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Abstract 

In this paper we study how the spatial arrangement of transit lines (lines structure) 

influences scale economies in public transport. First we show that the degree of scale 

economies (DSE) increases discretely whenever passenger volume induces a change in 

lines structure. The technical elements behind this are explained by using a new three-

dimensional concept called directness, encompassing number of transfers, number of 

stops and passenger route lengths. This is first exemplified in a simple ad-hoc network, 

and then applied to examine the structural changes that occur in the design of transit lines 

in a fairly general representation of a city. We show that directness increases whenever 

lines structure changes as a response to larger demand volumes - increasing DSE at the 

particular value of flow where this change occurs - because systems with more direct 

lines for each OD pair diminish in-vehicle times while increasing waiting times mildly, such 

that users are benefited by lower travel times and operators are benefited by lower idle 

capacity. After the change, however, DSE decreases within the demand range where the 

new line structure is maintained, just as in the one line model. The possibility of deciding 

the line structure introduces directness as a new source of economies of scale which are 

finally exhausted after full directness is achieved. 
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1. Introduction 

 

Cost functions and economies of scale are economic concepts that are quite relevant for 

the normative analysis within production theory, including industry structure and optimal 

pricing policies. Behind cost functions lies the technical process of conversion of inputs 

into outputs, such that cost functions can capture scale economies (a technical property 

indeed). In transport, the main technical elements are frequencies, vehicle sizes and the 

organization of lines in space. In this paper we aim at understanding the relations behind 

the third design element and scale economies in public transport. 

 

The provision of public transport services exhibits various technical characteristics that 

have been shown to affect its degree of scale economies. First of all, the so-called 

Mohring effect, where an increase in patronage makes optimal frequency larger and 

waiting times lower. Mohring (1972) found the frequency of the service to be proportional 
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to the square root of the demand when only this effect is modeled in an isolated public 

transport line. In addition to this waiting time effect, as demand increases the system can 

also be adapted by incorporating new lines, thus reducing another component of users’ 

cost, namely the walking time. This has been modeled for a bus feeder system by Hurdle 

(1973), in a rectangular area by Kocur and Hendrickson (1982) for a single period, by 

Chang and Schonfeld (1991) for multiple periods, and by Small (2004), who analyzed the 

impact of road pricing on public transport. All of them obtain a cube root formula for both 

the optimal frequency of each line and for the optimal number of routes. 

 

A third variable that can be adapted according to the demand level is the size of the 

vehicle, which also increases with patronage. As operators’ cost per passenger diminish 

with vehicle size (due to fixed costs per vehicle), this is also a source of scale economies. 

However, when vehicles size increases the time spent at each stop also increases 

because more passengers board to, and alight from, each single vehicle, thereby 

increasing cycle time - which affects operators’ cost as a larger fleet is needed - and 

users’ in-vehicle time. Both effects reduce the degree of scale economies. Including these 

effects in his model of an isolated public transport line, Jansson (1980) obtained a 

modified square root formula for optimal frequency. In all models the adjustment of 

frequency and vehicle size generates scale economies that, nevertheless, diminish as 

flow increases. 

 

An important element of design that responds in a discrete way to increases in flow is 

lines structure, i.e. the way in which vehicles serve a number of routes in order to move 

a given set of flows (product). Such a structure can be optimized together with fleet and 

vehicle sizes, admitting many possible arrangements in space, with public transport lines 

organized as, for example, cyclical, hub-and-spoke, feeder-trunk or direct services. As 

flows grow these arrangements might evolve in a way that should be studied specifically; 

understanding the evolution of design including lines structure and analyzing its impact 

on total costs and scale economies is the main objective of the paper. Considering 

operators’ costs only, Basso and Jara-Díaz (2006b) study the difference in the analysis 

of scale economies when lines structures are fixed or a variable to be optimized. Kraus 

(2008) formulates the problem including users and operators’ costs over a cost minimizing 

network, which in public transport would imply that users choose system optimal routes 

rather than individually optimal ones. In this paper we analyze scale economies looking 

at the evolution of lines structure design as total flow grows considering total costs and 

recognizing that users choose individually optimal routes. The main conclusions are that 

changes in lines structure induce scale economies at the particular value of total flow 

where this change occurs; that the technical elements behind this are the reduction of 

stops, transfers and route lengths; and that vehicle sizes and frequencies grow as well, 

as in single line models. 
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The paper is organized as follows. In the remainder of this Section we summarize the 

various ways in which scale has been studied in transport. Section 2 contains a discussion 

of what it means to introduce lines structure in scale analysis, showing that the degree of 

scale economies (DSE) - the ratio between average and marginal cost - increases 

discretely whenever lines structure changes as a response to a continuous proportional 

increase in flows. In Section 3 we use a simple network to illustrate this property and to 

introduce the multi-dimensional concept of directness that helps describing the evolution 

of lines structure as flows grow. This concept is used to present, in Section 4, a more 

general case that rests on a parametric description of a city; most importantly, the 

technical elements that help explaining the change in lines structure as patronage grows 

are presented in detail. Section 5 concludes, emphasizing the role of directness in scale 

economies analysis of public transport systems.1 

 

Although transport processes usually involve many inputs and outputs, the engineering 

technology has been usually formulated using aggregates, where product was described 

using single scalar measures as ton or passenger-miles until mid-eighties, and by means 

of a vector of a very small dimension thereafter, including flows related variables, service 

quality variables and network description variables. The compact description of output 

prompted two definitions in the literature around the analysis of scale economies, both 

referring to proportional expansions of output: returns to density (called RTD) and returns 

to scale with variable network size (called RTS). The former considered a proportional 

expansion of outputs keeping network size fixed, while the latter considered a 

simultaneous expansion of both flows and the network by the same proportion (Caves et 

al., 1984; Keaton, 1990). However, using aggregate output descriptions blurs the 

technical relations with inputs and has some unpleasant consequences in the analysis of 

economies of scale in transport activities. 

 

Behind any compact description of transport output lays the true output of any transport 

firm: a vector of origin-destination (OD) flows of different things during different periods 

(Jara-Díaz, 1982a). In very simple transport systems the analytical derivation of the 

technical relations between inputs and flows - the production function – can be done, such 

that the corresponding cost functions can be obtained analytically as well.2 This approach 

                                                
1 Scale economies in public transport have also been reported in other dimensions. Tirachini et al. (2010a), for example, 

show that when crowding discomfort is considered diseconomies of scale are found for high levels of patronage, a 
result that vanishes when more than one line is considered (Tirachini et al., 2010b). Tirachini and Hensher (2011) and 
Jara-Díaz and Tirachini (2013) have studied the impact of the boarding-alighting-paying methods, finding yet another 
source of economies of scale. Considering different modes also impacts the analysis, as shown by Tirachini and 
Hensher (2012) or Basso and Jara-Díaz (2010, 2012).  
2 See for example the analysis of the backhaul transport system involving two flows only (Jara-Díaz, 1982b) or the 

three-nodes system studied by Jara-Díaz and Basso (2003) involving a discrete decision regarding the spatial 
arrangement of the vehicles (service structures). 
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proved very useful to show that the use of aggregates introduced ambiguity in the 

economic analysis in transport because, for example, the same amount of passenger-

miles could require very different types and amounts of inputs depending on how this 

passenger-miles are distributed in space. Most importantly, scale economies should be 

studied holding the origin-destination system constant, as introducing new OD pairs 

means introducing new products, which would require the analysis of economies of 

scope; this means that “economies of scale with variable network size” is actually an ill-

defined concept, as shown by Basso and Jara-Díaz (2006a) while “economies of density” 

is better suited to the definition of economies of scale.3 A corollary from this story is that 

more attention has to be paid to the transport production process itself in order to fully 

understand scale economies. This is the main objective of this paper. 

