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a b s t r a c t 

Arrays of oscillators driven out-of-equilibrium can support the coexistence between coher- 

ent and incoherent domains that have become known as chimera states. Recently, we have 

reported such an intriguing self-organization phenomenon in a chain of locally coupled 

Duffing oscillators. Based on this prototype model, we reveal a generalization of chimera 

states corresponding to the coexistence of incoherent domains. These freak states emerge 

through a bifurcation in which the coherent domain of an existing chimera state expe- 

riences an instability giving rise to another incoherent state. Using Lyapunov exponents 

and Fourier analysis allows us to characterize the dynamical nature of these extended so- 

lutions. Taking the Kuramoto order parameter, we were able to compute the bifurcation 

diagram of freak chimera states. 

© 2020 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Coupled oscillators usually exhibit synchronization phenomenon [1] making all oscillators to move in a well-coordinated

manner. In the last decade, coexistence between coherent and incoherent domains in an array of identical oscillators has

attracted the attention of the scientific community [2] . This intriguing dynamical behavior has been called a chimera state.

Pioneering studies of these states were conducted on a lattice of chaotic maps globally coupled [3] and an array of phase-

oscillators with weak nonlocal coupled [4] . Since then, chimera states were theoretically studied in more general frame-

works, such as coupled phase oscillator models [5–7] , coupled maps networks [8–10] , array of nonlinear oscillators [11–15] ,

array of chaotic systems [16–19] , quantum systems [20] , neural models [21,22] , delay systems [23,24] , and discrete metama-

terials [25] . Chimera states have been experimentally observed and investigated in a chemical system [26,27] , optoelectronic

oscillators [28,29] , mechanical oscillator networks [30,31] , electric circuit [32,33] , and lasers [34,35] . Recently, chimera states

have been numerically observed in a Duffing oscillators chain coupled to nearest neighbors [36] . The local coupling prevents

the incoherent domain from invading the coherent one, allowing concurrently the existence of a family of chimera states,

which are organized by a homoclinic snaking-like bifurcation diagram [37,38] . The effect of the local coupling on domain

dynamics can be modeled considering the Peierls-Nabarro potential [39–41] . Indeed, this potential accounts for the energy

barrier that establish the coexistence between the coherence and incoherence domains. Hence, it is expected that increasing

the energy injection one domain invades the other one. Namely, the chimera solution changes in size or becomes unstable.
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Fig. 1. Freak chimera state of the Duffing oscillators chain coupled to nearest neighbors Eq. (1) by α = 0 . 4 , β = 1 . 0 , μ = 0 . 1 , ω = 0 . 7 , N = 300 , γ = 2 . 8 , 

and κ = 0 . 5739 . (a) Spatiotemporal evolution of one freak chimera state. (b) Instantaneous profile of chimera state a fixed given time. (c) Spatiotemporal 

diagram of the phase of each oscillator, θi ≡ arctan ( ̇ x i /x i ) . (d) Average frequency of each oscillator, 〈 ̇ θi 〉 ≡ ∫ T 
0 

˙ θi (t ) dt /T . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, this scenario can be altered if one of the domains suffers an instability. When the coherent state exhibits an in-

stability, leading to a new complex domain, one may observe the coexistence of incoherent states of different nature. This

type of dynamical behavior corresponds to a generalization of the chimera state. 

This work aims to investigate coexistence between incoherent domains in a Duffing oscillators chain with the nearest

neighbor coupling scheme. We have termed these intrigued states as freak chimera states . The dynamical nature of these

extended solutions is characterized by Lyapunov exponents and Fourier analysis. A bifurcation diagram of the different states

is presented. We also propose a quantitative measure of the difference between chimera and freak chimera states based on

the local and global Kuramoto order parameter. Hence, we were able to identify that the freak chimera states emerge as a

supercritical bifurcation of the chimera states, in which the coherent domain becomes unstable by a modulational instability.

