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A B S T R A C T

If variability of input data for rheological measurements is not adequately included, their associated uncertainty
and subsequent modelling can be underrated. Mineral pulp rheology determination is commonly done through
triplicate tests, with such variability reported as multiples of a standard deviation, with the potential for un-
derestimation. In the present work, a novel statistically-based methodology for the estimation of uncertainty in
the rheological characterization of mineral suspensions —and other parametric models— is proposed. From the
variability of the experimental measurements and the analytical propagation of errors, a set of rheological
profiles are generated using Monte Carlo simulations within a variability frame. The corresponding inverse
problem for curve-fitting is solved individually, resulting in distributions of fitted parameters, which were sta-
tistically-analyzed to obtain representative values for both the parameter and its true variability. The metho-
dology proposed herein has been used to explore the applicability and limitations of the Herschel-Bulkley and
Bingham models under specific experimental and data analysis protocols, where the relevance of including low-
shear-rate measurement points or yield stress measurements using alternative methods is exposed. Additionally,
we present a case study on the effect of the concentration of NaCl on the rheological response of synthetic
tailings consisting of quartz suspensions doped with kaolinite, bentonite and kaolinite-bentonite blends, using
the proposed methodology with a concentric cylinder rheometer. Results show predominantly decreasing trends
in yield stress as salt concentration increases, with non-monotonical behavior and strongest variability asso-
ciated to the quartz-bentonite blend.

1. Introduction

Numerous challenges are presented nowadays to the mineral pro-
cessing industry, mainly induced by the compositional variability of the
currently mined deposits, technological limitations, water constraints
and high energy consumption (Norgate and Haque, 2010; Ihle, 2014;
Calvo et al., 2016) that the present climate change scenario implies. The
need to maintain a constant and ideally growing production of copper
has prompted metallurgical plants to push their operational boundaries,
minimizing the use of make-up water and maximizing its recovery
throughout the years (Montes and Cantallopts, 2019), treating complex
ores with high fine (commonly clay) content, incorporating either

desalinated or direct seawater into the process (Cisternas and Gálvez,
2018; Ihle and Kracht, 2018; Herrera-León et al., 2019). In combination
with the presence of clays, higher salt contents have an impact in most
unit operations, including differing water–rock-mill ball chemical in-
teraction in the grinding process (e.g. Cullinan et al., 1999, showing the
opposite case of the impact on mill ball material), valuable mineral
recovery in the flotation stage due to slime coating (Yu et al., 2017) and
flocculants overconsumption in thickeners (Connelly, 2011). These is-
sues can be seen as drivers for changes in various operational para-
meters and properties of the mineral suspensions, including their
rheology. There is a wealth of available research on the rheology of a
number of fine suspensions, including clay minerals (e.g. Mpofu et al.,
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2003; Ndlovu et al., 2014; Cruz and Peng, 2016; Basnayaka et al., 2017;
Gräfe et al., 2017), ultrafine comminution products (Vallar et al., 1999;
Tangsathitkulchai, 2003; He et al., 2004; Boger, 2013; Reyes et al.,
2019), and slightly coarser fine pulps such as copper concentrates and
tailings (Alejo and Barrientos, 2009; Boger, 2013; Ihle et al., 2013). A
relevant parameter accounting for the rheology of hyper-concentrated
mineral suspensions is the so-called yield stress ( 0). The yield stress
concept defines a limit between solid-like and liquid flow behavior.
Although the theoretical discussion about its existence has been a
matter of debate throughout the years (Barnes and Walters, 1985;
Astarita, 1990; Bonn and Denn, 2009), its use is standard in mineral
processing. In particular, the yield stress is used as a design and control
parameter with applications ranging from grinding, flotation, thick-
ening, pipeline transport systems, to monitoring the physical stability of
the tailings storage facilities (Sofra and Boger, 2011). Various rheology-
mineralogy relationships have been described to address the effect of
clays, both in real tailings (Ndlovu et al., 2013; Cruz and Peng, 2016)
and synthetic tailings (Contreras et al., 2019). The economically-at-
tractive alternative that represents using direct seawater in flotation
processes (Cisternas and Gálvez, 2018) has suggested to revisit the lit-
erature on the impact of dissolved salts and pH on the yield stress and
settling of pure, common clay suspensions, where differing results for

0, depending on whether kaolinite or bentonite are used, have been
found (Van Olphen, 1964; Rand et al., 1980; Heath and Tadros, 1983;
Wu and Adachi, 2016). To pursue this topic with application to mineral
processing, the rheological response of quartz-clay blends in NaCl so-
lutions is analyzed herein as a case study to test a new methodology for
the statistical treatment of the laboratory data, designed to capture the
variability of model-fitted rheological parameters.

It is noted that a comprehensive model to include all the aspects that
describe the rheological behavior of hyper-concentrated mineral sus-
pensions is not available at the moment. Even if very comprehensive
models were available, uncertainty coming from relevant instruments
(e.g. those related to on-line measurement of density, concentration,
flow, rheology, zeta potential, mineralogy, and water characteristics),
have both random error and bias. Their propagation through the var-
ious algorithms that allow their conversion from instrumental mea-
surements of current, voltage, conductivity, among others, to the phy-
sical magnitudes of interest can scale-up to levels that defy the potential
to make accurate estimations. An example of the concurrent impact of a
15% relative uncertainty in viscosity (strongly inherited from un-
certainties in concentration measurement) and a 5% relative error in
volume flow can propagate to about 10% uncertainty in pipeline fric-
tion losses (Ihle and Tamburrino, 2012b). This relatively tight bound of
the viscosity error measurement can be significantly higher in a re-
duced-water slurry scenario, where near the maximum packing limit,
modest uncertainties in concentration measurement (e.g., 5% due to
fluctuations of the specific gravity of solids in the case of online mea-
surement) may propagate to viscosity in excess of 50% for concentra-
tions above 90% of the maximum packing values (see, e.g., Ovarlez
et al., 2006, for the case of monodisperse suspensions of spheres).
Therefore, there is a need to provide reasonable error estimations in
rheology measurements, especially in the present, widespread demand
of reduced water use that has motivated the design and operation of
high-density tailing systems, where rheological parameters are most
sensitive to input variables. In the present work, we deal with un-
certainty in the absence of process memory, i.e., oblivious of upstream
bias by process-induced blending (Abichequer et al., 2011). Although
rheology determination is indeed directly affected by the sampling
protocol, it is assumed herein that such sampling is unbiased.

