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Partitioning edge-coloured hypergraphs into
few monochromatic tight cycles

Sebastián Bustamante Jan Corsten Nóra Frankl

Alexey Pokrovskiy Jozef Skokan

26th March 2020

Confirming a conjecture of Gyárfás, we prove that, for all natural numbersk
and r , the vertices of every r -edge-coloured complete k-uniform hypergraph
can be partitioned into a bounded number (independent of the size of the
hypergraph) of monochromatic tight cycles. We further prove that, for all
natural numbersp and r , the vertices of every r -edge-coloured complete graph
can be partitioned into a bounded number of p-th powers of cycles, settling
a problem of Elekes, Soukup, Soukup and Szentmiklóssy. In fact we prove a
common generalisation of both theorems which further extends these results
to all host hypergraphs of bounded independence number.

1 Introduction and main results
A conjecture of Lehel states that the vertices of any 2-edge-coloured complete graph on n
vertices can be partitioned into twomonochromatic cycles of different colours. Here single
vertices and edges are considered cycles. This conjecture first appeared in [2], where it
was also proved for some special types of colourings of Kn. Łuczak, Rödl and Szemerédi
[14] proved Lehel’s conjecture for all sufficiently large n using the regularity method. In
[1], Allen gave an alternative proof, which gave a better bound on n. Finally, Bessy and
Thomassé [3] proved Lehel’s conjecture for all integers n ≥ 1.

For colourings with more than two colours (all colourings in this paper are edge-
colourings), Erdős, Gyárfás and Pyber [7] proved that the vertices of every r -coloured
complete graph can be partitioned intoO(r 2 log r )monochromatic cycles and conjectured
that r cycles should always suffice. Their conjecture was refuted by Pokrovskiy [15], who
showed that, for every r ≥ 3, there exist infinitely many r -coloured complete graphs
which cannot be vertex-partitioned into r monochromatic cycles. Pokrovskiy also pro-
posed the following alternative version of Erdős, Gyárfás and Pyber conjecture, which is
still widely open.



Conjecture 1.1 (Pokrovskiy [15]). In every r -edge-coloured complete graph, there are r

vertex-disjoint monochromatic cycles covering all but cr vertices, where cr is a constant de-

pending only on r .

The best-known result for general r is due to Gyárfás, Ruszinkó, Sárközy and Szemerédi
[10], who showed that the vertices of every large enough r -coloured complete graph can
be partitioned into at most 100r log r monochromatic cycles.

Similar partitioning problems have been considered for other graphs, for example, pow-
ers of cycles. Given a graph H and a natural number p, the p-th power of H is the graph
obtained from H by putting an edge between any two vertices whose distance is at most
p in H . Grinshpun and Sárközy [8] proved that the vertices of every two-coloured com-
plete graph can be partitioned into at most 2cp logp monochromatic p-th powers of cycles,
where c is an absolute constant. They conjectured that a much smaller number of pieces
should suffice, which was confirmed by Sárközy [20]. For more than two colours not
much is known. Elekes, D. Soukup, L. Soukup and Szentmiklóssy [6] proved an analogue
of the result of Grinshpun and Sárközy for infinite graphs and multiple colours and asked
whether it is true for finite graphs.

Problem 1.2 (Elekes et al. [6, Problem 6.4]1). Prove that for every r ,p ∈ N, there is some

c = c(r ,p) such that the vertices of every r -edge-coloured complete graph can be partitioned

into at most c monochromatic p-th powers of cycles.

We shall prove a substantial generalisation of this problem, see Corollary 1.5.
Another possible generalisation is to study questions about monochromatic partitions

for hypergraphs. A k-uniform hypergraph (k-graph) consists of a vertex setV and a set of
k-element subsets ofV . The loose k-uniform cycle of lengthm is the k-graph consisting of
m(k − 1) cyclically ordered vertices andm edges, each edge formed of k consecutive ver-
tices, so that consecutive edges intersect in exactly one vertex. The tight k-uniform cycle
of lengthm is the k-graph withm cyclically ordered vertices in which any k consecutive
vertices form an edge. Loose and tight paths are defined in a similar way. For technical
reasons we consider single vertices both as tight and loose cycles and paths.

Questions about monochromatic partitions for hypergraphs were first studied by Gyár-
fás and Sárközy [11] who showed that for every k , r ∈ N, there is some c = c(k, r ) so that
the vertices of every r -edge-coloured complete k-graph can be partitioned into at most c
loose cycles. Later, Sárközy [19] showed that c(k, r ) can be be chosen to be 50rk log(rk).
Gyárfás conjectured that a similar result can be obtained for tight cycles.

Conjecture 1.3 (Gyárfás [9]). For everyk, r ∈ N, there is some c = c(k, r ) so that the vertices

of every r -edge-coloured complete k-graph can be partitioned into at most c monochromatic

tight cycles.

We shall prove this conjecture and a generalisation in which we allow the host- hyper-
graph to be any k-graph with bounded independence number (i.e. without a large set of
vertices containing no edges).

1The problem is phrased differently in [6] but this version is stronger, as Elekes et al. explain below the
problem.
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Theorem 1.4. For every k, r ,α ∈ N, there is some c = c(k, r ,α) such that the vertices of

every r -edge-coloured k-graph G with independence number α(G) ≤ α can be partitioned

into at most c monochromatic tight cycles.

