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Abstract We characterize in Hilbert spaces the boundary of the values of maximal
monotone operators, by means only of the values at nearby points, which are close
enough to the reference point but distinct of it. This allows to write the values of such
operators using finite convex combinations of the values at at most two nearby points.
We also provide similar characterizations for the normal cone to prox-regular sets.
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1 Introduction

Given a continuous convex function ϕ : Rn → R, according to [4, Theorem 3.1] the
topological boundary of the Fenchel subdifferential of ϕ is completely characterized
by means of the values of such a subdifferential mapping at points, which are close
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enough to the reference point but distinct of it. More specifically, for every x ∈ R
n

we have that

bd(∂ϕ(x)) = Limsup
y−→�=x

∂ϕ(y). (1.1)

The aim of this work is to extend this relation to general proper lower-semicontinuous
functions defined in infinite-dimensional Hilbert spaces, that are not necessarily con-
tinuous.This question ismotivatedby the expected applications of this kindof formulas
to the stability issues of semi-infinite linear programming problems as we explain
below. Because our approach and proofs use techniques from the theory of monotone
operators [3], we shall investigate the validity of (1.1) for general maximal monotone
operators. It is well known, due to Rockafellar’s Theorem (see [15]), that this fam-
ily of operators strictly includes the family of proper lower-semicontinuous convex
functions. Apart from its generality, the current characterization of the boundary of
the values of maximal monotone operators could enable the study of the stability of
more general semi-infinite linear programming problems whose restrictions systems
are described by means of saddle-type functions (see [16]).

It is worth observing that the above relation (1.1) leads to the characterization of the
whole set of the subdifferential, using only its values at close enough points different
from the reference one. Namely, we obtain in Theorem 3.3 the following characteri-
zation for every maximal monotone operator A and every x such that bd(Ax) �= ∅,

Ax = Ncl(dom A)(x) + co2

{
Limsup
y→�=x

Ay

}
.

In particular, when A = ∂ϕ for a proper lower semi-continuous convex function ϕ,
not necessarily continuous, we obtain that

∂ϕ(x) = Ndom ϕ(x) + co{Limsup
y−→�=x

∂ϕ(y)}.

The last formula has been obtained in [16, Theorem 25.6] for proper lower semi-
continuous convex functions defined in R

n and having domains with a nonempty
interior. The characterization of [16, Theorem 25.6] considers nearby points which
belong to dense subsets of the domain of ϕ. This result was extended next in [18,
Theorem 3.1] to Banach spaces.

The characterization in (1.1) has been shown useful for many stability purposes of
parametrized semi-infinite linear programming problems, given in Rn as [8]

P(c, a, b) :
{
minimize c′x
subject to a′

t x ≤ bt , t ∈ T,

for a compact indexing set T and continuous functions a and b on T . Relation (1.1)
was the main ingredient in [4–6] to derive point-based explicit expressions for the
so-called calmness moduli of the associated feasible and optimal solutions set-valued
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mappings; we refer to [9–11] for more details on this calmness property. For instance,
if Fa : C(T,R) → R

n denotes the feasible set-valued mapping

Fa(b) := {x ∈ R
n : a′

t x ≤ bt∀t ∈ T }, b ∈ C(T,R),

then the calmness modulus of Fa at a point (b̄, x̄) belonging to its graph, defined as

clmFa(b̄, x̄) := lim sup
x→x̄,b→b̄
x∈Fa(b)

d(x,Fa(b̄))

d(b, b̄)
,

is written in the more explicit following form (using the convention 1
0 = +∞)

clmFa(b̄, x̄) =
(

lim inf
x→x̄,s(x)>0

d∗(0, ∂s(x))
)−1

,

where s : Rn → R is the continuous convex function given by

s(x) := max
t∈T {a′

t x − bt }.

In this way, from a qualitative point of view, the calmness of the mapping Fa, say
clmFa(b̄, x̄) > 0, is equivalent to the fact that the function s has an (global) error
bound at x̄ (see [12,13]). Moreover, if, in addition, the set Fa(b̄) turns out to be
the singleton {x̄}, in which case s(x) > 0 iff x �= x̄, then formula (1.1) entails the
following point-based expression of the calmness modulus of the mapping Fa,

clmFa(b̄, x̄) = (d∗(0, bd(∂s(x̄))))−1 .

The advantage of this approach is that, due to the Valadier formula [19], the subd-
ifferential mapping of the function s at x̄ can be easily estimated by means only of
the data vectors a and b. It is worth noting that in the framework of semi-infinite lin-
ear programming problems, this singleton’s assumption is required for the solutions
set-valued mapping and not for the feasible set-valued mapping (see [4–6] for more
details).

For the aim of adapting in a further research the analysis above to more general
semi-infinite linear programming problems, with not necessarily compact indexing
sets T, so that the function s above lacks to be continuous, we extend in this paper
formula (1.1) to the class of proper and lower semicontinuous convex functions. More
generally, we establish similar characterizations for maximal monotone operators in
the setting of Hilbert spaces. The first result stated in Theorem 3.1 asserts that, given
a maximal monotone operator A : H ⇒ H, for all x ∈ H we have that

bd(Ax) = Limsup
y−→�=x

bd(Ay) = Limsup
y−→�=x

Ay,
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where the Limsup is taken with respect to the norm topology. As a consequence, we
prove that the value of A at x can be expressed using only different nearby points, in
the sense that for every x ∈ H such that bd(Ax) �= ∅ (Theorem 3.3)

Ax = Ncl(dom A)(x) + co2

{
Limsup
y→�=x

Ay

}
,

where co2 is the set of all the segments generated by the elements of the underlying set,
and Ncl(dom A)(x) is the normal cone in the sense of convex analysis to the closure of
the domain of the operator A. Characterizations of similar type are given for the faces
of the values of A; see Theorem 3.2. Extensions to nonconvex objects, as prox-regular
sets and functions, are also considered; see Theorems 4.1 and 4.2.

