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Abstract

Flavonoids have been suggested to protect dopaminergic neurons in Parkinson’s disease based on studies that used exogenous
neurotoxins. In this study, we tested the protective ability of agathisflavone in SH-SYSY cells exposed to the endogenous
neurotoxin aminochrome. The ability of aminochrome to induce loss of lysosome acidity is an important mechanism of its
neurotoxicity. We demonstrated that the flavonoid inhibited cellular death and lysosomal dysfunction induced by aminochrome.
In addition, we demonstrated that the protective effect of agathisflavone was suppressed by antagonists of estrogen receptors
(ERox and ER3). These results suggest lysosomal protection and estrogen signaling as mechanisms involved in agathisflavone

neuroprotection in a Parkinson’s disease study model.
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Introduction

The discovery of genes associated with familial forms of
Parkinson’s disease has had a great impact on the basic re-
search for the understanding of their role in the neurodegen-
eration of nigrostriatal dopaminergic neurons containing
neuromelanin. However, mutations in these genes, which in-
clude alpha-synuclein, pink-1, parkin, DJ-1, and ATP13A2
that encodes for a component of the lysosomal acidification
machinery, cannot explain the degenerative process in the
sporadic form of the disease. They provide important
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information, and it is generally accepted that the aggregation
of alpha-synuclein, dysfunction of protein degradation, mito-
chondrial dysfunction, oxidative stress, endoplasmic reticu-
lum stress, and neuroinflammation are involved in the degen-
eration of the nigrostriatal dopaminergic neurons (KalinderI
et al. 2016; Kazlauskaite and Muqit 2015; Klein and Mazzulli
2018; Hopfner et al. 2020). Lysosome dysfunction appears to
be also associated with idiopathic Parkinson’s disease since
the mutation in GBA1, a gene that encodes for the lysosomal
[3-glucocerebrosidase, is a risk factor for the development of
this disease (Sidransky et al. 2009). Furthermore, it is known
that lysosomal function is crucial for the degradation of «-
synuclein, and disruptive lysosomal gene variants result in
the formation of pathogenic «-synuclein oligomers and fibrils
(Klein and Mazzulli 2018). However, what triggers these al-
terations in dopaminergic neurons containing neuromelanin is
still unknown.

It has been proposed that aminochrome is involved in
Parkinson’s disease pathogenesis. It is naturally existing in
the human brain, since aminochrome is formed inside dopa-
minergic neurons during dopamine oxidation to neuromelanin
(Bisaglia et al. 2007; Segura-Aguilar et al. 2014; Herrera et al.
2017). This molecule induces in vitro the death of dopaminer-
gic neurons and induces a slow and progressive loss of dopa-
minergic neuronal functions in rats. The neurotoxicity of
aminochrome in animal model is different from that of
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commonly used exogenous toxins 6-hydroxydopamine (6-
OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), and rotenone, since they induce a fast and extensive
loss of dopaminergic neurons (Herrera et al. 2017; Segura-
Aguilar et al. 2016). Furthermore, in vitro, it induces protein
degradation dysfunction of both lysosomal and proteasomal
systems (Zhou and Lim 2009; Huenchuguala et al. 2014),
mitochondrial dysfunction (Paris et al. 2011), aggregation of
alpha-synuclein to neurotoxic oligomers (Mufioz et al. 2015),
oxidative stress and endoplasmic reticulum stress (Xiong et al.
2014), formation of adducts with tubulin (Bricefio et al. 2016),
and neuroinflammation and loss of neurotrophic factors
(Santos et al. 2017; de Araujo et al. 2018).

