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AALTHOUGH EXTREME EVENTS, MAINLY  NATURAL
disasters and climate change-driven severe weather, are the result of 
naturally occurring processes, power system planners, regulators, 
and policy makers do not usually recognize them within network 
reliability standards. Instead, planners have historically designed 
the electric power infrastructure accounting for the so-called 
credible (or “average”) outages that usually represent single or 
(some kind of) simultaneous faults (e.g., faults on double circuits). 
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A reliable power system would be operated in a secure way if 
it were able to withstand these faults without threatening the 
integrity of system operation while preserving the continuity 
of supply to customers. However, the impact of recent extreme 
events on power systems, e.g., bushfires in Australia, flood-
ing events in the United Kingdom, storms in the Americas, 
and earthquakes in countries located at the edge of the Pacific 
Ocean, which have even led to chaotic societal situations, goes 
far beyond N−1 or N−2  outages and clearly highlights the need 
for rethinking current planning practices. 

For example, during the last 10 years, Chile has, on an 
annual basis, experienced more than 300 earthquakes above 
4.5 Mw, with several hours of interruptions each year. In the 
case of the United Kingdom, severe storms and floods 
result in power outages for tens of thousands of custom-
ers per year. In 2016, for instance, floods were responsible 
for power interruptions that lasted up to 56 h in Northwest 
England. These are only a few examples worldwide where 
the aftermath of catastrophic extreme events brought 
resilience into discussions among power system planners, 
regulators, and policy makers.

In this context, and within the broader framework of low-
carbon energy network planning being uncertain, in this 
article, we analyze a set of key questions pertinent to the 
resilience debate: 

✔✔ How can we incorporate resilience thinking into power 
system planning, thus going beyond traditional reliability-
driven planning? 

✔✔ Can the negative impacts of natural hazards on 
electricity supply be mitigated through planning 
measures?

✔✔ What is the optimum portfolio of measures for boost-
ing power grid resilience to such extreme events?

✔✔ How can we build a power grid that is both robust and 
flexible enough to withstand events that have possibly 
never been experienced before?

Because such questions are troubling to decision mak-
ers around the world, our aim is to introduce a general, 
quantitative framework that identifies optimal portfolios of 
resilience-enhancing investments and demonstrates them 
through several illustrative case studies. While doing so, 
we highlight the fundamental physical and decision mak-
ers’ risk-attitude features that distinguish reliability-driven 
from resilience-driven investments. Our framework, which 
was elaborated on during a United Kingdom–Chile joint 
project and implemented in actual operation and planning 
mechanisms in the Chilean power system, can thus be seen 

as a fundamental development to extend, in a transparent 
and consistent way, current reliability practices toward more 
resilient grids.

Incorporating Resilience  
in Network Planning
With its growing relevance and interest to our IEEE Power & 
Energy Society (PES), many definitions of power system 
resilience have emerged lately. In the technical report PES-
TR65 published by the IEEE in April 2018, resilience was 
defined as “the ability to withstand and reduce the magni-
tude and/or duration of disruptive events, which includes 
the capability to anticipate, absorb, adapt to, and/or rapidly 
recover from such an event.” In general, these resilience 
definitions mainly focus on characterizing the term extreme 
event, which could threaten power systems, and on the key 
features that a power system should possess within the mul-
tifaceted concept of resilience to minimize the risk expo-
sure to these extreme events. In particular, the following two 
points provide insight across all definitions and specific rel-
evance to the network planners who aim to identify resilient 
network enhancements:

1)	 an emphasis on extreme or catastrophic events, for-
mally referred to as high impact and low probability 
(HILP) (also known as black swan) events, which re-
quire some form of hedging

2)	 an emphasis on the time-varying nature of resilience, 
including and quantifying the various phases before 
and during a severe event as well as after it (when the 
system recovers).

Capturing HILP Events Within Network 
Planning: The Need for Risk-Averse Modeling
Historically, (deterministic) network reliability standards 
have typically ignored any contingency beyond “credible” 
ones, e.g., N−1/N−2. This has resulted in a bias toward build-
ing more and more infrastructure, mainly to provide redun-
dancy to deal effectively with any outage that might threaten 
the uninterrupted power supply. However, experience with 
extreme events clearly shows that this reliability-driven 
approach of making the infrastructure “bigger and stron-
ger” through redundancy and reinforcements may not be 
effective to hedge against multiple simultaneous outages or 
outages occurring in rapid succession. In fact, very extreme 
events cause outages well beyond credible ones, potentially 
affecting hundreds of network components. In other words, 
extreme events typically lead to considering N−X outages, 

While doing so, we highlight the fundamental physical and  
decision makers’ risk attitude features that distinguish  
reliability-driven from resilience-driven investments.
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with X being greater or much greater than 1 or 2 and even in 
the order of hundreds or more. Indeed, here lies one of the 
fundamental differences between reliability and resilience, 
at least in the context of network planning. Planners may 
then intuitively realize that, although it improves reliability, 
more redundancy may not necessarily improve system resil-
ience to extreme events. Alternatively, flexible (“smarter”) 
solutions could provide more viable options that enhance 
resilience by helping to withstand the initial adverse impacts 
of extreme events as well as by supporting the efficient 
response and prompt recovery of the system.