This paper is organized as follows: After Sect. 2, dedicated to present the necessary
notations and the preliminary tools, we give the main result in Sect. 3: Theorem 3.1
characterizes the boundary of the values of maximal monotone operators, while Theo-
rem3.3 recovers the values of such operators using these boundary points. Theorem3.2
specifies such characterizations to the faces of the values of maximal monotone opera-
tors. In Sect. 4 we extend this analysis to non-convex objects, covering the normal cone
to prox-regular sets (Theorem 4.1) and the subdifferential of uniformly prox-regular
functions (Theorem 4.2).

2 Notations and Preliminary Results

In this paper, H is a Hilbert space endowed with inner product 〈·, ·〉 and associated
norm || · ||. The null vector in H is denoted by 0. The weak topology on H is denoted
by ω, while the strong and the weak convergences in H are denoted by → and ⇀,

resp. We denote by B(x, ρ) the closed ball with center x ∈ H and radius ρ > 0;
in particular, we write Bρ := B(0, ρ). Given a set S ⊂ H, co{S} and co2{S} are
respectively the convex hull of S and the set

co2 S := {αs1 + (1 − α)s2 : α ∈ [0, 1], s1, s2 ∈ S}.

Observe that co2 S coincides with co S when H = R, but the two sets may be different
from each other in general. By int(S), bd(S) and cl(S) (or, indistinctly, S), we denote
the interior, the boundary and the closure of S, respectively. The indicator, the support
and the distance functions to the set S are respectively given by

IS(x) := 0 if x ∈ S; +∞ if not,

σS(x) := sup{〈x, s〉 : s ∈ S},
dS(x) := inf{||x − y|| : y ∈ S}

(in the sequel we shall adopt the convention inf∅ = +∞). We shall write
S

⇀ for the

weak convergence when restricted to the set S, and similarly for
S−→. We also write
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y −→�= x when y → x with y �= x . We denote by PS the (orthogonal) projection
mapping onto S defined as

PS(x) := {y ∈ S : ||x − y|| = dS(x)}.

Next, we review some classical facts about convex functions and monotone opera-
tors; we refer to [3,20] for more details. Given a function ϕ : H → R∪{+∞},we say
that ϕ is proper if its domain dom ϕ := {x ∈ H : ϕ(x) < +∞} is nonempty, lower
semicontinuous (lsc, for short) if its epigraph epi ϕ := {(x, λ) ∈ H ×R : ϕ(x) ≤ λ} is
closed, and convex if its epigraph is convex. If ϕ is convex, the Fenchel sudifferential
mapping of ϕ is defined as

∂ϕ(x) := {x∗ ∈ H : 〈
x∗, y − x

〉 ≤ ϕ(y) − ϕ(x)∀y ∈ H}, if x ∈ dom ϕ,

and ∂ϕ(x) := ∅ when x /∈ dom ϕ. The normal cone to a convex set S ⊂ H is
NS(x) := ∂IS(x) for x ∈ H.

Given a set-valued operator A : H ⇒ H, the domain and the graph of A are
respectively given by

dom A := {x ∈ H : Ax �= ∅}, Gr A := {(x, x∗) : x∗ ∈ Ax}.

The operator A is said to be monotone if

〈
x1 − x2, x

∗
1 − x∗

2

〉 ≥ 0 for all (x1, x
∗
1 ), (x2, x

∗
2 ) ∈ Gr A,

and maximal monotone if, in addition, A coincides with every monotone operator
containing its graph. In such a case, it is known that cl(dom A) is convex, and that Ax
is convex and weakly closed for every x ∈ H. Hence, the minimal norm element of
Ax; that is,

A◦x := {x∗ ∈ Ax : ‖x∗‖ = min
z∗∈Ax

‖z∗‖},

is well-defined and unique, whenever x ∈ dom A.
Finally, given a multifunction F : H ⇒ H we denote

Limsup
y−→x

F(y) := {x∗ ∈ H : ∃yn −→ x, y∗
n → x∗, s.t. y∗

n ∈ F(yn) ∀n ≥ 1},
Limsup
y⇀x

F(y) := {x∗ ∈ H : ∃yn ⇀ x, y∗
n → x∗, s.t. y∗

n ∈ F(yn) ∀n ≥ 1},
ω − Limsup

y−→x
F(y) := {x∗ ∈ H : ∃yn −→ x, y∗

n ⇀ x∗, s.t. y∗
n ∈ F(yn) ∀n ≥ 1}.
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3 Boundary of Maximal Monotone Operators

In this section, we give the desired property which expresses the value of a given
maximal monotone operator A : H ⇒ H, defined on a Hilbert space H, by means of
its values at nearby points.

Definition 3.1 Given x ∈ dom A and v ∈ H, we define the set A(x; v) ⊂ H as

A(x; v) := {
x∗ ∈ Ax : 〈x∗, v〉 = σAx (v)

}
,

with the convention that A(x, v) = ∅ when σAx (v) = +∞.