A protective role of flavonoids has been proposed in
Parkinson’s disease study models induced by exogenous neu-
rotoxins (Wang et al. 2015; Lou et al. 2014). Studies show that
quercetin has the ability to regulate the complex-I mitochon-
drial activity in injured dopaminergic neurons and the ability
to eliminate OH radicals resulting from rotenone damage
(Karuppagounder et al. 2013). The combined treatment of
quercetin and desferrioxamine was effective in reducing the
6-OHDA-induced oxidative stress and neuronal damage by
increasing the antioxidant enzymes in the striatum
(Haleagrahara et al. 2013). Other studies have showed that
rutin, a glycosylated form of quercetin, inhibits 6-OHDA-
induced cytotoxicity in PC-12 cells by increasing antioxidant
enzymes. Rutin also regulates multiple protective genes, par-
ticularly through the suppression of Park2, Park5, Park7,
Casp3, and Casp7 (Magalingam et al. 2013).

Some flavonoids act as estrogen-mimic molecule to pro-
mote neuroprotection against stroke-related damage, suppres-
sion of cancer cell growth, and neurogenesis (Mak et al. 2006;
Schreihofer and Oppong-Gyebi 2019; Dos Santos et al. 2018).
Agathisflavone (FAB) is a phytoestrogen biflavonoid extract-
ed from Poincianella pyramidalis (Tul.), an abundant plant in
northeastern Brazil, which presents neurogenic and antioxi-
dant properties (Dos Santos et al. 2018; Andrade et al.
2018), as well as reduced neuronal death induced by gluta-
mate or LPS or IL-13 in primary cocultures of neurons and
glial cells (Dos Santos et al. 2018; de Almeida et al. 2020).
These neuroprotective effects were associated with anti-
inflammatory activity, increased expression of glutamine syn-
thetase (GS), and excitatory amino acid transporter 1
(EAATT1), as well as increased neuroprotective trophic factors
such as BDNF, NGF, NT4, and GDNF (Dos Santos et al.
2018). These properties are important for an anti-
neurodegenerative drug for Parkinson’s disease. However,
the effects of FAB have never been investigated in
Parkinson’s disease study models (Amorim et al. 2018).

Therefore, the aim of this study was to test the ability of
agathisflavone (FAB) to prevent lysosomal dysfunction and
cell death in a Parkinson’s disease study model induced by
aminochrome.
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Materials and Methods
Cell Culture and Treatments

SH-SY5Y cells were incubated in Dulbecco DMEM/Ham
F12-modified medium (Sigma-Aldrich Co., St. Louis,
USA), containing 2.7 g/L glucose (Merck, Darmstadt,
Germany), 1.2 g/L sodium bicarbonate (Merck, Darmstadt,
Germany), and pH 7.4, and supplemented with 10% adult
bovine serum (Biological Industries, Cromwell, CT, USA),
10% fetal bovine serum (Biological Industries, Cromwell,
CT, USA), 1% non-essential amino acids (Biological
Industries, Cromwell, CT, USA), and 1% antibiotic/
antimycotic mix (US biological, Swampscott, USA). The cells
were cultivated at 37 °C under 5% CO..

Aminochrome was prepared by oxidizing dopamine with
tyrosinase (Sigma-Aldrich, Cat. nos. T3824-50KU and
H8502-10G, respectively) and purified according to what
has been previously described by (Huenchuguala et al.
2017). Agathisflavone (FAB) was extracted from
Poincianella pyramidalis (Tul.) leaves as previously de-
scribed (Mendes et al. 2000), stored at 100 mM in dimethyl
sulfoxide (DMSO; Sigma Chemical Co.) and kept out of light
at —20 °C until use.

Confluent cultures were maintained in culture medium or
treated with DMSO (0.01%) under control conditions or treat-
ed with FAB (0.1-1 uM) and/or aminochrome (10 uM) for
24 h. In all experiments, no difference was observed between
the DMSO-treated group and cells maintained with medium.
In order to establish whether the neuroprotective effect of
FAB was mediated through estrogen receptors (ER), cultures
were treated with specific ER antagonists, starting 2 h before
and concomitant with the FAB treatment, for 24 h. In this
study, we used selective antagonists for ER-« 1,3-Bis(4-
hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-
1H-pyrazole dihydrochloride (MPP dihydrochloride; 2.5 nM,
from Sigma) or for ER-3 4-[2-Phenyl-5,7-
bis(trifluoromethyl)pyrazolo[1,5- aJpyrimidin-3-yl]phenol
phenol (PHTPP) at 1 uM (Tocris). Control cells were treated
with the vehicle of dilution of FAB (DMSO 0.01%).

