TABLA DE CONTENIDO

1	Int	roducción	1
1.1	Ant	cecedentes generales Mina El Teniente	1
1.2	Mo	tivaciones y problemática	2
1.	2.1	Objetivo general	5
1.	2.2	Objetivos específicos	5
1.3	Ubi	cación y vías de acceso	6
1.4	Tra	bajos anteriores relacionados	8
1.5	Me	todología	
1.	5.1	Etapa de recopilación de información relevante	10
	5.2 icimie	Etapa de recopilación de bases de datos y modelos dentro del ento	11
1.	5.3	Determinación de rangos y disposición en el espacio de los datos	s 14
	5.4 otéci	Estudio de las relaciones entre los parámetros de chancado, nicos y geológicos por sectores	15
1.	5.5	Visita técnica a laboratorio externo	18
1.	5.6	Ensayos utilizados y métodos de muestreo	19
1.	5.7	Ensayos Geotécnicos	26
1.	5.8	Métodos de muestreo	29
2	Tec	oría de conminución y procesos de	
cha	nca	do en división El Teniente	31
2.1	Ме	canismos de fractura	32
2.2	Tip	os de chancadores	35
2.3	Pro	cesos de chancado en División El Teniente	38
2.	3.1	Proceso de chancado interior mina	39
2.	3.2	Proceso de planta chancado Sewell	40
2.	3.3	Proceso de planta chancado Colón	41
3	Ma	rco Geológico	44
3.1	Int	roducción	44
3.2	Ма	rco Geotectónico	44
3.3	Ge	ología	46

3.3.1	Rocas Estratificadas	46
3.3.2	Rocas Intrusivas	52
3.3.3	Estructuras	53
3.4 G	eología del yacimiento El Teniente	55
3.4.1	Unidades Litológicas	57
3.4.2	Geología Estructural	61
3.4.3	Alteración y Mineralización	63
4 Mc	delo Geotécnico y modelo de alteració	ón
	cimiento El Teniente	
-	odelo Geotécnico	
4.1.1	Unidades litológicas	
4.1.2	Arreglo Estructural del Macizo Rocoso	
4.1.3	Propiedades físicas de las estructuras geológicas	
4.1.4	Resistencia al Corte de vetillas	
4.1.5	Resistencia a la Tracción de las vetillas	
4.1.6	Frecuencia de vetillas blandas	
4.1.7	Fragmentación	73
4.1.8	Parámetros Operacionales	74
4.2 Ur	nidades Geotécnicas Relevantes	74
4.3 Mo	odelo de alteración	78
5 An	álisis de resultados	80
5.1 De	efinición de rangos y análisis espacial de datos	81
5.1.1	Chancado LEIT (Cwi)	
5.1.2	Índice de chancado obtenido para ensayo SPI (CI)	82
5.1.3	Índice de abrasión (Ai)	
5.2 Re	elación de la geotecnia y geología con los parámetros de char	
(Cwi, CI	y Ai) y formación de dominios	86
5.2.1	Chancado LEIT (Cwi)	86
5.2.2	Crushing Index relacionado a SPI (CI)	
5.2.3	Índice de Abrasión (Ai)	106
5.3 Do	ominios combinados y caracterización de los sectores Oeste y 3	Norte

6	Discusiones 117
6.1	Influencia de los parámetros geotécnicos y mineralógicos en Cwi 117
6.2	Influencia de los parámetros geotécnicos y mineralógicos en CI 123
6.3	Influencia de los parámetros geotécnicos y mineralógicos en Ai 126
6.4	Representatividad del modelo combinado para chancado127
7	Conclusiones y recomendaciones129
8	Bibliografía134
9	Anexos142
9.1 aná	Anexo A: Tablas con información detallada de los gráficos de caja para lisis del modelo geotécnico y de alteración142
9.2	Anexo B: Bases de datos de geometalurgia152
9.3	Anexo C: Resultados de ensayos geotécnicos164
9.	3.1 Resultados para ensayo UCS
9.	3.2 Resultados para ensayos de módulo de Young dinámico167
ÍND	ICE DE TABLAS
TABLA	1.1 MUESTRAS QUE SE EXTRAJERON DE LA BASE DE DATOS DE CONMINUCIÓN12
	1.2 RECUENTO DE DATOS GEOMETALÚRGICOS DE CHANCADO LEIT (CWI), ÍNDICE DE CHANCADO LEVIO A SPI (CI) E ÍNDICE DE ABRASIÓN (AI)