 

  

2. The impact of the discrete nature of lines structure choice on DSE.  

 

In this section we analyze the general relation between the adjustment of lines structures 

and scale economies in transit networks. Let us formally define a “lines structure” as a 

set of spatially organized transit routes that operates on a given network serving all flows. 

A simple example is shown in Figure 1, where a three nodes network (a) - with potentially 

six OD pairs - can be served in different ways, such as a single line running 

counterclockwise (b), or with two lines each one circulating between two nodes (c). How 

to decide which lines structure is best for a given origin-destination (OD) flow matrix 𝒀? 

In transport production this is part of the search for the optimal input combinations that 

yield the minimum total cost, so choosing the best structure has to be done together with 

other design variables like frequencies and vehicle sizes in order to find the smallest value 

of the resources consumed (𝑉𝑅𝐶) provided those design variables are technically able to 

produce 𝒀; for short, a cost function has to be obtained, which requires finding the optimal 

input demand functions depending on product and input prices, noting that the 𝑉𝑅𝐶 

includes all resources, i.e. operators’ and users’. This requires a certain procedure which 

we now summarize for a general case. 

a)       b)    c)  

Figure 1. Network (a), and two alternative lines structures. 

 

                                                
3 Sometimes RTD has been defined adding the condition that route structure is unchanged after an increase in flows 
(Basso and Jara-Díaz, 2006b). 
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Consider a physical network (e.g. streets of a city) and a given OD matrix of flows 𝒀. For 

this setting, each candidate lines structures 𝐸𝑖 is composed of a series of transit lines that, 

altogether, are capable to serve all trips4. In turn, each of the lines 𝑙 that form a lines 

structure has to be assigned a frequency 𝑓𝑙 and a vehicle size 𝐾𝑙. In order to find the 

optimal values of these variables for a given lines structure 𝑖 composed of 𝑚𝑖 lines, one 

has to minimize the total value of the resources consumed 𝑉𝑅𝐶𝑖, that depends on the set 

of frequencies (𝑓1, … , 𝑓𝑚𝑖
) = 𝒇 and vehicle sizes (𝐾1, … . , 𝐾𝑚𝑖

) = 𝑲 of all lines in structure 𝑖 

provided 𝒇 and 𝑲 can carry flows 𝒀. 𝑉𝑅𝐶𝑖 can be expressed as the sum of the resources 

consumed by operators 𝑉𝑅𝐶𝑖𝑂 and users 𝑉𝑅𝐶𝑖𝑈, i.e. 

 

 𝑉𝑅𝐶𝑖(𝒇, 𝑲, 𝒀) = 𝑉𝑅𝐶𝑖𝑂(𝒇, 𝑲) + 𝑉𝑅𝐶𝑖𝑈(𝒇, 𝑲, 𝒀)      (1) 

 

𝑉𝑅𝐶𝑖 is a function of 𝒀 directly because users’ costs increase with 𝒀. The optimal values 

of (𝒇, 𝑲) for a given 𝒀, denoted (𝒇∗, 𝑲∗), are those that minimize 𝑉𝑅𝐶𝑖 subject to technical 

feasibility constraints, as explained in Appendix A. Then solving (1) we get 𝒇∗ = 𝒇∗(𝒀) and 

 𝑲∗ = 𝑲∗(𝒀). When these optimal values are plugged back into 𝑉𝑅𝐶𝑖 one obtains the 

conditional cost function  𝐶𝑖(𝒀) ≡ 𝑉𝑅𝐶𝑖(𝒇∗(𝒀), 𝑲∗(𝒀), 𝒀) as defined in Jara-Diaz (2007), 

i.e. the minimum 𝑉𝑅𝐶 to serve flow 𝒀 for a given lines structure 𝑖. Finally, the best lines 

structure for each 𝒀 is given by the 𝑎𝑟𝑔𝑚𝑖𝑛𝑖𝐶𝑖(𝒀). This way the optimal lines structure for 

a given 𝒀 is found together with the optimal frequencies and vehicle sizes that were found 

in the previous step. Note that 𝑓𝑙
∗ = 𝑓𝑙

∗(𝒀) and that, for some 𝒀 values, some frequencies 

can become nil and some can become positive.  

 

In equation (1) it is assumed that operators’ costs increase with frequencies and bus 

sizes, while users’ costs decrease. For the proposition below, these expressions can be 

general; we only need them to be differentiable and to include at least one component 

inversely related with frequency. For the sake of clarity, in what follows we will use waiting 

cost as representative of this component5. 

 

The question we want to address is whether adjusting line structures contributes to scale 

economies in transport networks. First, we have to recall that the degree of scale 

economies 𝐷𝑆𝐸 is defined as the ratio between average and marginal costs such that 

there are scale economies iff 𝐷𝑆𝐸 > 1. The proposition formulated and proved below 

states that the 𝐷𝑆𝐸 increases when the lines structures changes (unless common lines 

                                                
4 In practice, the total number of possible lines structures is huge and cannot be obtained. Nevertheless, this is not 
needed for the analysis in this section. In sections 3 and 4, where specific networks are analyzed, we will work with a 
set of pre-conceived lines structures. 
5 There are more components of 𝑉𝑅𝐶 inversely related with frequency, as in-vehicle users’ cost (because of time at 

stops and crowding) or bus size-related operators’ cost (Jara-Díaz and Gschwender, 2009; Hörcher and Graham, 
2018). 



6 
 

exist everywhere6). The proof will be based on the discrete change in lines structure when 

passengers choose their routes minimizing their individual costs (an example using the 

network in Figure 1 is offered and analyzed in detail in the next Section). If we are using 

a set of predefined lines structures, this change is obviously discrete (and the first part of 

the proof below is not necessary); if all the lines are always candidates to appear, the 

crucial fact is that nobody will wait for a line with a frequency that is extremely low when 

there are no common lines. 

 

Let us define a vector of OD flows 𝒒 as a threshold point if there exists at least one line 𝑙 

such that optimal frequency 𝑓𝑙
∗(𝒒) = 0 and 𝑓𝑙

∗(𝒒 ⋅ (1 + 𝜀)) > 0 ∀ 𝜀 > 0 with no common 

lines for some of its passengers (see footnote 6). This means that when 𝒀 just exceeds 

𝒒 at least one new line appears because it minimizes 𝑉𝑅𝐶 and becomes best for some 

users7. Note that a vector 𝒀 at which a change in lines structure occurs is, by definition, 

a threshold point, in which new routes emerge for some users (and other inferior ones 

can disappear). 

 

The main idea behind the proposition that follows is that the emergence of a new line (i.e. 

a line whose optimal frequency goes from zero to a positive value) triggers an upward 

jump in the DSE.  