Even though efforts have been made to standardize laboratory tests,
including those pertaining to rheology measurement, their results are
still not always reproducible. They have shown to depend heavily on
subtle details of the particular pre-treatment and post-processing pro-
tocols of each laboratory and the natural variability of the material,
even in moderately controlled conditions. An eloquent example of

differing results of rheology measurements even when sharing mate-
rials, measurement geometries, and protocols have been reported by
Nguyen et al. (2006), with 0 values differing by up to 100% (see also
Knight et al., 2017, for a similar study using the vane geometry). To the
best knowledge of the authors, there is no similar study focused on the
implications of experimental variability on rheological parameter fit-
ting.

In this paper, we present a novel methodology for the estimation of
uncertainty in the rheological characterization of a concentrated mi-
neral pulp, which may be easily extended to any other parametric
model fitted to experimental data. We apply the present method to
study the effect of the concentration of NaCl on the rheological response
of synthetic tailings with high kaolinite-bentonite content to comple-
ment measurements of mineral suspensions that are focused on the
impact of the concentration (e.g. Avramidis and Turian, 1991; Alejo and
Barrientos, 2009; Boger, 2013), particle size or distribution
(Tangsathitkulchai and Austin, 1988; Shi and Napier-Munn, 1996;
Tangsathitkulchai, 2003) or salt content (e.g. Reyes et al., 2019).

2. Rheology modeling

Hyper-concentrated mineral pulps, understood as an equivalent
homogeneous fluid, are generally categorized as non-Newtonian fluids
(Boger, 2009), i.e., their rheological response (shear stress and ap-
parent viscosity a) is coupled with the flow conditions :

= =f ( ), ( ) .a (1)

The f function of (1) represents a generalized, time-independent rheo-
logical model. The most commonly used time-independent models to
determine slurry transport properties in mineral processing are the
Bingham and Herschel-Bulkley models (Barnes et al., 1989; Cruz and
Peng, 2016), which have in common the incorporation of a yield stress

0, whose values are obtained indirectly from extrapolation of the flow
curve, thus being model-dependent (a schematic view of the impact of
extrapolation is depicted in Reyes et al., 2019). In the case of the
Bingham model,

=
>

µ
0 if

if .B
0
B

0
B

0 (2)

Here 0
B is the Bingham yield stress (i.e. the value of the intercept of the

straight line and the -axis), and µB is the Bingham viscosity. In the case
of the Herschel-Bulkley model,

=
>

K
0 if

if ,
n 0

HB

0
HB

0
HB (3)

where K is the consistency coefficient and n is the flow index. These
models can be used provided they can reasonably describe mineral
suspensions as non-segregating, equivalent fluids, within a certain time
scale (Ihle et al., 2013). Other approaches (e.g. stress relaxation and the
vane method) give a more direct reading (Nguyen and Boger, 1983),
but do not report viscosity as a result from the same test. Resulting
values of the yield stress from these direct measurements tend to be
consistently lower than those using indirect (extrapolation) methods
(Nguyen et al., 2006), an aspect that can be interpreted as a source of
bias of the method itself. Nonetheless, the use of extrapolation to obtain
the yield stress is common, probably because of its simple parameter-
fitting nature, with the additional benefit of obtaining a rapid estima-
tion of K and n (or µB when =n 1) from a single run. Additionally, from
a system designer’s perspective, this approach gives conservative values
of 0

HB (or 0
B), which is commonly a desirable outcome.

As is in the case of viscosity (Stickel and Powell, 2005), the yield
stress has a strong dependence on particle concentration. Heymann
et al. (2002) proposed an empirical relationship for the dependence of

0 on the volumetric concentration of solids, (an excellent review can
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be found in Mueller et al., 2010, for the case of infinite Péclét number
suspensions). This relationship reads:

= 1 1 ,
m

0 0

2

(4)

where both 0 and m are fitting parameters, representing respectively a
reference for the yield stress and the maximum packing volume fraction
of the suspension. This model has been derived by analogy with the
suspension viscosity models proposed by Krieger (1972) and Quemada
(1977). The latter have been useful to predict viscosities at mid to high
suspension concentrations both in monodisperse (Ovarlez et al., 2006;
Mueller et al., 2010) and polydisperse systems (e.g., Appendix data in
Ihle, 2013, for concentrate viscosity measurements). This empirical
concept, which defines a fluid–solid transition at a given singular solid
concentration m has been used to describe the particle concentration
dependency of the yield stress of mineral suspensions. Examples are
Avramidis and Turian (1991), in the case of nickel laterite, and Alejo
and Barrientos (2009), both for quartz and real copper tailings. The
limiting concentration m is strongly shape-dependent (Barnes et al.,
1989; Mueller et al., 2010).

3. Experimental methods and materials

3.1. Materials

3.1.1. Raw materials
For the preparation of synthetic tailings, blends of quartz and clay

minerals were used. These blends consisted of a mixture of analytical
quality quartz sand, kaolin clay, and montmorillonite-rich Na-bento-
nite. Details of these certified products, obtained and characterized by
local suppliers, are presented as follows. The quartz sand was ground in
a laboratory ball mill, in order to replicate the original particle size
distribution of the process and to fit the requirements of the measure-
ment equipment, 100% under 105μm (mesh #140), resulting in a P50 of
33.3μm. Itscertified composition is 97% SiO2, 0.8% alumina, 0.9%
feldspar, traces of mica and magnetite (<0.005%). In deionized water
(pH 5.5), suspensions of this material reach an equilibrium pH ca. 7.
The certified kaolin, as detailed by the XRD analysis performed by its
provider, indicates a composition of 93.5% kaolinite and 6.5% quartz.
Its particle size distribution was characterized by a P50 of 12.9 μm. In
deionized water (pH 5.5), suspensions of this material reach an equi-
librium pH 5. The montmorillonite-rich Na-bentonite used for this
study, as certified by provider, has a 74% montmorillonite content, the
chemical composition of this material being 62.8% SiO2, 14.2% alu-
mina, 3.5% Fe2O3, 2.8% Na2O, 1.6% MgO, 1.4% CaO, 0.3% K2O traces
of MnO. Its particle size distribution was characterized by a P50 of 9.1
μm. In deionized water of pH 5.5, suspensions of this material reach an
equilibrium pH 8. The particle size distributions of the raw materials
(Fig. 1) were obtained by laser diffraction using a Mastersizer 2000

(Malvern Instruments), and following the instructions given by the
manufacturer for the characterization of clays.