We note that a similar result for graphs was obtained by Sárközy [18], and for loose cycles
in hypergraphs by Gyárfás and Sárközy [12].
As a corollary we obtain the following extension of Theorem 1.4 to p-th powers of tight

cycles. Here thep-th power of a k-uniform tight cycle is the k-graph obtained by replacing
every edge of the (k + p − 1)-uniform tight cycle by the complete k-graph on k + p − 1
vertices.

Corollary 1.5. For every k, r ,p,α ∈ N, there is some c = c(k, r ,p,α) such that the ver-

tices of every r -edge-coloured k-graph G with α(G) ≤ α can be partitioned into at most c

monochromatic p-th powers of tight cycles.

Since Corollary 1.5 follows from Theorem 1.4 easily, we present its short proof here.

Proof of Corollary 1.5. For positive integers k, r , s1, . . . , sr , let R
(k)
r (s1, . . . , sr ) denote the r -

colour Ramsey number for k-graphs, that is the smallest positive integern, so that in every
r -colouring of the complete k-graph on n vertices, there is some i ∈ [r ] and si distinct
vertices which induce a monochromatic clique in colour i .

Let f (k, r ,α) be the smallest c for which Theorem 1.4 is true and let д(k, r ,p,α) be the
smallest c for which Corollary 1.5 is true. We will show thatд(k, r ,p,α) ≤ f (k+p−1, r , α̃),

where α̃ = R
(k)
r+1 (k + p − 1, . . . ,k + p − 1,α + 1)− 1. Suppose now we are given an r -edge-

coloured k-graph G with α(G) ≤ α . Define a (k + p − 1)-graph H on the same vertex-set
whose edges are the monochromatic cliques of size k+p−1 inG. By construction we have
α(H ) ≤ α̃ and thus, by Theorem 1.4, there are at most f (k + p − 1, r , α̃) monochromatic
tight cycles partitioning V (H ). To conclude, note that a tight cycle in H corresponds to a
p-th power of a tight cycle in G. �

In the next section, we shall prove Theorem 1.4.

2 The proof of Theorem 1.4
The proof of Theorem 1.4 combines the absorption method introduced in [7] and the reg-
ularity method. For the complete host k-graph G, the proof of Theorem 1.4 can be sum-
marised as follows.
First, we find a monochromatic k-graph H0 ⊂ G with the following special property:

There is some B ⊂ V (H0), so that for every B
′ ⊂ B there is a tight cycle inH0 with vertices

V (H0) \ B′. This is explained in Section 2.3. We then greedily remove vertex-disjoint
monochromatic tight cycles from V (G) \V (H0) until the set of leftover vertices R is very
small in comparison to B. Finally, in Section 2.4, we show that the leftover vertices can be
absorbed by H0. More precisely, we show that there are constantly many vertex-disjoint
tight cycles with vertices in R∪B which cover all of R. This is the crucial part of the paper
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and also the place where we use tools from the hypergraph regularity method (introduced
in Section 2.2).

In order to prove the main theorem for host k-graphs with bounded independence num-
ber, we need to iterate the above process a few times. Here the main difficulty is to show
that the iteration process stops after constantly many steps. This will be shown in Sec-
tion 2.5. We start with some basic notation about hypergraphs.

2.1 Notation
For a set of vertices V and a natural number k ≥ 2, let

(V
k

)

denote the set of all k-element

subsets of V . Given a subset E ⊂
(V
k

)

, H = (V ,E) is called a k-uniform hypergraph (k-
graph). We sometimes use the notation H = (V (H ),E(H )). The density of a k-graph H

with n vertices is given by d(H ) = |E(H )|/
(n
k

)

.
Let H be a k-graph. Given some e ⊂ V (H ) with 1 ≤ |e | ≤ k , we define its degree of e

by deg(e) := | f ∈ E(H ) : e ⊂ f |. If |e | = 1 for some v ∈ V (H ) we simply write deg(v) for
deg({v}) and if |e | = k − 1, we call deg(e) co-degree. Given a partition P = {V1, . . . ,Vt }

of V , we say that H is P-partite if |e ∩Vi | ≤ 1 for every e ∈ E(H ) and every i ∈ [t]. The
k-graph H is s-partite if it is P-partite for some partition P of V with s parts. We denote
by K (k)(P) the complete P-partite k-graph. Furthermore, given some 2 ≤ j ≤ k − 1 and a
j-graph H , we define K (k)(H ) to be the set of all k-cliques in H (j), seen as a k-graph on V .
Given a k-graph H and ℓ ≤ k distinct vertices v1, . . . ,vℓ ∈ V (H ), we define the link-

graph LkH (v1, . . . ,vℓ) as the (k − ℓ)-graph onV (H ) \ {v1, . . . ,vℓ} with edges {e ∈
(V (H )
k−ℓ

)

:
e ∪ {v1, . . . ,vl } ∈ E(H )}. If, in addition, disjoint sets V1, . . . ,Vk−ℓ ⊂ V (H ) \ {v1, . . . ,vℓ}

are given, we denote by LkH (v1, . . . ,vℓ;V1, . . . ,Vk−ℓ) the (k − ℓ)-partite (k − ℓ)-graph with
parts V1, . . . ,Vk−ℓ and edges {e ∈ K (k−ℓ)(V1, . . . ,Vk−ℓ) : e ∪ {v1, . . . ,vℓ} ∈ E(H )}. If there
is no danger of confusion, we drop the subscript H .

2.2 Finding short paths
The goal of this section is to prove the following lemma, which allows us to find in any
dense k-graph G, a dense subgraph H ⊂ G in which any two non-isolated (k − 1)-sets
are connected by a short path of a given prescribed length. For this, we need to use basic
tools from hypergraph regularity, but the reader may use Lemma 2.1 as a black box if she
would like to avoid it.

