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a b s t r a c t 

In the technician dispatching problem, a given number of repair teams must visit different locations to 

provide service support. Considering that there is a fixed vehicle capacity and variations in the demand, 

not all requests can be satisfied on time and therefore some of them must be delayed. Most implemen- 

tations of the dispatching problem consider a penalty that might vary depending on the customers to 

internalize that they have heterogeneous costs for being postponed. In this research we analyze how 

such variations in costs affect the outcome of service planning in the context of an efficient technician 

dispatching problem. We focus our analysis on two objectives: first, to understand how cost heterogene- 

ity affects the performance of optimal solutions, and second to illustrate how a firm could implement an 

ad-hoc methodology even in cases where only observable customers’ features can be traced. Specifically, 

we explore how the distribution of costs affects optimal solutions of allocating teams during a daily oper- 

ation of the service provider, and then we propose a Markovian model to capture cost-heterogeneity for 

the case where the cost of failure can be traced to observable operational characteristics. In this model we 

explicitly consider the cost faced by the customer by having inferior service quality. Our results indicate 

that when customers are sufficiently different, transportation and total penalty costs decrease gaining in 

operational efficiency. Moreover, results from the Markovian model indicate that firms can take advantage 

of these operational gains even in cases where only few customer characteristics are observed. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Many important operational problems require the allocation of

scarce resources to satisfy a myriad of customer requirements. In

many of such problems, the real costs or impact on customers as

a consequence of delaying service are not properly incorporated.

In the present research, our focus is on the characterization of the

heterogeneity in costs for different customers, taken as a case ex-

ample a technician dispatch problem formulated as a variant of a

Vehicle Routing Problem (VRP), and optimized in a previous work

for daily operations using an efficient exact column generation ap-

proach. In the present paper the objective is to model the hetero-

genicity in costs across customers, to explore how the differences

among them could lead to better options for optimization in tech-

nician assignments. This potential room for optimization should

be reflected in a more efficient routing implying a reduction in
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ransportation costs due to delaying service to customers with

ower costs. We then consider how the company may gain knowl-

dge of customer costs based on data that the firm usually has and

ow we could characterize solutions that optimize an objective

unction including simultaneously transportation costs and quality

f service based on the assessment of the real costs of each cus-

omer. The embedded VRP is solved as efficient as in Cortés, Gen-

reau, Rousseau, Souyris, & Weintraub (2014) , although the central

ocus of this paper is not the vehicle routing modelling. 

Thus, in the context of a VRP, a central planner assigns vehicles

nd defines routes to fulfill customer demands for services. In the

hort run, there is usually a fixed capacity of vehicles (with a tech-

ician in each vehicle) and therefore, if variability in the demand is

bserved, some of the requirements cannot be satisfied and must

e delayed. Literature on VRP has proposed different approaches

o address this shortage of capacity, including penalizations for ex-

eeding capacity ( Cortés et al., 2014 ) and explicitly accounting for

he costs of increasing transportation capacity ( Fagerholt, 1999 ). In

he context of VRP with time windows (VRPTW) where each cos-

umer must be visited within a predefined time lapse ( Baldacci,

artolini, Mingozzi, & Roberti, 2010 ), the central planner could
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onsider time windows as soft constraints to avoid unfeasibility

nder complex configurations. Time windows can be violated if the

irect costs of the violation can be compensated by a larger gain

n transportation costs ( Liberatore, Righini, & Salani, 2011 ). In these

pproaches, optimal solutions are obtained by carefully account-

ng for operational costs of the supplier. This typically includes the

ransportation costs and the costs for delays if time windows are

onsidered ( Kallehauge, Larsen, Madsen, & Solomon, 2005 ). How-

ver, the costs associated with the demand side is either neglected

r considered in an ad-hoc manner. For example, the model might

nclude linear constraints indicating that a large fraction of the de-

and must be satisfied ( Amiri & Salari, 2018 ). Alternatively, the

bjective function could consider some penalties for not satisfying

ome of the customers. Moreover, customers are typically consid-

red homogeneous in costs, and therefore the impact in the objec-

ive function for not satisfying the demand of one customer is the

ame regardless of the who the customer is. 

To understand the potential impact of cost heterogeneity, con-

ider for example the dispatching problem where technical teams

re sent to different locations to provide service support ( Hill,

992 ; Weigel & Cao, 1999 ). If customer heterogeneity were not

onsidered, dispatching solutions could leave unserved customers

ho are very cost sensitive, leading to Pareto-suboptimal solu-

ions. Thus, homogeneous policies lead to inefficient resource al-

ocations and they will damage customer equity in the long run

 Vogel, Evanschitzky, & Ramaseshan, 2008 ). Moreover, the identifi-

ation of customers with low costs of postponement can provide

ore flexibility to the problem generating better solutions. Even if

he demand for service corresponds to internal customers, in order

o achieve global optimality, the costs of the units that demand the

ervice must be balanced with the costs of providing it. Thus, re-

ardless of the nature of the relationship between customers and

he service provider, ignoring opportunity costs in the demand side

an lead to suboptimal decisions. 

In this research, we consider that customers are heterogeneous

n their costs due to delays in providing service, and therefore op-

imal solution should prioritize more sensitive customers. In prac-

ice, the penalty of not complying with a requirement does not

istribute homogeneously. Hence, we have characterized this value

onsidering this inherent heterogenicity in costs and we compare

ertain service metrics for a number of scenarios. In our analysis

e are interested in two main research objectives. First, to under-

tand how cost heterogeneity affects the performance of the optimal

olutions . This can give general guidance to operational planners to

ecide when it is worth to incorporate a detailed description of the

emand side in the model. The second objective is to illustrate how

 firm could implement an ad-hoc methodology if the customer costs

re not known by the firm, although it can be traced to observable

ustomers’ features . 

While the general idea applies to other settings, in this re-

earch we focus on the technician dispatching problem, where cus-

omers request repair services for their equipment. In this prob-

em, the service provider optimizes the technician routes based on

 weighted-sum cost function that considers transportation costs

nd the customer costs for being rescheduled to the next day. No-

ice that customer costs can not only be associated with the re-

uced output in the manufacturing process, but also with longer

aiting times to complete operational tasks. Thus, the difference

n costs can arise not only because customers can give different

se of the machines, but also because customers differ in the de-

ree they can substitute their equipment. 