3.1.2. Synthetic tailings
The composition of the synthetic tailings considered herein is as

follows: 80% of their mass consisted of quartz sand ground under mesh
#140 (105μm), and the remaining 20% had a variable composition of
fine materials (F ) under mesh #200 (74μm). The mineral species
forming the fine fraction F could be Na-bentonite (M), kaolin clay (K)
or fine silica sand (Q), according to the combination:

= +F K Q(1 ) ,i i (5)

where i is the mass fraction of the clay (either K or M) relative to the
total fine fraction added. Considering i values of 0.5 and 1.0, the re-
sulting synthetic tailings, their nomenclature, fine fraction composition
F and properties are described in Table 1.

3.2. Salinity of the liquid phase

Analytical grade NaCl was used to assess the effect of salinity on
tailing rheology, and its concentration in the bulk fluid was referred to
as a percentage relative to seawater, according to (6):

=
[NaCl]
[NaCl]

.NaCl
suspension

seawater (6)

The value =[NaCl] 29.5 g/Lseawater has been considered as a reference
(Cisternas and Moreno, 2014). Therefore, salinities of 50%, 100% and
150% correspond to molar concentrations of 0.25M, 0.50M and 0.76M,
respectively.

3.3. Methods

3.3.1. Rheological characterization
The rheological tests were carried out using an Anton Paar

RheolabQC concentric cylinder rheometer, with measuring gap
=R R 1.497 mmo i , with =R 21.00 mmo and =R 19.50 mmi the outer

and inner cylinder radius, respectively (CC39S cup and bob system).

Fig. 1. Particle size distribution of the raw materials used on this study. The dashed curve corresponds to the extrapolation of the fine fraction Q, SiO2 under 74μm
(mesh #200).

Table 1
Fine fraction composition of the 20% by weight of the total solid content of the
tailing. For instance, MQ (second row) has 50% of Na-bentonite (i.e., overall
10% of the solids) and 50% of fine quartz (overall 10% of the solids).

Nomenclature Fine fraction composition F Properties

MM M100% Clayey
MQ M Q50% , 50% Semi Clayey
KK K100% Clayey
KQ K Q50% , 50% Semi Clayey
MK K M50% , 50% Clayey
SF – Silica control
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Torque-to-stress and rotational speed-to-shear rate calculations were
done following the ISO 3219 standard:

= + = R
R

· 1
1

; 1.2rep
o

i

2

2 (7)

= + T
LR C

1
2000·

·
2

.
i L

rep
2

2 2 (8)

Here, is the angular speed of the inner cylinder, T is the measured
torque, =L 59.83 mm is the height of the inner cylinder (excluding the
bottom cone), and CL an end effect correction factor, assumed herein as
1.1 (as recommended by the supplier).

3.3.2. Experimental protocol
To assess the temporal behavior of the suspension and evaluate

whether it exhibits thixotropy, and as standardized pre-shearing of the
sample, a hysteresis test has been implemented, with shear rates in-
creasing–decreasing linearly from 1 to 400 s−1 in 120 s each segment.
In general, only a slight change between ascending and descending
ramps has been found. This is depicted in Fig. 2. As the hysteresis loop
implied considerable angular acceleration, we expect the inertia of the
fluid to affect the measurements and instead use it as a pre-shearing
step prior to measurement. To ensure that shear stress measurements
are stable, and not the result of a transient response, flow curves have
been obtained as the result of an ensemble of predefined, constant shear
rates, thus mimicking a quasi-static process. The time lapse of each
constant shear rate has been chosen in a logarithmic fashion (Table A.5
in Appendix A), so that there is enough time for flow stabilization at
increasingly higher shear rates. Thus, for each constant value, the
equilibrium shear rate response is recorded, as shown in the inset of
Fig. 2 and taken as the value associated to such shear rate range. This
procedure is somewhat equivalent to measuring a limited number of
shear rate points, as would be required in the absence of a program-
mable rheometer. A further discussion regarding the data processing
procedure of such experimental curves is presented in the following
sections.

4. Statistically-driven methodology for assessing rheological
parameters

4.1. Overview

The present methodology has three main steps, which are described
below. A flow diagram is depicted in Fig. 3.

Study of error sources and choice of rheological model. First, a
thorough study of the error sources associated with the experimental
procedure (equipment, techniques, and protocols) must be carried
out. Once their impact on the results has been estimated, it is

possible to proceed with the next phase. The various error sources
that should be addressed in the particular case of the present syn-
thetic tailing rheology measurement and their phenomenological
background are discussed in Section 4.2.
Variability estimation of experimental measurement trends,
using classical statistical tools, such as the t multiplicative factors
for the construction of confidence intervals, and variance analysis.
Here we will discuss how to estimate the confidence intervals for the
experimental outcome of steady-state tests, understood as the
measurement of shear stress over time at a given shear rate (Section
4.3.1), and triplicate of rheological ramps (Section 4.3.2). In parti-
cular, when programming a shear rate ramp, t( ), new values of
do not directly transfer to constant values of the shear stress. It is
required to identify the time scale for quasi static suspension equi-
librium. After the variability of the experimental measurements is
correctly estimated, we may set the inverse problem for curve-fit-
ting.
Variability estimation of model-derived rheological para-
meters, using a Monte Carlo-inspired approach, consisting of the
simulation of a set of N ‘experimental’ profiles within the estimated
variability of the data in the previous step. After performing an

Fig. 2. Rheology measurement schematic showing the step-wise increase the
shear rate.

Fig. 3. Flowchart of the method proposed in this study. Stage 1: Identification
of uncertainty sources both in the measurement and the suspension. e.g., C T,p ,
zeta potential, particle size distribution, water chemistry, among others.
Selection of the rheological model. Stage 2: Selection of the experimental
planning, mainly based on the time availability, the aimed confidence level and
the objective of the study. Stage 3: Analysis of the experimental measurements
to estimate the variability frame. Stage 4: Statistical determination of the exact
confidence intervals of the measurements. Its treatment depends on the nature
of the measurement. Stage 5: Simulation of N different profiles within the
variability frame estimated in the previous point, which parameters would be
estimated via a curve-fitting algorithm. Stage 6: Statistical determination of the
exact confidence intervals of the model-derived rheological parameters ob-
tained through the Monte Carlo simulation.
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individual curve-fitting for each simulated profile, distributions of
rheological parameters are obtained. Representative values of the
rheological parameters and their variability are statistically ob-
tained from such distributions.
We hereby quantify variability of a set x in terms of the coefficient
of variation and the relative difference between expected measured
values and real ones (also named to herein as control values) as:

=x
x

x
CV ( )

Var( )
( )

,
(9)

= xe x
x

| ( ) | .rel
control

control (10)

4.2. Identification of error sources

4.2.1. Error propagation for the volumetric concentration
It is well-established that among the most influential variables on

the rheology of suspensions is the particle concentration, (Mueller
et al., 2010). In mineral processing plants, the solids concentration by
weight, Cp, is rather used. It is straightforward to show that its re-
lationship with is given by the following expression:

=
+

C
C C(1 )

.l p

l p s p (11)

On the other hand, the determination of concentration might, of
course, include errors. The latter depends mostly on the measurement
method used for particle concentration. In particular, whereas mass
balance techniques are very robust and have little error, reliance on
online measurement techniques such as densitometers, although having
the advantage of providing real-time information, might add further
uncertainty to measurements. The effect mentioned above might appear
due to both limiting hardware conditions and, on the other hand, their
common reliance on an input value of the solid specific gravity, which
is indeed prone to fluctuations inherited by the variability of geological
units. In the absence of salt fluctuations in the liquid phase, and as-
suming small temperature variations that may otherwise significantly
propagate to the water-clay system rheology (Lin et al., 2016), varia-
bility may be represented by a vector = C( , )s p

T , with the sign
the amplitude of uncertainty around a reference values. The error
propagation for can be obtained using a second-order Taylor expan-
sion around the mean concentration ¯:

= + + H¯ · 1
2

,T
(12)

where and H represent the gradient and the Hessian matrix of ,
whose analytical components are detailed in Table B.6, Appendix B.1. A
sensitivity analysis of the error in due to changes in s and Cp was
carried out, showing that the latter impacts more severely on its value,
especially at high concentrations (Fig. B.13, Appendix B.2).

4.2.2. Swelling clays
Swelling clays such as montmorillonite may structurally trap water

molecules that would form part of the solid fraction after the sample is
dried. When studying suspensions prepared in a closed system, special
attention must be paid to analyze the solids concentration Cp.
Differences in the Cp values calculated by mass balance and experi-
mentally obtained from the oven might occur, and, in the case of
swelling clays, may be explained by such structural entrapment of
water. The apparent mass of solid (ms ) already includes the mass of
trapped water (ml

a), which must be subtracted from the mass of water
forming the liquid phase ml ,

= + =m m m m m m; .s s l
a

l l l
a (13)

An expression for the =C C m m( , )p p s l , which is the Cp value resulting
from the aforementioned water entrapment is given by (14),

= +
+ +

C m m
m m m mp

s l
a

s l
a

l l
a (14)

=
+

+
+

m
m m

m
m m

s

s l

l
a

s l (15)

= +
+

C m
m m

,p
l
a

s l

0
(16)

where =C C m m( , )p p s l
0 corresponds to the value of Cp derived from a

mass balance. Eq. (14) may be rewritten to obtain an explicit expression
for Cp, which is given by (17):

=
+

C C m
m m

.p p
l
a

s l

0
(17)

To estimate the amount of water structurally trapped in the clay, we
follow the simple model proposed by Mering (1946) for the case of the
bentonite:

=m R C m ,l
a

p smax
clay (18)

where Rmax is the theoretical maximum water trapping potential of the
clay, expressed in grams of water per gram of clay,Cp

clay the clay content
of the suspension, is a trapping efficiency, and ms the solid mass.
Hence, we can deduce a non-dimensional expression for the relative
error, given by (19) as:

=e R C .prel max
clay (19)

For Na-montmorillonite, Rmax values of roughly 0.4 grams of water per
gram of clay have been reported (Mering, 1946), and a trapping effi-
ciency ( ) ranging between 15% and 95%, depending on the weath-
ering of the clay and the available hydroxyl groups in its structure. To
highlight the impact that ignoring this error source would have on the
values, a parametric swipe over the efficiency has been made,
showing that the relative error could be as large as 10% when working
at high concentrations (see Fig. 4).

4.2.3. Measurement equipment limitations
The empirical constantCL in (8), used in the context of the ISO 3219

standard, has recommended values ranging from 1.10 to 1.28 for non-
Newtonian pseudoplastic fluids at low shear rates (provided by the
manufacturer in the technical information of the rheometer). To eval-
uate the impact of the uncertainty in CL on the reported shear stress
values rep, a first-order expansion yields:

= A
C

A
C

C, ,
L L

Lrep rep rep 2 (20)

where A summarizes all the multiplicative constants of (8), and rep is
the value of rep after correcting CL. It is possible to rearrange (20) to
derive an expression for the relative error, given by (21):

Fig. 4. Propagation of the error due to water entrapment in Na-mon-
tmorrillonite, for various different values of Rmax , as defined in (19).
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= =C
C

C
C

, .L

L

L

L
rep rep rep

rep

rep (21)

It is therefore concluded from (21) that an uncertainty in CL of 0.1
propagates to a relative error of up to 9% in rep.

4.2.4. Taylor-Couette instability
The flow of a fluid induced by the rotation of the inner (and/or

outer) cylinder in a Couette flow device can cease to be concentric and
may evolve to helical, generating erroneous measurements for viscosity
as an apparent thickening shear regime emerges (Taylor, 1923). Such
transition is characterized by a critical Reynolds number, considering
valid measurements in which the Taylor Reynolds number (ReT) is
greater than or equal to their Couette Reynolds number (ReC):

= =Re R
R R

R R R
µ

Re41.3 ( ) .T
o

o i

i o i
C (22)

Here, Ri and Ro the internal (and rotating) and external cylinder radii,
respectively. We can re-write the condition expressed in the inequality
in terms of geometric and rheological parameters of the measuring
device and the suspension, rep and (Eqs. (7), (8)), resulting on (23):

+µ
R( 1)( 1)

(1 )41.3
1,irep 2 2 2

2 (23)

which we may re-order to identify three non-dimensional contributions
to the stability accounting for i) particle hydrodynamics near the wall,
ii) length ratio of the inner cylinder and the particles and iii) measuring
gap:

Re R
a

f ( ) 1,p w
i

, (24)

with a a representative particle radius and f a function obtained from
(23), accounting for the geometry of the Couette apparatus. A rough
calculation using the parameters of our Couette apparatus and the
suspensions here studied showed that = 400s 1 could be safely used as
an upper bound in the rheology assessment protocol.