In the new context outlined in this section, could hybrid 
solutions (where hybrid refers to both infrastructure/network, 
i.e., to provide redundancy and robustness, and noninfra-
structure/non-network or smart operational solutions, that is, 
to provide flexibility) constitute the optimal portfolio to boost 
resilience to extreme events? Although this is still an open 
research point and likely to be case specific, if we want to 
keep the lights on or at least pursue an acceptable level of sys-
tem operation under a large array of circumstances (beyond 
so-called credible contingencies), it is evident that current 
planning standards need to be modified to allow HILP events 
to be accounted for within the network design and expansion 
decision-making process. However, the key question here is 
how? Even though no straightforward answer exists, in this 
section, we discuss a few possible approaches while recog-
nizing that it is technically unrealistic (and not economi-
cally viable) to consider targets of 100% reliable supply after 
extreme events and, at the same time, acknowledge that the 
system should meet classical (deterministic) reliability stan-
dards that consider only credible outages.

A first approach to incorporate HILP events within net-
work investment planning could adopt probabilistic (or, in 
mathematical programming terminology, stochastic) mod-
els that explicitly consider the associated probabilities and 
resulting impacts of many states of the system, including 
the intact system and simultaneous outage scenarios. These 
impacts are usually measured in terms of energy not sup-
plied (ENS) and valued through economic metrics such 
as the value of lost load (VoLL). More specifically, in the 
probabilistic reliability assessment pioneered by Billinton 
and Allan, the resulting estimated costs from the ENS are 
averaged (weighted by probability) across all of the mod-
eled scenarios and optimized against additional investment 
and operational costs. Network investments are thus well 
justified as a tradeoff between economics and security of 
supply and, if we neglect, for simplicity, operational costs 

(e.g., congestion costs, losses, and so on), carried out up to 
the point where the marginal cost of additional investment 
equals the marginal benefit of enhanced reliability. This is 
graphically illustrated in Figure 1, where the reliability cost 
is measured as the expected energy not supplied (EENS) × 
the VoLL. This probabilistic approach, however, presents a 
fundamental limitation to properly addressing HILP events 
and informs appropriate investment decisions as a hedge 
against them, as we discuss further in this section.

HILP events are, by definition, very rare, and their impact 
on average indicators such as the EENS is therefore very lim-
ited. For example, our analysis shows that, on average, it would 
be economically optimal for Chile’s power system to suffer 
the consequences of very large earthquakes every 15 years 
rather than invest in further assets to reinforce and harden 
the power system. It is therefore worth asking ourselves why 
we should be concerned about events that, on average, have a 
relatively small effect. We argue that the answer to this ques-
tion may be with the risk attitude of electricity consumers 
and policy makers (and therefore network planners too, who 
somehow “serve” both). In fact, as suggested by empirical 
evidence, customers and policy makers generally dislike the 
risks associated with the highly adverse consequences often 
linked to HILP events and would thus like to reduce them as 
much as possible. But how can we model this risk attitude, 
and what is the underlying risk-attitude assumption in the 
aforementioned probabilistic assessment?

In risk analysis, attitudes toward risk are usually classi-
fied into three categories, which we describe in this section. 
Consider an electricity consumer who is given the choice 
between the following two options. In the first option, the 
consumer pays US$90 for a network service that hardly 
ever fails, and, when it does, small amounts of energy are 
unserved, totalizing an associated expected cost of ENS 
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figure 1. The optimal balance between investment and 
reliability costs.

It is evident that current planning standards need to be modified  
to allow HILP events to be accounted for within the network  
design and expansion decision-making process.
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equal to US$10. In the second option, the consumer pays 
US$50 for a network service that fails more often and with 
larger amounts of ENS each time, totaling an associated 
expected cost equal to US$50. Note that, in both cases, the 
total amount paid by the consumer for the network and the 
EENS is the same. In this context, the consumer is said to be

✔✔ risk neutral if the consumer is indifferent to these two 
options

✔✔ risk averse if the consumer prefers the first option 
over the second one

✔✔ risk seeking if the consumer prefers the second option 
over the first one.

The reader can easily deduce that risk neutrality is intrin-
sically a part of traditional probabilistic analysis because 
the aforementioned two options seem equally attractive. In 
reality, however, consumers are typically risk averse and, 
arguably, prefer a more stable and predictable outcome from 
the electricity network, even if this may (slightly) increase 
cost, as mentioned previously. In fact, as in many other 
industries, consumers may be willing to pay the price of 
insurance policies that eliminate (or at least mitigate) the 
losses associated with some rare but high-impact scenarios 
that may occur. In this context, risk-averse electricity con-
sumers (which we argue represent the majority) may prefer 
to be hedged against the consequences of HILP events on 
their electricity supply and pay for the corresponding cost 
increase even if these events occur rarely or may not hap-
pen at all. 

Apart from very extreme cases such as earthquakes, 
which may be life-threatening and for which higher risk 
aversion may be justified for different reasons in any case, 

evidence of such a consumer attitude can be seen more and 
more often even for relatively smaller-impact events. For 
example, heat waves in Australia in January 2019 led to spo-
radic, rolling load-shedding events in several areas, includ-
ing central Melbourne. The relatively short outages were 
considered outrageous by many consumers, even though 
they experienced only a minor overall adverse impact.