Since Ax, x ∈ dom A, is convex and weakly closed, A(x; ·) coincides with the
subdifferential mapping of the proper, convex and lsc support function σAx . As a
consequence, the following remark resumes some easy properties of the set A(x; v).

Remark 3.1 Given x ∈ dom A and v ∈ H, we have:

(i) A(x; v) is convex and closed (possibly empty), and nonempty whenever the set
Ax is bounded.

(ii) A(x; 0) = Ax, and if v �= 0 then A(x; v) is a subset of bd(Ax). In the last case,
we refer to A(x; v) as the face of Ax with respect to the direction v.

(iii) A(x;αv) = A(x; v) for any v �= 0 and α > 0; thus, the face A(x; v) depends
only on the direction v.

We shall need the following lemma.

Lemma 3.1 (see, e.g., [7]) For any nonempty closed convex set S ⊂ H, the set of
points s ∈ bd(S) such that NS(s) �= {0} is dense in bd(S).

Proposition 3.1 Let x ∈ dom A and v �= 0 be given. Then we have that

bd(Ax) = cl

⎛
⎝⋃

v �=0

A(x; v)

⎞
⎠ .

Proof The inclusion “⊃” being obvious, due to the definition of the set A(x; v),

we only need to prove the inclusion “⊂”. Take an arbitrary vector ξ ∈ bd(Ax).
According to Lemma 3.1, there exists a sequence (ξn)n ⊂ bd(Ax) such that ξn → ξ

and NAx (ξn) �= {0}. Hence, for each n there exists vn �= 0 such that vn ∈ NAx (ξn) =
∂IAx (ξn), or, equivalently, ξn ∈ ∂σAx (vn) = A(x; vn); that is, ξ ∈ cl

( ⋃
v �=0

A(x; v)

)
.

��
Theorem 3.1 For every x ∈ H we have

bd(Ax) = Limsup
y→�=x

bd(Ay) = Limsup
y→�=x

Ay.
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Proof Toprove thefirst statement of the theoremweproceedbyverifying the following
inclusions, for every fixed x ∈ H,

bd(Ax) ⊂ Limsup
y→�=x

bd(Ay) ⊂ Limsup
y→�=x

Ay ⊂ bd(Ax). (3.1)

First, we observe that when x /∈ dom A, these inclusions follow since that, using
the norm-weak (and a fortiori, the norm-norm) upper semicontinuity of the maximal
monotone operator A,

bd(Ax) = ∅ ⊂ Limsup
y→�=x

bd(Ay) ⊂ Limsup
y→�=x

Ay ⊂ Ax = ∅.

So, we may assume that x ∈ dom A. Also, if bd(Ax) = ∅, then we would have that
Ax = H , so that dom A = {x} and this leads to

Limsup
y→�=x

bd(Ay) = Limsup
y→�=x

Ay = ∅;

that is, the conclusion of the first statement is also true in this case.
From the observation above we assume now that bd(Ax) �= ∅. Take x∗ ∈ bd(Ax)

(⊂ Ax). According to Lemma 3.1, for each n ≥ 1 there exists x∗
n ∈ bd(Ax) such that

‖x∗
n − x∗‖ ≤ 1

n and NAx (x∗
n ) �= {0}. We take un ∈ NAx (x∗

n ) such that ‖un‖ = 1 and
put vn := x∗

n + un . It is clear that

vn �= x∗
n , vn /∈ Ax and x∗

n = PAx (vn). (3.2)

We fix n ≥ 1 and consider the following differential inclusion

ż(t) ∈ vn − Az(t) for almost every t ∈ [0, 1], z(0) = x, (3.3)

which, according to [3, Proposition 3.3], possesses a (strong) unique solution zn(·)
such that zn(t) ∈ dom A for all t ∈ [0, 1], and that the function

t �→ d+zn(t)
dt

= (vn − Azn(t))
◦ = vn − PAzn(t)(vn) (3.4)

is right-continuous on [0, 1). In particular, we have that (recall (3.2))

d+zn(0)
dt

= (vn − Azn(0))
◦ = (vn − Ax)◦ = vn − PAx (vn) = vn − x∗

n ;

hence, since vn − x∗
n �= 0, by (3.2), it follows that zn(t) �= x for all small t ∈ [0, 1).

Then, from the right-continuity of d+zn(·)
dt and the expressions in (3.4), there exists a

sequence tk ↓ 0 such that

z∗n,k := PAzn(tk )(vn) → x∗
n as k goes to + ∞, (3.5)
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and zn(tk) �= x for all k ≥ 1. We observe that z∗n,k ∈ bd(Azn(tk)) for all k ≥ 1
in a cofinite set, because for otherwise, since z∗n,k ∈ Azn(tk) we would have z∗n,k ∈
int(Azn(tk)) for infinitely many k, and due to (3.5) this would lead to vn ∈ Azn(tk) for
all k ∈ K . Consequently, as zn(tk) → zn(0) = x when k goes to +∞, the maximal
monotonicity of A would give us vn ∈ Ax, which is a contradiction with (3.2). Now,
we may choose a diagonal sequence (z∗n,kn