4.2.5. Other sources
Among the other sources of error that we can consider, we may find:

Wall-slip. It has been shown that the slip layer is a function of the
roughness of the rheometry apparatus. In particular, if its roughness
is within the same order of the characteristic dimension of the
particles, becomes negligible (Isa et al., 2007). It has also been
observed that might be concentration-dependent, being lower at
higher concentrations, but without implying that its effect is less
(Barnes, 1995).
Particle settling. From an analysis of the different dimensional
groups that control the flow in a Couette cell, Ihle et al. (2013)
suggest that shear-induced migration of particles had a greater in-
fluence on variations of the measurements for shear rate times on
the order of one minute. Therefore, sedimentation is rather a
second-order effect compared with wall-slip and other hydro-
dynamic effects.
Particle migration. These effects are a result of normal stresses
between particles (Morris and Boulay, 1999) and are most relevant
when the flow passage is wide (although neither solving for normal
stresses nor using a Couette geometry, Allende and Kalyon, 2000,
make a point in this regard with a set of numerical simulations in
Poiseuille flows).
Structural equilibrium. Hyper-concentrated mineral pulps may
have an important thixotropic component, which can be explained
from the structures that arise from the interaction of individual
particles, especially when their clay content is high. Such structures
may aggregate or be destroyed at a rate that depends on , the solid
phase mineralogy, and time. After a long enough time (t1), the rate of

structural change will approach zero and a dynamic equilibrium
would be reached. Then, the suspension may be understood as an
equivalent suspension of Structural Units (SUs), whose size de-
termines its rheological behavior (Quemada, 1998).

4.3. Rheological data analysis

4.3.1. Variability estimation: steady state measurements
Following the experimental protocol presented in Section 3.3.2,

data points for the construction of the ( , ) profile are obtained from
separate tests where was held constant = 0 over time texp, recording
n data points. The value for would correspond to the average of the

exp measurements recorded after =t t1, where the suspension is sup-
posed to reach the structural equilibrium described in Section 4.2.5.
The t1 value can be estimated as the first time t k( )exp where the ex-
pression (25), accounting for the absolute deviation from the mean in a
mobile time frame, is held for an arbitrary user-customizable tolerance
.

+
+

= =
k k

n k
n k( ) ( )

1
( 1)

k k

n

k k

n

(25)

4.3.2. Variability estimation from triplicate shear stress measurements
A typical laboratory procedure to evaluate variability from a rheo-

logical measurement is to perform a limited set of measurements and fit
each set to the desired rheological model (it is most common to perform
measurements in triplicate). If the variability associated to the corre-
sponding fit parameters (e.g., Bingham viscosity, yield stress, flow
index, etc.) is high, the flow curve that drifts the most from the average
would be probably discarded and the test repeated. If they are all si-
milar, then it is common to consider the average and the standard de-
viation of the fit parameters multiplied by a penalizing factor to fix a
confidence interval (e.g., in this context, Ndlovu et al., 2014) or, more
conservative, taking the extreme values of the set of measurements
(Reyes et al., 2019). Here, we assess the impact of variability at the
shear stress level. To estimate the average and standard deviation, the
following relations are used:

=
=n

¯ 1 ,
i

n

i
1 (26)

=
=

s
n

1
1

(¯ ) ,
i

n

i
2

1

2

(27)

The sample mean ¯ follows a t-Student distribution with n 1 degrees
of freedom, unknown mean µ and standard deviation s

n
. For a test

repeated n times, the margin of error derived from an (1 )-con-
fidence interval, understood as half its range, is given by (28),

=m t
n

s,
(28)

where t is the upper (1 )/2 critical value for the t n( 1) distribu-
tion. Fig. 5 presents a graphical description of the application of the
method described above to the rheological characterization of a mineral
suspension, highlighting that the real uncertainty band associated with
the triplicate measurement of a variable is higher than the predictions
of the other approaches mentioned on this section. In particular, when

=n 3 and = 0.05 (95% confidence intervals), t decreases significantly.
This is shown in Table 2, which also shows that under the standard
approach, the impact of increasing the number of samples from 3 de-
creases rapidly.

4.4. Inverse problem for the rheological characterization

4.4.1. Classical formulation
During the rheological test described in Section 3.3.2, experimental
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shear stress measurements were performed for different shear rates ,
which were held constant over a fixed time, generating various dif-
ferent exp and exp vectors. To interpolate, different rheological models
may be used. These models involve a number of parameters, which we
will call . A common way to formulate and solve a parametric fit
problem is by minimizing a cost function J, which accounts for the
difference between the modeled curve and the experimental measure-
ments. Generally, and for the sake of simplicity, this function is pro-
portional to the well-known mean square error (denoted herein as
MSE), and the problem stated as a least-squares estimation (Marquardt,
1963). By providing physical thresholds for every parameter (the
components of vector ) we may build a provisional feasible set F0, and,
if further information regarding estimates of the parameters is avail-
able, , it is possible to add a regularization contribution Jreg to the cost
function, to penalize parametric values that drift considerably from the
reference:

=J .reg (29)

Thus, the optimization problem P for curve-fitting, hence parameter
estimation, is set as follows:

=
+

+
=

P
n

imin 1
1

( ( ) ( )) ,
F i

n

i
1

exp mod exp,
2

0 (30)

whose solution is the set of parameters that best describes the rheolo-
gical properties of the suspension.

4.4.2. Monte Carlo simulation of rheological parameter variability
Based on the experimental values ,exp exp and their 95% confidence

intervals ( m2 i, as defined in Eq. (28)), a number N of sim and sim
random vectors are built, aiming to simulate the curves that may exist
within the reported experimental variability frame. Without loss of
generality, the aforementioned vectors are represented by (31):

U= + m (2 1),sim exp (31)

where U is a random variable with uniform distribution in the [0, 1]
interval, and m the error margin (Eq. (28)) of . Afterward, each si-
mulated curve ( , )sim sim is individually fitted, and collecting the in-
dividual fitted parameters, statistic distributions are obtained. This is
depicted schematically in Fig. 6. The reported values are statistically
calculated from such distributions, based on their nature (Gaussian, log-
normal, gamma, beta, among others) and the author’s criteria. For ex-
ample, if we are trying to obtain the Bingham parameters of a sus-
pension using the rheograms obtained with the protocol described in
Section 3.3.2, they are given by Eqs. (32)–(34).

=
+

+
=

µ
n

k[ , ] argmin 1
1

( ( ) ( )) | | ,i
B
i

F k

n
i

k
i

i i0
1

sim mod sim,
2

(32)

= ±( ) Var( ) ,0 0 0 (33)

= ±µ µµ ( ) Var( ) ,B B B (34)

where the subscripts mod and sim represent the model’s solution and
the Monte Carlo simulated profiles, respectively.