TABLA	1.3 RECUENTO DE DATOS GEOTÉCNICOS A UTILIZAR EN EL ESTUDIO
	1.4 MUESTRAS A LAS QUE SE LES REALIZÓ UNA DESCRIPCIÓN PETROGRÁFICA PARA ELACIONARLAS CON SU RESULTADO DE CHANCADO LEIT (CWI)
TABLA	1.5 RANGOS PARA PARÁMETRO DE CHANCADO LEIT RELACIONADO CON RESULTADOS DE
R	ESISTENCIA A LA COMPRESIÓN UNIAXIAL. OBTENIDO DE YOUNG, 201920
TABLA	1.6 RANGOS PARA EL PARÁMETRO DE CHANCADO LEIT (CWI) OBTENIDO DE DATOS GENERALES
	EL LABORATORIO EXTERNO
	1.7 OBTENCIÓN DE RANGOS PARA EL ÍNDICE DE ABRASIÓN PARA DISTINTAS ROCAS, RECOPILADAS
PC	R EL SME. OBTENIDO DE YOUNG, 2019

Tabla 4.1 Clasificaciones usuales para macizos rocosos. No se observa una diferenciación
CLARA ENTRE LAS UNIDADES LITOLÓGICA (OBTENIDO DE INFORME INTERNO GRMD-SGL-INF-
0041-2018)67
Tabla 4.2 Caracterización de las Zonas Geotécnicas mediante propiedades geotécnicas de
LA ROCA (OBTENIDO DE INFORME INTERNO GRMD-SGL-INF-0041-2018)77
Tabla 4.3 Rangos establecidos para el modelo de alteración donde muestra los rangos de
PORCENTAJE PARA CADA TIPO DE ALTERACIÓN (INFORME INTERNO INÉDITO)79
Tabla 5.1 Rangos de Chancado LEIT relacionados con los de clorita-muscovita/sericita
Tabla 5.2 Definición de los dominios por unidades litológicas del índice de abrasión para litologías de El Teniente113
Tabla 5.3 Dominios combinados que determinan la capacidad de chancado de los distintos volúmenes del yacimiento114
Tabla 5.4 Se indica el porcentaje que existe de cada categoría para los sectores Oeste
Tabla 5.5 Se indica el porcentaje que existe de cada categoría para los sectores Norte
Tabla 6.1 Categorización del comportamiento del chancado basado en el estudio y los
PARÁMETROS OBTENIDOS DE YOUNG, 2019122
Tabla 6.2 Clasificación de las rocas de El Teniente con respecto al parámetro de índice de
CHANCADO (CI) Y SUS LAS ZONAS GEOTÉCNICAS CORRESPONDIENTES
Tabla 9.1 Datos de relación de Cwi con zonas geotécnicas del sector Oeste para Figura 4.8 A
Tabla 9.2 Datos de relación de Cwi con zonas geotécnicas del sector Norte para Figura 4.8 B
Tabla 9.3 Datos de relación de Cwi con zonas geotécnicas del sector Este para Figura 4.8
Tabla 9.4 Datos de relación de Cwi con zonas de alteración TM para el sector Oeste para Figura 4.10143
Tabla 9.5 Datos de relación de Cwi con zonas de alteración HP para el sector Oeste para Figura 4.11
Tabla 9.6 Datos de relación de Cwi con zonas de alteración HP para el sector Norte para Figura 4.11
Tabla 9.7 Datos de relación de CI con zonas geotécnicas para el sector Oeste para Figura 4.21 A

Tabla 9.8 Datos de relación de CI con zonas geotécnicas para el sector Norte para Figur,
4.21 B
TABLA 9.9 DATOS DE RELACIÓN DE CI CON ZONAS GEOTÉCNICAS PARA EL SECTOR ESTE PARA FIGURA 4.21 C
Tabla 9.10 Datos de relación de CI con zonas de alteración TM para sector Oeste para Figura 4.22
Tabla 9.11 Datos de relación de CI con zonas de alteración TM para sector Norte para Figura 4.22
Tabla 9.12 Datos de relación de CI con zonas de alteración TM para sector Este para Figura 4.22
Tabla 9.13 Datos de relación de CI con zonas de alteración para HP sector Oeste para Figura 4.23
Tabla 9.14 Datos de relación de CI con zonas de alteración para HP sector Norte para Figura 4.23