To understand the impact of explicitly including cost hetero-

eneity in the demand side, we first provide a general character-

zation of how optimal solutions change depending on the nature

f the heterogeneity of customer costs. In this research we analyze

o which extend the optimal solution varies as a function of the
ariability in costs among customers and the relative importance

f customer costs with respect to those experienced by the firm.

or example, if there is little variation between customer costs, we

xpect little impact on the optimal solutions. However, as the dif-

erence in costs between customers grows, it is possible that more

ustomers remain unattended. This is because the model would

rioritize more expensive customer sacrificing efficiency in the de-

ign of traveling routes. Characterizing these solutions is important

ot only to understand the trade-offs between transportation costs

o the firm and customer costs due to delays, but also to provide

ome guidance about the conditions that make more necessary to

ccount for variations of the costs in the demand side. 

After characterizing how the optimal solutions vary with differ-

nt distributions of customer costs, we propose a simple Marko-

ian model to capture cost-heterogeneity in the case where the

osts of failure can be traced to observable operational characteris-

ics. This model is well suited for our real-sized problem where

achines to be repaired are homogenous in their use and the

umber of available equipment per customer is observable. In this

ase, we can derive a closed form expression for the waiting time

hat we can balance against the working time of the technicians. 

Our results indicate that when customers are sufficiently dif-

erent, the number of requirements served can be reduced. How-

ver, considering that unserved customers are precisely those with

ower opportunity costs, the general impact is a sizable costs re-

uction derived from a gain in flexibility that positively impacts

he design of optimal routes. In addition, through a Markovian

odel to characterize customers´costs, our results show the impact

o each customer depending on the machines they have available

ogether with their machines’ utilization rates. 

The remaining of the paper is organized as follows. In

ection 2 we review the related literature. In Section 3 we describe

ur modeling approach to describe the dispatching problem. In

ection 4 we describe how we propose to evaluate the impact of

eterogeneity in costs of delay. At the end of the same section we

resent the Markovian model proposed to represent customers’

osts. In section 5 we present numerical results and we conclude

ith a general discussion of the main findings in Section 6. 

. Literature review 

This research stands in the intersection of two main streams of

iterature. To be more specific, we consider the well-known mar-

eting concept of customer heterogeneity, which is applied in the

ontext of the technician dispatching problem where customers

ight have different costs for not being served on time. Thus, we

rst describe the literature on customer heterogeneity and its rela-

ion to operational services; finally, we discuss how customer costs

tructures have been approached in the dispatching and other re-

ated problems. 

Customer heterogeneity has been for decades in the center of

arketing plans (Wind, 1978). In essence, when firms recognize

hat customers have different requirements and preferences, they

an design more specialized services that result in more profitable

trategies ( Stringfellow, Nie, & Bowen, 2004 ). Marketing literature

as also described the benefits of evaluating and acting upon cus-

omer profitability in complex supply chain settings ( Niraj, Gupta

nd Narasimhan, 2001 ). Moreover, it has been shown that priori-

ization of customer service can pay off ( Homburg, Droll & Totzek,

008 ). In the context of service planning, the concept of customer

eterogeneity translates into the provision of different service lev-

ls for customers depending on their requirements. Literature on

perations management is certainly aware that the nature of the

ustomer matters when deciding how to allocate resources. For ex-

mple, Güne ̧s & Ak ̧s in (2004) propose a theoretical model where a

erver provider must distinguish between customers of high and
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low values. Similarly, Chen (2001) considers the case where a firm

faces several segments of customers with different degrees of aver-

sion in a supply chain setting. Research on queuing systems is

especially prolific on describing how different prioritization poli-

cies could affect overall performance (for instance, see Pangburn &

Stavrulaki, 2008 and Afeche & Pavlin, 2016 ). In general, this stream

of literature provides interesting insights characterizing the equi-

librium outcome, although unlike our research, they propose only

analytical solutions to simple problems with no explicit connection

to operational programs. In the present article we consider het-

erogenous customers within a detailed dispatching model that can

be used to support actual decision making. 

Previous literature has provided operational guidelines when

customers are different in a number of contexts. In the context of

capacity allocation, Hu, Li, Byon & Lawrence (2015) analyze a se-

ries of properties of dynamic prioritization policies. Similarly, Zhao,

Xu, Li, & Liu (2016) determine optimal assignments to maximize

the long-run throughput considering prioritized customer orders.

Closer to our work, Jayamohan & Rajendran (2004) and Tay & Ho

(2008) study a series of rules to prioritize jobs associated with

more valuable customers. While these rules can be useful in prac-

tice, they are meant to work on average, and they are not embed-

ded in a detailed math programming model that consider capaci-

ties and sequences as we do in our analyses. 

In our research we deal with the technician dispatching prob-

lem, which can be considered a variant of the capacitated vehi-

cle routing problem (CVRP). Several aspects of this problem have

been widely studied before. There is an extensive literature ad-

dressing the problem with resource constraints, such as time win-

dows, through exact methods based on column generation and

some of the most sophisticated on branch-and-cut-and-price algo-

rithms ( Baldacci et al., 2010 ; Baldacci, Mingozzi, & Roberti, 2012 ;

Cordeau, Gendreau, Laporte, Potvin & Semet, 2002 ; Kallehauge,

2008 ), as well as heuristic and metaheuristic approaches con-

structed mostly for real size problems ( Vidal, Crainic, Gendreau &

Prins, 2013 ; Gendreau, Potvin, Bräumlaysy, Hasle & Løkketangen,

2008 ; Golden, Raghavan & Wasil, 2008 ; Gendreau, Laporte &

Potvin, 2002 ). To avoid unfeasibility, some authors consider soft

time windows as resources ( Cortés et al., 2014 ; Liberatore et al.,

2011 ). 