 

Proposition: Consider a network served by a public transport system. Then at every 

threshold point the 𝐷𝑆𝐸 increases discretely, i.e. 𝑙𝑖𝑚
𝜀→𝑜+

𝐷𝑆𝐸(𝒒𝜺) > 𝑙𝑖𝑚
𝜀→𝑜−

𝐷𝑆𝐸(𝒒𝜺), with 𝒒𝜺 =

𝒒 ⋅ (1 + 𝜀). 

 

Proof: the proof has two parts. 

1) First, let us show that when some 𝑓𝑙
∗ becomes strictly positive due to a growth of 𝒀 at 

𝒒, it increases in a discontinuous way from zero. Define 𝑓0 such that if 𝑓𝑙<𝑓0, then the 

waiting cost for passengers using line 𝑙 will induce a travel time cost that is larger than 

the current total user cost of any other route in the system. In that case no passenger 

chooses 𝑙 and the optimal frequency is zero; in other words, 𝑓𝑙 will never be in the interval 

(0, 𝑓0), but jumps in a discontinuous way from 0 to some positive value 𝑓𝑙
∗ ≥ 𝑓0.  

 

                                                
6 In the literature the case known as “common lines” appears when for some portions of the route, the passenger is 

indifferent to choose within a certain set of lines because they all make almost the same trip. Using Figure 1 as an 
example, if both line structures (b and c) coexist, passengers travelling from the bottom node to the upper-right one 
could use the line of structure (b) or the right line of structure (c). For them, both are common lines. Passengers 
travelling from the bottom node to the upper-left one could face common lines or not, depending on the relative 
frequencies and travel times of the line of structure (b) and the left line of structure (c). For a precise definition, see 
Chriqui and Robillard (1975) or Cominetti and Correa (2001). 
7 The potential adaptation of route structure following a growth in flows is at “the kernel of transport production; changes 
in the flow vector 𝒀 potentially induce changes in input usage as well in route structures and operating rules in general” 

(Jara-Diaz (2007). 
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As an example, suppose that the “south” node is the only origin in Figure 1. If we only 

had the red long line from Figure 1b, and the blue line from Figure 1c was added (starting 

from a different bus stop, such that users have to decide which line to take in advance), 

this blue line will be used by those passengers whose destination is the upper-left node 

only if its frequency is large enough to compensate for waiting plus the longer in-vehicle 

time if using the red line. 

 

What we have just shown is that when a change in line structure occurs, there is a discrete 

jump in the value of at least one frequency: the choice of an optimal line structure is 

essentially discrete. Then the production of flows can be represented by a function that 

involves the choice of a discrete variable (the lines structure 𝑖, indicating which lines are 

present in the system) and several variables that are continuous for a given discrete 

variable (such as the frequencies and vehicle capacities of each of the lines in 𝑖).  

 

The second part of the proof applies to any kind of cost function that results from the 

optimal choice of a discrete variable 𝑍 (in our case the lines structure 𝑖) and several 

variables 𝑿 (in our case the frequencies and vehicle capacities of each of the lines in 𝑖) 

that are continuous for a given 𝑍. As scale analysis deals with expansions of output vector 

𝒀 along a ray µ𝒀, with µ ≥ 1 (Baumol et al, 1982), it is equivalent to a single product like 

analysis. Then, in the rest of the paper, 𝒀 will be treated as a scalar given by the total 

sum of the flows, i.e. 𝑌 = ∑𝑦𝑖; note that this means that µ𝒀 = ∑µ𝑦𝑖 = µ𝑌. 

 

2) Consider 𝑿∗, 𝑍∗ optimal to produce 𝑌. Consider 𝑌0 such that any increase leads to a 

change from 𝑍∗ = 𝑍1 to 𝑍∗ = 𝑍2 (equivalent to a threshold point above). 

Then 𝑙𝑖𝑚
𝜀→𝑜+

𝐷𝑆𝐸(𝑌0 + 𝜀) > 𝑙𝑖𝑚
𝜀→𝑜−

𝐷𝑆𝐸(𝑌0 + 𝜀).  

To prove this, consider the conditional cost functions 𝐶1 and 𝐶2 associated to 𝑍1 and 𝑍2 

respectively obtained by optimizing  𝑿 only given 𝑍𝑖 (in our case this means optimizing 

frequencies and vehicle sizes for a given lines structure). Let us look at the average and 

marginal costs for 𝐶1 and 𝐶2 at 𝑌0. As 𝐶1 and 𝐶2 are continuous functions, then 𝐶1(𝑌0)/𝑌0 =

𝐶2(𝑌0)/𝑌0. Regarding the marginal costs, the derivative of the cost with respect to 

𝑌 verifies 
𝜕𝐶2

𝜕𝑌
<

𝜕𝐶1

𝜕𝑌
, because 𝐶2 becomes lower than 𝐶1 when 𝑌 grows. As average costs 

are equal and marginal costs are lower for 𝐶2, it is direct to conclude that the ratio between 

average and marginal cost, i.e 𝐷𝑆𝐸, increases. 

𝑙𝑖𝑚
𝜀→𝑜+

𝐷𝑆𝐸(𝑌0 + 𝜀) = 𝑙𝑖𝑚
𝜀→𝑜+

𝐷𝑆𝐸2(𝑌0 + 𝜀) = 𝐷𝑆𝐸2(𝑌0) > 𝐷𝑆𝐸1(𝑌0) = 𝑙𝑖𝑚
𝜀→𝑜−

𝐷𝑆𝐸1(𝑌0 + 𝜀)

= 𝑙𝑖𝑚
𝜀→𝑜−

𝐷𝑆𝐸(𝑌0 + 𝜀) 

Q.E.D. 

 

The Proposition is represented in Figures 2, where average and marginal costs for 𝐶1 and 

𝐶2 are shown. At the exact point where the two average costs coincide (i.e. where the 
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optimization process induces a change from 𝑍1 to 𝑍2), a black arrow shows that a) the 

marginal cost is lower for 𝑍2 and b) the global 𝐷𝑆𝐸 increases discretely.  

 

As a conclusion, the structural design of public transport systems involves variables as 

frequency 𝑓 (and the associated fleet 𝐵), density 𝐷 and vehicle capacity 𝐾, that can be 

treated (or approximated) as continuous8, and lines structure, which has a discrete nature 

and introduces technical novelties that are worth studying. In the following Section we will 

introduce a multidimensional concept that helps analyzing the technical relations between 

lines structure and scale economies. 

a)   b)    

  Figure 2. Change in DSE due to (discrete) change in lines structure 

 

3. Directness in lines structures: a source of scale economies.  

 

3.1 Introducing directness. 

 

We have proved that changes in line structures always lead to a discrete (local) increase 

in scale economies. This general result, however, says nothing about what exactly are 

the transport-related technical elements that help understanding what lies behind this. 

We do know from the literature that increasing demand induces higher frequencies, larger 

vehicles and an increase in the density of lines. As a result, waiting, access and egress 

times diminish (scale economies) while in-vehicle and cycle times increase (scale 

diseconomies). What is the equivalent technical effect that links overall demand with lines 

structure and scale economies? And how do scale economies behave once a change in 

lines structure has occurred? 