Tabla 9.15 Datos de relación de CI con zonas de alteración para HP sector Este para Figur. 4.23148
Tabla 9.16 Datos de relación de Ai con zonas geotécnicas del sector Oeste para Figura 4.29 A
Tabla 9.17 Datos de relación de Ai con zonas geotécnicas del sector Norte para Figura 4.29 B
TABLA 9.18 DATOS DE RELACIÓN DE AI CON ZONAS GEOTÉCNICAS DEL SECTOR ESTE PARA FIGURA 4.29 C
Tabla 9.19 Datos de relación de Ai con zonas de alteración para HP sector Oeste para Figura 4.31
Tabla 9.20 Datos de relación de Ai con zonas de alteración para HP sector Norte para Figura 4.31
TABLA 9.21 DATOS DE RELACIÓN DE AI CON ZONAS DE ALTERACIÓN PARA HP SECTOR ESTE PARA FIGURA 4.3115
TABLA 9.22 BASE DE DATOS QUE CONTIENE LOS ENSAYOS GEOMETALÚRGICOS DE CHANCADO LEI (CWI), ÍNDICE DE CHANCADO DE SPI (CI) E ÍNDICE DE ABRASIÓN (AI), CON SUS RESPECTIVOS DATOS DE SONDAJE
TABLA 9.23 BASE DE DATOS DE RELACIONES ENTRE PARÁMETROS DE CHANCADO CWI, CI Y AI COI RESPECTO A LA MINERALOGÍA QEMSCAN DE LA ASOCIACIÓN CLORITA-MUSCOVITA/SERICITA. 157
TABLA 9.24 DATOS DE RELACIÓN DE UCS CON ZONAS GEOTÉCNICAS DEL SECTOR OESTE PARA FIGURA 8.1

TABLA 9.25 DATOS DE RELACION DE UCS CON ZONAS GEOTECNICAS DEL SECTOR NORTE PARA FIGURA 8.1165
Tabla 9.26 Datos de relación de UCS con zonas geotécnicas del sector Este para Figura
8.1
Tabla 9.27 Datos de relación de UCS con zonas de alteración HT del yacimiento para Figura
8.2
Tabla 9.28 Datos de relación de UCS con zonas de alteración HP del yacimiento para Figura
8.2
Tabla 9.29 Datos de relación de UCS con zonas de alteración TM del yacimiento para
FIGURA 8.2
Tabla 9.30 Datos de relación de Módulo de Young dinámico con zonas geotécnicas del sector Oeste para Figura 8.3
Tabla 9.31 Datos de relación de Módulo de Young dinámico con zonas geotécnicas del sector Este para Figura 8.3
Tabla 9.32 Datos de relación de Módulo de Young dinámico con zonas geotécnicas del sector Norte para Figura 8.3
Tabla 9.33 Datos de relación de Módulo de Young dinámico con zonas de alteración HT del yacimiento para Figura 8.4
Tabla 9.34 Datos de relación de Módulo de Young dinámico con zonas de alteración HP del yacimiento para Figura 8.4170
Tabla 9.35 Datos de relación de Módulo de Young dinámico con zonas de alteración TM
DEL YACIMIENTO PARA FIGURA 8.4170
ÍNDICE DE FIGURAS
Figura 1.1 Gráfico que relaciona el parámetro de Chancado LEIT (Cwi) y de índice de
CHANADO OBTENIDO DE SPI (CI)
FIGURA 1.2 IMAGEN LANDSAT TM DE CHILE CENTRAL ENTRE LOS 33°S-35°S, Y LOS 71°W-72,5°W.
El Teniente Río Blanco los bronces son localizados hacia el oeste de la Cordillera
Principal (Tomado de Cannel, 2004)6
FIGURA 1.3 MAPA DE UBICACIÓN Y VÍAS DE ACCESO AL YACIMIENTO EL TENIENTE DE CODELCO,
REGIÓN DEL LIBERTADOR BERNARDO O'HIGGINS. SE DETALLAN LOS TRAMOS DE ACCESO A LAS DISTINTAS FAENAS DENTRO DEL DISTRITO MINERO (EXTRAÍDO DE LEÓN, 2016)
FIGURA 1.4 GRÁFICO QUE RELACIONA LA RESISTENCIA A LA FRACTURA POR TRACCIÓN CON LA ENERGÍA
CONSUMIDA POR EL PROCESO DE CHANCADO (BEARMAN ET AL., 1997)

FIGURA 1.5 ZONAS DEFINIDAS PARA AGRUPAR ESPACIALMENTE EL YACIMIENTO. EN ROJO SE OBSERVA
LA ZONA OESTE CON LOS SECTORES ANDESITA, PACÍFICO SUPERIOR Y DIABLO REGIMIENTO; ZONA