A special case of CVRP is the heterogenous CVRP, where vehi-

cle fleet is characterized by different capacities and costs ( Baldacci,

Toth & Vigo, 2009 ). In our research, instead of analyzing hetero-

geneity on the supply side we analyze how a differentiation in

costs from the demand side can have relevant impact on the op-

timal solution. In this regard, we focus on approaches where mul-

tiple objectives are considered in a weighted-sum objective func-

tion to solve vehicle routing problems (for a review, see Jozefowiez,

Semet & Talbi, 2008 ). Here, the basic idea consists of adding objec-

tives to the traditional cost minimization in order to improve cus-

tomer satisfaction regarding delivery dates ( Sessomboon, Watan-

abe, Irohara & Yoshimoto, 1998 ). In these approaches, the goal is

finding good solutions that balance operational costs with well-

defined service levels. In our case, we are interested in character-

izing how different levels of heterogeneity in the actual cost due

to delays for the customers impact optimal solutions generated by

the firm. Moreover, we move one step forward by providing a sim-

ply approach to deal with that heterogeneity for the technician

dispatching problem. With regard to vehicle routing schemes for

technician dispatch problems, we can mention Blakeley, Argüello,

Cao, Hall & Knolmajer, (2003) and Weigel & Cao (1999) who im-

plemented technician dispatch systems for large companies using

heuristics and GIS data. Other studies of service technician routing

and scheduling are Cordeau, Laporte, Pasin & Ropke (2010) , Xu &

Chiu (2001) and Tang, Miller-Hooks, & Tomastik (2007) , who im-

plemented a tabu search heuristic for a maintenance dispatching
ystem, formulated as a Multiple Tour Maximum Collection Prob-

em with Time-Dependent rewards. 

The problem we consider in this research is similar to that used

y Cortés et al. (2014) , who developed a daily dispatch of tech-

icians formulated as a VRP with soft time windows, where the

ost had three components: travel costs, a soft time window vi-

lation and a penalty for postponing customers to the next day.

he penalty considered there is fixed, regardless of the features

f the customer who is postponed, and therefore, the impact in

he routing due to cost heterogeneity among customers is ignored.

owever, in that work the actual time of attention can affect the

osts associated with a delay during the same day. In our research,

or practical purposes we simplify that cost structure by leaving

he soft time window constraint wide open only capturing the cost

hat customers face for been delayed to the next day. In synthesis,

he present formulation has similarities with Cortés et al. (2014) in

erms of the problem to be addressed and the general conditions

f the technician dispatching model. However, in addition of hav-

ng completely different research objectives, in the current version

e are modelling a much longer horizon than only a day of op-

ration, considering fixed capacity and variable penalties for being

ostponed, which are based on the heterogeneity cost models pre-

ented in section 4 . In addition, Cortés et al. (2014) used a branch

nd price scheme to solve the problem. They show that for this

articular application, the branch and price approach did not lead

o significantly better solutions that just generating columns at the

oot node, and that is why in the model presented in section 3 we

nly generated solutions at the root node. This simplification noto-

iously reduces the computational work, which is fundamental for

esting many scenarios and replications to discover the behavior

f the optimization when customers are different in terms of cost

eterogeneity. 

To summarize, the present paper contributes to the literature

y exploring how firms can benefit from this idea in the context of

he dispatching problem, and then we provide a simple approach

o endogenize customer cost heterogeneity using commonly avail-

ble information such as the utilization rates and number of ma-

hines. 

. The technician dispatching model 

In this section we describe the formal model we use for the

echnician dispatching problem. Let us assume a set of requests

sking for repair services of office machines in a geographically

ispersed area. The service is provided by a set of technicians

orking on the area, under a 24-hours-in advance service proto-

ol. 

The daily dispatching model we consider in this research is

 Vehicle Routing Problem with Soft Time Windows (VRPSTW),

n which the cost in the objective function has three compo-

ents: travel costs, a wide-open soft time window violation and

 customer-dependent penalty for postponing the attention to the

ext day. Thus, we consider a simple costs structure associated

ith the whole day of delay and we only study heterogeneity in

he costs that customers experience due to postponing their atten-

ion to the next day. Although this is a simplifying assumption, it

as no major impact on the main tradeoffs of the problem. The

odel can be extended to incorporate a cost structure that in-

reases continuously with the delays, but it would make the de-

omposition computationally much more challenging. Moreover, in

he model there is a hard constraint setting the maximum length

f the working day of each technician, which means that not all

he demand is necessarily attended during the requested day. 

The context behind the modelling ideas requires to run simu-

ations for multiple consecutive days. We consider optimizing the

chedule for a full week where the capacity does not change from
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ne day to another. At the beginning of each day, the scheduler

f the firm knows the demands left from the previous day plus

he demands that need to be covered during the current day. The

odel is inspired in a real problem based on data from a major

ompany offering repair services of office machines in Santiago,

hile. For the daily dispatching model, the set of service requests

ssigned during a given day come from the previous days, usually

he day before, since the company attempts to enforce a 24-hour

ervice policy. In the present model, the dispatcher selects which

equests should be handled during the day, regardless of the time

f attention during that day. Thus, those customers who are not

erved in a given day must be visited the next day. 

Considering that most VRPSTW are quite difficult to solve us-

ng traditional network flow models ( Taillard, Badeau, Gendreau,

uertin & Potvin, 1997 ), in this research, we formulate the prob-

em through a column generation (CG) approach. In this work we

ecided to add columns only at the root node to make the model

omputationally easier to solve and the conclusions of this article

re consistent and valid even tough in theory we do not reach op-

imality in some of the instances. 

In general, column generation approaches have been very suc-

essful in solving various types of VRPs. CG approaches allow split-

ing the problem into two parts: the master problem to select the

outes with the minimum total cost from a pool of feasible routes;

nd the sub-problems, which generate feasible routes that could

otentially reduce the total costs. To solve the sub-problems, in

his work we use Constraint Programming (CP), which has already

een used successfully for a similar formulation of this problem

e studied in Cortés et al. (2014) . 