Before stating the lemma, we need to introduce some notation. Fix some k ≥ 2 and a
partition P = {V1, . . . ,Vk}. We call a tight path in K (k)(P) positively oriented if its vertex
sequence (u1, . . . ,um) travels through P in cyclic order, i.e. there is some j ∈ [k] such
that ui ∈ Vi+j for every i ∈ [m], where we identify k + 1 ≡ 1. In this subsection, we will
only consider positively oriented tight cycles. In particular, given some e ∈ K (k−1)(P), the
ordering of e in a tight path starting at e is uniquely determined.

Lemma 2.1. For every d > 0, there are constants δ = δ (d) > 0 and γ = γ (d) > 0, such that

the following is true for every partition P = {V1, . . . ,Vk} and every P-partite k-graph G of
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density at least d . There is a P-partite sub-k-graph H ⊂ G of density at least δ such that

for every set S = S1 ∪ . . . ∪ Sk with Si ⊂ Vi and |Si | ≤ γ |Vi | and any two e, f ∈ K (k−1)(P)

which are disjoint from S and have positive co-degree, there is a positively oriented tight path

of length ℓ ∈ {k + 2, . . . , 2k + 1} in H which starts at e , ends at f and avoids S .

Note that the length of the cycle in Lemma 2.1 is uniquely determined by the types of
e and f . The type of e ∈ K (k−1)(P), denoted by tp (e), is the unique index i ∈ [k] such
that e ∩ Vi = ∅. Given two (k − 1)-sets e, f ∈ K (k−1)(P), the type of (e, f ) is given by
tp (e, f ) := tp (f ) − tp (e) (mod k). It is easy to see that every tight path in K (k)(P) which
starts at e and ends at f has length ℓk+tp (e, f ) for some ℓ ≥ 0. In particular, in Lemma 2.1,
we have ℓ = k + tp (e, f ) if tp (e, f ) ≥ 2 and ℓ = 2k + tp (e, f ) otherwise.

2.2.1 Hypergraph regularity

We will now introduce the basic concepts of hypergraph regularity in order to state a
simple consequence of the strong hypergraph regularity lemma which guarantees a dense
regular complex in every large enough k-graph.

For technical reasons, we want to see a 1-graph on some vertex-setV as a partition ofV
in what follows. We call H (k)

= (H (1), . . . ,H (k)) a k-complex if H (j) is a j-graph for every
j ∈ [k] and H (j) underlies H (j+1), i.e. H (j+1) ⊂ K (j+1)(H (j)) for every j ∈ [k − 1]. Note that,
in particular, H (j) is H (1)-partite for every j ∈ [k]. We callH (k) s-partite if H (1) consists of
s parts.

Now, given some j-graph H (j) and some underlying (j − 1)-graph H (j−1), we define the
density of H (j) w.r.t. H (j−1) by

d
(

H (j) |H (j−1)
)

=

�

�H (j) ∩ K (j)(H (j−1))
�

�

�

�K (j)(H (j−1))
�

�

.

We are now ready to define regularity.

Definition 2.2.

• Let r , j ∈ N with j ≥ 2, ε,dj > 0, and H (j) be a j-partite j-graph and H (j−1) be an
underlying (j-partite) (j − 1)-graph. We call H (j) (ε,dj , r )-regular w.r.t. H

(j−1) if for

all Q
(j−1)
1 , . . . ,Q

(j−1)
r ⊂ E(H (j−1)), we have

�

�

�

⋃

i∈[r ]
K (j)

(

Q
(j−1)
i

)�

�

� ≥ ε
�

�

�K (j)
(

H (j−1)
)�

�

� =⇒

�

�

�d
(

H (j)
�

�

�

⋃

i∈[r ]
Q

(j−1)
i

)

− dj

�

�

� ≤ ε .

We say (ε, ∗, r )-regular for (ε, d
(

H (j) |H (j−1)
)

, r )-regular and (e,d)-regular for

(ε,d, 1)-regular.

• Let j, s ∈ N with s ≥ j ≥ 2, ε,dj > 0, and H (j) be an s-partite j-graph and H (j−1)

be an underlying (s-partite) (j − 1)-graph. We call H (j) (ε,dj)-regular w.r.t. H
(j−1) if

H (j)[V1, . . . ,Vj] is (ε,dj)-regular w.r.t. H
(j−1)[Vi1, . . . ,Vi j ] for all 1 ≤ i1 < . . . < ij ≤ s ,

where {V1, . . . ,Vs} is the vertex partition of V (H (j)).
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• Let k, r ∈ N, ε, εk ,d2, . . . ,dk > 0, and H (k)
= (H1, . . . ,Hk) be a k-partite k-complex.

We callH (k) (d2, . . . ,dk , ε, εk , r )-regular, ifH
(j) is (ε,dj)-regular with respect toH

(j−1)

for every j = 2, . . . ,k − 1 and H (k) is (εk ,dk , r )-regular w.r.t. H
(k−1).

The following theorem is a direct consequence of the strong hypergraph regularity
lemma as stated in [17] (with the exception that we allow for an initial partition of not
necessarily equal sizes).