)n such that z∗n,kn
→ x∗ as n → +∞, and

this shows that x∗ ∈ Limsupy→�=x bd(Ay), which yields the first inclusion in (3.1).
We take now x∗ ∈ Limsupy→�=x Ay, so that x∗ = lim

n→∞x∗
n for some x∗

n ∈ Axn with

xn → x and xn �= x . Then by the norm-weak upper semicontinuity of the operator A,
we deduce that x∗ ∈ Ax . Thus, it suffices to prove that x∗ ∈ H \ int(Ax). Proceeding
by contradiction, we assume that x∗ + rB ⊂ Ax for some r > 0. Then, using the
monotonicity of A, for every n ≥ 1 one has that

〈
x∗
n −

(
x∗ + r

xn − x

‖xn − x‖
)

, xn − x

〉
≥ 0,

which gives

‖x∗
n − x∗‖‖xn − x‖ ≥ 〈x∗

n − x∗, xn − x〉 ≥
〈
r

xn − x

‖xn − x‖ , xn − x

〉
= r‖xn − x‖;

that is, ‖x∗
n − x∗‖ ≥ r for every n ≥ 1, and this contradicts the convergence of (x∗

n )

to x∗. Hence, x∗ ∈ bd(Ax) and we conclude the proof of (3.1). ��
It easily follows from Theorem 3.1 that

bd(Ax) ⊂ Limsup
y→�=x

Ay ⊂ ω − Limsup
y→�=x

Ay,

but the last inclusion may be strict, as the following example shows.

Example 3.1 Assume that (en)n∈N is an orthonormal basis for H, and consider the
maximal monotone operator A := ∂‖ · ‖. So,

A0 = B(0, 1) and Ax = x

‖x‖ for all x �= 0.

We observe that the sequence ( enn )n∈N strongly converges to 0, and

A
en
n

= en ⇀ 0 ∈ int(B(0, 1)) = int(A0).

We give an interesting corollary of Theorem 3.1.

Corollary 3.1 For every x ∈ H we have

d(0, bd(Ax)) = lim inf
y→�=x

d(0, Ay).
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Consequently, if x is such that 0 /∈ int(Ax), then

‖A◦x‖ = lim inf
y−→�=x

‖A◦y‖.

Proof It suffices to consider the case when x ∈ dom A, because otherwise both sides
of the equality are equal to +∞.

Wemaydistinguish twocases: If 0 /∈ Ax , thend(0, bd(Ax)) = d(0, Ax) = ‖A◦x‖.
Thus, according to Theorem 3.1 there are sequences (yn), (y∗

n ) ⊂ H such that

yn →�= x, y∗
n ∈ Ayn, and y∗

n → A◦x as n → +∞.

Hence,

‖A◦x‖ = lim
n→∞‖y∗

n‖ ≥ lim inf
n→∞ d(0, Ayn) ≥ lim inf

y→�=x
d(0, Ay),

and so d(0, bd(Ax)) = ‖A◦x‖ ≥ lim inf
y→�=x

d(0, Ay). Hence, if lim inf
y→�=x

d(0, Ay) = +∞,

then the first equality of the corollary obviously holds. Otherwise, we suppose that
lim inf
y→�=x

d(0, Ay) < α for some α ∈ R, and let sequences (yn), (y∗
n ) ⊂ H be such that

yn →�= x, y∗
n ∈ Ayn, and lim

n→∞
∥∥y∗

n

∥∥ < α.

Thus, taking into account Theorem 3.1, we may suppose that y∗
n → x∗ ∈ bd(Ax);

that is,

d(0, bd(Ax)) ≤ ∥∥x∗∥∥ ≤ α.

We get the desired inequality “≤” when α goes to lim inf
y→�=x

d(0, Ay), and this completes

the proof of the first statement.
To prove the last statement, we observe that under the current assumption, we have

that ‖A◦x‖ = d(0, Ax) = d(0, bd(Ax)), and so it suffices to use the first assertion of
the theorem. ��

We give the following corollary in which we use the notation

‖Az‖ := sup{‖z∗‖ : z∗ ∈ Az}.

Corollary 3.2 For every x ∈ H such that Ax is a nonempty bounded set, we have

‖Ax‖ ≤ lim sup
y−→�=x

‖Ay‖,
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and, provided that H is finite-dimensional,

‖Ax‖ = lim sup
y−→�=x

‖Ay‖.

Proof Let x ∈ H be as in the current corollary. Then for any ε > 0 there exists
x∗ ∈ bd(Ax) such that ‖x∗‖ ≥ ‖Ax‖ − ε. According to Theorem 3.1, there exist
sequences yn → x and y∗

n ∈ Ayn such that yn �= x and y∗
n → x∗ as n → +∞. Thus,

lim sup
y−→�=x

‖Ay‖ ≥ lim sup
n→+∞

‖Ayn‖ ≥ lim
n→∞‖y∗

n‖ = ‖x∗‖ ≥ ‖Ax‖ − ε,

and the desired inequality follows when ε goes to 0.
We assume now that H is finite-dimensional, so that according to the first statement

we only need to prove that

‖Ax‖ ≥ lim sup
y−→�=x

‖Ay‖.