.1. Master problem 

The master problem of the proposed VRPTW can be formulated

s a set partitioning model assuming that it is possible to choose

mong different service routes for each technician available in an

xisting set of routes R . Let K = { 1 , . . . , K } be the set of available

echnicians. Technicians must start the day at a location of a high

riority request (in the set of those customers postponed from the

ay before) or at the depot. Let I 1 = { 1 , . . . , K } be the set of these

ocations. Then, each route r ∈ R is characterized by a technician

ho starts a path at a specific location i 1 ∈ I 1 , and then continues

o visit a sequence of locations { i 2 , .., i e } ∈ I 2 . Here I 2 is the set of

ll customers to be served during a specific day, not included in I 1 .

ach route, therefore, is described by the set r ∈ {2, ..., e } where

 is the last service request of a path. Therefore, the mathematical

tatement of the master problem is formulated as: 

(M.P.) 

in 

∑ 

r∈ R 
c r θr + 

∑ 

i ∈ I 1 U I 2 
p i v i (1) 

.t. 
 

r∈ R 
a ir θr + v i = 1 i ∈ I 1 U I 2 (2)

 

r∈ R 
θr ≤ V (3) 

r ∈ { 0 , 1 } r ∈ R (4) 

 i ∈ { 0 , 1 } i ∈ I 1 U I 2 (5) 

This mathematical formulation considers two set of binary vari-

bles: θr that indicates whether the route r ∈ R should be chosen

r not, and variables v i that are equal to one if customer i is not

ncluded in any of the chosen routes. The objective function is the
um of the costs of selecting a route c r and the costs for postpon-

ng a customer to the following day p i . In constraint ( 2 ) the binary

arameter a ir indicates if customer i belongs to route r, so this en-

ures that all customers are either in a selected route or moved

o the next day. In constraint ( 3 ) the total number of routes that

an be selected is limited by V the number of technicians. This for-

ulation guarantees that there is always a feasible solution to the

roblem regardless of the definition of the set R . 

.2. Sub-Problems 

The objective of the CG sub-problem is to produce new columns

routes) for the master problem, considering that if a column r not

reviously included in R , has a negative reduced cost, it can po-

entially improve the solution of the master problem. The reduced

osts of a column is defined as the costs of the route c r , minus

he sum of the master problem dual variables πs [ l] associated with

onstraint ( 1 ) and φ associated with constraint ( 2 ). The cost of the

ew route is the sum of the travel time cost and the violation of

he time windows. 

Let L be the maximum possible length of a route and s [ l ], l = 1

L an array of variables that represents a route, where the l th el-

ment of s [ l ] is the client in the position l . The first positions of

ll new routes must be a customer from set I 1 (below we explain

mplementation details and starting routes), from which the tech-

ician continues the route to either another customer from set I 2 
r a fictional customer from the set I 3 . These fictitious customers

re added for CP modelling purposes and ensures that all routes

re of length L . The maximum number of fictitious nodes that can

e included in a route is L − 2 , therefore the set of fictitious nodes

s defined as I 3 = { C + 1 , ..., C + L − 2 } , where C is the cardinality

f set I 1 U I 2 . Additionally, we define the variables w , d and t for

he service start time at the l th client, the violation of the time

indow and the travel time between two clients respectively. The

ub-problem used for the generation of feasible routes is presented

elow. 

(S.P.) 

in β
L ∑ 

l=1 

d [ l ] + ( 1 − β) 

L ∑ 

l=1 

t s [ l−1 ] ,s [ l ] −
L ∑ 

l=1 

πs [ l ] − φ (6) 

.t. 

 [ 1 ] = 0 (7) 

 [ l ] = w [ l − 1 ] + u s [ t−1 ] + t s [ l−1 ] ,s [ l ] l = 2 , . . . , L (8)

 [ l ] = max ( 0 , w [ l ] − b ) l = 1 , . . . , L (9)

lldifferent ( s ) (10) 

 [ l ] ∈ I 1 l = 1 (11)

 [ l ] ∈ I 2 l = 2 (12)

 [ l ] ∈ I 2 ∪ I 3 l = 3 , . . . , L (13)

 [ l ] = i, i ∈ I 3 ⇒ s [ l + 1 ] = i + 1 l = 3 , . . . , L (14)

 [ l ] > f irst ( I 3 ) ⇒ s [ l − 1 ] = s [ l ] − 1 l = 3 , . . . , L (15)

 [ l ] ≤ f irst ( I 3 ) ⇒ s [ l − 1 ] ≤ f irst ( I 3 ) l = 3 , . . . , L (16)

The objective function in ( 6 ) searches for the column (route)

ith minimum reduced costs, with four terms; the first two ac-

ount for the real costs of the route (delay and travel time) while
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the last two terms are the dual variables, associated with con-

straints ( 2 ) and ( 3 ) of the master problem, respectively. Constraints

( 7 ) and ( 8 ) compute the starting time of the service at the l th cus-

tomer in the route, where u s [ t−1 ] is the required service time in

the previous node. In ( 9 ) we define the violation of the time win-

dows, which in this case is the same for all customers. Constraints

( 10 ) to ( 14 ) build the routes, forcing the first two nodes to be cus-

tomers, and once the route reaches a fictitious node it can only go

to another fictitious node until the end of the route. Constraints

( 15 ) and ( 16 ) are redundant constraints that greatly improve the

CP resolution. 

3.3. Implementation 

In order to solve this particular set of experiments, As men-

tioned above, for the sake of simplicity, we do not consider time

windows within the day, but only postponements to the next

day. Also, we added a hard constraint in the number of techni-

cians in the MP and the corresponding dual variable in the SP. As

we pointed out before, to solve this problem we only generated

columns at the root node, avoiding the use of a branch-and-price

algorithm. 

The master problem considers a penalty p i that represent the

cost that customer i experiences for not been served during the

day. A key idea of this research is that an estimation of this penalty

based on customers’ internal costs can lead to different solutions.

This is not only because it would allow prioritizing the provision of

service for customers with higher costs, but also because it could

provide better operational flexibility. We expect the impact in the

solution to be dependent on several key parameters on the cus-

tomer costs, and therefore we analyze several scenarios in which

we vary the relative importance of customers’ costs and degree of

heterogeneity among them. 

4. Treatment of cost heterogeneity in optimal dispatching 

In this section we describe how the vehicle routing model de-

scribed in Section 3 is combined with different ways to model cost

heterogeneity. 

As we highlighted in the introduction, we consider that the

penalty of not complying with a requirement does not distribute

homogeneously among customers. Our premise is that costs are

different across customers, focusing our analysis on comparing ser-

vice metrics for various scenarios. As introduced before, our anal-

ysis will pursue two main research objectives. First, to understand

how cost heterogeneity affects the performance of the optimal solu-

tions . To do so, we assume that customer costs p i is known by the

firm, and we run different scenarios considering the distribution

of those costs among customers. We use those scenarios to evalu-

ate variations in the total costs and other relevant operational per-

formance metrics. The second objective is to illustrate how a firm

could implement our proposal if the customer costs are not known by

the firm, but can be traced to observable characteristics of the cus-

tomers . More specifically, we describe the case of a service repair-

ing homogeneous machines where both, the total number of avail-

able equipment and the utilization rate are observable at the cus-

tomer level. Here, the total costs of customers waiting for service

can be approximated through a closed form equation derived from

an Erlang-C type of models. Next, we revise how we address these

two research objectives. 