Theorem 2.3. For all integers k ≥ 2, constants εk > 0, and functions ε : (0, 1) → (0, 1) and
r : (0, 1) → N, there exists some δ = δ (k, ε, εk , r ) > 0 such that the following is true. For every
partition P = {V1, . . . ,Vk} of some set V and every P-partite k-graph G(k), there are sets

Ui ⊂ Vi with |Ui | ≥ δ |Vi | for every i ∈ [k] and constants d2, . . . ,dk ≥ δ for which there exists

some (d2, . . . ,dk , ε(d), εk , r (d))-regular k-complex H (k), so that H (k)
= G(k)[U1, . . . ,Uk] and

H (1)
= {U1, . . . ,Uk}.

We will use the following special case of the extension lemma in [5, Lemma 5] to
find short tight paths between almost any two (k − 1)-sets in a regular complex. Fix a
(d2, . . . ,dk , ε, εk)-regular complex H (k)

= (P,H (2), . . . ,H (k)), where P = {V1, . . . ,Vk}. Let

H
(k−1)
i ⊂ H (k−1) denote the edges of type i and note that the dense counting lemma for

complexes [5, Lemma 6] implies that

�

�

�H
(k−1)
i0

�

�

� = (1 ± ε)

k−1
∏

j=2

d
(k−1j )
j

∏

i∈[k]\i0

|Vi | .

Given some β > 0, we call a pair (e, f ) ∈ H
(k−1)
i1

×H
(k−1)
i2

β-typical forH (k) if the number

of tight paths of length ℓ := k + tp (i1, i2) in H (k) which start at e and end at f is

(1 ± β)

k
∏

j=2

d
ℓ(kj )−2(

k−1
j )

j

∏

i∈{i1,...,i2}

|Vi | ,

where {i1, . . . , i2} is understood in cyclic ordering.

Lemma 2.4. Let k, r ,n0 ∈ N, β ,d2, . . . ,dk , ε, εk > 0 and suppose that

1/n0 ≪ 1/r , ε ≪ min{εk ,d2, . . . ,dk−1} ≤ εk ≪ β ,dk , 1/k .

Then the following is true for all integers n ≥ n0, for all indices i1, i2 ∈ [k] and every

(d2, . . . ,dk , ε, εk , r )-regular complex H (k)
=

(

H (1), . . . ,H (k)
)

with |Vi | ≥ n0 for all i ∈ [k],

where H (1)
= {V1, . . . ,Vk}. All but at most β

�

�

�H
(k−1)
i1

�

�

�

�

�

�H
(k−1)
i2

�

�

� pairs (e, f ) ∈ H
(k−1)
i1

× H
(k−1)
i2

are β-typical for H (k).

Combining Theorem 2.3 and Lemma 2.4 gives Lemma 2.1.
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Proof-sketch of Lemma 2.1. Apply Theorem 2.3 with suitable constants and delete all e ∈

H (k−1) of small co-degree. Let e ∈ H
(k−1)
i1

and f ∈ H
(k−1)
i2

for some i1, i2 ∈ [k] and define

X =
{

д(k−1) ∈ H
(k−1)
i1+1

: e ∪ д(k−1) ∈ H (k)
}

and

Y =
{

д(k−1) ∈ H
(k−1)
i2−1

: f ∪ д(k−1) ∈ H (k)
}

.

Let X̃ ⊂ X and Ỹ ⊂ Y be the sets of all those edges inX andY avoiding S . By Lemma 2.4 at
least one pair in X̃ ×Ỹ must be typical and by a counting argument not all of the promised
paths can touch S . �

2.3 Absorption Method
The idea of the absorption method is to first cover almost every vertex by vertex-disjoint
monochromatic tight cycles and then absorb the leftover using a suitable absorption
lemma.

Lemma 2.5. For all k, r ,α ∈ N and every γ > 0, there is some c = c(k, r ,α ,γ ) so that the

following is true for every r -coloured k-graph G on n vertices with α(G) ≤ α . There is a

collection of at most c vertex-disjoint monochromatic tight cycles whose vertices cover all but

at most γn vertices.

Definition 2.6. LetG be a hypergraph, χ be a colouring of E(G) andA,B ⊂ V (G) disjoint
subsets. A is called an absorber for B if there is a monochromatic tight cycle with vertices
A ∪ B′ for every B′ ⊂ B.

Lemma 2.7. For every k, r ,α ∈ N, there is some β = β(k, r ,α) > 0 such that the following

is true for every k-graph G with α(G) ≤ α . In every r -colouring of E(G) there are disjoint

sets A,B ⊂ V (G) with |B | ≥ β |V (G)| such that A absorbs B.

The following hypergraphwill function as our absorber. A very similar hypergraphwas
used by Gyárfás and Sárközy to absorb loose cycles [11, 12]. See Figure 1 for an example.

Definition 2.8. The (k-uniform) crown of order t , T
(k)
t , is a tight cycle with n = t(k − 1)

verticesv0, . . . ,vn−1 (the base) and additional vertices u0, . . . ,ut−1 (the rim). Furthermore,
for each i = 0, . . . , t−1, we add the k edges {ui ,v(k−1)i+j , . . . ,v(k−1)i+j+k−2}, j = 0, . . . ,k−1.

It is easy to see that the base of a crown is an absorber for the rim. To prove Lemma 2.7,
we therefore only need to show that we can always find monochromatic crowns of lin-
ear size. Both this and Lemma 2.5 are consequences of the following theorem of Cooley,
Fountoulakis, Kühn, and Osthus [5] (see also [13] and [4]).