Norte con Recursos Norte, Reservas Norte, Andes Norte, Dacita y Pilar Norte; Zona
ESTE CON ESMERALDA Y DIAMANTE
FIGURA 1.6 CHANCADORES UTILIZADOS PARA REALIZAR LA PREPARACIÓN DEL ENSAYO DE SAG POWER
Index y obtener el parámetro de índice de chancado (CI)
FIGURA 1.7 MÁQUINA PARA REALIZAR EL TEST DE ABRASIÓN DE BOND. EN LA MANO DEL OPERADOR SE
ENCUENTRA LA PLACA DE UN ACERO QUE SIMULA EL RECUBRIMIENTO DE LOS CHANCADORES 25
FIGURA 1.8 DIAGRAMA DE FUNCIONAMIENTO DE LA METODOLOGÍA QEMSCAN ®
FIGURA 1.9 DIBUJO ESQUEMÁTICO DE LA CONFIGURACIÓN DE UN ENSAYO UNIAXIAL DE COMPRESIÓN
SIMPLE. SE OBSERVA GRACIAS A LAS FLECHAS QUE LOS ESFUERZO SON VERTICALES A LA DIRECCIÓN
DE LA PROBETA
Figura 1.10 Diagrama de la realización del ensayo de pulso ultrasónico para obtener el
PARÁMETRO DE MÓDULO DE YOUNG DINÁMICO29
FIGURA 2.1 MECANISMOS DE FRACTURA. SE OBSERVA QUE CADA MECANISMO PRODUCE UNA
DISTRIBUCIÓN GRANULOMÉTRICA CARACTERÍSTICA (OBTENIDO DE TORRES, 2017)33
FIGURA 2.2 SE OBSERVA QUE LA ZONA DE ATRICCIÓN SE DA EN EL CANTO DE LA PARTÍCULA, GENERANDO
DOS PRODUCTOS DE SIMILAR TAMAÑO Y VARIAS MÁS FINAS (OBTENIDO DE TAPIA 2010) 34
FIGURA 2.3 CHANCADOR DE MANDÍBULAS TIPO BLAKE. EL PUNTO A DENOTA LA ZONA DE ALIMENTACIÓN
Y EL P LA SALIDA DEL PRODUCTO (OBTENIDO DE TORRES, 2017)
Figura 2.4 Chancador giratorio. En A se encuentra la zona de alimentador y en B donde el
PRODUCTO SALE (OBTENIDO DE TORRES, 2017)
FIGURA 2.5 CHANCADORES DE CONO. A LA IZQUIERDA SE ENCUENTRA EL ESTÁNDAR QUE FUNCIONA APRA
LOS PROCESOS SECUNDARIOS, A LA DERECHA EL DE CABEZA CORTA PARA PROCESOS TERCIARIOS
(OBTENIDO DE TAPIA, 2010)37
FIGURA 2.6 DIAGRAMA DE FLUJO GENERALIZADO DEL TRANSPORTE Y PROCESAMIENTO DE MINERAL
REFERENCIAL EN DISTINTOS SECTORES PRODUCTIVOS EN EL AÑO 2011 (MEJÍAS, 2013) 39
FIGURA 2.7 A LA IZQUIERDA SE OBSERVA LA UBICACIÓN DE LOS CHANCADORES PRIMARIO-ROTATORIOS
EN EL NIVEL INTERMEDIO DE ACARREO. $f A$ LA DERECHA SE OBSERVA LAS PARTES QUE CONFORMAN
EL EQUIPO DE CHANCADO Y LAS ZONAS DE ALIMENTACIÓN (MEJÍAS, 2013)40
FIGURA 2.8 PROCESOS DE CHANCADO PLANTA SEWELL. SE PRESENTAN LOS PROCESOS PRIMARIOS,
SECUNDARIOS Y TERCIARIOS (MEJÍAS, 2013)41
FIGURA 2.9 PROCESOS DE LA PLANTA DE CHANCADO COLÓN. EN LA IMAGEN DEL MEDIO SE OBSERVA UNA
FOTOGRAFÍA EN PLANTA DEL SECTOR DE LOS PROCESOS. EN LA IMAGEN INFERIOR SE OBSERVA CÓMO
SE DISTRIBUYE EL MINERAL AL CHANCADO PRIMARIO, QUE LUEGO PASA POR LA TORRE DE

transferencia. En la superior se observan el chancado primario, secundario y
TERCIARIO CON SUS RESPECTIVOS HARNEROS
FIGURA 3.1 A: UBICACIÓN DE LA ZONA DE "FLAT SLAB" QUE SEPARA LA ZONA VOLCÁNICA CENTRAL DE
la Zona Volcánica Sur. Los triángulos indican la ubicación actual del frente
VOLCÁNICO ACTIVO Y LOS CÍRCULOS LA UBICACIÓN DE LOS GRANDES YACIMIENTOS DE PÓRFIDOS
de cobre de la franja del Mioceno Tardío y otros del Terciario Medio, ubicados al
NORTE DE CHILE. (EXTRAÍDOS DE HITSCHFELD, 2006). B: PERFILES TRANSVERSALES QUE
MUESTRAN LA EVOLUCIÓN TECTO-MAGMÁTICA DE LOS ANDES DE CHILE CENTRAL ENTRE EL MIOCENO
y el presente. Corresponde a la latitud de 34°S. (Extraído de Skewes y Stern, 1994).
46
FIGURA 3.2 MAPA GEOLÓGICO REGIONAL DE LA FRANJA CORDILLERANA DE CHILE CENTRAL.