2. Duffing oscillators chain and freak chimera states 

Let us consider a chain of N locally coupled Duffing oscillators that satisfies 

ẍ i (t) = −x i + αx 3 i − x 5 i − μ ˙ x i + γ cos ωt + κ(x i +1 − 2 x i + x i −1 ) , (1) 

where x i ( t ) accounts for the displacement of the i th-oscillator with a unitary natural frequency. Oscillators are indexed by i =
{ 1 , 2 , . . . , N} . The nonlinear terms characterize the stiffness, and μ accounts for the damping coefficient. A harmonic forcing

provides the injection of energy with amplitude and frequency γ and ω, respectively. The coupling between oscillators is

modeled using a linear spring of elastic constant κ . 

The Duffing oscillator is a prototype model for the resonance phenomenon in out of equilibrium systems [42] . Model Eq.

(1 ) exhibits dissipative structures such as standing waves, spatiotemporal chaos, extended quasi-period oscillations, chimera

states, among other behaviors [36] . These chimera states are characterized by the coexistence of coherent and incoherent

domains in a unidimensional (1D) lattice coupled-oscillators. Increasing the amplitude of forcing, the coherent domain of

the chimera state becomes unstable giving rise to a state that presents coexistence between two incoherent domains. We

have termed these solutions as freak chimera states. Fig. 1 shows a typical spatiotemporal evolution freak chimera state

observed in model Eq. (1) either considering the absolute displacement x i ( t ) ( Fig. 1 (a)) or the local phase ( Fig. 1 (c)). Typical

instantaneous profiles are depicted in Fig. 1 (b) and (d). It can be seen from the spatiotemporal diagrams in the variable x n ( t )

and phase θn (t) ≡ arctan ( ̇ x n /x n ) that all the distinct domains of the chimera exhibit complex behaviors. In chimera state,

the frequency of the oscillators remains constant all over coherent domains. This frequency can be monitored introducing
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Fig. 2. Bifurcation diagram of the Duffing oscillators chain coupled to nearest neighbors model Eq. (1) by κ = 0 . 4216 and α = 0 . 4 . Maximum displacement 

X max of each oscillator as a function of the amplitude of the forcing γ . The solid red lines depict the maximum displacement of limit cycles for a single 

Duffing oscillator. Orange and yellow squares represent X max of each oscillator of the extended oscillatory solutions. The upper extended solution presents a 

spatiotemporal chaotic dynamics until γc = 2 . 96131 . The lower extended solution appears by a saddle-node bifurcation at γa = 2 . 7196 , which is an extended 

synchronized state that exhibits a modulation instability at γb = 2 . 8143 . This instability causes the emergence of an extended state of quasi-periodic nature. 

Chimera and freak-chimera states are observed in I and II region, respectively. Insets illustrate, respectively, chimera and freak chimera state at γ = 2 . 75 

and γ = 2 . 83 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the quantity 〈 ̇ θn 〉 ≡ ∫ T 
0 

˙ θn (t ) dt /T , where T is an average time chosen several times larger than the period of the external

forcing. Fig. 1 (d) depicts 〈 ̇ θn 〉 for the freak chimera state, revealing a complex spatial structure for these states. Note that

positive and negative frequency accounts for the clockwise and counterclockwise evolution of oscillators trajectories in the

phase portrait, respectively. This allows us to highlight another difference between freak chimera and chimera states. Note

that the profile of 〈 ̇ θn 〉 changes accordingly to T , as result of the complex spatiotemporal nature of the incoherent domains.

Numerical simulations were conducted using a finite differences code with 4th-order Runge-Kutta scheme, with Neumann

boundary conditions, and time step fixed as dt = 0 . 01 . To obtain a chimera state, we consider an initial condition that

connects the extended lower and upper states with a small spatially random perturbation [36] . 

3. Duffing oscillators chain dynamics 

Chimera and freak chimera states are observed in the Duffing oscillators chain model Eq. (1) inside the bistable regime.