Theorem 2.9. For every r ,k,∆ ∈ N, there is someC = C(r ,k,∆) > 0 so that the following is
true for all k-graphs H1, . . . ,Hr with at most n vertices and maximum degree at most ∆, and

every N ≥ Cn. In every edge-colouring of K
(k)
N

with colours c1, . . . , cr , there is some i ∈ [r ]

for which there is a ci-monochromatic copy of Hi .
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Figure 1: A 3-uniform crown of order 4. The edges of the tight cycle are red and the
remaining edges are blue.

Proof of Lemma 2.7. Suppose k, r ,α and G are given as in the theorem and that E(G) is
coloured with r colours. Let N = |V (G)|, ∆ := max

{

2k,
( α
k−1

)}

and c = 1/((k − 1)C)
where C = C(r + 1,k,∆) is given by Theorem 2.9. Furthermore, let n = |V (TcN )| = N /C .

Consider now the (r + 1)-colouring of E
(

K
(k)
N

)

in which every edge in E(G) receives the

same colour as in G and every other edge receives colour r + 1. Let Hr+1 = K
(k)
α+1 and

Hi = T
(k)
cN

for all i ∈ [t], and note that ∆(Hi) ≤ ∆ for all i ∈ [r + 1]. By choice of ∆, there is
no monochromaticHr+1 in colour r+1 and hence, sinceN ≥ Cn, there is a monochromatic
copy of Hi for some i ∈ [r ]. Therefore, there is a monochromatic crown of size c |V (G)|

and its base is an absorber for its rim. �

Proof of Lemma 2.5. Applying Theorem 2.9 with r + 1 colours, uniformity k , ∆ =

max{k,α }, and H1 = . . . = Hr being tight cycles on n/(CThm 2.9(r + 1,k,∆)) vertices

and Hr+1 = K
(k)
α+1 gives the following. There exist some ε = ε(r ,k,α) so that in every

r -coloured k-graph G on n vertices with α(G) ≤ α , there is a monochromatic tight
cycle on at least εn vertices.2 By iterating this process i times, we find i vertex-disjoint
monochromatic tight cycles covering all but (1 − ε)in vertices. This finishes the proof,
since (1 − ε)i → 0 as i → ∞. �

2.4 Absorption Lemma
In this section we prove a suitable absorption lemma for our approach.

2Here, we treat non-edges as colour r + 1 again.
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Lemma 2.10. For every ε > 0 and k, r ∈ N, there is some γ = γ (k, r , ε) > 0 and some

c = c(k, r , ε) such that the following is true. LetH be ak-partitek-graphwith partsB1, . . . ,Bk
such that |B1 | ≥ . . . ≥ |Bk−1 | ≥ |Bk |/γ and |Lk(v ;B1, . . . ,Bk−1)| ≥ ε |B1 | · · · · |Bk−1 | for every

v ∈ Bk . Then, in every r -colouring of E(H ), there are c vertex-disjoint monochromatic tight

cycles covering Bk .

Note that it is enough to cover all but a bounded number of vertices, since we allow
single vertices as tight cycles. We will make use of this in the proof and frequently remove
few vertices.

We will use the following theorem of Pósa [16].

Theorem 2.11 (Pósa). In every graph G, there is a collection of at most α(G) cycles whose

vertices partition V (G).

We further need the following simple but quite technical lemma, which states that,
given a ground set X and a collection F of subsets of X of linear size, we can group
almost all of these subsets into groups of size 4 which have a large common intersection.
We will apply this lemma when X is the edge-set of a hypergraphG and F is a collection
of subgraphs of G.

Lemma 2.12. For every ε > 0 there is some δ = δ (ε) > 0 and some C = C(ε) > 0 such

that the following is true for everym ∈ N. Let X be set of sizem and F ⊂ 2X be a family of

subsets such that |F | ≥ εm for every F ∈ F . Then there is some G ⊂ F of size |G| ≤ C and a

partitionP of F \G into sets of size 4 such that
�

�

⋂4
i=1 Bi

�

� ≥ δm for every {B1,B2,B3,B4} ∈ P.

We will prove the lemma with δ (ε) = e4/26 and C(ε) = 8/ε2 + 2/ε .

Proof. Define a graph G on F by {F1, F2} ∈ E(G) if and only if |F1 ∩ F2 | ≥ (ε/2)2m. We
claim that α(G) ≤ 2/ε . Suppose for contradiction that there is an independent set I of size
2/ε + 1. Then we have |F0 \

⋃

F∈I\{F0} F | ≥ εm/2 for every F0 ∈ I and hence |
⋃

F∈I F | > m,
a contradiction.

Since every graph has a matching of size at least v(G) −α(G), we find a matching P1 in
G of all but at most 2/ε vertices of G (i.e. F ∈ F ). Let G1 = F \V (P1) and note that P1 is
a partition of F \ G1 into sets of size 2. Let F1 = {F1 ∩ F2 : {F1, F2} ∈ P1} and iterate the
process once more. �

Proof of Lemma 2.10. It suffices to prove the lemma for r = 1. Indeed, for each v ∈ Bk ,
delete all edges containingv which are not in its majority colour and apply the one-colour
result (with ε′ = ε/r ) for each ‘colour class’.

Fix ε > 0, k ≥ 2 and a k-partite k-graph H with parts B1, . . . ,Bk as in the statement of
the lemma. Choose constants γ ,δ1,δ2,δ3 > 0 so that 0 < γ ≪ δ3 ≪ δ2 ≪ δ1 ≪ ε, 1/k . We
begin with a simple but important observation.