4.4.3. Application to rheological model fitting
Concentration-dependent rheology models, such as the Heymann

model for 0, have a higher complexity as significant variable un-
certainty is present in both axes. Assuming that the curve-fitting for
each rheogram is achieved by our method, the variability in 0 is
known. Variability in can be estimated by (12) and experimental data.
Thus, simulated variables are represented by (35) and (36).

Fig. 5. Variability assessment using triplicate measurements.

Table 2
Multiplicative factors for the 95% confidence inter-
vals of a t-Student (two-sided critical region) dis-
tribution.

n Multiplicative Factor t

2 12.71
3 4.30
4 3.18
5 2.78

1.96

Fig. 6. Inverse problem-solving strategy. The cost function to minimize at the curve-fitting stage is, in spirit, the same, but varies the number N of curves to be fitted.
Within the experimental uncertainty, a set of potential curves that could occur given the uncertainty of particular values of are simulated and individually fitted.
The reported parameters are statistically obtained from the resulting distributions.
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U= +( ) Var( ) (2 1),0
sim

0 0 (35)

U= +¯ (2 1)sim (36)

The inverse problem can be solved in separate curve-fitting stages, or
fitting all the curves together by modifying the cost function and the
parametric domain depending on the dimension of the problem and the
objective of the study. In the case study considered below we have
followed the former strategy.

5. Results and discussion

5.1. Case study: Interplay between rheological models and experimental
data processing protocols

Using the statistical approach described above, we assess the ap-
plicability of the Herschel-Bulkley and Bingham models under different
measuring protocols and curve-fitting strategies. To do so, we simulated
two different materials following the aforementioned models, keeping
the values for = =K n0.375Pa s , 0.7n and =µ 0.5Pa sB fixed, with 0
ranging from 10 to 500 Pa. An experimental noise was included to
account for potential inappropriate experimental conditions or mea-
suring protocols. To this purpose, we assumed that triplicate experi-
mental measurements involved a relative error of =s 1%, which re-
sulted in a variability bound of ± 5% (using Eq. (28) for a 95%
confidence interval). In all cases, measurements have been made at
shear rates well below the onset of the Taylor-Couette instability, at
shear rate intervals with the shape =I [ , 400] s1

1, where
{0.01;0.1;1;10;100}1 . The curve-fitting procedure considered a loga-

rithmic 15-point partition of I , and =N 250 simulated curves were
employed for the Monte Carlo-inspired assessment of the parameters.
Further discussions regarding the number of points for the curve-fitting
procedure and the number of Monte Carlo simulated profiles are pre-
sented in Section 5.3.

The coefficient of variation of the 0
HB distributions (defined by Eq.

(9)) was obtained for different curve-fitting protocols and presented in
Fig. 7. When 1 approaches to 0s

−1, the parameter distributions pre-
sented less variability and, consistently with Eq. (33) (applied to the
corresponding model), their expected values provided better estimators
of the suspension’s rheological properties. Regarding the Bingham
model (Fig. 7a), CV trends seem to have high variability in 0

B at low
0
control values, resulting from (9) when ( ) 00 . This effect is en-
hanced increasing 1 and is explained by the proportional nature of the
induced error s and the extrapolative nature of the method.

Different is the case for the HB materials (Fig. 7b), as an increasing

trend in CV is observed for all protocols when the reference 0
control in-

creases. The preceding observation seems not only to be a result of the
extrapolative nature of the method but of the mathematical properties
of the HB model. A closer look at the nature of the variability in 0

HB is
presented in Fig. 8. It can be seen that the prediction of 0

HB system-
atically underestimates its real value, especially for protocols with

11 , as the width of the uncertainty bands increases with the control
0
control. The additional degree of freedom that a third parameter (n)
gives to the curve shape in the HB model and the potential for in-
appropriate curve-fitting protocols for intercept determination
(Fig. 7b), generate higher variability in the results. Conversely, proto-
cols with high resolution at low shear rates result in distributions with
less variability, as Fig. 8 shows. Although the uncertainty bands remain
considerable, the coefficient of variation and relative error decrease, as
shown in Table 3. The foregoing highlights the applicability of our
method to retrieve the rheological parameters that best describe the
suspension, even when the experimental variability is high.

An analysis of the effect of experimental error on the variability of
0
HB for a typical curve-fitting protocol is presented in Fig. 9. Even
considering a variability frame of =m 1%, obtained by applying Eq.
(28) to a triplicate test with experimental error =s 0.4%, the variability
in 0

HB remains considerable, especially when evaluating suspensions
with high yield stresses.

Fig. 7. Effect of the shear rate interval chosen to fit the selected rheological model on the quality of the outcome.

Fig. 8. Variability in the prediction of 0
HB, for different curve-fitting protocols.

The expected values of the 0
HB distributions (dashed lines) seem to be better

estimators of 0 when the curve-fitting interval starts closer to zero.
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5.2. Case study: Risks behind the standard rheological data analysis
procedure

Typically, parameters and errors associated with the rheological
characterization of mineral pulps are reported as the simple average
and the standard deviation of a triplicate individual test fit. Note that
the triplicate method (TM) only refers to the post-processing of the
parameters resulting from a curve-fitting procedure. This method con-
sists of three steps:

• Triplicate rheological test.
• Individual curve-fitting of the experimental profiles obtained in Step
1 to obtain rheological parameters.
• Reporting respectively parameters’ values and variability as the
mean and standard deviation, range (or weighting of such disper-
sion metrics) of the results of Step 2.

The use of the TM has limitations due to:

1. There are non-linearities in the pulp’s rheological behavior and the
models used to represent it. Therefore, the curve resulting from the
average of parameters might be biased when compared to the curves
obtained by the individual parameters.

2. The nature of the error distribution is unknown. Hence, the average
of triplicate parameters might not be a good estimator of their real
value, nor the standard deviation of their true variability.