In addition to consumer attitudes, governments must 
consider the welfare of their citizens and, understandably, 
may want to take a risk-averse approach in dealing with 
HILP events for political reasons, irrespective of the clas-
sical economics associated with traditional power system 
planning methodologies. That is why specific regulatory and 
market mechanism responses were called for following the 
South Australia black system event of September 2016, and 
more are expected in response to the bushfires that occurred 
again throughout Australia in January 2020. In any case, 
once again, the main message here is that the risk-averse 
approaches and metrics that should be contemplated for 
HILP events are typically not present in current system plan-
ning practices.

Recognizing the Outage-and-Restoration 
Evolution: The Need for Time Domain 
Modeling
One important aspect of resilience is its time-varying nature. 
The concept of resilience includes the phases before and dur-
ing a severe event as well as after the event, when the system 
recovers. In this context, Figure 2 shows the time-varying, 
multiphase resilience trapezoid, which clearly highlights the 
phases of a power system when exposed to extreme events, 
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figure 2. A time-varying, multiphase resilience trapezoid. (Source: Panteli et al.) 
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namely, the predisturbance resilient state, disturbance 
progress, postdisturbance degraded state, restorative state, 
and postrestoration state. It also plainly highlights the type 
of actions that can be applied for mitigating the impacts of 
extreme events during these phases, such as preventive, cor-
rective, emergency coordination, restorative, and adaptive. 
However, this critical temporal evolution aspect is usually 
missing in current reliability assessments for planning pur-
poses, which mainly focus on the system response before 
and right after the disturbance occurs (without including 
system restoration). 

In contrast, because the impact on the system due to an 
HILP event is substantial, the explicit modeling of the sys-
tem response and restoration is key in assessing different 
options for enhancing resilience at the planning stage, espe-
cially those based on flexible and operational non-network 
solutions. This time-varying characterization also enables 
the modeling-targeted optimization of metrics specifically 
designed for resilience-analysis purposes, thus providing 
decision makers with the opportunity to select specific attri-
butes of resilience that can be enhanced by implementing 
different operational and investment decisions, which also 
correspond to different enhancement propositions.

Probabilistic Risk-Averse  
Framework to Identify Resilient  
Network-Enhancement Options
Based on the aforementioned premises, we introduce a 
resilience-oriented planning methodology based on a  
stochastic, risk-averse, mathematical program for supporting 
the decision-making process of identifying resilient network 
enhancements. In the first stage, the proposed two-stage model 
(Figure 3) intelligently selects specific network investments 
from a set of candidate options, which are, in the second stage, 
tested through the quantification of their resilience benefits in 
probabilistic outage scenarios originated by stochastic simula-
tion of natural hazards. As a result, the optimal portfolio of net-
work investment decisions as evaluated through a given resil-
ience metric (measured across various scenarios) is identified.

The stochastic generation and assessment of hazard and 
outage scenarios are carried out through the following sim-
ulation-based steps:

1)	 Hazard characterization: In the first step, we gen-
erate various hazards with random magnitudes and 
locations (this can be done by respecting historical 
patterns). Additionally, spatiotemporal profiles may 
be necessary to model hazards that change posi-
tion and intensity dynamically (e.g., storms), spread 
(bushfires), or attenuate their magnitude with distance 
(earthquakes).

2)	 Vulnerability assessment of system components: By 
using fragility curves (illustrated in Figure 4) that are 
assumed to be known for various natural hazards and 
system components, either through historical data or 
on the basis of engineering modeling, we determine 

both 1) the hazard-dependent failure probabilities of 
every network component (e.g., towers and lines as 
well as substation and generation equipment) and 2) 
the outage scenarios across the system, which are gen-
erated from these probabilities.

3)	 System response: This is the step where we simulate, 
for each outage scenario identified above, the poten-
tial system cascading from automatic power flow re-
routing, load/generation disconnection, and postcon-
tingency redispatch (once cascading has ended). We 
then assess the spatially resolved volumes of energy 
not supplied. Importantly, prior to the outage, we as-
sume a normal operation of the system by running an 
economic dispatch problem in which the system infra-
structure is intact.

4)	 System restoration: We simulate both a) the recon-
nection of failed/damaged network components once 
these have been repaired (whose reconnection times 
are determined probabilistically assuming that the re-
connection events are exponentially distributed) and 
b) the reconnection of load/generation, which is ob-
tained using a postcontingency dispatch model.

Figure 5 illustrates the aforementioned process, and 
Figure 6 shows a typical curve for the supplied demand, 
which results from the simulation of the postfault events 
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figure 3. The quantitative approach used to identify opti-
mal resilient system-enhancement options. (Source: Lagos 
et al.) 
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figure 4. An example of a generic fragility curve for a 
piece of network equipment.
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associated with a scenario that follows this sequence: the 
random generation of a) hazards, b) network outages, and 
c)  equipment repairs. Note that the shape of the curve in 
Figure 6 can vary and be hazard and system specific. This 
power supply curve is generated several thousands of times 
(e.g., 10,000) for different hazard-outage-repair sequences 
by using a Monte Carlo simulation. We consider a large 
number of simulations to adequately capture the potential 
consequences of a comprehensive set of natural hazards on 
the power network.