(MODIFICADO DE CHARRIER ET AL., 1996; EXTRAÍDO DE HARRISON, 2010)47
Figura 3.3 Modelo de Riedel para una zona transcurrente sinestral de rumbo $N50^{\circ}W$
relacionada con la Zona de Falla Río Blanco-Codegua (Extraído de Rivera y Falcón,
2000)53
FIGURA 3.4 GEOLOGÍA SIMPLIFICADA EN EL NIVEL TENIENTE 6 DEL YACIMIENTO EL TENIENTE (DE LOS
SANTOS, 2011)
FIGURA 3.5 EN LA ZONA SUPERIOR DE LA IMAGEN SE OBSERVAN LAS IMÁGENES A NIVEL MACROSCÓPICO
DE LA ROCA Y EN EL INFERIOR LA TEXTURA A NIVEL MICRSOCÓPICO. A: DIABASA CON TEXTURA
PORFÍDICA Y FENOCRISTALES DE PLAGIOCLASA MAYORES A 2 MM DE LARGO.; B: GABRO CON
TEXTURA EQUIGRANULAR, CON CRISTALES DE PLAGIOCLASA DE 1 MM DE LARGO Y PIROXENOS EN
FORMA SUBORDINADA.; C: PÓRFIDO BASÁLTICO CON TEXTURA PORFÍDICA Y GLOMEROPORFÍDICA
CON FENOCRISTALES DE PLAGIOCLASA MAYORES A 2 MM DE LARGO (REFERENCIA INTERNA: SGL-I-
123/03) 57
FIGURA 3.6 ZONA DE FALLA EL TENIENTE (ZFT). LIMITA AL NORTE CON LA QUEBRADA TENIENTE, Y AL
sur con la falla Agua Amarga (Extraído de Valenzuela, 2002)
Figura 4.1 Litología y sectorización por tipo de mena interior mina (Obtenido de informe
INTERNO GRMD-SGL-INF-0041-2018)
FIGURA 4.2 SE OBSERVA EL GRÁFICO CON LOS PARÁMETROS DE COHESIÓN PARA ENSAYOS DE CORTE
DIRECTO REALIZADOS POR DISTINTOS TRABAJOS DENTRO DE LA DIVISIÓN (OBTENIDO DE INFORME
INTERNO GRMD-SGL-INF-0041-2018)
FIGURA 4.3 GRÁFICO Y TABLA CON LOS PARÁMETROS DE COHESIÓN PARA ENSAYOS DE TRACCIÓN
indirecta realizados por distintos trabajos dentro de la División El Teniente
(OBTENIDO DE INFORME INTERNO GRMD-SGL-INF-0041-2018)71

FIGURA 4.4 FRECUENCIA DE VETILLAS BLANDAS CATEGORIZADAS POR LAS ZONAS ELEGIDAS.	
OBSERVA QUE EXISTE UNA GRAN DIFERENCIA ENTRE LAS ZONACIONES, ENTREGANDO UN B	
INDICADOR PARA LAS DISTINTAS ZONAS (OBTENIDO DE INFORME INTERNO GRMD-SGL-I	
0041-2018)	
FIGURA 4.5 GRÁFICOS QUE REPRESENTAN LAS CURVAS GRANULOMÉTRICAS IN-SITU PARA LAS DISTIN	
UNIDADES GEOTÉCNICAS DEFINIDAS PARA EL MACIZO ROCOSO DE EL TENIENTE. TAMBIÉN	
INCLUYE LA CURVA GRANULOMÉTRICA PARA EL MATERIAL QUEBRADO (OBTENIDO DE INFO	
INTERNO GRMD-SGL-INF-0041-2018).	73
FIGURA 4.6 MODELO DE ZONACIÓN GEOTÉCNICA PARA EL YACIMIENTO EL TENIENTE AL NIVEL 22	210.
(OBTENIDO DE INFORME INTERNO GRMD-SGL-INF-0041-2018)	76
FIGURA 5.1 GRÁFICO CUANTIL TEÓRICO-CUANTIL REAL PARA EL PARÁMETRO DE CHANCADO LEIT	. SE
OBSERVAN LOS QUIEBRES MARCADOS POR LÍNEAS DE TONOS NARANJOS. ADEMÁS, SE OBSERVA	A LA
DISTRIBUCIÓN DE LOS RANGOS GENERADOS	81
FIGURA 5.2 DISTRIBUCIÓN DE LOS DATOS DE CHANCADO LEIT ALREDEDOR DEL YACIMIEN	ντο,
CONSIDERANDO TODAS LAS MUESTRAS. DR: DIABLO REGIMIENTO; PS: PACÍFICO SUPERI	IOR;
And: Andesita; RN: Recursos Norte; Da: Dacita; RENO: Reservas Norte; AN: An	IDES
Norte; PN: PILAR Norte; EM: ESMERALDA; DI: DIAMANTE	82
FIGURA 5.3 GRÁFICO CUANTIL TEÓRICO-CUANTIL REAL PARA EL PARÁMETRO DE ÍNDICE DE CHANC	ADO
(CI). SE OBSERVAN LOS QUIEBRES MARCADOS POR LÍNEAS DE TONOS GRISES. ADEMÁS,	, SE
OBSERVA LA DISTRIBUCIÓN DE LOS RANGOS GENERADOS	83
FIGURA 5.4 DISTRIBUCIÓN DE LAS MUESTRAS CON DATOS DE ÍNDICE DE CHANCADO (CI), EN BAS	SE A
LOS RANGOS OBTENIDOS EN LOS GRÁFICOS DE DISTRIBUCIÓN. DR: DIABLO REGIMIENTO;	PS:
Pacífico Superior; And: Andesita; RN: Recursos Norte; Da: Dacita; RENO: Reser	₹VAS
Norte; AN: Andes Norte; PN: Pilar Norte; EM: Esmeralda; DI: Diamante	84
FIGURA 5.5 GRÁFICO CUANTIL TEÓRICO-CUANTIL REAL PARA EL PARÁMETRO DE ÍNDICE DE ABRAS	SIÓN
(AI). SE OBSERVAN LOS QUIEBRES MARCADOS POR LÍNEAS DE TONOS GRISES. ADEMÁS,	, SE
OBSERVA LA DISTRIBUCIÓN DE LOS RANGOS GENERADOS.	85
FIGURA 5.6 DISTRIBUCIÓN DE LOS DATOS DEL ÍNDICE DE ABRASIÓN EN LOS SECTORES PRODUCTIV	/OS.