 

These are quite complex questions because frequency, vehicle size or lines density can 

be represented each by a single, well-defined variable, whereas a lines structure, e.g. 

feeder-trunk or hub-and-spoke, can be conceptually described with some precision by a 

generic description but cannot be represented by a single variable. Further, changes in 

line structures are not continuous but discrete, occurring at some specific levels of total 

                                                
8 Frequency and capacity are discrete variables, although the former can be fractional when looked at on 
a per hour basis. The latter, though, is constrained by commercially available vehicles. 
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patronage. Both elements not only increase the mathematical complexity of the 

associated optimization problem, but also add new challenges to scale economies 

analyses.  

 

Generally speaking the literature on lines structures in the last fifteen years shows that, 

for low levels of overall demand distributed in space, those structures involving transfers 

tend to be appropriate, e.g., hub-and-spoke or feeder-trunk systems9. As patronage 

increases, lines get organized along the idea of routes that follow more closely the origin-

destination pattern avoiding transfers, increasing what can be called “directness”, such 

that each new passenger generates positive externalities on the rest of the passengers 

because a) transfers diminish, b) distances travelled diminish, and c) number of stops 

diminish10. Element a) has a clear positive impact on users, b) diminishes in-vehicle-time 

for all, and c) diminishes in-vehicle-time for users and cycle time for operators. So these 

elements seem to contribute to increase the 𝐷𝑆𝐸 through the reduction of average users’ 

costs, but all effects should be analyzed. In order to represent directness in a more 

precise way, we propose the following three (continuous) indices: average transfers 

required per trip, average stops required per trip (including the extremes) and the average 

across all passengers of the ratio between their traveled distance and the length of the 

shortest path that link their origin and destination (relative distance). Note that these flow-

related indices can also be defined as averages across OD pairs, such that these new 

“network indices” can be calculated irrespective of the assignment of flows. 

 

The concept of directness has an extreme case in non-stop services (which have been 

called exclusive in previous papers), where each OD pair is served by one line only, 

providing a service similar to a private car but with lower operating costs per passenger 

and larger waiting times. From this viewpoint, as directness increases the number of 

passengers with different origins and destinations sharing the same vehicle diminishes. 

It is worth noting that a connection between patronage and directness has emerged in 

the transit network design literature. For example, Fielbaum et al. (2018) studied the 

heuristics proposed by Dubois et al. (1979) and Ceder and Wilson (1986), that are built 

around direct services: both create spatial arrangements of lines depending on a 

parameter 𝜎 that controls the maximum admissible deviations from the shortest paths, 

i.e., represents exactly the trade-off between more directness (𝜎 = 0) and bus-sharing; 𝜎 

is inversely related with directness. When searching for the best 𝜎, Fielbaum et al. (2018) 

                                                
9 Gschwender et al. (2016), for example, study a Y-shaped city. They show that as the patronage increases, the optimal 
structure changes in one of the following ways (depending on trip distribution):  from No transfers to No stops, from 
Feeder-trunk to No stops, or - the only odd case - from No transfers to Feeder-trunk. Daganzo (2010) studies a grid 
city served with direct lines within an internal region and with hub and spoke from the external region, optimizing the 
size of the internal region; he shows that the larger the patronage, the larger the zone served with direct lines (internal 
region). Badia et al. (2014) extend the paper by Daganzo (2010) and this conclusion remains valid; also, the set of lines 
becomes denser when the number of passengers increases. 
10 This is an extension of the concept of OD-directness originally defined by Laporte et al. (2011) on the lines network 
as the fraction of the OD-pairs that can be joined without transfers. 
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found systematically that small values for this parameter were optimal when patronage 

was large, i.e. increasing directness was the optimal response to demand increases. 

 

3.2 An illustrative model 

 

In order to illustrate in a simple way what has been discussed above, let us consider the 

network we introduced in Section 2 (Figure 1), with network and flow characteristics as 

represented in Figure 3, where two destinations are located at the same distance 𝐿0 from 

a single origin, forming an isosceles triangle; the distance between the destinations is 𝑄 

(Figure 3a). The total number of passengers in the system is 𝑌 – half on each OD pair as 

represented in Figure 3b – and the question is whether it is better to have only one line 

carrying all the passengers (full bus sharing, Figure 3c), or two lines, one for each 

destination (full direct, Figure 3d); 𝜆 represents the load of the lines on each directed arc. 

The directness indices are shown in Table 1 (note that in this case the flow indices and 

the network indices coincide, as there is only one flow assignment option). 

             
 (a)   (b)            (c)         (d) 

Figure 3. Network (a), transport demand (b) and alternative service structures: 

one shared line (c) and two direct lines (d). 

 

SERVICE STRUCTURE 

DIRECTNESS INDICES 

Bus-Sharing Direct 

Number of transfers 0 0 

Number of stops 2.5 2 

Distance traveled/Minimum distance 
1 +

𝑄

2𝐿0

 
1 

Table 1. Indices of directness for the alternative service structures. 
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Let us represent the value of the resources consumed necessary to serve total flow 𝑌 by 

each system as 

 

𝑉𝑅𝐶 = 𝐵(𝑐0 + 𝑐1𝐾) + 𝑝𝑤𝑌𝑡𝑤 + 𝑝𝑣𝑌𝑡𝑣 ,       (2) 

 

where 𝑝𝑣 and 𝑝𝑤 are the values of in-vehicle and waiting times respectively, and the 

parameters 𝑐0 and 𝑐1 define the operators’ cost per bus. 

 

Model (2) follows Jansson (1980), Jara-Díaz and Gschwender (2009) and Fielbaum et al 

(2016), among others; it has been shown to be enough to capture the most relevant 

aspects of public transport costs in a system without transfers.  In this approach, fleets, 

capacities, waiting times and in-vehicle times for each of the two systems can be 

expressed as functions of the corresponding frequency 𝑓 - that becomes the (only) design 

variable to be optimized -, the vehicle speed 𝑉, boarding-alighting time 𝑡, 𝑌, 𝑄 and 𝐿0. A 

simple analysis (in Appendix B) yields the expressions shown in Table 2. Note that in the 

two-lines case lines are symmetric and exhibit the same frequency.   

 

 One line (Bus-sharing) Two lines (Direct) 

Bus capacity 𝐾 𝑌/𝑓 𝑌/2𝑓 

Fleet 𝐵 𝑓(2𝐿0 + 𝑄)

𝑉
+ 2𝑡𝑌 

4𝑓𝐿0

𝑉
+ 2𝑡𝑌 

Waiting time 𝑡𝑤 𝑌/2𝑓 𝑌/2𝑓 

In-vehicle time 𝑡𝑣 1

2
(

𝐿0

𝑉
+

1

4𝑓
𝑡𝑌) +

1

2
(

𝐿0 + 𝑄

𝑉
+

3

4𝑓
𝑡𝑌) 

𝐿0

𝑉
+

𝑡𝑌

4𝑓
 

Table 2. Elements of the alternative service structures as a function of frequency. 