Consequently, bistability is a prerequisite condition to observe these intriguing states. To shed light on the solutions and

instabilities of the model Eq. (1 ), the maximum displacement of each oscillator is calculated and defined as X max . Fig. 2 (a)

illustrates X max as a function of γ . For the sake of simplicity, we have first considered a single oscillator. The solid red line

represents the maximum displacement of an individual Duffing oscillator. For small γ only one periodic solution is observed

[36] . Notice that the maximum displacement increases as a function of the external forcing. At γa = 2 . 7196 a second limit-

cycles emerges from a saddle-node bifurcation. From this γ a , we observe bistability between two limit cycles. To distinguish

between these limit cycles, we have introduced the following terminology upper and lower limit cycle according to the

maximum displacements that they exhibit. 

Let us considered the collective evolution of coupled limit cycles. From the numerical simulations, we observe that the

collective behavior of the oscillators can be synchronized or not depending on parameters. The dynamical behaviors formed

from the upper and lower oscillators are called, respectively, as upper and lower extended solutions. The maximum dis-

placement X max of these solutions are depicted by orange and yellow squares in Fig. 2 , respectively. Notice that the upper

extended solution is of complex spatiotemporal nature. This dynamic behavior persists until γc = 2 . 96131 . At this critical

value, the upper strange attractor suddenly disappear by a crisis [43] . Therefore, for γ > γ c the lower branch accounts

for the only state that perseveres. On the other hand, the extended lower solution appears by a saddle-node bifurcation at

γa = 2 . 7196 . For γa < γ < γb = 2 . 8143 , the lower extended solution is synchronized. In this interval, the maximum displace-

ment of the lower extended solution decreases monotonously. Fig. 2 highlights this interval as region I. The lower extended

solution suffers a modulation instability at γ b . This instability gives rise to the emergence of new incoherent behavior for

γ > γ b (cf. Fig. 2 ). Hence, for γ b < γ < γ c , the Duffing chain model (1) exhibits a coexistence between two incoherent

dynamical behaviors. Therefore, in this region of coexistence of complex states, one expects to observe coexistence between

two incoherent domains (see Fig. 1 ) producing freak chimera states. Insets in Fig. 2 depict a chimera and freak-chimera

states at γ = 2 . 75 , and γ = 2 . 83 respectively. 

To characterize the spatiotemporal dynamics of the solutions observed in model Eq. (1) , computation of Lyapunov spec-

tra and Fourier analysis were conducted. The Lyapunov exponents characterize the exponential sensitivity to initial condi-

tions of dynamical systems [44] . When the maximum Lyapunov exponent is negative, zero, or positive, the system shows
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Fig. 3. Dynamical characterization of chimera states. (a) Lyapunov spectrum and Fourier analysis of the upper (top panels) and lower (bottom panels) 

extended state. The red dots account for the numerical Lyapunov exponents and the vertical bars account for their respective error. F ( f ) accounts for 

the Fourier spectrum of the field ζ (t) = 

∑ N 
i =1 | x i (t) − x ′ 

i 
(t) | , where x i ( t ) and x ′ 

i 
(t) are solutions of Eq. (1) with slightly different initial conditions, for the 

extended upper and lower solutions. These plots exhibit the typical Fourier spectrum for chaotic and quasiperiodic solutions, respectively. (b) Lyapunov 

spectra of different freak-chimera states of 140, 200 and 250 size, respectively. FC1, FC2, and FC3, respectively, account for the different freak-chimera 

states. The inset shows an amplification around the larger Lyapunov exponents. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a stationary, oscillatory, and chaotic dynamics, respectively. A discrete set of positive Lyapunov exponents reveals a chaotic

dynamical behavior of a low-dimensional dynamic system. Otherwise, a continuous set of positive Lyapunov exponents char-

acterize the spatiotemporal chaotic evolution of the system under study. The analytical determination of Lyapunov exponents

is inaccessible in general. A strategy to determine these exponents is through numerical calculation. Let us introduce the