Cell Viability

Cell viability was accessed with the Trypan blue exclusion test
in cultures exposed to aminochrome (10 uM) and/or FAB
(0.1-1 uM) or exposed to control conditions (DMSO
0.01%) for 24 h. Floating and adherent cells were harvested
after trypsinization (trypsin 0.05%, EDTA 0.02%) and centri-
fuged at 1300xg for 5 min. The cells were suspended in
200 puL PBS and stained with Trypan blue (0.1%). The pro-
portion of dead cells was determined by manual count in a
hemocytometer.
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Lysosomal Function

The cells were stained with 1 uM LysoSensor™ Blue DND-
167 (Molecular Probes by Life Technologies, Invitrogen) for
30 min. Afterwards, they were washed 3 times with PBS and
immediately observed on a fluorescence microscope
(Axiovert-100; Zeiss, Gottingen, Germany) with wavelength
of 425 nm. Relative fluorescence was plotted as a percentage
of the control.

Statistical Analysis

The data were expressed as the mean + SEM values, and
statistical significance was assessed using analysis of variance
(ANOVA) for comparison between multiple groups.

Results

We studied the effect of agathisflavone (FAB) on aminochrome-
induced death in SH-SY5Y cells using Trypan blue exclusion
test. No toxic effects on cell viability were observed when SH-
SYSY cells were incubated with FAB in concentrations of 0.1 or
1 uM for 24 h. On the other hand, aminochrome (10 uM, for
24 h) induced cell death in SH-SYS5Y cells (24.3 +3.8%;
p<0.001) when compared with SH-SY5Y cells in control con-
ditions (DMSO 0.01%) (0.8 £0.3%). This reduction in cell
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Fig. 1 Agathisflavone (FAB) protects SH-SYS5Y cells against
aminochrome cytotoxicity. SH-SY5Y cells were exposed to control con-
dition (CTR; DMSO 0.01%) or 0.1-1 uM agathisflavone (FAB) and/or
10 uM aminochrome (AM) for 24 h. Afterwards, cell death was assessed
with the Trypan blue exclusion test. The values are the mean = SEM (n =
6), and the statistical significance was assessed by using one-way
ANOVA test. The p value was represented by ***p <0.001 compared
to CTR group (DMSO 0.01%) and *p <0.05 compared to AM group
(10 pM aminochrome)

viability was attenuated by the treatment with 0.1 uM FAB
(7.6 £2%; p<0.001), but not by the treatment with 1 uM
FAB (19.3 +3%) when compared with SH-SY5Y cells exposed
to aminochrome (24.3 +£3.8%) (Fig. 1).

Lysosomes play an important role in mitochondrial normal
function due to the removal of damaged mitochondria by
mitophagy (Segura-Aguilar et al.2018; Huenchuguala et al.
2017); therefore, lysosomes have been suggested as an impor-
tant target to neuroprotective compounds for Parkinson’s dis-
ease. In this study, the LysoSensor™ assay revealed that the
treatment with agathisflavone (0.1 uM) for 24 h induced an
increase in lysosomal acidification in SH-SYS5Y cells, mea-
sured as fluorescence intensity (426.8% +9.1%; p<0.01)
when compared with cells in control condition (DMSO
0.01%) (358.3 £11.8). It was also observed that cells exposed
to aminochrome (10 uM, for 24 h) presented a reduction in
lysosomal acidification (167.6% = 8.8%; p <0.001) when
compared to the control condition (DMSO 0.01%). This re-
duction in lysosomal acidification was inhibited by treatments
with 0.1 uM FAB (419.6% +21.8%; p < 0.001), which pre-
sented higher lysosensor fluorescence than that observed in
cells under control condition (DMSO 0.01%) (358.3+11.8)
(Fig. 2 a and b).