 

Replacing the respective functions from Table 2 into equation (2), the optimal frequencies 

are obtained from the first order conditions (as shown in Appendix B). Both optimal 

frequencies and capacities are shown to increase with 𝑌 (as in Jansson, 1984), such that 

the scale effects (explained in section 1) are preserved. By plugging optimal frequencies 

back into 𝑉𝑅𝐶 we obtain the cost function 𝐶𝑖 for each system: 

 

        𝐶 1 = 2√
𝑐0(2𝐿0+𝑄)

𝑉
𝑌(2𝑐1𝑡𝑌 +

𝑝𝑤+𝑝𝑣𝑡𝑌

2
) + 2𝑐0𝑡𝑌 +

𝑐1𝑌(2𝐿0+𝑄)

𝑉
+

𝑝𝑣𝑌

2

(2𝐿0+𝑄)

𝑉
         (3) 

        𝐶2 = 2√
𝑐04𝐿0

𝑉
𝑌(𝑐1𝑡𝑌 +

𝑝𝑤+𝑝𝑣𝑡𝑌/2

2
) + 2𝑐0𝑡𝑌 +

2𝑐1𝑌𝐿0

𝑉
+ 𝑝𝑣𝑌

𝐿0

𝑉
                           (4) 
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Note that 𝐶 1 and 𝐶2 can be written as 𝐶𝑖(𝑌) = √𝛼𝑖𝑌
2 + 𝛽𝑖𝑌 + 𝜀𝑖𝑌, with 𝛼1 > 𝛼2, 𝜀1 > 𝜀2 

and 𝛽1 < 𝛽2. For high values of patronage, 𝛼 and 𝜀 dominate, such that 𝐶2 is smaller, i.e. 

the two-lines structure (full directness) is better; shorter routes are good for both users 

(through 𝑝𝑣) and operators (through 𝑐1). On the other hand, when 𝑌 is small, 𝛽 dominates, 

such that the system with only one line (full bus sharing) is better due to the lower waiting 

times (through 𝑝𝑤). The average costs resulting from 𝐶1 and 𝐶2 are shown in Figure 4a 

using the parameters shown in Appendix B. 𝐷𝑆𝐸 is represented in Figure 4b for each 

system, with the solid lines representing 𝐷𝑆𝐸 for the optimal structure.  

 

a)  b)  

Figure 4. Average costs (a) and DSE (b) for Bus-sharing and Direct services. 

 

The general property advanced in Section 2 and Figure 2 emerges very clear: the 𝐷𝑆𝐸 

“jumps” when 𝑌 reaches a certain volume that makes the direct lines superior, which is 

explained because of more direct routes and fewer stops. What about 𝐷𝑆𝐸 after the lines 

structure changes? Using the short notation introduced above 𝐷𝑆𝐸 can be expressed as 

 

𝐷𝑆𝐸𝑖 = 1 +
𝛽𝑖

2𝛼𝑖𝑌+𝛽𝑖+2𝜀𝑖𝑌√𝛼𝑖+𝛽𝑖/𝑌
        (5) 

 

This expression shows that economies of scale are always present, but 𝑙𝑖𝑚
𝑌→∞

 𝐷𝑆𝐸 = 1, 

suggesting that the positive externalities induced by each of the elements that constitutes 

“directness” in this model get exhausted in spite of the upward jump in 𝐷𝑆𝐸 induced by 

the change in lines structure: eventually everybody travels along the shortest possible 

route and with no intermediate stops11. 

 

4. Directness and scale economies in a representative urban setting.  

 

Transit systems can be spatially organized in many (and complex) ways. In order to 

visualize the technical elements that intervene in the relation between lines structure and 

scale economies, a better representation of the underlying spatial setting is needed such 

that lines could be structured following many possible arrangements. To do this we will 

                                                
11 This refers to scale economies induced by directness. If the number of passengers gets too large, new sources of 
economies (or diseconomies) of scale might emerge, such as congestion or a change in technology (e.g. metro). 
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apply the lines structure analysis by Fielbaum et al. (2016) over the simplified parametric 

urban model introduced by Fielbaum et al (2017) shown in Figure 5, where trips go from 

𝑛 peripheries P (that only generate trips) to both the CBD and the 𝑛 subcenters SC. There 

are also trips from the subcenters to other subcenters and to the CBD.  In other words, 

peripheries only generate trips and the CBD only attracts trips, representing a simplified 

morning peak situation. The proportions of total trips 𝑌 departing from the peripheries and 

from the sub-centers, and the proportions going from the peripheries to the CBD, own 

sub-center and other sub-centers are treated parametrically, such that all types of cities 

can be represented (monocentric, polycentric and dispersed). 

 
Figure 5. A simplified parametric urban model (Fielbaum et al., 2017). 

 

Under this setting, one can search for the best lines structure as total trips 𝑌 grow keeping 

trip distribution constant12, in order to visualize a relation between lines structure, demand 

and scale economies. Finding an optimal set of routes is an NP-Hard problem, which is 

the reason why this evolution can only be analyzed over a reasonable set of strategic line 

structures13. We will consider four traditional generic schemes with different directness 

indices: Feeder-Trunk (FT), Hub and spoke (HS), No Transfers (NT, or “direct”), No Stops 

(NS, or “exclusive”).  The lines that belong to each structure are represented in Figure 6; 

as all structures are radially symmetric, only lines emerging from one zone are shown. 

Each type of line (e.g. radial, circular) is represented by a different color.  Lines of the 

same type that share one link are grouped (such as the three black lines in 6a). 

 

 

                                                
12 In Fielbaum et al. (2017) the distribution of total flow in trips from the peripheries and subcenters to the CBD and 
(other) subcenters is represented by three parameters. These proportions (i.e. the parameters) are held constant in the 
analysis of scale, looking only at the effect of 𝑌 (ray analysis).  
13 Informally, a problem is NP-Hard when any algorithm that seeks the exact solution would take absurdly long times. 

Quak (2003), Schöbel and Scholl (2005), and Borndörfer et al. (2007) have shown that finding an optimal set of routes 
is an NP-Hard problem for various specifications.  
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a. FT b. HS 

 
c. NT     d. NS  

 

 Figure 6. Four strategic line structures 

 

A brief description of each of these four generic line structures establishes a connection 

with the three indices that describe directness as defined above: 

- FT: each periphery is connected with its subcenter, and subcenters are linked by direct 

trips that follow shortest paths, that could follow the circular line or one of the lines 

connecting each subcenter with the 3 “opposite” subcenters. The number of transfers is 

always 1 for trips from a periphery unless the destination is the own subcenter. Trips are 

the shortest possible. Buses stop at each node. 

- HS: all peripheries are connected to the CBD that acts as a hub, and there are two 

additional circular lines (clockwise and counterclockwise; only one is shown in Figure 6) 

connecting the ring of subcenters. The number of transfers is 1 for most trips that do not 

finish at the CBD. Trips may be longer than the shortest path but only for a small fraction 

of the trips. Buses stop at each node. 
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- NT: nobody needs to transfer. Trips may be longer than the shortest path but only for a 

small fraction of the trips. There are specific lines connecting each OD-pair (some of them 

vanish because their optimal frequency is nil). Buses stop at each node. 

- NS: nobody needs to transfer. As buses are OD specific, their routes are as short as 

possible and each bus travels non-stop from start to end (only 2 “stops” per trip). 

The trips paths followed by the passengers are not known a priori because they depend 

on optimal frequencies (some of which could be zero) that in turn depend on 𝑌. In order 

to characterize the structures in terms of directness independent of 𝑌, Table 3 shows the 

network indices of the four structures calculated as averages across OD pairs – instead 

of passenger trips – in a city with eight zones (𝑛=8, 136 OD pairs)14. Directness increases 

from FT to HS, then to NT and finally to NS. 