Indeed, we first observe that, due to the finite-dimensional assumption, according to
[3, Remark 2.1] we have

int(dom A) = int(cl(dom A)), (3.6)

and, consequently, A is locally bounded in int(cl(dom A)) whenever this last set is
nonempty [3]. Thus, if lim sup

y−→�=x
‖Ay‖ = +∞, then we would have x ∈ bd(cl(dom A))

(otherwise, by (3.6), x ∈ int(dom A) and lim sup
y−→�=x

‖Ay‖ < +∞). Hence, the finite-

dimensional framework ensures that Ncl(dom A)(x) �= {0}. Now, because A is a
maximalmonotone operatorwehave Ax = Ax+Ncl(dom A)(x),whichwould entail the
contradiction‖Ax‖ = +∞.Consequently,wemay suppose that lim sup

y−→�=x
‖Ay‖ < +∞.

We let a sequence (yn, y∗
n )n ⊂ Gr A be such that yn → x , yn �= x and lim sup

y−→�=x
‖Ay‖ =

lim
n→∞‖y∗

n‖. We may also assume that the sequence (y∗
n )n converges to some x∗ ∈ Ax .

Then

‖Ax‖ ≥ ‖x∗‖ = lim
n→∞‖y∗

n‖ = lim sup
y−→�=x

‖Ay‖,

as we wanted to prove. ��
The following result concerns the faces of the values of maximal monotone opera-

tors.

Theorem 3.2 For every x ∈ dom A and v �= 0 we have

A(x; v) = Limsup
w→v,t↓0

A(x + tw) = Limsup
w⇀v,t↓0

A(x + tw) = ω- Limsup
w→v,t↓0

A(x + tw).
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Proof We fix x ∈ dom A and v �= 0, and take x∗ ∈ A(x; v). From Definition 3.1, we
have that v ∈ (∂σAx )

−1(x∗) = NAx (x∗), which ensures that x∗ = PAx (x∗ + v). Let
us consider the following differential inclusion

ż(t) ∈ x∗ + v − Az(t) t ≥ 0, z(0) = x .

According to [3, Proposition 3.3], this differential inclusion has a unique (strong)
solution z(·) such that

lim
t↓0

d+z(t)
dt

= lim
t↓0 (x

∗ + v − Az(t))◦

= d+z(0)
dt

= (x∗ + v − Ax)◦ = (x∗ + v) − x∗ = v. (3.7)

We denote

x∗
n := PAz( 1n )(x

∗ + v), wn := z( 1n ) − x
1
n

;

hence, (3.7) ensures that
d+z( 1n )

dt = (x∗ + v − Az( 1n ))◦ = x∗ + v − x∗
n → d+z(0)

dt = v.

Therefore, as n → +∞ we obtain that

x∗
n → x∗, wn → d+z(0)

dt
= v,

and so

x∗ = lim
n→∞x∗

n ⊂ Limsup
n→∞

Az

(
1

n

)
= Limsup

n→∞
A

(
x + 1

n
wn

)
⊂ Limsup

w→v,t↓0
A(x + tw),

showing that

A(x; v) ⊂ Limsup
w→v,t↓0

A(x + tw) ⊂ Limsup
w⇀v,t↓0

A(x + tw).

Thus, since A(x; v) ⊂ Limsupw→v,t↓0 A(x + tw) ⊂ ω−Limsupw→v,t↓0 A(x + tw),

we only need to verify that

Limsup
w⇀v,t↓0

A(x + tw) ⊂ A(x; v) and ω − Limsup
w→v,t↓0

A(x + tw) ⊂ A(x; v). (3.8)

To see thefirst inclusion,we take x∗ ∈ Limsupw⇀v,t↓0 A(x+tw), so that x∗ = limn x∗
n

for some sequences (x∗
n ), (wn) ∈ H , (tn) ⊂ R+, such that x∗

n ∈ A(x + tnwn),

wn ⇀ v, and tn ↓ 0. It follows by the maximal monotonicity of A that x∗ ∈ Ax, and
for all ξ ∈ Ax
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〈x∗
n − ξ,wn〉 = 1

tn
〈x∗

n − ξ, x + tnwn − x〉 ≥ 0.

So, by taking the limit as n → +∞we obtain that 〈x∗, v〉 ≥ supξ∈Ax 〈ξ, v〉 ≥ 〈x∗, v〉,
which shows that x∗ ∈ A(x; v), and the first inclusion in (3.8) follows. We conclude
the proof of the theorem because the second inclusion in (3.8) can be obtained using
the same arguments as those used for the first inclusion. ��

The following example shows the necessity ofmoving the vector v in the expression
of Theorem 3.2.

Example 3.2 Consider the maximal monotone operator A defined on H as

Ax := x + NB(0,1)(x),

and let x , v ∈ H \ {0} be such that

‖x‖ = 1 and 〈v, x〉 = 0.

Then one can easily check that Ax = [1,+∞[ x , and so

A(x; v) =
{
x∗ ∈ Ax : 〈x∗, v〉 = sup

ξ∈Ax
〈ξ, v〉 = sup

α∈[1,+∞[
〈αx, v〉 = 0

}
= Ax .

But for any t > 0 we have that A(x + tv) = ∅, which shows that

ω − Limsup
t↓0

A(x + tv) = Limsup
t↓0

A(x + tv) = ∅.

In Theorem3.3we give the expression of the values ofmaximalmonotone operators
by using the values at nearby points. We need first to check the following lemma.