ESTÁN CATEGORIZADOS EN BASE A LOS RANGOS OBTENIDOS. DR: DIABLO REGIMIENTO;	PS:
Pacífico Superior; And: Andesita; RN: Recursos Norte; Da: Dacita; RENO: Reser	₹VAS
Norte; AN: Andes Norte; PN: Pilar Norte; EM: Esmeralda; DI: Diamante	86
FIGURA 5.7 GRÁFICOS QUE RELACIONAN CWI CON LAS UNIDADES LITOLÓGICAS PRESENTES EN	N LA
DIVISIÓN EL TENIENTE. LAS LÍNEAS PUNTEADAS INDICAN LOS DIFERENTES RANGOS DEFINI	DOS
ANTERIORMENTE. CÓDIGOS LITOLÓGICOS: COMPLEJO MÁFICO EL TENIENTE (CMET); BRECHA	A DE
ANHIDRITA (BXANH); PÓRFIDO DACÍTICO (PDA); TONALITA (TO); BRECHA ÍGNEA DE TONA	LITA

(BXITO); Brecha Ígnea de Pórfido Diorítico (BXIPDI). A: Zona Oeste; B: Zona Norte;
C: ZONA ESTE
FIGURA 5.8 RELACIÓN ENTRE LAS ZONAS GEOTÉCNICAS (FRECUENCIA DE VETILLAS BLANDAS) Y EL
ENSAYO DE CHANCADO LEIT. HACIA LA DERECHA AUMENTA LA FRECUENCIA DE VETILLAS BLANDAS.
SE OBSERVA QUE ENTRE LA ZONA 3 Y 4 EXISTE UN AUMENTO DEL CWI EN TODOS LOS SECTORES.
A: ZONA OESTE; B: ZONA NORTE; C: ZONA ESTE88
FIGURA 5.9 RELACIONES DE CHANCADO LEIT Y EL GRUPO DE LOS FILOSILICATOS Y MINERALES BLANDOS
definidos anteriormente para zonas Oeste y Norte. Se observa una mejor dispersión
para la zona Oeste que para el Norte. Cl: clorita; Bt: biotita; Mv/Ser:
Muscovita/Sericita; Cpy: calcopirita; Anh: anhidrita; Cb: carbonatos; Mo:
Molibdenita89
FIGURA 5.10 RESULTADOS PARA LA ALTERACIÓN TARDIMAGMÁTICA (TM) SOLO PARA LOS SECTORES
OESTE. SE OBSERVA UNA RELACIÓN PRINCIPALMENTE SOLO CON LA MINERALOGÍA PARA ESTA ZONA.
90
Figura $5.11~{ m Se}$ observan relaciones con la alteración HP para las zonas ${ m Oeste}$ (arriba) ${ m Y}$
Norte (abajo). Se observa una tendencia de los datos a aumentar su valor de Chancado
LEIT A MEDIDA QUE AUMENTAMOS EL PORCENTAJE DE CLORITA-MUSCOVITA/SERICITA EN LA
MUESTRA91
FIGURA 5.12 IMÁGENES MICROSCÓPICAS DE LAS MUESTRAS S1181 Y S1182 QUE POSEEN UN CWI
DENTRO DEL RANGO BAJO CON SUS RESPECTIVAS VETILLAS. SE OBSERVA LA MASA FUNDAMENTAL
BIOTITIZADA Y FENOCRISTALES DE PLAGIOCLASA
FIGURA 5.13 IMÁGENES MICROSCÓPICAS DE LAS MUESTRAS S1290 Y S1295 DONDE SE OBSERVA
NUEVAMENTE LA PRESENCIA DE BIOTITA EN LA MASA FUNDAMENTAL, PERO CON UN AUMENTO DE LA
PRESENCIA DE SERICITA TANTO EN LOS FENOCRISTALES COMO EN LAS VETILLAS
FIGURA 5.14 IMÁGENES MICROSCÓPICAS DE LAS MUESTRAS \$1402 Y \$1464 QUE REPRESENTAN A LOS
rangos más altos de Cwi, donde se observa una alteración pervasiva de clorita-
MUSCOVITA/SERICITA, DONDE YA NO ES RECONOCIBLE LA TEXTURA ORIGINAL DE LA ROCA94
FIGURA 5.15 FOTOGRAFÍA MICROSCÓPICAS DE MUESTRAS S1463, S1410 Y S1415 QUE REPRESENTAN
A LAS ROCAS DEL COMPLEJO FÉLSICO95
FIGURA 5.16 DISTRIBUCIÓN DE LOS DATOS DE MINERALOGÍA QEMSCAN PARA LA ASOCIACIÓN
CLORITA-MUSCOVITA/SERICITA. SE OBSERVA UNA GRAN REPRESENTATIVIDAD DE LA INFORMACIÓN.