Observation 2.13. Let v1, . . . ,vt ∈ Bk be distinct vertices and C be a tight cycle in

K (k−1) (B1, . . . ,Bk−1) with vertex-sequence (u1,1, . . . ,u1,k−1, . . . ,ut ,1, . . . ,ut ,k−1). Denote by

es,i the edge in C starting at us,i and suppose that
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v1 v2 v3

u1,1 u1,2 u2,1 u2,2 u3,1 u3,2 u1,1 u1,2

(a) Link graphs

v1 v2 v3

u1,1 u1,2 u2,1 u2,2 u3,1 u3,2 u1,1 u1,2

(b) Tight Cycle

Figure 2: A sketch of Observation 2.13 for k = t = 3. Figure (a) shows the link graphs ofv1
(blue), v2 (red) and v3 (green). The colours are for demonstration purposes only
and are not related to the given edge-colouring. Figure (b) shows the resulting
tight cycle. In both figures, we identify the ends (u1,1 and u1,2) to simplify the
drawing.

(i) es,i ∈ Lk (vs ;B1, . . . ,Bk−1) for every s ∈ [t] and every i ∈ [k − 1] and

(ii) es,1 ∈ Lk (vs−1;B1, . . . ,Bk−1) for every s ∈ [t] (here v0 := vt ).

Then, (u1,1, . . . ,u1,k−1,v1, . . . ,ut ,1, . . . ,ut ,k−1,vt ) is the vertex-sequence of a tight cycle in H .

The proof of Observation 2.13 follows readily from the definition of the link graphs.
See Figure 2 for an overview. We will now proceed in three steps. For simplicity, we write
Hv := LkH (v ;B1, . . . ,Bk−1) for v ∈ Bk .

Step 1 (Divide into blocks). By Lemma 2.12, there is some C = C(ε) ∈ N and a par-
tition P of all but C graphs from {Hv : v ∈ Bk} into blocks H of size 4 with e(H) :=
|
⋂

H∈H E(H )| ≥ δ1 |B1 | · · · |Bk−1 | for every H ∈ P. Remove the C leftover vertices from
Bk .

Think of every block H now as a (k − 1)-graph with edges E(H) :=
⋂

H∈H E(H ). By
applying Lemma 2.1 (with k−1 instead of k), for eachH ∈ P, we find a subgraphH ′ ⊂ H

such that e(H ′) ≥ δ2 |B1 | · · · |Bk−1 | with the same property as in Lemma 2.1. By deleting
all the edges ofH \H ′ we may assume thatH itself has this property.

Step 2 (Cover blocks by paths). Define an auxiliary graph G with V (G) = P and
{H1,H2} ∈ E(G) if and only if e(H1 ∩ H2) ≥ δ3 |B1 | · · · |Bk−1 |. Similarly as in the proof

10



of Lemma 2.12, we conclude that α(G) ≤ 2/δ2, and hence V (G) can be covered by 2/δ2
vertex-disjoint paths using Theorem 2.11.

H1 H2 H3 H4

e0

x
(0)
1
= y

(0)
1

x
(0)
2
= y

(0)
2

x
(0)
3
= y

(0)
3

e4

x
(4)
1
= y

(4)
1

x
(4)
2
= y

(4)
2

x
(4)
3
= y

(4)
3

e1

x
(1)
1

x
(1)
2

x
(1)
3

y
(1)
1

y
(1)
2

y
(1)
3

e
′

1

e2

x
(2)
1

x
(2)
2

x
(2)
3

e
′

2
y
(2)
1

y
(2)
2

y
(2)
3

e3

x
(3)
1

x
(3)
2

x
(3)
3

e
′

3

y
(3)
1

y
(3)
2

y
(3)
3

v1,v2,v15,v16 v3,v4,v13,v14 v5,v6,v11,v12 v7,v8,v9,v10

(a) A path of blocks.

(x
(0)
1
,x

(0)
2
,x

(0)
3
) (x

(1)
1
,x

(1)
2
,x

(1)
3
)

e1P1
(x

(2)
1
,x

(2)
2
,x

(2)
3
)

e2P2
(x

(3)
1
,x

(3)
2
,x

(3)
3
)

e3P3
(x

(4)
1
,x

(4)
2
,x

(4)
3
)

P4

(y
(0)
1
,y

(0)
2
,y

(0)
3
) (y

(1)
1
,y

(1)
2
,y

(1)
3
)

e ′
1

Q1

(y
(2)
1
,y

(2)
2
,y

(2)
3
)

e ′
2

Q2

(y
(3)
1
,y

(3)
2
,y

(3)
3
)

e ′
3

Q3

(y
(4)
1
,y

(4)
2
,y

(4)
3
)

Q4

e0 e4

e ′
0

e ′
4

= =

(b) Edge sequence of the auxiliary 3-uniform tight cycle.

x
(0)
2

x
(4)
2

x
(0)
3

x
(4)
1

x
(4)
3

v1 ∗ ∗ ∗ v2 x
(1)
1

x
(1)
2

x
(1)
3

v3 ∗ ∗ ∗ v4 x
(2)
1

x
(2)
2

x
(2)
3

v5 ∗ ∗ ∗ v6 x
(3)
1

x
(3)
2

x
(3)
3

v7 ∗ ∗ ∗ v8

x
(0)
1

v16 ∗ ∗ ∗ v15 y
(1)
3

y
(1)
2

y
(1)
1

v14 ∗ ∗ ∗ v13 y
(2)
3

y
(2)
2

y
(2)
1

v12 ∗ ∗ ∗ v11 y
(3)
3

y
(3)
2

y
(3)
1

v10 ∗ ∗ ∗ v9

(c) Vertex sequence of the resulting tight cycle.