Lemma 3.2 Given x ∈ dom A, for every x∗ ∈ Ax it holds

Ncl(dom A)(x) = {v ∈ H : x∗ + tv ∈ Ax, ∀t ≥ 0} =: d∞(Ax). (3.9)

Proof Since the operator A+Ncl(dom A) is monotone and Gr A ⊂ Gr(A+Ncl(dom A)),

the maximality of A ensures that Ax + Ncl(dom A)(x) = Ax, which implies that
Ncl(dom A)(x) ⊂ d∞(Ax). Take now v ∈ d∞(Ax) , so that x∗ + tv ∈ Ax for all t ≥ 0.
Then, by the monotonicity of A we get

〈y∗ − (x∗ + tv), y − x〉 ≥ 0 ∀y∗ ∈ Ay, ∀t ≥ 0,

which in turn leads to

〈y∗ − x∗, y − x〉 ≥ t〈v, y − x〉 ∀y∗ ∈ Ay, ∀t ≥ 0.

Hence, 〈v, y − x〉 ≤ 0 for every y ∈ dom A, and we deduce that v ∈ Ncl(dom A)(x). ��
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Theorem 3.3 For every x ∈ dom A such that bd(Ax) �= ∅ we have that

Ax = Ncl(dom A)(x) + co2

{
Limsup
y→�=x

Ay

}
.

Proof First, according to Theorem 3.1, ensuring that bd(Ax) = Limsupy→�=x Ay,
and to the maximal monotonicity of the operator A, ensuring that A = A+Ncl(dom A),

we only need to prove the following inclusion when int(Ax) �= ∅,

int(Ax) ⊂ Ncl(dom A)(x) + co2 {bd(Ax)} . (3.10)

Given x∗ ∈ int(Ax), we fix x∗
0 ∈ bd(Ax) and introduce the set

S := {x∗
0 + t (x∗ − x∗

0 ) : t ≥ 1}.

On the one hand, if S ∩ bd(Ax) = ∅, then S ⊂ Ax and, due to the convexity of Ax,
we obtain x∗

0 + R+(x∗ − x∗
0 ) ⊂ Ax . Hence, thanks to Lemma 3.2 we deduce that

x∗ − x∗
0 ∈ Ncl(dom A)(x), and we get

x∗ ∈ x∗
0 + Ncl(dom A)(x) ⊂ Ncl(dom A)(x) + co2{bd(Ax)},

which yields (3.10). On the other hand, if S ∩ bd(Ax) �= ∅, then there exists some
t > 1 such that z∗ = x∗

0 + t (x∗ − x∗
0 ) ∈ bd(Ax). Thus,

x∗ = 1

t
z∗ + (1 − 1

t
)x∗

0 ∈ co2{bd(Ax)} ⊂ Ncl(dom A)(x) + co2{bd(Ax)},

and this completes the proof of the theorem. ��

4 Prox-Regular Analysis

In this section, we extend the results of the previous section to two classes of operators
of nonsmooth analysis, the normal cone to uniformly r -prox-regular sets, and the
class of uniformly prox-regular extended-real-valued functions. As before, we work
in the setting of a given Hilbert space H .

We start by giving the definition of the proximal normal cone.

Definition 4.1 [7] Given a set C ⊂ H and x ∈ C, the proximal normal cone to C at
x , denoted by NP

C (x), is the set of vectors x∗ ∈ H for which there exists m > 0 such
that

〈x∗, y − x〉 ≤ m ‖y − x‖2 for all y ∈ C.

Definition 4.2 [14] For positive numbers r and α, a closed set C is said to be (r, α)-
prox-regular at x ∈ C provided that one has x = PC (x + v), for all x ∈ C ∩ B(x, α)
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and all v ∈ NP
C (x) such that ||v|| < r. The set C is r -prox-regular (prox-regular,

resp.) at x when it is (r, α)-prox-regular at x for some real α > 0 (for some numbers
r, α > 0, resp.). The set C is said to be r -uniformly prox-regular when α = +∞.

The following theoremdescribes the boundary set of the normal cone of a uniformly
r -prox-regular set, bymeans of its values at nearby points, which are different from the
reference point. We also characterize such normal cones by means of their boundaries
points. Recall that the Bouligand tangent cone of a prox-regular closed set C at x ∈ C
is given by

TC (x) :=
(
NP
C (x)

)∗ := {u∗ ∈ H | 〈x∗, u〉 ≤ 0 for all u ∈ NP
C (x)}.

Theorem 4.1 Let C ⊂ H be a uniformly r-prox-regular closed set for some r > 0.
Then for every x ∈ C we have that

bd(NP
C (x)) = Limsup

y→�=x
bd(NP

C (y)) = Limsup
y→�=x

NP
C (y). (4.1)

Consequently, if int(TC (x)) �= ∅ and dim H > 1 then

NP
C (x) = co2

{
bd(NP

C (x))
}

= co2

{
Limsup
y→�=x

NP
C (y)

}
. (4.2)

Proof First, we observe that the inclusions

bd(NP
C (x)) ⊂ Limsup

y→�=x
bd(NP

C (y)) ⊂ Limsup
y→�=x

NP
C (y), (4.3)

follow as in the the proof of Theorem 3.1, since the following differential inclusion,

ż(t) ∈ f (z(t)) − NP
C (z(t)) t ∈ [0, 1], z(0) = x ∈ C,

for a given Lipschitz function f : H → H, also possesses a unique solu-
tion z(·) such that the function d+z(·)

dt is right-continuous on [0, 1[ and d+z(t)
dt =(

f (z(t)) − NP
C (z(t))

)◦
for all t ∈ [0, 1[ (see [1, Theorem 4.6] for more details).