After the simulations have been performed under sev-
eral outage scenarios caused by natural hazards, a suitable 
resilience metric can be selected and calculated for every 
scenario. The metric could, for example, be the ENS or, 
based on our previous work, one taken from the FLEP 
resilience metric system [the FLEP metric assesses how 
fast resilience drops (F-metric), how low resilience drops 
(L-metric), how extensive is the postdisturbance degraded 
state (E-metric), and how promptly the system recovers 
(P-metric)]. After quantifying the effect of each sce-
nario using the selected metric, the optimization problem 
minimizes risk exposure subject to a budget constraint 
(representing the total amount available to be invested 

in resilient network enhancement), thus identifying the 
optimal portfolio of investment decisions that provides 
the best hedge against the HILP events simulated. The 
risk measurement being minimized can be determined by 
calculating the expected value of the selected resilience 
metric (e.g., ENS) across an appropriately selected worst 
set of scenarios resulting from the stochastic simulation.

To do so, the conditional value at risk (CVaR) measure-
ment can be used to consider only those scenarios repre-
senting the worst cases. More specifically, CVaR (also 
referred to as ,CVaRa  although in this article, we use CVaR 
without the subscript to simplify the notation) represents the 
expected value across a predetermined set of worst cases. 
An illustrative example of a probability distribution func-
tion (PDF) and its relevant parameters, with the ENS used 
as the resilience metric, is shown in Figure 7. It should be 
noted that the value of the parameter a  also provides an 
explicit indication of risk attitude, because 1 a-  indicates 
the size of the considered set of worst cases. A reliability 
assessment would use the measurement of the EENS by 
sampling across all of the sets of outages. In this averaging, 
the impact of noncredible worst-case outages would nor-
mally be outweighed by the much more frequent credible 
outages. In some reliability assessments, the consideration 
of noncredible worst-case outages may even be ignored.

In the context of our framework then, this means that, 
in the first approximation, the mean value (i.e., the EENS) 
and the CVaR of the PDF shown in Figure 7 could be used 
as the reliability assessment and the resilience assessment 
measures, respectively. Furthermore, although optimizing 
for the EENS/CVaR is useful to clearly identify decisions 
from a reliability/resilience perspective, in practical settings, 
where planners need to consider both criteria to make trad-
eoff decisions, optimizing on a linear combination of the 
EENS and CVaR may also be a suitable option.

The proposed mathematical framework can be used to 
select a wide-ranging portfolio of resilient network-enhance-
ment options depending on the specific decision variables 
considered in the problem, such as hardening infrastructure, 
the installation of new assets, a provision of better response 
times for repairing damaged infrastructure, restoring power, 
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and so forth. This addresses the 
so-called resi l ience trilemma, 
that is, the need for balancing the 
portfolio solution among several 
options to make the system stron-
ger, bigger, and/or smarter in a 
resilient and cost-efficient man-
ner. In particular, among the set 
of investment decisions used to 
enhance system resilience, the fol-
lowing could be considered:

✔✔ new lines and transformers 
to create alternative routes 
to transfer power and pro-
vide redundancy or addition-
al reactive power to operate 
the network under weaker 
conditions when several net-
work assets are outaged due 
to HILP events

✔✔ substation, tower, and other 
equipment hardening to make 
the system more robust and stronger against HILP 
events (this is modeled by shifting fragility curves to 
the right)

✔✔ shorten response times by increasing expenditures in 
enhanced stocks of network assets and equipment, 
more repair crews, and more online monitoring and 
control solutions

✔✔ the installation of new flexible network technologies 
such as special protection schemes, energy storage 
units, flexible alternating current transmission sys-
tems, high-voltage dc (HVdc), and so on to make the 
system more flexible to adapt to different conditions’ 
postfault, helping to mitigate the consequences of 
HILP events 

✔✔ the installation of distributed energy resources (such 
as microgrids, distributed generation, and so on) to 
provide localized energy solutions when the main sys-
tem fails.

There are several ways to apply this framework, especially 
to implement the two stages illustrated in Figure 3, by using 
mathematical programming methodologies. For the analy-
sis in this article, we used optimization via simulation (OvS) 
techniques. These techniques determine the (nearly) optimal 
portfolio of network enhancements based on a series of simula-
tions. More specifically, from the perspective of the optimizer, 
which is the first stage, the simulator, which is the second stage, 
is assumed to be a black-box model without a known mathemat-
ical structure. One of the key advantages of the OvS approach 
is that it allows for the inclusion of a great deal of operational 
details in the simulation stage, e.g., minimum stable generation 
levels, ramp rate limits, minimum startup and shutdown times, 
and so on, which require a nonconvex formulation and are com-
plex and hard to manage in closed form.