4.1. Modeling the cost heterogeneity through penalties in the 

objective function 

We start by assuming that the firm knows the magnitude of the

penalties associated with not satisfying the requests during the day
nd we analyze how different distributions of those penalties af-

ect the performance of the solutions. For example, the firm might

ave negotiated individually with each customer and determined a

enalty that closely matches customer costs. In this research, we

re interested in evaluating whether the mean magnitude and the

ariability of those costs affect optimal solutions. We build our sce-

arios based on a log-normal distribution for the penalties p i , as-

uming that log ( p i ) is normally distributed. The Normal distribu-

ion is a frequent choice to characterize randomness (Steward &

olden, 1982; Abdelaziz, Aouni & El Fayedh, 2007 ) as well as a dis-

ribution easy to be interpreted. The logarithm is justified because,

y definition, delay penalties are positive. Thus, a given scenario

s determined by a pair ( m , s ) corresponding to the mean and vari-

nce of the underlying normal distribution. To build the associated

nstance of the dispatching problem, we sample the values of p i 
ccording to that normal distribution. To guarantee that changes in

he optimal solutions are only explained by variations in mean and

ariance of the postponement costs, in our sampling procedure we

eep the ordering in costs. This is to say, if the cost of a customer

 are larger than the costs of a customer b in one instance, these

elationships will hold for all scenarios. In the numerical evalua-

ions we consider a total of twenty-one scenarios generated from

hree values for the mean m and seven values for the variance s for

ach value of m . The values of the means were selected to repre-

ent a wide range of reasonable scenarios of customer’s costs. More

pecifically we consider three values of m : m Low 

, m Medium 

and m High .

he value of m Medium 

is calibrated to be comparable with the cur-

ent costs of a one day of delay. The values of m Low 

and m High are

erived by simply increasing and decreasing the values of m Medium 

y 50%. 

The values of the variances were also selected to represent a

ide spectrum of values ranging from scenarios with almost no

ariation to scenarios where the maximum penalty is twenty-five

imes the minimum value. In these twenty-one scenarios we con-

ider that the penalties are independent of the complexity of the

epair tasks. For a detailed description of the numerical values we

onsidered for means and variances, see Appendix. Fig. 1 shows

xamples of the distribution of penalties we used to represent cus-

omer costs for scenarios with relatively small and relatively large

alues of the variance s . 

.2. A Markovian model to characterize customer costs 

Oftentimes, firms do not have precise information of customer

osts and they must approximate such costs based on observable

haracteristics. This is for example the case of internal customers

here no explicit contracts are available to characterize the terms

f the service. In this section we propose a simple model to esti-

ate the costs for not providing the service on the requested day.

e believe that this approach is suitable for the case of a service

epairing homogeneous machines where both, the total number of

vailable equipment and the utilization rate, are observable by the

rm at the customer level. Here, the total costs of client waiting for

he service can be approximated through a closed form equation,

here we rely on queuing theory that has been extensively used

n other domains such as health care ( Lakshmi and Iyer, 2013 ) and

elecommunications ( Giambene, 2005 ). 

Our main objective of this exercise is to use specific customer

nformation, which the firm should have, to approximate a penalty

epresenting customer costs of being delayed. For that purpose,

e assume that each customer i has n i machines and each one

f them processes its jobs in an exponentially distributed ser-

ice time of mean 1 /μ. The processing time of each server is an

perational feature of a printer machine. In our empirical appli-

ation this time exhibits little variation between printer models,

nd therefore we assume that this time is homogeneous. We also
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Fig. 1. Distribution of Penalties among customers. Left panel (a) displays the distribution with small variance. Right panel (b) displays the distribution with large variance. 
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ssume the workload is given by a Poisson arrival process with rate

i . Under these assumptions, the internal use of the machines can

e described as bird-death process characterized by a utilization

ate ρi = λi / ( n i · μ) that represents the average fraction of time

hat each machine is being used. 

When a machine is broken and requires to be repaired, the sys-

em reduces its capacity from n i to n i − 1 servers. These reductions

ranslate into longer waiting times that can be translated into a

onetary cost. Formally speaking, under the assumptions we de-

cribe above, the mean time in the system of customer i ( W s i ) has

 closed form expression given by equation (17) 

 s i = 

C ( n i , ρi ) 

n i μ − λi 

+ 

1 

μ
(17) 

In this expression, C( n i , ρi ) corresponds to the probability that

n incoming job must wait because the servers are busy. This

robability also has a closed form solution as shown in Equation

18) ( Tackacs, 1969 ; Harel, 1988 ). 

 ( n i , ρi ) = 

1 

1 + ( 1 − ρi ) 

(
n i ! 

( n i ρi ) 
n i 

)∑ n −1 
k =0 

( n i ρi ) 
k 

k ! 

(18) 

To derive the monetary value of not being served, we assume

hat such costs are proportional to the additional time in the sys-

em given by the difference between W s i ( n i − 1 ) − W s i ( n i ) . Notice

hat this value depends on the number of machines and the uti-

ization rate, information that is readily available in many real

ases. In our application, the number of machines is directly ob-

ervable because firm’s maintenance databases register not only

he number of machines, but also the specific model and tenure of

ach machine. While these results are fairly standard from queuing

heory, we consider them useful to provide some intuition about

ow they translate to our specific setting. Fig. 2 illustrates how the

mpact of total time in the system is affected by the two observ-

ble variables (utilization and number of servers). 

In both panels of Fig. 2 , we show how the waiting times are

ffected when one machine is not available. In the left panel we

isplay the variation in waiting times as a function of number of

ervers, while in the right panel we display such a variation as a

unction of utilization rates. When the firm has a large number of
ervers, the waiting times are not very sensitive to the failure of

 single machine, but the impact is large when the firm only has

ew machines to compensate for the unavailability of one of them.

imilarly, the waiting times are fairly robust if the utilization rates

re mild, but they become very sensitive to the availability of ma-

hines when the utilization rate is high. Thus, using our proposed

arkovian model, the dispatching problem should prioritize cus-

omer with either fewer machines or larger utilization rates. 