To assess how much variability lies on the TM, we performed the
following experiment. First, considering the same simulated materials

discussed in Section 5.1, N curves were randomly selected from the
variability frame of ± 5%, and fitted in the =I s[1, 400] 1 interval
considering 15 data points for that procedure. Then, we obtain all the
possible subsets of 3 curves from the N-pool and calculate the sample
average and standard deviation of their parameters. As we used

=N 250 for the Monte Carlo simulations, the different possibilities for
the triplicate selection are exactly =( )250

3 2573000 curves. Table 4

shows the results of this analysis for 0
HB. The least variance triplicate

scenario (out of the 2573000 possibilities) and average triplicate sce-
nario were studied, highlighting how dramatically a favorable scenario
could mislead the conclusions on the rheological behavior of the sample
(see the 6th column in Table 4). Moreover, the variability of the re-
ported triplicate variability (understood as a distribution s) was in most
of the cases higher than the N–population’s standard deviation. As the
TM-reported variability is unreliable, we suggest not to consider it as an
estimator of the real variability of the parameter.

5.3. Case study: On the stability of our method

To test how stable our approach and assumptions are, we performed
two numerical experiments. A first one to determine how heavily the
number of points (resolution) considered for the curve-fitting procedure
impacted on the variability of the inferred parameters. The second, to
obtain the optimal number of Monte Carlo simulations to make the
variability of the measurements converge to its real value.

5.3.1. Number of data points considered for curve-fitting
The number of data points considered for curve-fitting corresponds

to the resolution of the curve-fitting interval I and is part of the design
of the measurement protocol, given the particularities of the tested
material and the limitations of the measuring instrument. We tested
different curve-fitting intervals with the form =I [ , 400]1 . Fig. 10
shows the trends of the dispersion of the obtained distributions when
the number of data points for the curve-fitting procedure varied, con-
sidering two curve-fitting intervals. When = 1 s1

1 (Fig. 10a), the
variability of the values of 0

HB decreases as the resolution of the curve-
fitting interval increases, suggesting that having more measurements

Table 3
Dispersion metrics of the HB and Bingham yield stress for different curve-fitting
intervals, with = 100 Pa0

control .

curve-fitting interval I [s−1] Herschel-Bulkley Bingham

CV [%] erel [%] CV [%] erel [%]

0.01–400 1.31 0.32 1.18 0.08
0.1–400 2.19 0.56 1.29 0.02
1–400 8.24 1.56 1.54 0.01
10–400 11.68 4.24 1.83 0.03
100–400 52.61 25.3 4.70 0.19

Fig. 9. Effect of the experimental variability on the rheological parameter de-
termination. Even assuming that the experimental measurements are confined
in a =m 1% variability frame, if the curve-fitting procedure is not appropriate,
it is not possible to obtain precise Herschel-Bulkley parameters.

Table 4
Evaluation of the TM for the Herschel-Bulkley model. Several trios of simulated
curves were selected from the N-Monte Carlo pool, having 2573000 possible
combinations of experimental profiles that are equally probable. Out of the
different possibilities, the best and worst scenarios, regarding the width of the
95% confidence interval, are highlighted. The high variability in the reported
variability (range of the confidence intervals) suggests that the TM should not
be used to assess this concept.

Reference

0
control [Pa]

Least variance
triplicate
scenario

Most variance
triplicate
scenario

Average
triplicate
scenario

Variability of
the triplicate
variability

0
HB st

3
(Eq.
(28))

0
HB st

3
(Eq.
(28))

0
HB

0
HB sVar( )

0
HB

10 9.7 0.001 9.7 4.5 9.9 0.2 0.2
20 19.8 0.000 20.1 6.7 19.9 0.3 0.3
30 29.0 0.002 30.2 9.0 29.9 0.4 0.3
40 39.4 0.005 40.0 12.5 39.9 0.6 0.5
50 50.0 0.002 50.1 14.7 49.8 0.7 0.6
75 75.0 0.006 75.2 22.2 74.6 1.0 0.9
100 100.5 0.004 74.5 190.9 98.4 3.6 5.4
125 125.0 0.010 86.9 280.1 122.5 7.1 11.1
150 150.5 0.016 104.1 335.7 146.7 7.1 10.8
175 176.5 0.007 61.4 394.6 168.5 15.4 23.9
200 198.6 0.005 70.0 451.5 187.6 23.8 36.0
225 223.5 0.003 78.8 507.9 210.3 27.9 42.0
250 251.9 0.019 87.5 564.4 228.9 35.0 50.8
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would positively impact the quality of the inferred parameters. When
= 100 s1

1 (Fig. 10b), the variability of the values of 0
HB does not show

any improvement when increasing the resolution of the curve-fitting
interval. As stated above, dense experimental planning, which in this
context refers to a plan considering several different shear rates, should
only be carried out when the resolution of the equipment allows the
implementation of wide curve-fitting intervals.

Our results suggest that the lower bound of the curve-fitting interval
should always be equal to the lower limit of the measuring equipment,

1. The density of experiments performed between 1 and the upper
bound of the planned shear rate interval seems to be a function of such
value and would help to reduce the variance in the inferred parameters
only if 1 is close enough to 0.

5.3.2. Number of Monte Carlo simulations
The number of curves to simulate within the experimental varia-

bility described in Section 4.4.2, which at first sight might look an ar-
bitrary election, is the result of a delicate trade-off between accuracy
and computational cost. To obtain the optimal number N of curves, we
performed an analysis of convergence of the variability of 0

HB con-
sidering a different number of curves to fit over the same intervals
considered in Section 5.3.1, with a resolution of 15 experimental points.
As N increases, the reported variability quickly converges to the steady-
state for both considered curve-fitting intervals (see Fig. 11). The con-
vergence of the first interval seems to be more erratic than the second.

Nevertheless, the amplitude of such deviations is much lower, as the
curve-fitting interval is wide.

5.4. Case study: Effect of NaCl concentration on tailing rheology

In order to study the effect of high concentrations of NaCl on the
rheology of synthetic tailings —blends of quartz and kaolinite/bento-
nite—, we followed the steps for the identification and quantification of
error proposed in Section 4.2. Given that bentonite is classified as a
swelling clay, special attention was paid to the concentration of the
suspension . Using as a pre-shear the hysteresis loop discussed in
Section 3.3.2 and the collection of step-wise tests to assess the temporal
evolution of at a constant shear rate, presented in Table A.5, we ap-
plied our methodology to obtain the Bingham yield stress 0. Using our
method to estimate the variability of 0

B, and Eq. (12) for uncertainties
in , it was possible to obtain both the vertical and horizontal com-
ponents of the errorbars on a ( , 0

B) plot. The uncertainty intervals
mentioned above are a crucial input to differentiate the real trends from
the variability-induced interpretations.