We are going to prove the converse inclusions of (4.3). We take ξ ∈ Limsupy→�=x

NP
C (y), and let the sequences (yn) and (ξn) be such that

ξn ∈ NP
C (yn), yn → x, ξn → ξ as n → +∞;

hence, we may suppose that for some M > 0 we have that ξn ∈ NP
C (yn) ∩ BM for

all n ∈ N. Next, using the r -uniform prox-regularity of the set C, we obtain that
ξ ∈ NP

C (x) [14]. We claim that ξ ∈ bd(NP
C (x)). Proceeding by contradiction, we
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assume that for some positive number ρ such that ρ < M it holds ξ + Bρ ⊂ NP
C (x);

that is,

ξ + ρ
yn − x

‖yn − x‖ ∈ NP
C (x) ∀n ∈ N.

Now, using the monotonicity of the mapping x → NP
C (x) ∩ B2M + 2M

r x (see [14]),
we get

〈
ξn + 2M

r
yn −

(
ξ + ρ

yn − x

‖yn − x‖ + 2M

r
x

)
, yn − x

〉
≥ 0 for all n ≥ 1,

which implies that

‖ξn − ξ‖‖yn − x‖ + 2M

r
‖yn − x‖2

≥ 〈ξn − ξ, yn − x〉 + 2M

r
‖yn − x‖2 ≥ ρ‖yn − x‖,

and, dividing by ‖yn − x‖,

‖ξn − ξ‖ + 2M

r
‖yn − x‖ ≥ ρ,

which is a contradiction. Hence, ξ ∈ bd(NP
C (x)) and (4.3) holds as equalities.

In this last part of the proof, we assume that int(TC (x)) �= ∅; that is, there exist
v ∈ H and η > 0 such that v + Bη ⊂ int(TC (x)). According to the first statement of
the theorem we only need to prove that

int(NP
C (x)) ⊂ co2

{
bd(NP

C (x))
}

. (4.4)

Indeed, If int(NP
C (x)) = ∅, then (4.4) holds trivially. Otherwise, we suppose that

int(NP
C (x)) �= ∅ and fix an arbitrary vector ν ∈ int(NP

C (x)) \ {0}. We also choose
v ∈ int(TC (x)) \ {0} such that v /∈ Rν; such a vector always exists (due to the current
hypothesis dim H > 1, there always exists w �= 0 such that v + w ∈ int(TC (x)) and
v + w /∈ Rν). Consequently, v /∈ NC (x), and so there exists some t > 0 such that
ν + tv /∈ NC (x). Since ν ∈ int(NP

C (x)) it follows that

z∗ := ν + t̄v ∈ bd(NP
C (x)) \ {0}, (4.5)

for some t̄ ∈ (0, t].
Now, we take ξ ∈ int(NP

C (x)) \ {0}, so that −ξ /∈ NP
C (x), by [17, Exercise 9.42]

(this exercise was given in finite dimensions but it can be easily extended to infinite
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dimensions). We are going to show that for some t0 > 0 the vector z∗ defined in (4.5)
satisfies

ξ + t0(ξ − t0z
∗) /∈ NP

C (x). (4.6)

Proceeding by contradiction, we suppose that ξ + t (ξ − t z∗) ∈ NP
C (x) for all t ≥ 0,

and we get

1 + t

t2
ξ − z∗ ∈ NP

C (x) ∀t > 0,

which as t → +∞ gives us −z∗ ∈ NP
C (x), which contradicts the nonemptyness of

the set int(TC (x)) (again by [17, Exercise 9.42]). Then, for t0 being as in (4.6), there
exists some β ∈ (0, 1) such that w∗ := ξ + βt0(ξ − t0z∗) ∈ bd(NP

C (x)), and hence

ξ = 1
1+βt0

w∗ + βt0
1+βt0

(t0z∗) ∈ co2
{
bd(NP

C (x))
}
. ��

Remark 4.1 If dim H = 1, the first equality in (4.2) is not true in general, but in this
case, the geometry of TC (x) and NC (x) are easily determined.

In this last part of the paper, we extend the results of Sect. 3 to the proximal
subdifferential mapping of lsc functions.

Definition 4.3 [2, Definition 3.1] Given a lsc function f : H → R ∪ {+∞} and
x ∈ dom f, a vector x∗ ∈ H is called a proximal subgradient of f at x , written
x∗ ∈ ∂P f (x), if there are ρ, δ > 0 such that

f (y) ≥ f (x) + 〈x∗, y − x〉 − δ||y − x ||2, ∀y ∈ B(x, ρ).

A vector x∗ ∈ H is called a limiting subgradient of f at x , written ξ ∈ ∂L f (x), if
there are sequence (xk), (x∗

k ) ⊂ H such that

x∗ = ω − lim
k→∞x∗

k , xk −→ x, f (xk) −→ f (x), x∗
k ∈ ∂P f (xk).

Definition 4.4 [2, Definition 3.1] A function f : H → R ∪ {+∞} is said to be
uniformly prox-regular on a set E ⊂ H if there exist ε, r > 0 such that for any
x̄ ∈ E and v̄ ∈ ∂L f (x̄), one has, for all (x, v) ∈ Gr(∂L f ) satisfying ‖x − x̄‖ < ε,

| f (x) − f (x̄)| < ε and ‖v − v̄‖ < ε,

f (x ′) ≥ f (x) + 〈v, x ′ − x〉 − r

2
‖x ′ − x‖2 ∀x ′ ∈ B(x̄, ε).