. Results 

For the numerical analyses, in all instances we use the same

et of customers demanding repair services over one week of op-

ration. To reduce the computational time in the GC search, we de-

ned a large set of starting columns. To characterize the effect of

ncluding cost heterogeneity in the dispatching problem, we per-

ormed a collection of computational exercises where we charac-

erize how the optimal solutions change when customer costs are

ncorporated. In these exercises, we use data of real requirements

or a company serving customers located in the city of Santiago,

hile. The total number of requests received everyday shows im-

ortant variation and weekly seasonality as shown in Fig. 3 (a). On

verage, the firm receives 194.63 repair request/day. Monday is the

ay of the week with highest demand, while Friday has the lowest

emand. While demand includes several geographical zones, in our

mpirical application we only consider a subset covering nearly a

alf of those requests. For the whole dataset, repair tasks also dif-

er in their complexity and some of them take longer than others,

anging from 7 to 435 minutes to be completed as is illustrated in

he histogram of Fig. 3 (b). In our empirical setting, there is a fleet

f 20 vehicles (technicians) that should be used to satisfy all the

eekly demand. We note that this is the situation where techni-

ians are regular employees of the firm. We evaluated other ca-

acity profiles and the results remain qualitatively unaltered. For

xample, if we move 5 capacity units from Friday to Monday, so

hat we have 25 vehicles available on Monday and only 15 on Fri-

ay, the fraction of postponed customers drops from 8 to 5%. In

his scenario the firm still has to decide which clients to postpone

nd therefore the methodology we propose here is still useful. 
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Fig. 2. Illustration of time in the system for representative values of number of servers and utilization rates (a) W s and difference in W s for different values of number of 

servers (the utilization rate is kept fixed at ρ= 0.5). (b) W s and difference in W s for different values of the utilization rate (the number of servers is kept fixed at n = 5). 

Fig. 3. Daily Demand (a) and Distribution of service times (b). 

Table 1 

Instance Demand by Weekday and Sector. 

Location Monday Tuesday Wednesday Thursday Friday 

Sector 1 5 7 2 2 1 

Sector 2 14 14 8 10 11 

Sector 3 20 19 22 19 19 

Sector 4 57 48 46 36 28 

Sector 5 4 2 2 3 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Instance Average Service Time [min] by Weekday and Sector. 

Location Monday Tuesday Wednesday Thursday Friday 

Sector 1 188.00 76.43 45.00 60.00 150.00 

Sector 2 98.21 78.64 108.75 85.50 92.18 

Sector 3 90.50 106.58 66.36 81.63 66.63 

Sector 4 99.16 96.17 86.09 116.14 85.36 

Sector 5 53.75 95.00 57.50 150.00 10.00 
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The instances we use in our numerical evaluations correspond

to a full labor week (Monday to Friday). Within each instance, we

determine which customer is going to be served everyday by solv-

ing the vehicle routing model previously described in section 3 . If

the request of a given customer is not satisfied during the day, the

corresponding demand is delayed to the next day when it must be

served with the highest priority. All these instances are built using

the same customer demand derived from a representative week.

Tables 1 and 2 display the number of requests per day and the

corresponding average service times for that representative week.

In this table, we decompose the demand by sector representing ge-

ographically clustered customers. 

The main operating costs of the dispatching firm are associated

with the remuneration of personnel and the maintenance of the

necessary assets to provide technical assistance. For the compu-

tational exercise we have considered two operational costs: the
ravel costs equal to USD 5.07 per hour and the overtime costs

qual to USD 7.38 per hour. 

.1. Evaluation of heterogeneity of penalty costs 

In our first experiment we assume that there is a probability

istribution that characterizes the penalty associated with delaying

 request that is known by the service provider. We evaluate the

mpact of cost heterogeneity using some key performance indices.

e start by looking at the fraction of customers who are delayed

o the next day as shown in Fig. 4 . In this figure, the scenarios

enoted by p05, p10, p15, p20, p50 and p100 are differentiated by

he distribution of the costs of delay; the larger the number tagged

n this notation, the higher the variability assumed for the costs

f delay in the population of customers. We observe that regard-

ess of how large the penalties are, more variation in their values
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Fig. 4. Percentage of customers who are not served in the requested day (1-week). 

Each line corresponds to a given value for the mean of the distribution. 
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r

s associated with a larger proportion of delayed customers. The

ntuition is straightforward: if customers are more diverse in the

osts they assign for not being served during the same day, then

he firm is going to find more customers who are not sensitive to

hese delays, and therefore they are going to be postponed to favor

ransportation efficiency. From the figure, we also observe that the

ffect appears to be more pronounced for relatively low values of

he penalty. The intuition behind these results is clear: when the

osts are high, even for customers at the bottom of the distribu-

ion, the cost of delay is large enough to discourage the firm to

ostpone their service and pay the corresponding costs. 

Knowing that more variation in costs is associated with more

ustomers being delayed, we complement our previous analysis by

nalyzing the delay costs of those customers who were delayed

ompared against those who did not. Boxplots of Fig. 5 compares

he delay costs of satisfied (S) against non-satisfied customers

N). The boxplots show that the routing algorithm systematically

hooses to serve customers with higher penalties and delays those

ustomers with lower penalties. While this difference is marginal

or the scenarios of low penalty costs, the difference gets more

ronounced when the costs becomes larger. In fact, when the

enalties are large on average, it is more expensive for the firm

o delay customers, and therefore, they are postponed only in

hose few cases where the costs are affordable. In the figure we

nly display the case for a relatively high variability scenario, but
ig. 5. Boxplots comparing the difference in the penalty cost [USD] between satisfied 

elatively high variance. (a) low penalty mean, (b) medium penalty mean and (c) large pe
ualitatively speaking, these patterns are consistent regardless of

he degree of variability associated with the penalties. 