Illustrative Two-Busbar Example

Textbook Illustrative Case Study
This simple example illustrates and demonstrates our proposed 
framework, which identifies resilient enhancement options 
against HILP events in network planning and, crucially, how 
these differ from other decisions that are more reliability ori-
ented. The two-busbar network in Figure 8 features one 500-MW 
generating unit in node 1, one load in node 2 with a constant 
demand of 500 MW, and a transmission link between the two 
nodes. Depending on the configuration (i.e., the number of 
circuits and their capacities) and reliability characteristics of 
this link and assuming perfect reliability for the generator, this 
power network can be adequate, secure, and/or resilient. As 
adequacy and security have historically been a part of reli-
ability analysis, we will consider a network to be reliable if 
it is both adequate and secure. We also use the dc power flow 
approximation for the sake of simplicity.

Reliability 1: Adequacy
Considering that adequacy is the ability of a power system 
(including generation and network capacities) to supply the 
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aggregate electricity demand at all times, the power network 
in Figure 8 is adequate if the total (thermal) capacity of the 
link is at least 500 MW. This can be achieved by a number 
of network configurations, including the option of one single 
circuit of 500 MW transferring power from node 1 to node 2. 
This particular option, however, is evidently not N−1 secure.

Reliability 2: Security
From our previous work, we distinguish between two types 
of security: deterministic N−k security and probabilistic 
security. To comply with a deterministic N−1 security stan-
dard for network design, we need two circuits, each of (at 
least) 500 MW to link nodes 1 and 2. A probabilistic stan-
dard, instead, demands an appropriate balance between the 
cost of improving reliability, here in the form of investment 
costs, and the associated savings in reliability operational 
costs, measured through the improvement in the EENS 
(resulting from the new investment) × the VoLL. Let us now 
assume that there are only two possible “secure” configura-
tions (i.e., the number of circuits and their capacities) for the 
transmission link in question, and let us evaluate the cost and 
benefits of each of them to identify the appropriate optimal 
solution. Table 1 provides the basic reliability information 
and costs of the following two alternatives:

✔✔ N−0 option: where two circuits of 250 MW are installed
✔✔ N−1 option: where two circuits of 500 MW are installed.

In both cases, the network has fully available capacity 
99.976% of the time (further reliability information associ-
ated with outage and repair rates is presented in Table 2).  In 
this case, the N−0 solution is determined to be more economi-
cally efficient and therefore should be the one selected under 
a probabilistic security approach; however, this solution is 
sensitive to an array of economic and reliability parameters. 
For example, if the VoLL is increased from US$1,000/MWh 
to US$30,000/MWh, then the secure option changes from 
the N−0 to the N−1 design solution.

Resilience
One of the key characteristics of the probabilistic security 
analysis carried out in the previous section is its focus on the 
EENS, which, as discussed, is not suitable for resilience stud-
ies dealing with HILP events. For the purpose of assessing 
resilience then, let us assume that the (marginal) probabilities 
of the four states previously evaluated (a no-fault state, two 
single-fault states, and a double-fault state) originate from the 
conditional probabilities displayed in Table 2. More specifi-
cally, Table 2 shows the probability of the four states under 

two different weather conditions, namely, fair and adverse 
weather, as well as the marginal probability of the four states 
considering both weather conditions.

For illustrative purposes, we assume that the failure 
rate is 100-times higher for adverse weather and that repair 
times increase from 4 h under fair weather conditions i.e., 
a repair rate of 2,190 occurrence per year (occ/y), to seven 
days under adverse weather conditions (i.e., a repair rate of 
52 occ/y). Also, adverse weather, in this example, is lim-
ited to 1 h per year (thus conventionally representing an 
HILP event), while fair weather conditions occur during 
the remaining time (i.e., 8,759 h).

To provide a hedge against such an HILP event, we ana-
lyze the following three options within the concept of a resil-
ience trilemma (assuming that the initial condition is the 
same N−0 network configuration selected under the proba-
bilistic security approach described in the previous section):

✔✔ N−1 design: where we re-evaluate the option to in-
stall two circuits of 500 MW, i.e., making the network 
“bigger” by adding redundancy

✔✔ N−0 with shorter response times under extreme 
events: where we evaluate a contract with other net-
work companies to use their repair crews under ex-
treme events, which reduces the repair times from sev-
en to three days (i.e., making the network “smarter”)

✔✔ N−0 with underground cables: where we evaluate the 
option to bury the current double circuits, each with 
250 MW of capacity, thus halving the failure rate un-
der both weather conditions, and assuming at the same 
time, for simplicity, that the repair rate stays the same. 
This is equivalent to a “stronger” system option.

Table 3 shows the impact of these new options on various 
average and risk indicators, including

✔✔ the EENS of the ENS across all scenarios (economi-
cally valued at the VoLL)

✔✔ the CVaR of the ENS, that is, the average ENS across the 
0.001% worst cases (economically valued at the VoLL)

✔✔ the probability of a double outage under adverse weather 
conditions, which occurs for 1 h per year only.