95
FIGURA 5.17 DIAGRAMAS DE DISPERSIÓN PARA SECTORES OESTE Y NORTE CON SUS EJES
REPRESENTADOS EN LOGARITMO BASE DOS. SE OBSERVA ADEMÁS LOS AJUSTES DE SU NUBE DE
PUNTOS. A) PARA EL SECTOR OESTE Y B) PARA EL SECTOR NORTE96

FIGURA 5.18 DOMINIOS PARA CHANCADO LEIT GENERADOS EN BASE A LOS DATOS DE CLORITA-
MUSCOVITA/SERICITA DE LA ZONA OESTE98
FIGURA 5.19 DOMINIOS PARA CHANCADO LEIT GENERADOS EN BASE A LOS DATOS DE CLORITA-
MUSCOVITA/SERICITA DE LA ZONA NORTE
FIGURA 5.20 RELACIONES ENTRE UNIDADES LITOLÓGICAS Y EL PARÁMETRO DE ÍNDICE DE CHANCADO
Las líneas punteadas indican los rangos definidos anteriormente. Códigos
LITOLÓGICOS: COMPLEJO MÁFICO EL TENIENTE (CMET); BRECHA DE ANHIDRITA (BXANH);
Pórfido Dacítico (PDA); Tonalita (TO); Brecha Ígnea de Tonalita (BXITO); Brecha
Ígnea de Pórfido Diorítico (BXIPDI); Brecha Ígnea de Pórfido Basáltico. A: Zona
OESTE; B: ZONA NORTE; C: ZONA ESTE
FIGURA 5.21 RELACIÓN ENTRE EL ÍNDICE DE CHANCADO (CI) Y LAS ZONAS GEOTÉCNICAS (FRECUENCIA
DE VETILLAS BLANDAS AUMENTAN HACIA LA DERECHA.) A: ZONA OESTE; B: ZONA NORTE; C
ZONA ESTE
FIGURA 5.22 RELACIONES ENTRE LA ALTERACIÓN TM Y SU MINERALOGÍA QEMSCAN ASOCIADA, CON
EL ÍNDICE DE CHANCADO (CI)102
FIGURA 5.23 RELACIONES ENTRE LA ALTERACIÓN HP Y SU MINERALOGÍA QEMSCAN ASOCIADA, CON
EL ÍNDICE DE CHANCADO (CI)103
Figura 5.24 Definición de dominios en base al control de Zonas Geotécnicas sobre el
PARÁMETRO DE ÍNDICE DE CHANCADO (CI). SE DEFINE LA ZONA DE ALTA Y MODERADA 104
FIGURA 5.25 DOMINIOS EN EL ESPACIO DEL ÍNDICE DE CHANCADO (CI), DONDE SE IDENTIFICA QUE LA
ZONA MÁS ALTA (ROJO) SE DELIMITA EN BASE A LOS PÓRFIDOS QUE POSEEN MENOR CANTIDAD DE
FRECUENCIA DE VETILLAS, A DIFERENCIA DE LA ZONA MODERADA
FIGURA 5.26 RELACIÓN ENTRE ÍNDICE DE ABRASIÓN Y UNIDADES LITOLÓGICAS PARA TODOS LOS
SECTORES. CÓDIGOS LITOLÓGICOS: COMPLEJO MÁFICO EL TENIENTE (CMET); BRECHA DE
ANHIDRITA (BXANH); PÓRFIDO DACÍTICO (PDA); PÓRFIDO DIORÍTICO (PDI); TONALITA (TO);
Brecha Ígnea de Tonalita (BXITO); Brecha Ígnea de Pórfido Diorítico (BXIPDI);
Brecha Ígnea de Pórfido Basáltico106
FIGURA 5.27 RELACIÓN ENTRE UNIDADES LITOLÓGICAS Y EL ÍNDICE DE ABRASIÓN (IZQUIERDA). SE
OBSERVA QUE LOS MAYORES VALORES SE CONCENTRAN EN EL PÓRFIDO DACÍTICO. A LA DERECHA
SE ENCUENTRA EL ANÁLISIS ESPACIAL DE CADA ZONA PARA LAS MUESTRAS DE CI. CÓDIGOS
LITOLÓGICOS: COMPLEJO MÁFICO EL TENIENTE (CMET); BRECHA DE ANHIDRITA (BXANH);
Pórfido Dacítico (PDA)107
FIGURA 5.28 RELACIÓN ENTRE UNIDADES LITOLÓGICAS E ÍNDICE DE ABRASIÓN PARA EL SECTOR ESTE
SE OBSERVA QUE LOS PÓRFIDOS FÉLSICOS POSEEN VALORES MÁS ALTOS QUE LAS DEMÁS
LITOLOGÍAS. CÓDIGOS LITOLÓGICOS: COMPLEJO MÁFICO EL TENIENTE (CMET); BRECHA DE