 

Structure FT HS NT NS 

Number of transfers 0.47 0.35 0 0 

Number of stops                                3.06 3.06 3.06 2 

Distance traveled/Minimum distance 1 1 1 1 

Table 3. Network indices describing directness for each lines structure. 

 

In Fielbaum et al. (2016), frequencies of lines within each structure are optimized, 

minimizing a 𝑉𝑅𝐶 function similar to equation (2) studied in section 3.2, but now including 

a penalty 𝑝𝑇 for each of the 𝑇 transfers in the system, as shown in equation (6). As in the 

illustrative model, users are assumed to be homogeneous regarding time valuation, 

crowding and congestion are not considered, and the number of users is exogenous (i.e 

min 𝑉𝑅𝐶 for a given 𝑌, which yields a cost function).  

 

𝑉𝑅𝐶 = 𝐵(𝑐0 + 𝑐1𝐾) + 𝑝𝑤𝑌𝑡𝑤 + 𝑝𝑣𝑌𝑡𝑣 + 𝑝𝑇𝑇       (6) 

 

Because of the complexity of the network, users now may have more than one route to 

choose from. All passenger routes are assumed to have the same fare such that 

assignment of passenger to routes are commanded only by the operational 

characteristics of the system; their choices depend on frequencies and frequencies 

depend on choices (as formulated in Appendix A), which prevents analytical solutions. 

Therefore, an iterative procedure is needed to find the optimal frequency and vehicle size 

for each line within a given lines structure, where each iteration rests on finding a relation 

between (𝐵, 𝐾, 𝑡𝑤, 𝑡𝑣, 𝑇) and the vector of frequencies.Using the parameters shown in 

                                                
14 Note that whenever some lines vanish as a result of the optimization process (zero frequency) the flow directness 
indices may increase.  
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Appendix C, the optimal vector of frequencies is obtained for each structure15; again, both 

frequencies and bus sizes increase with patronage. Plugging these back into 𝑉𝑅𝐶 the 

cost function 𝐶𝑖 for each lines structure is obtained. 

 

Figure 7a shows the results of Fielbaum et al. (2016) regarding the average cost of each 

line structure; as 𝑌 increases the optimal structure changes from hub and spoke, to no 

transfers and finally to no stops, i.e., directness increases (and feeder-trunk is never 

optimal)16. In Figure 7b this evolution is shown by means of the corresponding 𝐷𝑆𝐸 of the 

optimal structure for each level of the total flow: scale economies indeed increase after 

each change (including a change within HS when the circular line emerges), and 

decrease thereafter. For synthesis, the possibility of deciding the line structure introduces 

directness as a new source of economies of scale which are finally exhausted after full 

directness is achieved.  

 

           a) b)                                                                    

Figure 7. Average costs and overall DSE as directness increases. 

 

Let us now address the central question: which design elements lie behind these results 

regarding scale economies? Having found the superior structures, an analysis of 

directness can be made taking into account the passengers’ trips. Figures 8 show the 

evolution of each of the three flow indices that define directness as a function of the 

number of passengers whose growth induces lines structure changes from HS to NT to 

NS.  

 

As represented in Figure 8a, transfers occur only for low values of 𝑌 where the hub and 

spoke structure dominates; the emergence of a new line (whose frequency jumps 

discretely from zero) within the HS design that connects directly some OD pairs (a new 

lines structure rigorously speaking) generates a reduction in the number of transfers and 

also in the number of stops and distance traveled, which shows up in Figures 8b and 8c. 

The average stops per trip decreases down to 2 when the no-stops structure dominates 

                                                
15 Parameters were chosen from Fielbaum et al. (2016), including meaningful values for trip distribution. For example, 
80% of the trips depart from the peripheries and half of them go to the CBD. 
16 We use a logarithmic scale to be able to represent both low and high volumes of passengers and the corresponding 
dominant structures (this scale will also be used for all subsequent figures). Flow is shown in passengers per minute. 
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for high values of 𝑌 (Figure 8b). The ratio between the distance traveled and the minimum 

distance possibly required (called “detour” in Figure 8c) generally decreases except when 

changing from hub and spoke to the no-transfers structure, as some passengers 

experience longer trips because some short lines disappear in favor of longer ones that 

collect more passengers; note that this is counterbalanced by the reduction in transfers, 

showing that sometimes there is a trade-off between the different components of 

directness. 

 

a) b)                                                                                       

c)  

Figure 8. The three flow indices of directness as a function of patronage.  

 

The physical measures of directness translate into users’ time and users’ costs, which 

are shown in Figures 9. Figure 9a summarizes the “equivalent time” associated to each 

of the directness indices: length of the routes translates into time-in-motion, the number 

of stops (together with vehicle load) translates into time at stops, and each transfer is 

valuated as 24 minutes in motion (as in Fielbaum et al., 2016). Their sum is the total 

equivalent time (TET) presented at the top of Figure 9a, and it synthesizes the total effect 

of directness on users; the fact that TET diminishes when lines structure changes clearly 

shows that increasing directness as patronage increases, contributes to scale economies. 

The slight increase of TET within each structure is caused by the larger time at stops 

induced by larger vehicles, an effect that is almost irrelevant when compared with the rest 

including the reduction in the number of stops each time the structure changes. Note that 

the more than 10 minutes reduction of TET is mostly explained by the reduction in time-

in-motion and transfers (some 4 minutes each) against the 2 minutes reduction in time at 

stops. 
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Figure 9b shows the average costs per passenger due to in-vehicle time, waiting time 

and transfers, which are the three components of the users’ cost function. Looking at the 

points where lines structure changes, it becomes evident that increasing directness 

makes in-vehicle time and transfer cost decrease, but there is a local increase in waiting 

time because directness diminishes bus-sharing and each passenger now has less lines 

to choose from. This local increase in waiting times, however, is more than compensated 

by the frequency growth as patronage increases within each structure (Mohring effect). 

 

a) b)   

Figure 9. Effects of directness on equivalent users’ times and users’ costs. 

 

So far, we have interpreted scale economies in terms of users’ costs; what about 

operators’ costs? Which are the effects of directness? To tackle these questions, let us 

recall that total operators’ costs are given by 𝑐0𝐵 + 𝑐1𝛴 where 𝐵 is total fleet and 𝛴 = 𝐵𝐾 

is total number of seats. Let us analyze both variables. 

 

In Figures 10 we show (a) number of seats per passenger and (b) number of buses per 

passenger as a function of patronage. Seats per passenger drop significantly when lines 

structure changes. This effect occurs because bus-sharing diminishes (when directness 

increase) reducing the idle capacity of buses as we now explain in detail: the size of the 

buses for a line is given by its most loaded segment, such that idle capacity is present in 

the rest of the arcs used by the line; only in the NS structure buses are always full. On 

the other hand, within a given structure increasing 𝑌 increases cycle time through 

boarding-alighting time, which makes 𝛴/𝑌 an increasing function of 𝑌17. 

