paraguay, routine surveillance is performed with all 
the stool cultures that are sent to the Central Public Health 
Laboratory. The incidence of HUS is low. Between 2013 and 
2015, eight STEC diarrhea cases and ten HUS cases without 
STEC isolation were reported [8, 9].

STEC refers to the pathotype capable of producing Shiga 
toxin type 1 (Stx1), type 2 (Stx2), or both, which are encoded 
by stx1 and stx2 genes, respectively [2]. Epidemiological 
studies suggest that STEC strains encoding stx2 are more 
virulent than those harboring stx1 only [10]. Although Stx1 
is less cytotoxic than Stx2, it may potentially cause disease 
in humans, but the information about its clinical implica-
tions is limited [11]. In addition, some STEC strains carry 
the Locus of Enterocyte Effacement (LEE), a pathogenic-
ity island (PAI) which encodes genes necessary to produce 
attaching and effacing (A/E) lesions on the intestinal epi-
thelium. LEE is also carried by enteropathogenic E. coli 
(EPEC) [12] and Escherichia albertii strains which might 
have been misidentified as LEE-positive STEC or EPEC 
because they carry the eae gene [13]. However, STEC 
strains lacking LEE (LEE-negative), such as those belong-
ing to serogroups O91, O113 and O174 [14], have also been 
isolated from cases of severe illness, including HUS [15]. 
A great number of adhesins, including the pO113-encoded 
autoagglutinating adhesin (Saa), have been linked to the 
pathogenesis of LEE-negative STEC [16]. Montero et al. 
[17] described and characterized a member of the Heat 
resistant agglutinin family (Hra Family), named Hemagglu-
tinin from Shiga toxin-producing E. coli (Hes) that partici-
pates in several colonization-associated phenotypes, includ-
ing hemagglutination, adhesion and autoaggregation. Hes is 
encoded by a gene located in a PAI of 86-kb chromosomal 
mosaic element named the Locus of Adhesion and Autoag-
gregation (LAA), which contains 80 genes organized into 
four modules: module I (hes and other genes), module II 
(iha, lesP and others genes), module III (pagC, tpsA, tpsB 
and other genes) and module IV (agn43 and other genes). 
Moreover, LAA may be present as a “complete” (4 modules) 
or “incomplete” (with less than 4 modules) structure [17].

LAA presence is associated with severe human disease 
and although the mechanisms used by LEE-negative STEC 
strains to colonize the human intestine are not clear yet 
[17]. Recently, the role of LAA in intestinal colonization 
was demonstrated in a murine model of STEC infection, 
suggesting that LAA may be also involved in the adherence 
of STEC to the human intestine [18, 19]. Moreover, the asso-
ciation of LAA with stx1a, stx2a, stx2d and cdtB toxin genes 
that cause severe disease has been demonstrated [18]. In a 

previous study in Argentina, our group has demonstrated 
the presence of LAA in 46% of LEE-negative STEC strains 
isolated from different sources [20]. Because the incidence 
of HUS caused by LEE-negative STEC strains has been 
increased in several countries [8], in this study, we aimed 
to analyze the distribution of LAA and hes in LEE-negative 
STEC strains isolated in Chile and Paraguay from different 
sources.

Materials and Methods

Strains and Serotyping

A total of 128 LEE-negative STEC strains were analyzed: 
72 from Chile and 56 from Paraguay. STEC strains were iso-
lated from beef cattle (n = 94), meat (n = 31), cheese (n = 2) 
and wild bird (n = 1). These isolates were previously ana-
lyzed for the presence of stx1, stx2, and saa genes by PCR 
(Table 1) [21]. The serogroup was determined by micro-
agglutination test described by Guinée et al. [22] and modi-
fied by Blanco et al. [23] (Table 1).

PCR Amplification

STEC strains were characterized by multiplex PCR to detect 
LAA modules I, II, and III [17]. Additionally, the presence 
of agn43, as a marker of module IV, and hes were character-
ized by monoplex PCR [20, 24]. One LEE positive STEC 
strain was used as a negative control (O157:H7 EDL933). 
PCR reactions (multiplex and monoplex) were performed 
and standardized in a total volume of 50 μl by using a T-17 
thermal cycler (Ivema). The reaction mixture contained 500 
mM KCl, 100 mM Tris–HCl pH 9, Triton X-100, 25 mM 
MgCl2, 200 μM 4 deoxynucleotides (dATP, dGTP, dCTP, 
dTTP), 1U of TaqDNA Polymerase Highway® (Inbio), and 
5 μl of DNA. The DNA was obtained by boiling bacteria 
suspended in sterile water for 10 min as previously described 
[25]. The LAA and hes primers were reported by Montero 
et al. [17]. Amplification products were separated by elec-
trophoresis on 2% agarose gels containing 0.8 μg/ml of eth-
idium bromide in running buffer and were visualized in a 
UV transilluminator.