Lyapunov exponents λi , which are indexed by i = { 1 , 2 , . . . , 2 N} . Lyapunov exponents are characterized according to their

values as following λ1 ≥ λ2 ≥ . . . λ2 N . Using the strategy proposed in Ref. [45] , we have computed numerically Lyapunov

spectra. Fig. 3 (a) shows typical Lyapunov spectra for the upper and lower extended state. As it is expected, the upper ex-

tended state is characterized by several positive Lyapunov exponents. Hence, the upper extended state is of spatiotemporal

chaotic nature. Likewise, to complement the characterization of the complex dynamic observed, a Fourier analysis is con-

sidered. Let us consider the difference between two solutions with slightly different initial conditions x i ( t ) and x ′ 
i 
(t) , and

introduce the field ζ (t) ≡ ∑ N 
i =1 | x i (t) − x ′ 

i 
(t) | . Fig. 3 (a) illustrates the Fourier spectrum of ζ ( t ) for the upper (top panel) and

lower (bottom panel) extended solutions. From these charts, it can be observed that the upper and lower extended solutions

exhibit the typical Fourier spectrum of a chaotic and quasi-periodic dynamical behavior, respectively. In addition, the lower

extended state shows only one non-negative Lyapunov exponent. Due to the closeness to zero value and its error-bar of the

largest Lyapunov exponent, we cannot conclude that this dynamical behavior corresponds to a chaotic one. Fourier analysis

allows us to conclude that this dynamic behavior is of quasi-periodic nature. Indeed, the Fourier spectrum exhibits two im-

measurable frequencies. In brief, in the region II of Fig. 2 , the system presents the coexistence of spatiotemporal chaos and

quasi-periodic dynamical behaviors. 

To shed light on the dynamical nature of the freak-chimera states, we have calculated their Lyapunov spectrum. Fig. 3 (b)

shows the typical Lyapunov spectra of three different freak-chimera states with 140, 200, and 250 size, respectively. The size

refers here to the number of oscillators inside the incoherent domain. Notice that for larger chimera states, the number of

positive Lyapunov exponents increases. This highlights the spatiotemporal chaotic nature of the upper extended solution, and

consequently, the spatiotemporal chaotic nature of freak-chimera states. Therefore, larger chimeras exhibit a more complex

dynamic since they have a higher number of positive Lyapunov exponents. 

4. The transition from chimera state to freak-chimera state 

Chimera states become freak-chimera states when the lower extended solution develops incoherent dynamics. Indeed,

these chimeras emerge as an instability of the background state (lower extended state) on which the chimera is held. Hence,

the characterization of the transition of the lower extended state from coherent to incoherent evolution is necessary to

reveal the emergence mechanism of the freak-chimera state. To characterize this transition, we have computed the global

Kuramoto order parameter R ( t ) given by: 

R N (t) = 

1 

N 

∣∣∣∣∣
N ∑ 

n =1 

e iθn (t) 

∣∣∣∣∣, (2) 

where θn (t) ≡ arctan ( ̇ x n /x n ) accounts for the phase of the n th Duffing oscillator. The global Kuramoto order parameter char-

acterizes the level of synchronicity of the oscillators chain. In a fully synchronized state, R N is identical to one. Contrarily,

in a full incoherence state, R N is zero. Fig. 4 (a) shows the temporal average of R ( t ) for the lower extended, upper extended,

and different chimera states. For γ a < γ < γ b , the value of the global order parameter of the lower extended solution is

identical to one. This state is represented by the acronym LES in Fig. 4 (a). Increasing the strength of the external forcing,
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Fig. 4. The transition from chimera state to freak-chimera state. (a) Temporal Average of the global Kuramoto order parameter for different extended states. 

The symbols LES, UES, Ch 1 and Ch 2 account for lower extended, upper extended, and chimera states, respectively. (b) Power law exponent νQ as a function 

of the number of oscillators in the upper extended domain Q . 