In order to investigate the involvement of the estrogen re-
ceptor (ER) signaling on the effects of FAB on neuroprotec-
tion, we carried out experiments with antagonists to ERx and
ERf3 subtypes. We observed that pharmacological antago-
nism of ER with methyl-piperidinopyrazole (MPP) inhibited
the protective effect of FAB against aminochrome cytotoxic-
ity. Cell death in cultures exposed to aminochrome plus FAB
plus MPP (30.2+2.5%) was higher than in cultures treated
with aminochrome plus FAB (3.4+1.1%; p <0.05). In the
groups treated with aminochrome plus FAB plus MPP, cell
death was higher than in cells exposed to DMSO 0.01% alone
(0.8 £0.5%; p < 0.001) or than in cells exposed to DMSO plus
MPP (0.9+£0.5%; p <0.01), suggesting that cell death is not
induced by MPP (Fig. 3a).

Similarly, blocking ER3 with pyrazolo[1,5-a] pyrimi-
dine (PHTPP) resulted in the inhibition of neuroprotective
effects of FAB. Cell death induced by exposures to
aminochrome plus FAB plus PHTPP (39.6 £4.1%) was
higher than in cultures exposed to aminochrome plus
FAB (7.6 +2%; p<0.01) or to aminochrome alone
(25.9+3%; p<0.01). In the group exposed to
aminochrome plus FAB plus PHTPP, cell death was also
higher than in cells exposed to 0.01% DMSO alone (0.8 +
0.5%; p<0.001) or than in cells treated with DMSO plus
PHTPP (2.4 +1%; p<0.01)(Fig. 2b). In addition, we ob-
served that FAB plus PHTPP was cytotoxic to SHSY-5Y
cells, which induced 23.3 £1.4% of cell death when com-
pared with control conditions 0.01% DMSO (0.8 +0.5%;
p<0.001) or DMSO plus PHTPP (2.4+1%; p<0.01)
(Fig. 3b).
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Fig. 2 Agathisflavone (FAB) in-
creases lysosomal acidification in
SH-SYS5Y cells. The effect of
aminochrome on lysosomal func-
tion was determined with
LysoSensor™ Blue DND-167
staining after incubating SH-
SYSY cells for 24 h with 0.01%
DMSO in a, 0.1 uM
agathisflavone (FAB) in b,

10 uM aminochrome (AM) in ¢,
or 0.1 uM FAB plus 10 uM AM
in d. Obj. 20 x 0.70, scale bars =
50 pm. Amplified images in the
upper right corner of b and d. The
quantification of fluorescence
was plotted in e. The values are
the mean = SEM (n = 6), and the
statistical significance was
assessed by using one-way
ANOVA test. The p value was
represented by **p <0.01;

*#*%p <0.001 compared to CTR
group (DMSO 0.01%) and

%) <0.001 compared to AM
group (10 uM aminochrome)