Figure 3: Finding a tight cycle in a path of blockswhenk = t = 4. In Figure (c), ∗ represents
an internal vertex of a some path Pi or Qi .

Step 3 (Lift to tight cycles). This step is the crucial part of the argument. To make it
easier to follow the proof, Figure 3 provides an example for k = t = 4.

We will find in each path of blocks an auxiliary tight cycle in K (k−1)(B1, . . . ,Bk−1) of
the desired form to apply Observation 2.13. Let P = (H1, . . . ,Ht ) be one of the paths.

Choose disjoint edges e0 =
{

x
(0)
1 , . . . ,x

(0)
k−1

}

∈ E(H1) and et =
{

x
(t)
1 , . . . ,x

(t)

k−1

}

∈ E(Ht ).

For each s ∈ [t − 1], further choose two edges es =
{

x
(s)
1 , . . . ,x

(s)

k−1

}

∈ E(Hs) ∩E(Hs+1) and

e′s =
{

y
(s)
1 , . . . ,y

(s)

k−1

}

∈ E(Hs) ∩ E(Hs+1) so that all chosen edges are pairwise disjoint. We

identify x
(0)
i = y

(0)
i and x

(s)
i = y

(s)
i for every i ∈ [k − 1], and e0 = e′0 and et = e′t . Assume

without loss of generality, that x
(s)
i ∈ Bi for every i ∈ [k − 1] and all s = 0, . . . , t .

By construction, every block H has the property guaranteed in Lemma 2.1. There-
fore, for every s ∈ [t], there is a tight path Ps ⊂ Hs of length 2k − 3 which starts at
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(x
(s−1)
2 , . . . ,x

(s−1)
k−1

), ends at (x
(s)
1 , . . . ,x

(s)

k−2
) and (internally) avoids all previously used ver-

tices.3 Similarly, there is for every s ∈ [t] a tight pathQs ⊂ Hs of length 2k−3 which starts

at and (y
(s)
1 , . . . ,y

(s)

k−2
), ends at (y

(s−1)
2 , . . . ,y

(s−1)
k−1

) and (internally) avoids all previously used
vertices.

Let U ⊂ Bk be the set of vertices v for which Hv ∈ Hi for some i ∈ [t]. To finish the
proof, we want to apply Observation 2.13 to cover U . Label U = {v1, . . . ,v4t } so that
Hv2i+1,Hv2i+2,Hv4t−2i ,Hv4t−2i−1 ∈ Hi for all i = 0, . . . , t − 1. Consider now the tight cycle C
in Kk−1 (B1, . . . ,Bk−1) with edge sequence

e′0 = e0, P1, e1, P2, e2, . . . , Pt , et = e′t ,Qt , . . . , e1,Q1, e
′
0 = e0 (1)

and relabel V (C) so that it’s vertex sequence is (u1,1, . . . ,u1,k−1, . . . ,ut ,1, . . . ,u4t ,k−1) (i.e.

u1,i = x
(0)
i for i ∈ [k − 1], u2,1, . . . ,u2,k−1 are the internal vertices of P1

4, u3,i = x
(1)
i for all

i ∈ [3] and so on). By construction, C has the desired properties to apply Observation 2.13,
finishing the proof. Note that it is important here that every blockHi has size 4 since we
cover 2 vertices of every block “going forwards” and 2 vertices “going backwards”. �

2.5 Proof of Theorem 1.4.
Fix α , r ,n ∈ N and a k-graph G with α(G) ≤ α . Choose constants 0 < β ,γ , ε ≪

max{α , r ,k}−1 so that γ = γ (r , ε) works for Lemma 2.10 and β = β(α , r ) works for
Lemma 2.7. The proof proceeds in α steps (the initial k − 1 steps are done at the same
time). No effort is made to calculate the exact number of cycles we use, we only care that
it is bounded (i.e. independent of n).

Step 1, . . . , k-1. By Lemma 2.7, there is some B ⊂ [n] of size βn with an absorber Ak−1 ⊂

[n]. Partition B into k − 1 sets B
(k−1)
1 , . . . ,B

(k−1)
k−1

of equal sizes. By Lemma 2.5, there is
a bounded number of vertex-disjoint monochromatic tight cycles in [n] \ (B ∪ Ak−1) so

that the set Rk−1 of uncovered vertices in [n] \ (B ∪ Ak−1) satisfies |Rk−1 | ≤ γ |B
(k−1)
1 |. Let

R′
k−1

⊂ Rk−1 be the set of vertices v with | Lk(v ;B
(k−1)
1 , . . . ,B

(k−1)
k−1

)| < ε |B
(k−1)
1 | · · · |B

(k−1)
k−1

|

and letR′′
k−1
= Rk−1\R

′
k−1

. By Lemma 2.10 we can find a bounded number of vertex-disjoint

cycles in B
(k−1)
1 ∪ . . . ∪ B

(k−1)
k−1

∪ R′′
k−1

covering R′′
k−1

. Remove them and let B
(k)
i ⊂ B

(k−1)
i be

the set of leftover vertices for every i ∈ [k − 1].

Step j (j = k, . . . ,α). In each step j, we will define disjoint sets B
(j+1)
1 , . . . ,B

(j+1)
j ,R′

j+1,Aj .