As can be expected, changing the network design from 
N−0 to N−1 provides the best results in terms of the EENS 
cost, reducing it by 93% from approximately US$539,000 
per year to US$38,000 per year. However, this decision 
provides a very limited hedge against HILP events, reduc-
ing the CVaR by only 6% from US$4,113,000 per year to 
US$3,846,000 per year. (Note that, in this case and the fol-
lowing ones, the probability of a double outage and the CVaR 

In reality, however, consumers are typically risk averse and, 
arguably, prefer a more stable and predictable outcome from the 
electricity network, even if this may (slightly) increase costs.
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follow a similar pattern, so for the sake of simplicity, we 
focus just on the CVaR.) Interestingly, reducing the repair 
time under adverse weather reduces the CVaR significantly 
(by 35%, from US$4,113,000 per year to US$2,690,000 
per year) while the corresponding EENS reduction is more 
limited (by only 13%). This exemplifies the fact that one 
enhancement solution may be preferred from a reliability per-
spective, while, from a resilience perspective, other options 
may be more attractive. 

Remarkably, the option in which lines are underground 
features an attractive compromise between reliability and 
resilience indicators, reducing the EENS cost by 48% (which 
is not as good as the 93% reduction related to the N−1 solu-
tion but not as bad as the 13% reduction related to the N−0 
case with shorter response times) and reducing the CVaR 
by 31% (which is not as good as the 35% reduction related 
to the N−0 case with shorter response time but not as bad as 
the 6% reduction associated with the N−1 solution). This is 

table 1. The reliability and cost information associated with two alternative network design options.

Option N–0

Cost of Investment Calculation

Unit cost of investment (US$/MW per 
km per year) 

100

Length (km) 200

Capacity per circuit (MW) 250

Number of circuits 2

Cost of investment (US$) 10 million

Cost of the EENS Calculation

  

Circuit 1 Circuit 2
State 
Probability

Available 
Capacity 
(MW)

Power Not 
Supplied 
(MW)

VoLL (US$/MWh) 1,000 Available Available 0.9997629 500 0

Expected power not supplied (MW) 0.06148 Unavailable Available 0.0001142 250 250

Time horizon (h) 8,760 Available Unavailable 0.0001142 250 250

Cost of the EENS (US$) 538,532 Unavailable Unavailable 8.782E-06 0 500

Total cost calculation

Total cost (US$) 10,538,532

Option N–1

Cost of Investment Calculation

Unit cost of investments (US$/MW 
per km per year)

100

Length (km) 200

Capacity per circuit (MW) 500

Number of circuits 2

Cost of investment (US$) 20 million

Cost of the EENS Calculation Circuit 1 Circuit 2
State 
Probability

Available 
Capacity 
(MW)

Power Not 
Supplied 
(MW)

VoLL (US$/MWh) 1,000 Available Available 0.9997629 1,000 0

Expected power not supplied (MW) 0.00439 Unavailable Available 0.0001142 500 0

Time horizon (h) 8,760 Available Unavailable 0.0001142 500 0

Cost of the EENS (US$) 38,464 Unavailable Unavailable 8.782E-06 0 500

Total cost calculation

Total cost (US$) 20,038,464
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particularly important in practice in the presence of budget 
constraints and under the need for undertaking both reliable 
and resilient enhancements in power networks.

Realistic Application to  
Earthquakes in Chile
To demonstrate the applicability of the proposed resilience-
planning framework to the real world, the following case 
study is used to identify resilience-enhancement decisions 
among an array of multiple candidate solutions to protect 
against earthquakes in the Chilean transmission system.

Case Study Description
The Chilean transmission system, which covers more than 
3,200 km from Arica to Chiloe, is modeled through an 
equivalent network composed of 40 nodes/substations and 
56 transmission corridors (shown in Figure 9), representing 
its infrastructure in 2018. For that year, electricity demand 
was approximately 76 TWh, and generation supply included 
mainly hydro [23 TWh (30%)], coal [30 TWh (39%)], and 
gas [11 TWh (15%)] units, with minor participation from 
wind [4 TWh (5%)] and solar resources [5 TWh (7%)]. The 
total installed generation capacity was 24 GW.

To model the potential failure of system infrastructure 
during an earthquake, we used the fragility curves of tow-
ers, generation units, and substations adopted by the U.S. 
Federal Emergency Management Agency (Hazus-MH2.1), 
which relates the probability of failure of these system com-
ponents with the peak ground acceleration (PGA) at their 
particular locations.

To calculate the PGA in different locations following an 
earthquake with a given epicenter, we used validated models 

capable of characterizing the strong ground-motion attri-
butes observed in the 2010 Chilean earthquake.

We then randomly generated a comprehensive set of sce-
narios (e.g., 10,000), which follows this sequence.

1)	 The random generation of earthquakes and the PGA 
calculation: Using a random location and a fixed in-
tensity equal to 8.5 Mw, equalizing the conditions of 
the most recent 2010 earthquake (which was one of the 
worst earthquakes experienced in Chile), the PGA is 
determined at the location of each system equipment.

2)	 The random generation of network outage: Once the 
probabilities of outages are obtained from the fragility 
curves, outages are simulated through a Monte Carlo 
simulation.

3)	 The random generation of equipment repairs: Once 
pieces of equipment fail, they are recovered by follow-
ing a random process.

The system dispatch before, during, and after the earth-
quake was obtained by simulating five days, where the earth-
quake occurs in the first hour to capture the system collapse 
as well as the system recovery. The analysis captures key 
features of a resilient power grid.