The Heymann model (Heymann et al., 2002) provides a qualitative
picture of the dependence of the yield stress on the concentration in
mineral suspensions via crowding and is proportional to a structural
parameter ( ) which, in light of the relative positions of the curves of
the KK and MK cases in Fig. 12, suggests a decreasing trend with salt
concentration, as seen by the vertical offset of curves. This has been also

Fig. 10. Effect of the resolution of the curve-fitting procedure on the variance of the inferred parameters.

Fig. 11. Convergence of the Monte Carlo simulations.
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found with direct measurements of the yield stress using a vane rhe-
ometer (Jeldres et al., 2017). The increase on the yield stress with the
concentration is considerably stronger in the MM case (bottom panel of
Fig. 12). In other words, the - 0

B curves in the MM case are offset to the
left compared to the KK and MK curves. Common structural inter-
pretations based on SEM images of pure clays (i.e. structural re-orga-
nization from edge-face to edge-face) can be referred to partially ex-
plain the interplay between clays and mineral polyminerallic
suspensions. This includes the decreasing behavior of yield stress with
the salt content for salt concentrations below ca. 10−2 M (Van Olphen,
1955), a further increase for concentrations up to ca. 0.1 M (Rand et al.,
1980), and an influence on double-layer compression at even higher
salt contents. A specific study focused on the effect of clay/mineral
blends has been recently reported by Merrill et al. (2017), who found
synergistic effects from blending bentonite from different sources (and
thus differing accessory mineral content and fine particle size dis-
tribution) and conjectured that besides the aforementioned edge-face
charge heterogeneity effect, there are non-DLVO effects derived from
competitive ion adsorption. This somewhat coincides with the fact that
the MM sample has the greatest cation exchange capacity among the
three cases studied herein, and brings the attention to the conceptually
more complex scenario that involves the MM case.

The foregoing confirms the experimental observations of this study
for the various synthetic tailings evaluated, presented in Fig. 12, which
show a predominant decreasing trend of the - 0

B curves over the range

of salinity studied, saturating to higher salinity at different rates that
seem to depend on the mineralogy of the suspension. From a process
control perspective, the impact of sample characteristics on their
variability is somewhat hidden by the present lack of available models
on the impact of the mineralogy in the MM case. In the particular
process of clay-laden long distance tailing transport, it would be ben-
eficial to bound input variability through knowing which, and in what
amount, auxiliary clays (potentially under the presence of salt) could be
added to reduce both water and specific energy consumption. This is
essentially a water resource, rheological and economic problem. Such
knowledge would not only serve to the present approach, based on
fitting rheograms obtained from Taylor-Couette cells, but also to related
inverse problems on the rheological parameters, both associated to
generic inverse modelling as presented in (1) and others based on
Poiseuille flow rheometry (Barnes et al., 1989; Ihle and Tamburrino,
2012a), for online rheology measurement purposes.

6. Conclusions

We have developed a novel statistically-based methodology to as-
sess the reliability of model-derived rheological parameters, which can
be easily extended to other control parameters commonly used in mi-
neral processing. First, we describe some of the error sources that may
appear in the rheological characterization of concentrated mineral
suspensions, addressing the limitations of the different protocols and
providing mathematical expressions for proper error propagation.
Then, we statistically calculate the variability frame of the experimental
measurements, understood as the 95% confidence intervals. Using a
Monte Carlo-inspired approach, we simulate all the experimental
curves that may exist within such variability frame. We individually
obtain the parameters of selected rheological models following a cus-
tomizable curve-fitting protocol, resulting in distributions of rheolo-
gical parameters. Finally, from such distributions, we statistically ob-
tain the suspension’s rheological parameters and estimate their
variability, with a computational approach which is modest in com-
puter resource demands. Even though it is possible to accurately
characterize the rheological behavior of a suspension through multiple
steady-state tests (measuring over time, at a given ), we propose the
present method as a way to estimate such behavior in shorter times,
thus improving variability assessment.

We used our method to evaluate the impact that the data processing
protocol has on the variability of the resulting rheological parameters
and compared our results with those obtained using the triplicate
method. The Herschel-Bulkley model showed to be very sensitive to the
curve-fitting interval, especially when such interval was not close to

= 0, being unsuitable for predicting high yield stresses. The present
approach suggests to complement rheology measurements with addi-
tional data. Doing so, we would have a regularization point for the
curve-fitting algorithm within a shear rate zone without access to data
points (e.g. due to wall slip) and a threshold for the yield stress value,
thus reducing its variability while keeping flow curve parametric fitting
rationale. Studying the effect of experimental noise on the variability of
the model-derived parameters, it was possible to observe a strong re-
lationship between experimental accuracy and parametric precision.
Furthermore, when combining the effects of experimental resolution,
data processing protocol, and the complexity of the applicable mathe-
matical model, it is possible to explore the boundaries of the accuracy
that could be achieved (with given resources) while calculating model-
derived parameters.

We have applied our methodology in a case study, obtaining useful
insights regarding the effect that high NaCl concentrations might have
on copper sulfide tailings bearing a high clay content. The present work
finally stresses the key role that addressing variability in experimentally
determined parameters has for proper operational forecasting and
control.

Fig. 12. Effect of the salinity of the medium on the rheology (Bingham yield
stress) of clay suspensions. As discussed in the previous sections, the Bingham
yield stress 0

B presents little variability, and the uncertainty in the solid con-
centration is the main contribution to variability. Nevertheless, a clear trend is
observable for all the synthetic tailings, as higher NaCl concentrations seem to
produce lower yield stresses in the suspensions.
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Appendix A. Flow curve measurement sequence

The flow curve measurement sequence is detailed in Table A.5.

Appendix B. Error propagation for solids concentration

B.1. Analytical error propagation

Table B.6 shows the analytical components of and H used in the error propagation analysis.

Table A.5
Flow curve measurement sequence.

Shear rate [s ]1 Time [s]

1 400 120
400 30

400 1 120
1.0 120
1.5 120
2.3 120
3.6 120
5.5 120
8.4 120

12.9 60
19.8 60
30.3 60
46.4 60
71.1 60

109.0 30
166.9 30
255.7 30
391.7 30
600.0 30

Table B.6
Analytical components of and H for error propagation analysis.
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B.2. Sensitivity analysis

To assess the parameters’ contribution to the variability in the solids concentration, , a sensitivity analysis at medium and high values of the
relative error in terms of such variable has been carried out. As shown in Fig. B.13, the impact of small variations in the solid density s seems not to
be relevant, especially at high values of . On the other hand, small variations inCp may have a considerable effect on reported values of , especially
when is close to the maximum packing fraction of the suspension, m.
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