 

Figure 10b reveals that the number of vehicles per passenger decreases nearly in a 

continuous way, which shows that the effect of the change in lines structure over total 

fleet as 𝑌 grows is less important than the increase in bus size. In other words, when 𝑌 

increases, optimal frequencies and vehicle capacities increase as well, but frequency 

grows at a decreasing rate precisely because the capacity grows making fleet per capita 

decrease. 

                                                
17 This (novel) result can be obtained analytically in the one-line case using the expressions for optimal frequency and 
capacity in Jansson (1984) or Jara-Díaz and Gschwender (2009).  



19 
 

a)  b)  

Figure 10. Effect of directness on the components of operators’ costs. 

 

In summary, including lines structures as part of the (optimal) design of public transport 

services in an urban space introduces yet another source of scale economies which has 

been defined here as directness, a concept that encompasses many elements 

summarized by three indices that capture transfers, routes length, and stops; as 

directness increases the total equivalent time for users decreases, approaching the (time 

related) characteristics of a private car trip. All in all, searching for the optimal lines 

structure is both affected by scale effects (such as the Mohring effect) and triggers new 

scale sources. 

 

5. Conclusions. 

 

In this paper we have introduced a basic structural design element - the spatial 

arrangement of transit lines - in the analysis of scale economies in public transport 

systems. We have shown that the discrete change from one structure to another as 

patronage increases is a source of scale economies. This change occurs because at the 

threshold point average costs are equal but the marginal cost of the new structure is lower 

(which justifies the change), such that the degree of scale economies increases at that 

point. The difficulty in the detailed analysis of what lies behind the effect on scale 

economies emerges due to the lack of a single variable that captures the evolution of 

lines structures as flows grow, which makes a substantial difference with the analysis of 

frequency and vehicle capacity in a single line. 

 

In order to understand the engineering aspects behind the relation between lines structure 

and scale economies, we have proposed a three-dimensional concept called directness 

encompassing number of transfers, number of stops and passenger route lengths. We 

have shown in a very simple network as well as in a fairly general representation of a city, 

that all these indices improve (diminish) when a change in lines structure takes place due 

to an increase in passenger volume. Grossly speaking, as more passengers use public 

transport, it is possible to evolve towards systems with more direct lines for each OD pair, 

diminishing in-vehicle times while keeping reasonable waiting times, such that users are 

benefited by lower travel times and operators are benefited by lower idle capacity.  



20 
 

 

The change in lines structure occurs at specific levels of patronage, such that there are 

segments of demand where the same lines structure remains as the best. Within those 

segments scale economies analysis replicates the case of the single-line models, i.e. 

frequencies and bus capacities increase with patronage, such that waiting times for users  

diminish (Mohring effect), and average cost for operators diminish, which outbalances the 

diseconomies of scale induced by larger times at bus stops. For synthesis, the degree of 

scale economies increases locally when lines structure changes and diminishes 

afterwards until the next change occurs. And this happens until full directness is achieved; 

from then on frequencies and vehicle sizes increase until scale economies are exhausted.  

 

Next steps in the analysis should take into account that, besides frequency and vehicle 

size, another relevant source of scale economies has also emerged from simple models: 

lines density, which has been represented as parallel lines that provide the same service 

(i.e. same frequency and bus size) affecting access time for a single OD pair. When 

dealing with lines structures, the introduction of density would require the inclusion of yet 

another variable in the model, namely the number of actual streets represented by each 

arc in the city network. As patronage continues increasing it is very likely that the density 

of lines running between each pair of nodes in the parametric representation of the city 

should increase as well. Future research should consider the joint evolution of density, 

frequencies, bus sizes, and lines structures as patronage grows.  

 

Finally, the analysis presented here involves only the variation of total patronage keeping 

trip distribution constant; in the terminology created by Baumol et al. (1982) within a multi-

output framework, this is a ray analysis, where flows in every OD pair grow by the same 

proportion. When a city exhibits an evolution of flows that involves a change in its basic 

urban structure, e.g. from monocentric to polycentric, the scale effects recognized and 

analyzed in this paper should be complemented with the study of economies of scope.  
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Appendix A: Procedure to optimize (𝒇, 𝑲) for a given lines structure and a given 𝒀. 

 

The problem is  

 

𝑀𝑖𝑛𝒇,𝑲 𝑉𝑅𝐶𝑖(𝒇, 𝑲, 𝒀) = 𝑉𝑅𝐶𝑖𝑂(𝒇, 𝑲) + 𝑉𝑅𝐶𝑖𝑈(𝒇, 𝑲, 𝒀)      (A.1) 

 

where the combinations of frequencies and vehicles sizes can generate flows 𝒀 and the 

minimization must respect capacity constraints: if we denote the number of passengers 

that use each line 𝑙 at each segment 𝑒 as 𝜆𝑙𝑒, then 𝐾𝑙 ≥ 𝜆𝑙𝑒 ∀𝑒, 𝑙 (A.5). In order to find 

these 𝜆𝑙𝑒, for each OD-pair 𝑤 all the possible routes 𝑟 ∈ 𝑅𝑤 need to be identified18 with 

their corresponding users costs 𝑐𝑟 (note that 𝑉𝑅𝐶𝑖𝑈 is then defined by the costs of the 

selected routes), such that the 𝑌𝑤 passengers use the less costly one19 (A.3), which will 

be identified by 𝑥𝑟 = 1 (A.2 and A.6); note that in (A.3), when 𝑥𝑟′ = 1 the corresponding 

cost must be the minimum, and when 𝑥𝑟′ = 0 the inequality is trivially fulfilled. The load of 

each line at each arc is obtained as the sum of the passengers over the set of routes that 

use line 𝑙 in arc 𝑒 defined as 𝑆𝑙𝑒 (or a portion 𝜃𝑙𝑒𝑤(𝒇, 𝑲) of them, if common lines are 

present) as written in (A.4). Formally, the program being solved for each lines structure is 

the following: 

 

min
𝒇,𝑲

𝑉𝑅𝐶(𝒇, 𝑲) 

subject to 

∑ 𝑥𝑟𝑟∈𝑅𝑤
= 1  ∀ 𝑤          (A.2) 

 𝑥𝑟′𝑐𝑟′(𝑓, 𝐾, 𝑥𝑟′) ≤ 𝑐𝑟(𝑓, 𝐾, 𝑥𝑟)  ∀𝑟, 𝑟′ ∈ 𝑅𝑤          (A.3) 

𝜆𝑙𝑒 = ∑ 𝑌𝑤 ∑ 𝑥𝑟𝜃𝑙𝑒𝑤(𝑓, 𝐾)𝑟∈𝑅𝑤∩𝑆𝑙𝑒𝑤  ∀𝑒, 𝑙       (A.4) 

𝐾𝑙 ≥ 𝜆𝑙𝑒    ∀𝑙, 𝑒            (A.5) 

𝒇 ≥ 0, 𝒙 ∈ {0,1}          (A.6) 

 

                                                
18 By definition, when there are common lines in a segment, they are recognized as part of a single route. 
19 Other criteria for passenger assignment to routes can be used without affecting the analysis, provided high cost 
routes are discarded; one possible such criteria could be some distribution across routes with similar low costs. 
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Appendix B. Optimal frequencies and capacities in the simple model (Section 3.2) 

 

Let us solve first the one-line system. Each of its components can be expressed as a 

function of frequency: 

● Bus capacity (𝐾): total passengers per unit time 𝑌 use 𝑓 buses per unit time, such that 

the load of each bus is 𝐾 = 𝑌/𝑓. 