Results: Portfolio Solutions for  
Resilience Enhancement
Figure 10 shows the Pareto frontier between the risk mea-
surement and the budget used to improve resilience. Here, 
the risk measurement is the conditional EENS (CEENS), 
where the ENS is averaged across worst-case scenarios, e.g., 
all the scenarios originated by very large earthquakes with 
a magnitude of 8.8 Mw (in practice, we can assume that the 
CEENS . the CVaR by an appropriate selection of the value 

table 2. The reliability data and probabilities of failure under fair and adverse weather, and the marginal 
probabilities of failure for the four states considered.

Fair 
Weather

Adverse 
Weather Circuit 1 Circuit 2

State 
Probability

Available 
Capacity (MW)

Power Not 
Supplied (MW)

Failure rate (occ/y) 0.2 20 Available Available 0.999817 0.5224 0.999763

Repair rate (occ/y) 2,190 52 Unavailable Available 9.13E-05 0.200373 0.000114

Unavailability 9.1E-05 0.27723 Available Unavailable 9.13E-05 0.200373 0.000114

Availability 0.99991 0.72277 Unavailable Unavailable 8.34E-09 0.76855 8.78E-06

Duration (h) 8,759 1

occ/y: occurrence per year.

table 3. The average and risk indicators of the four considered network design options.

Metric N−0 Base Case N−1 N−0 Shorter Repair Time N−0 Underground

VoLL × EENS (US$) 538,532 38,464 470,506 280,428

VoLL × CVaR (US$) 4,113,206,199 3,846,412,398 2,690,095,838 2,837,833,988

Probability of double outage 
under adverse weather (%)

7.7 7.7 2 2.6
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figure 9. The Chilean transmission network model used in the case study, indicating topology, generation and demand 
nodes, and the number of circuits per corridor.
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of the parameter ),a  and the “budget” indicates the number 
of available investment options allowed as a proxy for their 
total cost (e.g., budgets equal to one, three, and five mean 
that up to one, three, and five investment decisions can be 
made, respectively). The figure shows the most economical 
option (a budget equal to one) is to invest in an HVdc link 
connected point to point between the Atacama Desert 
(node 4) and Santiago (node 29). In fact, this enhancement 
option features two main characteristics. 

First, pre- and postfault power flows are fully dispatch-
able due to power electronics equipment that allows system 
operators to have a higher level of controllability of the power 
flows, co-optimizing them with other operational measures, 
e.g., generation (re)dispatch, the exercise of reserve services, 
and so forth. The second characteristic is the unique topo-
logical connection of this candidate link, which bypasses 
most substations between the north and the center of the 
country, reducing, in this way, its exposure to earthquakes 
(note that the main impact from earthquakes is on substation 
equipment rather than towers and transmission lines). 

In fact, empirical evidence from past events in Chile 
strongly suggests that substations (rather than lines) expe-
rience the most severe problems during earthquakes. For 
example, in the 8.8-Mw  earthquake in 2010, only three 
towers failed, while 12 (out of 46) substations in high-volt-
age transmission systems showed some level of damage. For 
this very same reason, the best complements for this HVdc 

link are the hardening of substations supplying Santiago, 
i.e., Alto Jahuel and Cerro Navia (a budget equal to three).

Interestingly, for a budget equal to five, two storage facili-
ties, each a pumped-hydro storage unit of 300 MW, are added 
to the optimal portfolio. In this case, the storage facilities 
located in Cumbre and Lagunas allow the system operator to 
more efficiently manage the large amounts of renewable gen-
eration located in the north (under any outage conditions, with 
and without earthquakes), whose production is transferred 
through the HVdc link to the central area of the country in 
Santiago, which is, in turn, supplied by the Cerro Navia and 
Alto Jahuel substations (among others). All of the aforemen-
tioned assets are part of the selected portfolio solution, clearly 
indicating the value of coordinated investment. These five 
enhancement options selected as a unified portfolio thus act 
as one synergic multiasset enhancement, providing the best 
feasible insurance to the main system load center against the 
occurrence of large earthquakes.

Summary and the Way Forward
In the context of the transition from reliable to resilient power 
grids, we have demonstrated the need for considering risk-
based (rather than average) indicators to identify the necessary 
enhancements in network and system infrastructure. Impor-
tantly, in this article, we discussed some of the fundamental 
differences among various investment solutions (e.g., redun-
dancy and substation hardening) compared to more flexible 

operational solutions, with the over-
all aim of improving the reliabil-
ity and resilience of power grids. 
Although the proposed mathemati-
cal framework used to determine 
resilience network enhancements is 
fully probabilistic, this differs from 
the classical probabilistic-based 
decision-making models due to the 
explicit incorporation of risk aver-
sion, in contrast to the risk-neutral 
attitude assumed in classical reli-
ability studies. We argue that plan-
ning for resilience corresponds to 
becoming risk averse so that the 
resulting network designs are less 
exposed to HILP events in com-
parison to designs resulting from 
(risk neutral or even simply risk 
unaware) reliability studies.
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figure 10. The optimal portfolio solutions for resilience enhancement for different 
budgets. CEENS: conditional EENS.  