Anhidrita (BXANH); Pórfido Diorítico (PDI); Tonalita (TO); Brecha Ígnea de Tonalita
(BXITO); Brecha Ígnea de Pórfido Diorítico (BXIPDI)
FIGURA 5.29 RELACIÓN CON LAS ZONAS GEOTÉCNICAS (AUMENTO DE LA FRECUENCIA DE VETILLAS
blandas hacia la derecha) con el índice de abrasión. Se dividieron por litologías
DEBIDO A QUE PRESENTAN DIFERENCIAS IMPORTANTES. CÓDIGOS LITOLÓGICOS: COMPLEJO
MÁFICO EL TENIENTE (CMET);); PÓRFIDO DACÍTICO (PDA); PÓRFIDO DIORÍTICO (PDI);
TONALITA (TO); A: ZONA OESTE; B: ZONA NORTE; C: ZONA ESTE
FIGURA 5.30 DIAGRAMA DE DISPERSIÓN PARA LA ASOCIACIÓN MINERALÓGICA EN QEMSCAN DEL
grupo de filosilicatos con el índice de abrasión (Ai). Se observan relaciones
PRINCIPALMENTE PARA EL SECTOR ESTE Y NORTE
FIGURA 5.31 RELACIÓN DEL ÍNDICE DE ABRASIÓN CON LOS DISTINTOS VOLÚMENES DE LA ALTERACIÓN
DE TIPO HP. ADEMÁS, SE COMPARA CON LA ASOCIACIÓN MINERALÓGICA OBTENIDA EN QEMSCAN,
PROPIA DE ESTE TIPO DE EVENTO
Figura 5.32 Volumen que define la chancabilidad de la roca para los sectores O este. And:
ANDESITA; PS: PACÍFICO SUPERIOR; DR: DIABLO REGIMIENTO
FIGURA 5.33 DOMINIOS COMBINADOS QUE DEFINEN LA CHANCABILIDAD EN BASE A LOS PARÁMETROS DE
CWI Y CI. SE OBSERVAN ZONAS CERCANAS A LA PIPA QUE ES DE MEJOR CALIDAD EL CHANCADO, EN
CAMBIO LAS ASOCIADAS A PÓRFIDOS FÉLSICOS POSEEN UNA MALA CALIDAD. RN: RECURSOS
Norte; Da: Dacita; RENO: Reservas Norte; AN: Andes Norte; PN: Pilar Norte 116
FIGURA 6.1 GRÁFICO QUE RELACIONA EL COMPORTAMIENTO DE CWI CON LA TEXTURA DE ALTERACIÓN
DE DISTINTAS MUESTRAS ESTUDIADAS EN MICROSCOPIO PARA LA UNIDAD LITOLÓGICA CMET 119
Figura 6.2 Gráfico que relaciona el comportamiento de Cwi con la textura de alteración
DE DISTINTAS MUESTRAS ESTUDIADAS EN MICROSCOPIO PARA UNIDADES DE PÓRFIDOS FÉLSICOS.
FIGURA 6.3 ATOLLO DEL CHANCADOR GIRATORIO DEL SECTOR PRODUCTIVO DACITA. SE OBSERVA EL
MATERIAL FINO COMPACTADO AL INTERIOR DE LA MÁQUINA, DONDE EL MATERIAL GRUESO SE QUEDA
ESTANCADO DEBIDO AL CUERPO DE COMPORTAMIENTO PLÁSTICO QUE SE GENERA DENTRO 122
FIGURA 9.1 RELACIONES ENTRE ENSAYOS UCS Y LAS ZONAS GEOTÉCNICAS. SE OBSERVAN EN GENERAL
ALTAS DISPERSIONES EN LOS DIAGRAMAS DE CAJA
FIGURA 9.2 RELACIONES ENTRE ENSAYOS UCS Y LAS ZONAS DE ALTERACIÓN DENTRO DEL YACIMIENTO.
SE OBSERVAN EN GENERAL ALTAS DISPERSIONES EN LOS DIAGRAMAS DE CAJA SIN UNA TENDENCIA
EN LAS DISTINTAS ZONAS
FIGURA 9.3 RELACIONES ENTRE ENSAYO DE MÓDULO DE YOUNG DINÁMICO Y LAS ZONAS GEOTÉCNICAS
DEL YACIMIENTO. SE OBSERVAN TENDENCIAS SIMILARES, PERO EN DISTINTOS RANGOS PARA CADA
ZONA

DE	ZONAS	LAS	Υ	NÁMICO	G I	Young	DE	Módulo	DE	ENSAYOS	ENTRE	RELACIONES	9.4	FIGURA
V A	ADA ZOI	ARA C	PA	DENCIAS	TE	RENTES	OIFE	BSERVAN	SE OF	MIENTO. S	EL YACI	N DENTRO D	ΓERAC	ALT
169										DATOS	EN LOS I	PERSIONES I	ΓAS DI	AL٦