It is worth observing that for uniformly prox-regular functions f at {x̄} ⊂ dom f ,
we have that ∂P f (x̄) = ∂L f (x̄), and, in particular, if f is convex, then ∂P f (x̄) =
∂L f (x̄) = ∂ f (x̄). In the following result, we give the counterpart of Theorem 3.1 to
the proximal subdifferential mapping of prox-regular functions.
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Theorem 4.2 Let f : H → R ∪ {+∞} be a lsc function and let x ∈ dom f. If f is
uniformly prox-regular on a neighborhood of x, then

bd(∂P f (x)) = Limsup
y→�=x

∂P f (y),

and, provided that bd(∂P f (x)) �= ∅,

∂P f (x) = NP
dom f (x) + co2

{
Limsup
y→�=x

∂P f (y)

}
.

Proof According to [2, Proposition 3.6], the current property of f entails the existence
of some r > 0, an open convex neighborhood U of x , and a lsc convex function g
such that

f (y) = g(y) − r

2
‖y‖2 ∀y ∈ U ; (4.7)

hence, ∂P f (y) = ∂g(y) − r y for all y ∈ U. Thus, since ∂g is a maximal monotone
operator [15], by applying Theorem 3.1 we get

bd(∂P f (x)) = bd(∂g(x) − r x)

= bd(∂g(x)) − r x

= Limsup
y→�=x

∂g(y) − r x

= Limsup
y→�=x

(∂g(y) − r y)

= Limsup
y→�=x

(∂P f (y)),

which yields the first conclusion.
To prove the second statement we observe that dom f ∩ U = dom g ∩ U , which

yields

NP
dom f (x) = NP

dom g(x) = NP
cl(dom g)(x) = Ncl(dom g)(x)

(because the proximal normal cone coincides with the usual normal cone to convex
sets). Thus, since bd(∂g(x)) = bd(∂P f (x))+ r x �= ∅, due to the current assumption,
by applying Theorem 3.3 and taking into account (4.7) we get
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∂P f (x) = ∂g(x) − r x

= Ncl(dom ∂g)(x) + co2

{
Limsup
y→�=x

(∂g(y) − r y)

}

= Ncl(dom g)(x) + co2

{
Limsup
y→�=x

(∂g(y) − r y)

}

= NP
dom f (x) + co2

{
Limsup
y→�=x

(∂P f (y))

}
,

where we used the fact that cl(dom ∂g) = cl(dom g) (see, e.g. [20]). ��
Acknowledgements We would like to thank two anonymous referees for their careful reading and for
providing valuable suggestions and observations which allowed us to improve the manuscript.

References

1. Adly, S., Hantoute, A., Nguyen, B.T.: Equivalence between differential inclusions involving prox-
regular sets and maximal monotone operators. arXiv:1704.04913

2. Bernard, F., Thibault, L.: Uniform prox-regularity of functions and epigraphs in Hilbert spaces. Non-
linear Anal. 60(2), 187–207 (2005)

3. Brézis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans Les espaces de
Hilbert. North-Holland, Amsterdam (1973)

4. Cánovas, M.J., Hantoute, A., Parra, J., Toledo, F.J.: Boundary of subdifferentials and calmness moduli
in linear semi-infinite optimization. Optim. Lett. 9(3), 513–521 (2015)

5. Cánovas,M.J., Henrion, R., López,M.A., Parra, J.: Outer limit of subdifferentials and calmness moduli
in linear and nonlinear programming. J. Optim. Theory Appl. 169(3), 925–952 (2016)

6. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Calmness of the feasible set mapping for linear
inequality systems. Set-Valued Var. Anal. 2, 375–389 (2014)

7. Clarke, F.H., Ledyaev, YuS, Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory,
Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)

8. Goberna, M.A., López, M.A.: Linear Semi-infinite Optimization. Wiley, Chichester (1998)
9. Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. B 104,

437–464 (2005)
10. Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim.

13(2), 603–618 (2002)
11. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and

Applications. Nonconvex Optimization and Its Applications, vol. 60. Kluwer Academic, Dordrecht
(2002)

12. Kruger, A., Van Ngai, H., Théra, M.: Stability of error bounds for semi-infinite convex constraint
systems. SIAM J. Optim. 20(4), 2080–2096 (2010)

13. Kruger, A., Van Ngai, H., Théra, M.: Stability of error bounds for convex constraint systems in Banach
spaces. SIAM J. Optim. 20(6), 3280–3296 (2010)

14. Mazade, M., Thibault, L.: Regularization of differential variational inequalities with locally prox-
regular sets. Math. Program. B 139(1–2), 243–269 (2013)

15. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33(1),
209–216 (1970)

16. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
17. Rockafellar, R.T., Wets, R.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften

[Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)
18. Thibault, L., Zagrdony, D.: Integration of subdifferentials of lower semicontinuous functions in Banach

spaces. J. Math. Anal. Appl. 189, 33–58 (1995)

123

http://arxiv.org/abs/1704.04913


Appl Math Optim (2020) 82:225–243 243

19. Valadier,M.: Sous-différentiels d’une borne supérieure et d’une sommecontinue de fonctions convexes.
C. R. Acad. Sci. Paris Sér. A-B Math. 268, 39–42 (1969)
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