This exemplifies the fact that one enhancement solution may be 
preferred from a reliability perspective, while, from a resilience 
perspective, other options may be more attractive. 

Authorized licensed use limited to: Universidad de chile. Downloaded on July 18,2020 at 23:11:07 UTC from IEEE Xplore.  Restrictions apply. 



july/august 2020	 ieee power & energy magazine 	 53

The differences between reliability- and resilience-driven 
investments were illustrated on both a simple textbook, 
two-node example and a realistic 40-node representation of 
the Chilean power system. Although the former was used to 
clearly explain the fundamental concepts of the framework 
we proposed, in the latter, we identified and discussed the 
best Pareto portfolios of investment propositions that offer 
the highest level of hedge against the adverse impacts of 
large earthquakes. For this case, we also emphasized the 
importance of hardening the infrastructure beyond the clas-
sical redundancy-based (i.e., adding more and more infra-
structure), reliability-driven solutions. Furthermore, we 
demonstrated how redundancy effectively improves average 
indicators, while hardening improves risk indicators. Per-
haps most importantly, our results also clearly illustrated 
how additional operational flexibility and responsiveness 
can play a major role in enhancing system resilience to 
HILP events.

Looking ahead, for planners and regulators to fully con-
sider resilience-enhancement investment solutions once spe-
cific hazards or potential HILP events of interest have been 
identified (which is a nontrivial and case-specific exercise 
per se), the following two questions will need to be more 
appropriately addressed in the near future:

1)	 What is the right level of risk mitigation for HILP 
events? Or in other words, what is the right level of risk 
aversion to be considered when determining resilience-
based investment propositions?

2)	 How should the costs associated with resilience be al-
located among market participants?

Although the latter may arguably be more intuitive to 
address, for example on a beneficiary-pays basis (i.e., iden-
tifying the set of beneficiaries associated with the resilient 
network enhancements), the former undoubtedly requires 
a deeper understanding of electricity consumers’ risk atti-
tudes. This is not an easy task and goes beyond the expertise 
of many members of our IEEE PES community, critically 
demonstrating, going forward, the need for undertaking and 
integrating more interdisciplinary work in this field.

For Further Reading
R. Moreno, A. Street, J. M. Arroyo, and P. Mancarella, “Plan-
ning low-carbon electricity systems under uncertainty con-
sidering operational flexibility and smart grid technologies,” 
Philos. Trans. Roy. Soc. A, Math. Phys. Eng. Sci., vol. 375, 
no. 2100, pp. 1–29, Aug. 2017. doi: 10.1098/rsta.2016.0305.

“Future resilience of the UK electricity system,” Energy 
Research Partnership, Birmingham, U.K., Nov. 2018. [On-
line]. Available: https://erpuk.org/project/future-resilience 
-of-the-uk-electricity-system/

N. N. Taleb, The Black Swan: The Impact of the Highly 
Improbable. New York: Random House, 2007.

R. R. Billinton and R. Allan, Reliability Evaluation of 
Power Systems. New York: Springer-Verlag, 1996.

G. Strbac, D. Kirschen, and R. Moreno, “Reliability stan-
dards for the operation and planning of future electricity net-
works,” Found. Trends Elec. Energy Syst., vol. 1, no. 3, pp. 
143–219, 2016. doi: 10.1561/3100000001.

“New mechanisms to enhance resilience in the power 
system: Final report,” Australian Energy Market Commis-
sion, Sydney, NSW, Dec. 2019. [Online]. Available: https:// 
www.aemc.gov.au/news-centre/media-releases/new 
-mechanisms-enhance-resilience-power-system-final-report

M. Panteli, D. N. Trakas, P. Mancarella, and N. D. Hat-
ziargyriou, “Power systems resilience assessment: Harden-
ing and smart operational enhancement strategies,” Proc. 
IEEE, vol. 105, no. 7, pp. 1202–1213, July 2017. doi: 10.1109/
JPROC.2017.2691357.

T. Lagos et al., “Identifying optimal portfolios of resilient 
network investments against natural hazards, with applica-
tions to earthquakes,” IEEE Trans. Power Syst., vol. 35, no. 2, 
pp. 1411–1421, Mar. 2020. doi: 10.1109/TPWRS.2019.2945316.

Biographies
Rodrigo Moreno is with the University of Chile, Santiago; 
the Institute of Complex Engineering Systems, Santiago, 
Chile; and Imperial College London, United Kingdom.

Mathaios Panteli is with the University of Manchester, 
United Kingdom.

Pierluigi Mancarella is with the University of Melbourne, 
Australia, and the University of Manchester, United Kingdom.

Hugh Rudnick is with the Pontifical Catholic University 
of Chile, Santiago.

Tomás Lagos is with the University of Chile, Santiago.
Alejandro Navarro is with the University of Chile, 

Santiago.
Fernando Ordoñez is with the University of Chile, 

Santiago, and the Institute of Complex Engineering Sys-
tems, Santiago, Chile.

Juan Carlos Araneda is with the National Electric Coor-
dinator, Santiago, Chile. 

� p&e

We have demonstrated the need for considering risk-based  
(rather than average) indicators to identify the necessary 
enhancements in network and system infrastructure. 
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