Results

STEC strains were considered as LAA-complete when they 
harbored modules I, II, III, and IV and were considered as 
LAA-incomplete when less than four modules were detected.

Complete LAA structure was identified in strains from 
Paraguay and Chile in similar frequencies: 41.0% (23/56) 
and 41.6% (30/72), respectively (Figs. 1 and 2). Similarly, 
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the gene hes was detected in 50% of the isolates from Para-
guay (28/56) and Chile (36/72) (Table 1). STEC strains car-
rying LAA (complete or incomplete) were distributed in 23 
serogroups. The most frequent were O91 (4/4, 100%), O113 
(5/6, 83%), O103 (6/9, 67%) and O174 (2/5, 40%) (Table 1).

Regarding toxins, the stx2 gene was detected in 30% 
(7/23) and 73% (22/30) of STEC strains harboring LAA 
from Paraguay and Chile, respectively (Table 1).

Discussion

Although E. coli O157:H7 is the most prevalent serotype 
associated with HUS, there is growing concern on the global 
emergence of LEE-negative STEC that have been associated 
with outbreaks and/or severe human illness [26]. LEE-neg-
ative STEC strains have been detected in humans, animals, 
food, and the environment. Still, the pathogenic mechanisms 
used by this group of strains to colonize humans are yet to 
be elucidated [27]. LAA is a PAI of an emerging group of 
STEC strains that cause severe diseases in humans. In fact, 
the complete LAA island is present in LEE-negative STEC 
strains which have been isolated from cases of hemorrhagic 
colitis and HUS [17].

In this study, the complete LAA was widely distributed in 
STEC strains from different origins and belonging to several 
serogroups. LEE-negative STEC strains isolated from Chile 
(41.6%) and Paraguay (41.0%) harbored the complete LAA 
island with a frequency of detection that is similar to that 
previously reported Argentina (46%) [20].

Stx2-producing strains are more often associated with 
HUS than strains that produce Stx1 [28]. In this study, we 
detected stx2 in 30% and 73% of the isolated LAA positive 
obtained from Paraguay and Chile, respectively. Likewise, 
Colello et al. [20] found a significant association between the 
presence of a complete LAA island and stx2 in strains iso-
lated in Argentina. In addition, LEE-negative STEC strains 
of serogroups O91, O113 and O174 have been isolated from 
cases of severe illness [29], and in our study most of the iso-
lates belonging to these serogroups harbored LAA. PAIs like 
LAA has had a remarkable role in the emergence of LEE-
negative STEC strains and may contribute to the evolution 
and virulence of pathogenic E. coli [18].

Montero et  al. [17] suggested that hes is a potential 
genetic marker for LAA, and this raises a new possible epi-
demiological scenario [17] for STEC since it is widely dis-
tributed in LEE-negative STEC strains. Our results revealed 
that hes was present in all LAA positive strains, carrying the 
complete island. In concordance with Colello et al. [20], we 
also observed that hes was one of the most prevalent genes 
in LEE-negative STEC strains [18, 20].

Therefore, our work provides new data about the presence 
of LAA and the hes gene in STEC strains from different Ta
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sources and isolated in two Latin-American countries. These 
results support previous findings that suggest that the current 
STEC classification based on the presence of LEE might be 
insufficient to detect human pathogenic STEC strains, and 
that hes detection could complement current genetic evalu-
ation schemes to detect strains representing risk [17, 30].

Concluding, to define a STEC strain as pathogenic is 
complex because there are not combinations of markers 

that can predict the potential of a STEC strain to cause 
human disease. In LEE positive strains, stx2 and eae are 
predictive markers for severe disease. In LEE-negative 
STEC strains, the scenario is even more complex because 
there are not additional virulence factors to stx2 associated 
with severe disease. In this context, hes could be used as a 
marker allowing classify the LEE negative STEC strains 

Fig. 1   Distribution of LAA detection in STEC strains isolated at different origins from Paraguay

Fig. 2   Distribution of LAA detection in STEC strains isolated at different origins from Chile
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as LAA positive or negative STEC strains, and therefore, 
inferring the potential risk of LEE-negative strains.
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