Fig. 5. Phase diagram of chimera and freak-chimera state in the coupling strength κ and the intensity of the external forcing γ . The dashed curve accounts 

for the transition between chimera and freak-chimera state. The solid line stands for the transition between freak-chimera and incoherent domain. Insets 

display the typical instantaneous profile and the spatiotemporal diagram of the local order parameter R i ( t ) of a chimera, freak-chimera, and extended 

incoherence state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ c > γ > γ b , this state exhibits an incoherent dynamics, 〈 R 〉 < 1. From this chart, one concludes that the extended state

exhibits a second-order transition. Close to this transition, the temporal average global Kuramoto order parameter 〈 R Q 〉 of

different freak-chimera state decreases following a power law given by: 

〈 R Q 〉 = r 0 (γ − γb ) 
νQ , (3)

where r 0 and νQ are dimensionless constants, and Q accounts for the number of oscillators in the upper extended domain

(chimera size). Fig. 4 (b) shows νQ as a function of the number of oscillators in the upper extended domain. Note that νQ is

a monotonically decreasing function with maximum value ν0 close to 1/2. Besides, ν0 corresponds to the critical exponent

of the lower extended state. Note that the minimum value of νQ is observed for the upper extended state. Therefore, the

transition from the chimera state to the freak-chimera state is of a second-order nature with a critical exponent that depends

on the size of the chimera. From the freak-chimera states, when increasing the strength of the forcing γ , this state becomes

unstable through a crisis giving rise to the only stable state, which corresponds to the incoherent extended state. 

Thanks to the temporal average global Kuramoto order parameter, we can characterize in the parameter space the re-

gions where the chimera states and the freak-chimera states are observed. Fig. 5 shows the phase diagram in ( κ , γ )-plane,

revealing a smooth transition between the chimera and freak-chimera states. Only chimera states were considered to ob-

tain this phase diagram. The other steady-states that are present in the system can enrich this phase diagram; however, for

the sake of simplicity, we focus on chimera states. Note that the transition between chimera and incoherent state is very

complex, even expects it to be fractal. 

The global Kuramoto order parameter quantifies the synchronization level of the entire system. However, this parameter

is not able to distinguish the synchronization level of each domain. In order to characterize the synchronization level of
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each domain, let us introduce the local order parameter 

R i (t) = 

1 

3 

∣∣∣∣∣
i +1 ∑ 

j= i −1 

e iθ j (t) 

∣∣∣∣∣. (4) 

Insets in Fig. 5 depict spatiotemporal temporal evolution and profile of the local order parameter 〈 R i 〉 of a chimera, freak-

chimera, and extended incoherence state. As expected, the local order parameter in the coherence domain shows a constant

value equal to one. Nevertheless, once this domain becomes unstable, R i shows a finite number of spatial structures. These

spatial structures correspond to synchronized defects, which are motionless due to the quasiperiodic nature of the lower

extended solution. In brief, the local order parameter is the adequate quantity to characterize the different domains that

constitute chimera and freak chimera states. 

5. Conclusion 

Based on a Duffing oscillators chain with nearest-neighbor coupling, we have revealed a generalization of chimera states

that corresponds to coexistence between incoherent domains. Named as freak chimera states, they emerge as a bifurcation

of the chimera state, in which the coherent domain suffers an instability and gives rise to an incoherent state. The prereq-

uisite conditions of freak chimera states are the coexistence between two complex spatiotemporal temporal domains and

an energy barrier that prevents the invasion from each other. In our particular case of the Duffing oscillators chain, both

complex spatiotemporal behaviors emerge from two homogeneous periodic solutions that loose stability as the strength of

the forcing increases. The energy barrier between incoherent domains emergence due to the discrete nature of the system.

The strength of the coupling between oscillators controls the energy gap between the solutions, allowing the formation of

localized solutions. 

To characterize the spatiotemporal dynamics and dynamical nature of freak-chimera states, we have performed Fourier

analysis and calculated the Lyapunov spectra of these localized states. The upper and lower extended solutions correspond to

a spatiotemporal chaotic, and quasiperiodic one. Besides, based on the Kuramoto order parameter, the bifurcation diagram

of chimera states is established. The transition between chimera and freak chimera states corresponds to a supercritical

bifurcation. 

Due to the perquisites for observing freak chimeras are quite general, we expect to observe this intriguing phenomenon

in various coupled oscillators in mechanical, magnetic, optical, and chemical reaction systems. 
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