Fix some j ∈ {k, . . . ,α } now and suppose we have built disjoint sets B
(j)
1 , . . . ,B

(j)
j−1,R

′
j

and absorbers A2, . . . ,Aj−1. By Lemma 2.7 there is some B
(j)
j ⊂ R′

j of size β |R′
j | with an

absorber Aj ⊂ R′
j . By Lemma 2.5, there is a bounded number of monochromatic tight

cycles in R′
j \ (Aj ∪B

(j)
j ) so that the set Rj+1 of uncovered vertices in R

′
j \ (Aj ∪B

(j)
j ) satisfies

3Note that the number of previously used vertices in Vj is at most γ |Vj | for every j ∈ [k − 1] since every
tight cycle in G uses the same number of vertices from each part.

4Note that all Pi and Qi have 3k − 5 vertices and hence k − 1 internal vertices.
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|Rj+1 | ≤ γ |B
(j)
j |. Let R′

j+1 ⊂ Rj+1 be the set of vertices v with | Lk(v ;B
(j)
t1
, . . . ,B

(j)
tk−1

)| <

ε
�

�

�B
(j)
t1

�

�

� · · ·

�

�

�B
(j)
tk−1

�

�

� for all 1 ≤ t1 < . . . < tk−1 ≤ j and let R′′
j+1 = Rj+1 \ R′

j+1. By (
( j
k

)

applications of) Lemma 2.10 we can find a bounded number of vertex-disjoint cycles in

B
(j)
1 ∪ . . . ∪ B

(j)
j ∪ R′′

j covering R′′
j . Remove them and let B

(j+1)
i ⊂ B

(j)
i be the set of leftover

vertices for every i ∈ [j].

In the end we are left with disjoint sets B1 := B
(α+1)
1 , . . . ,Bα := B

(α+1)
α ,Bα+1 := R′

α+1 and

corresponding absorbers Ak−1, . . . ,Aα (Ak−1 absorbs B
(α+1)
1 , . . . ,B

(α+1)
k−1

). All other vertices
are covered by a bounded number of cycles.

We will show now that R′
α+1 = ∅, which finishes the proof. In order to do so, we assume

the contrary and find an independent set of size α + 1. Note that every vertex in B
(j)
j \ Bj

must be part of a tight cycle of our disjoint collection of tight cycles with one part in

Rj+1 and hence
�

�

�B
(j)
j \ Bj

�

�

� ≤
�

�Rj+1

�

� ≤ γ
�

�

�B
(j)
j

�

�

�. It follows that
�

�Bj

�

� ≥ (1 − γ )
�

�

�B
(i)
j

�

�

� for every

1 ≤ j ≤ i ≤ α and we conclude

Lk
(

v ;Bi1, . . . ,Bik−1
)

≤ Lk
(

v ;B
(i−1)
i1
, . . . ,B

(i−1)
ik−1

)

≤ ε
�

�

�B
(i−1)
i1

�

�

� · · ·

�

�

�B
(i−1)
ik−1

�

�

�

≤ ε(1 − γ )−(k−1)
�

�Bi1
�

� · · ·
�

�Bik−1
�

�

≤ 2ε
�

�Bi1
�

� · · ·
�

�Bik−1
�

�

for every i ∈ {k, . . . ,α + 1}, 1 ≤ i1 < . . . < ik−1 < i and v ∈ Bi . By the following lemma,
there is an independent set of size α + 1, a contradiction. �

Lemma 2.14. For all k,m ∈ N there is some ε = ε(k,m) > 0 such that the follow-

ing is true for every k-graph H and all non-empty, disjoint sets B1, . . . ,Bm ⊂ V (H ). If
�

� Lk(v ;Bi1, . . . ,Bik−1)
�

� ≤ ε
�

�Bi1
�

� · · ·
�

�Bik−1
�

� for all i ∈ {k, . . . ,m}, 1 ≤ i1 < . . . < ik−1 < i and

v ∈ Bi , then there is an independent transversal, i.e. an independent set {v1, . . . ,vm} with

vi ∈ Bi for all i ∈ [m].

We will prove the lemma for ε(k,m) =m−(k−1)2 .

Proof. Let δ = m−(k−1) and ε = δk−1. Choose vm ∈ Bm arbitrarily and assume now that
vm, . . . ,vj+1 are chosen for some j ∈ [m − 1]. Given s ∈ {2, . . . ,k − 1} and i = (i1, . . . , ik)

with 1 ≤ i1 < . . . < is−1 < is = j < is+1 < . . . < ik ≤ m, define

Bj(s, i) :=
{

u ∈ Bj :
�

� Lk
(

vik , . . . ,vis+1,u;Bis−1, . . . ,Bi1
)
�

� ≥ ε/δk−s
�

�Bi1
�

� · · ·
�

�Bis−1
�

�

}

.

Furthermore, given i = (i1, . . . , ik) with j = i1 < i2 < . . . < ik ≤ m, define

Bj(1, i) := N
(

vik , . . . ,vi2 ;Bi1
)

,

the neighbourhood of {vi2, . . . ,vik } in Bi1 . Note that, by choice of vm, . . . ,vj+1, we have
�

�

�Bj(s, i)
�

�

� < δ
�

�Bj

�

� for every s ∈ {2, . . . ,k − 1} and
�

�

�Bj(1, i)
�

�

� < ε/δk−2
�

�Bj

�

�

= δ
�

�Bj

�

�. Since there

are at most
(m−1
k−1

)

< 1/δ choices for (s, i), we can choose somevj ∈ Bj \
⋃

s,i Bj(s, i). Clearly,
at the end of this process, {v1, . . . ,vm} will be independent. �
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