We now turn our attention to the components of the objective

unction to evaluate whether these qualitative changes in the so-

ution translate into operational efficiencies. Recall that in the ob-

ective function of the master problem we have two main costs

omponents: the transportation costs (driven by c i parameters) and

he penalty costs associated with order delays (driven by p i pa-

ameters). We first analyze the transportation costs as illustrated

n Fig. 6 (a). As we already explained, more variability is associated

ith larger flexibility to postpone some of the requests, which has

 direct impact on transportation costs. If some customers can be

elayed at a low cost, the firm can benefit by designing more ef-

cient routes. Thus, as the variation increases, transportation costs

re reduced. This pattern is consistent for all mean values of the

istribution. 

Fig. 6 (b) shows how the other component of the costs is af-

ected by larger variation in the penalties. Considering the previous

esults showing that more variation implies a larger proportion of

ustomers being delayed, we expected that total costs associated

ith the delays are going to be increasing with the variability. Sur-

risingly, this is not the case, and the costs that the firm must in-

ur to compensate these delays tends to decrease with more varia-

ion in the values of the penalties. The intuition behind this result

s as follows: the instances we considered exhibit important daily

ariation in the demand and there are some days where the entire

et of requests cannot be satisfied with the installed capacity. This

s especially true on Mondays where the additional demand gener-

ted over the weekend must be satisfied. In these days, the firm

s forced to delay some customers. Recognizing the variation in

he penalties allows the firm to select those customers with lower

osts. 

Overall, these results provide clear evidence that a detailed as-

essment of customer costs can have a relevant impact in how the

rm allocates resources. Furthermore, those changes directly trans-

ate into a meaningful reduction of total costs. 

.2. A markovian model for determining customer’s costs 

In this subsection we show the results of estimating customer’s

osts using the Markovian model described in Section 4.2 . This

odel uses specific customers’ information, such as the number of

rint terminals and their utilization rates, to approximate a penalty

alue associated with each service request. Using observable val-

es of these variables, we computed a penalty for each customer
(S) and unsatisfied costumers (N). For simplicity we only display scenarios with 

nalty mean. 
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Fig. 6. Components of cost function. (a) Traveling cost (1-week) (b) penalty cost. 

Fig. 7. Distribution of penalty costs inferred from the Markovian Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison between satisfied and unsatisfied customers with respect their 

number of servers ( c i ) and Utilization rates ( ρi ). 
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according to closed form expressions of Equations (17) and ( 18 ).

The resulting distribution of penalties is displayed in Fig. 7 . 

Unlike previous parametric distribution we used, this distribu-

tion is the result of using individual level data to provide an esti-

mate to the costs of each customer. Similar to other scenarios we

already analyzed, the Markovian model captures important varia-

tions in the penalty costs, but compared to the log-normal den-

sities we used before, this empirical distribution is more skewed

with a long positive tail. Our Markovian model indicates that a

large fraction of customers have enough flexibility in their print-

ing systems to tolerate a delay for a day with minimal impact in

their functioning. However, the other group of customers show a

much more saturated behavior and therefore require urgent satis-

faction of their repair requests. In terms of the optimization prob-
em, the Markovian model is effectively discriminating which cus-

omers must be served in the requested day and which customers

an be delayed if there are enough reductions in transportation

osts. To understand how the optimization model decided which

ustomers to serve each day, in Fig. 8 , we compare satisfied (S) and

on-satisfied (N) customers in terms of their number of machines

nd utilization rates. 

In the Figure, customers in the left and upper zone, with low

umber of printers and high utilization will not be delayed, while

ustomers in the lower, right hand side, with a higher number of

rinters and low utilization will tend to be delayed for the next

ay. 

The results of the optimization problem show that the model is

ndeed guided by the costs estimated from the Markovian model

nd the majority of delayed customers have low utilization rates
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Fig. 9. Misclassification Losses. (a) Distribution for a representative instance (b) Summary of all instances grouped according to the magnitude of the forecasting error. 
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nd large number of machines. For example, customers with only

ne printer were never delayed regardless of their utilization rate.

his is reasonable as customers with a single machine have no

eans to compensate the failure and therefore their waiting times

xplode. On the other hand, customers with 4 machines are much

ore likely to be delayed, but among those, customers with lower

tilization rates are more likely to be postponed. This is again rea-

onable as the impact on their functioning of having one printer

ot working is small. 

In the previous exercise, we implicitly assume that Markovian

odel perfectly captures the customer costs of delay. Certainly, by

dding more observable variables we can refine the model to have

ore precise estimate of the costs. However, it is plausible to think

hat the Markovian model is only going to be an approximation to

he true costs of the customers. To understand the role of estima-

ion errors in the dispatching problem we run a series of comple-

entary scenarios where we progressively increase the mean error

ssociated to the Markovian model. In these models we assume the

eal costs of customer i ( R ( n i , ρ i )) is equal to the cost derived from

he Markovian model plus a zero-mean error term εi , as indicated

y Equation (18) . 

 ( n i , ρi ) = W s i ( n i − 1 ) − W s i ( n i ) + ε i (18) 

In these scenarios we consider that εi is normally distributed

ith variances that we vary to represent between 10 and 30% vari-

tion with respect to the real cost. To assess the impact in the so-

ution we compare the solution of the Markovian model against a

ypothetical oracle solution where we observe true customer costs

ith no uncertainty. In this comparison we first compute the num-

er of customers that, due to the estimation errors, were post-

oned. Here we find that a relevant fraction of the customers is

ffected by the forecasting error and they must wait an additional

ay that they would not need to wait if the central planer would

ave perfect costs information. In fact, on the 30 instances we run,

e find that on average 6.9% of customers are incorrectly delayed.

otice however that, as these customers are postponed, it leads

o a higher number of vehicles being available that can be used

o serve other customers that would have been delayed with per-

ect information. On average, we find that 5.3% of customers bene-

t from this miscalculation. To understand if these two subsets of

isclassified customers are balanced or not, we compute for each

ustomer, the misclassification loss (ML), corresponding to the ef-

ective postponement costs incurred by the dispatching solution. If

L > 0 then customer i is worse off with the solution implied by
i 
he imprecise estimation of the postponement costs. Similarly, ML i 
 0 indicates that customer is better off. These results are illus-

rated in Fig. 9 . 