● Cycle time (𝑡𝑐): regarding vehicle in motion, each bus needs to travel across a path 

whose length is 2𝐿0 + 𝑄, taking a time of (2𝐿0 + 𝑄)/𝑉; regarding time at stops, each 

passenger needs 2𝑡 to board and alight a bus whose load is 𝑌/𝑓 passengers, which 

makes a total of 2𝑡𝑌/𝑓. Total cycle time is the sum of these two terms: 
2𝐿0+𝑄

𝑉
+ 2𝑡

𝑌

𝑓
. 

● Fleet (𝐵): recalling that 𝑓 =
𝐵

𝑡𝑐
, it becomes apparent that 𝐵 = 𝑓

2𝐿0+𝑄

𝑉
+ 2𝑡𝑌. 

● Waiting time (𝑡𝑤): passengers arrive at an homogeneous rate to the bus stop, and 

buses exhibit a constant headway such that on average each passenger will wait half 

the headway (1/2𝑓). 

● In-vehicle time (𝑡𝑣): it needs to be calculated as the average between two types of 

OD-passengers. Passengers that alight from the bus at the first stop travel a distance 

𝐿0 such that time in-motion is 𝐿0/𝑉. At the first stop the bus stays 
𝑌

2𝑓
𝑡, and users that 

alight there spend on average half of that time. Passengers that alight at the second 

stop travel a distance 𝐿0 + 𝑄; they stay in the vehicle 
𝑌

2𝑓
𝑡 at the first stop, and - on 

average - half that time at the second stop. The average in-vehicle time for passengers 

is then 
1

2
[(

𝐿0

𝑉
+

𝑌

4𝑓
𝑡) + (

𝐿0+𝑄

𝑉
+

𝑌

2𝑓
𝑡 +

𝑌

4𝑓
𝑡)]. 

 

Replacing these expressions in 𝑉𝑅𝐶 = 𝐵(𝑐0 + 𝑐1𝐾) + 𝑝𝑤𝑌𝑡𝑤 + 𝑝𝑣𝑌𝑡𝑣 yields   

𝑉𝑅𝐶 = (𝑓
2𝐿0+𝑄

𝑉
+ 2𝑡𝑌)(𝑐0 + 𝑐1

𝑌

𝑓
) + 𝑝𝑤𝑌

1

2𝑓
+ 𝑝𝑣𝑌

1

2
[(

𝐿0

𝑉
+

𝑌

4𝑓
𝑡) + (

𝐿0+𝑄

𝑉
+

𝑌

2𝑓
𝑡 +

𝑌

4𝑓
𝑡)] (A.7) 

Making the derivative with respect to 𝑓 equal to zero yields: 

𝑓∗ = √
𝑌𝑉(

𝑝𝑤
2

+2𝑡𝑌[𝑐1 +
𝑝𝑣
4

])

2𝑐0(𝐿0+𝑄)
,  𝐾∗ = √

𝑌2𝑐0(𝐿0+𝑄)

𝑉(
𝑝𝑤

2
+2𝑡𝑌[𝑐1 +

𝑝𝑣
4

])
   (A.8) 

Both expressions increase with 𝑌, with 𝑓∗ tending to a linear function, and 𝐾∗ tending to 

some constant when 𝑌 → ∞. 

 

The solution for the two-lines system is the following: 

 

● Bus capacity (𝐾): total passengers per unit time per line are now 𝑌/2, and use 𝑓 buses 

per unit time, such that the load of each bus is 𝐾 = 𝑌/2𝑓. 

● Cycle time (𝑡𝑐): each bus travels across a path whose length is 2𝐿0, so time in motion 

is 2𝐿0/𝑉; regarding time at stops, each passenger needs 2𝑡 to board and alight a bus 
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whose load is 𝑌/2𝑓 passengers, which makes a total of 𝑡𝑌/𝑓. Cycle time is the sum 

of these two terms: 𝑡𝑐 =
2𝐿0

𝑉
+ 𝑡

𝑌

𝑓
. 

● Fleet (𝐵): there are two identical lines so 𝐵 = 2𝑓𝑡𝑐 =
4𝑓𝐿0

𝑉
+ 2𝑡𝑌. 

● Average waiting time (𝑡𝑤): as in the one line system 𝑡𝑤 = 1/2𝑓. 

● Average in-vehicle time (𝑡𝑣): Passengers spend in motion 
𝐿0

𝑉
. At stops, each bus 

spends 
1

2𝑓
𝑡𝑌, such that passengers spend on average half that time, which yields 𝑡𝑣 =

𝐿0

𝑉
+

𝑡𝑌

4𝑓
. 

Replacing these expressions in 𝑉𝑅𝐶 = 𝐵(𝑐0 + 𝑐1𝐾) + 𝑝𝑤𝑌𝑡𝑤 + 𝑝𝑣𝑌𝑡𝑣 yields   

𝑉𝑅𝐶 = (
4𝑓𝐿0

𝑉
+ 2𝑡𝑌) (𝑐0 + 𝑐1

𝑌

2𝑓
) +

𝑝𝑤𝑌

2𝑓
+ 𝑝𝑣𝑌 (

𝐿0

𝑉
+

𝑡𝑌

4𝑓
)  (A.9) 

Making the derivative with respect to 𝑓 equal to zero yields: 

𝑓∗ = √
𝑌𝑉(

𝑝𝑤
2

+𝑡𝑌[𝑐1+
𝑝𝑣
4

])

4𝐿0𝑐0
,  𝐾∗ = √

𝑌𝐿0𝑐0

𝑉(
𝑝𝑤

2
+𝑡𝑌[𝑐1+

𝑝𝑣
4

])
   (A.10) 

Again, both expressions increase with 𝑌, with 𝑓∗ tending to a linear function, and 𝐾∗ 

tending to some constant when 𝑌 → ∞. 
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Appendix C. Definitions and values of the parameters for simulations. 

Symbol Meaning  Value 

𝛼 Fraction of trips starting at the peripheries that go to the CBD. 0.5 

𝛽 Fraction of trips starting at the peripheries that go to the own subcenter. 0.25 

𝑎 Fraction of trips that start at the peripheries. 0.8 

𝛼̃ Fraction of trips starting at the sub-centers that go to the CBD. 0.67 

𝑐0 Unitary cost per bus per period of time. 0.17  [US$/min] 

𝑐1 Unitary cost per seat per period of time. 0.0034 [US$/min] 

𝑔 Distance periphery-subcenter/distance subcenter-CBD. 0.33 

𝑛 Number of zones in the city. 8 

𝑝𝑇 Users’ cost of a transfer. 0.59 [US$] 

𝑝𝑣 Value of in-vehicle time. 1.48 [US$/h] 

𝑝𝑤 Value of waiting time. 2.96 [US$/h] 

𝑇0 Vehicle in-motion time between a subcenter and the CBD. 30 [min] 

𝐿0 Distance from origin to each destination in triangle city 30 [km] 

𝑄 Distance between destinations in triangle city 2 [km] 

𝑉 Commercial speed of the buses 13 [km/h] 

 

 