Discussion

The neuroprotective effect of agathisflavone has recently been
discovered (Dos Santos et al. 2018; de Almeida et al. 2020) but
has never been studied in Parkinson’s disease models. In this
study, we demonstrated the protective action of this biflavonoid
in a catecholaminergic model cell line (SY-SYSY) exposed to
the endogenous neurotoxin aminochrome. Aminochrome is an
o-quinone formed during dopamine oxidation to neuromelanin
(Segura-Aguilar et al. 2016). In animal models, it induces a slow
progressive dysfunction in dopaminergic neurons(Herrera et al.
2016) and, in in vitro studies, it induces disruption of actin and
tubulin cytoskeleton networks and mitochondrial and mitophagy
dysfunction, which are associated with a lysosomal dysfunction
that results in neuronal death (Segura-Aguilar et al. 2016;
Segura-Aguilar and Huenchuguala 2018).
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The study shows the importance of macroautophagy and
lysosomal degradation systems for the normal functioning of
mitochondria and for cell survival in aminochrome-induced
damage (Huenchuguala et al. 2017). These data suggest lyso-
somal function as an important target for neuroprotective
drugs in Parkinson’s disease. Among several neuroprotective
mechanisms of flavonoids for Parkinson’s disease, activation
of endogenous antioxidant enzymes, suppression of lipid per-
oxidation, inhibition of inflammatory mediators, and protec-
tion against mitochondrial damage are the most reported
(Magalingam et al. 2015). However, there is little knowledge
about the effect of flavonoids on lysosomal function. Some
studies show the effect of quercetin on lysosomal activity in an
experimental model of diabetes (Chougala et al. 2012) and in
tumor cells (Tomas-Herndndez et al.2018; Wang et al. 2011).
Another study shows that rutin protects the lysosomal
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Fig. 3 ER« and ERf3 antagonists a
inhibit the agathisflavone (FAB)
neuroprotective effect against

aminochrome-induced cytotoxic- 50+

ity. In A: SHSY-5Y cells were

treated with vehicle 0.01% 2 404
DMSO; 0.1 uM FAB and/ or b
aminochrome (10 uM) in the g 30
presence or absence of ERot an- 5 204
tagonist methyl- S
piperidinopyrazole (MPP, X 10-

2.5 nM) for 24 h. In B: SHSY-5Y

cells were treated with vehicle 04

0.01% DMSO; 0.1 tM FAB and/ &
or aminochrome (10 uM) in the (OIS

presence or absence of ERf3 an-
tagonist pyrazolo[1,5-a]-pyrimi-
dine (PHTPP, 1 uM) for 24 h.
Afterwards, cell death was
assessed by Trypan blue exclu-
sion test. The values are the mean
+ SEM (n = 6), and the statistical
significance was assessed by
using one-way ANOVA test. The
p value was represented by
*¥p<0.01; ¥**¥p <0.001 com-
pared to CTR group (DMSO
0.01%); *p < 0.05; **p < 0.01
compared to AM group (10 uM
aminochrome); ##p <0.01 com-
pared to the group treated with
DMSO + ER antagonist (MPP or
PHTPP); ¥p <0.05; “*p <0.01
compared to the group treated
with AM + + ER antagonist (MPP
or PHTPP)

membrane against isoproterenol-induced cardiac damage due
to the free radical scavenging, antioxidant, and membrane
stabilizing (Prince and Priya 2010). On the other hand, our
findings revealed an increase in lysosomal acidification in-
duced by agathisflavone that can be associated to the neuro-
protection by elimination of altered proteins or damaged or-
ganelle (Segura-Aguilar et al.2016; Huenchuguala et al.2017).

Studies have shown the involvement of estrogen pathway
in lysosomal function. It has been shown that ER3 promotes
A3 degradation in SHSY-5Y cells via the modulation of au-
tophagy (Wei et al. 2019). Another study showed that lyso-
some function is further involved in ERx activities (Totta
et al. 2014). In our previous studies, agathisflavone acts via
ER«x and ERf3 to promote neurogenesis (Dos Santos et al.
2018). The results of the present study show that ER signaling
via ERx and ER} is also involved in cell survival as a mech-
anism of agathisflavone neuroprotection against
aminochrome neurotoxicity.

This is the first evidence of the protective effects of
agathisflavone in a Parkinson’s disease study model. Further
studies should be performed to clarify the involvement of the
lysosomal-induced acidity by agathisflavone in mitochondrial
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recovery and inhibition of alpha-synuclein accumulation.
Taken together, these results suggest an in vitro protective role
of agathisflavone against lysosomal dysfunction involved in
aminochrome neurotoxicity and the involvement of ER sig-
naling in the protection against aminochrome neurotoxicity.
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