Fig. 9 a, displays the distribution of ML for a representative

cenario (cases with ML i = 0 are not relevant and therefore not

onsidered in the figure). The distribution is fairly symmetric

round zero, indicating that the additional penalty cost associated

o customers who were incorrectly delayed is mostly compensated

y the gain of those who were not postponed. For this scenario,

he mean misclassification cost is only 0.28USD which is negligible

ompare to postponement costs we use in our instances. Fig. 9 b

hows the values of ML for all misclassified customers in all 30 sce-

arios and confirms the pattern observed in the example of Fig. 9 a.

ore precisely, Fig. 9 b confirms that (i) in general the misclassifi-

ation loss of incorrectly delayed customers is quite compensated

y the capacity gain that is used to promptly serve other cus-

omers and (ii) this pattern is not very sensitive to the magnitude

f the forecasting error (at least in the 10-30% range we explored).

ne explanation to these results is that the empirical distribution

f costs we used have enough customers with small costs of being

elayed (see Fig. 7 ) and therefore any forecasting error only im-

lies the delay of relatively low cost customers. We test this in our

ataset and we did find that all customers what were incorrectly

elayed have costs of postponement that are below-the-median. 

. Synthesis and conclusions 

In this research we analyzed the impact in the optimal daily

ispatching of repair services during a week of operation, in the

ase where customers have different costs of delaying the service.

e used an optimal routing model for dispatching the technicians,

onsidering penalties in the objective function associated with the

elay of the service from one day to the next. The vehicle rout-

ng model follows a typical column generation approach, in this

ase solved at the root with high efficiency. In general, previous

iterature has assumed as given the aforementioned penalizations,

ither based on contractual rules, or as perceived loss of goodwill

n customers. In our case we tried to characterize the real costs

ncurred by the customer due to delay in service. In our anal-

sis we compared key performance metrics of optimal dispatch-

ng solutions for a number of scenarios, which lead us to several

onclusions. As a first order effect, we found that the way in which

elay costs are distributed in the population matter and that they
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can lead to sizable cost reductions. We built our setting based

on the data and operation of a real company that provides of-

fice equipment repair service and therefore we worked with the

original fleet as well as the strategy used by the company, which

consist of a fixed capacity. In our analysis, we considered the case

where the firm has the flexibility of allocating more capacity for

days with larger demand which leads to mild cost reductions. In

this regard, we consider interesting to analyze in future research

how the benefits of learning about customers’ costs of delays can

be combined with a more flexible contract for allocating capacity

over time. 

Our analysis also indicates that, keeping everything else con-

stant, firms are better off with more variation in customer costs.

The underlying intuition behind this result is that more variabil-

ity implies a larger fraction of customer not sensitive to delays.

These customers can be postponed to give more degree of free-

dom in vehicle routing leading to more cost-effective solutions.

As a consequence of this gain in flexibility we did expect that

transportation costs go down and this is indeed the case. How-

ever, considering that the number of delayed customers increases,

we expected that total costs associated with delays compensa-

tion would also increase. Our results indicate that this is not the

case. 

The intuition behind this result is that when, on some days,

the system receives more requests that its capacity can handle,

and therefore some customers must be delayed, more variability

in costs provides the flexibility to delay only cheap customers. 

While the degree of variation has an important effect on op-

timal solutions, the mean values of the penalties also matters. In

fact, the penalties moderate the operational gains of exploiting

costs heterogeneity. When the mean of customers’ costs is high,

delaying any customer is expensive, and therefore there is little

room to improve vehicle routing efficiency. Acknowledging that

elicitation of customer costs might be difficult in some cases, in

this research we also propose a simple Markovian model to show

that costs of the delay can be approximated using only the number

of servers and the utilization rate, which are known. We applied

this approach and solved the corresponding dispatching problem,

showing that the solution gives higher priority to customer who

are more sensitive to machine malfunctioning, due to having fewer

machines or high use of them. These results hold even if the

Markovian model provides a noisy signal of the true costs of de-

laying the service. 

In this research we investigated the technician dispatching

problem and we demonstrate that heterogeneity in the costs of

the delay can have a relevant impact on operational efficiency. Our

choice of focusing on this specific problem is to illustrate the rel-

evance of accounting for cost heterogeneity in a practical prob-

lem in which most operational considerations are considered in

the model. Nevertheless, we expect the general idea can be ex-

tended to other classes of vehicle routing problems. We believe

that firms can benefit from our approach, as far there is given ca-

pacity and resources can be reallocated depending on customers

costs. 

There is a number of interesting extensions that can be imple-

mented to gain further insight on the role of variability in dis-

patching solutions. When solving this problem, a central planner

must balance the relative costs of serving customers and their

waiting costs. Our methodology certainly allows for an arbitrary

weight to balance those costs; however, we have assumed a simple

cost structure. In some cases, the dispatching firm can have a well

identified group of costumers of higher strategic value with larger

costs of being delayed. These would translate into our model in a

bimodal distribution for the penalty costs with one mode for reg-

ular customers and another for strategic ones. To be more general,

 

hile we restricted our attention to normal case, our analysis can

e easily extended to working with other distributions. 

To conclude, through this article, we evaluated different sce-

arios considering the information set as given. However, the re-

ults of this research could motivate practitioners in the domain

f transportation planning to actively learn from their customers.

hile the recent advances in data analytics suggest that learning

rom customers should be readily accessible to firms, the results

erived from this investigation indicate that such learning can have

 direct impact on operational planning policies. 
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ppendix mean and variances of each scenario 

We build our scenarios assuming log ( p i ) is normally distributed

ith mean m and variance s . The value of m Medium 

= 33 . 231 USD

s calibrated to be comparable with the current cost of a one day

f delay. The values of m Low 

= 16 . 615 and m High = 49 . 846 are com-

uted by increasing and decreasing the values of m Medium 

by 50%.

n terms of the variance s, 

The values of s are chosen to represent a wide range of vari-

bility. The variance of each scenario p0x for mean m is computed

s s = m ·x/100. For example, the scenario p10 for medium variance

s computed as s = 33.231 ·0.1 = 3.323. The whole set of mean and

ariances used in the analysis are reported in Table A1 . 

able A1 

umerical values for mean and variances for the scenarios included in the analysis.

m s 

P05 P10 P15 P20 P25 P50 P100 

Low 16.615 0.831 1.662 2.492 3.323 4.154 8.308 16.615 

Medium 33.231 1.662 3.323 4.985 6.646 8.308 16.615 33.231 

High 49.846 2.492 4.985 7.477 9.969 12.462 24.923 49.846 
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