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Topological magnonics in the two-dimensional van der Waals magnet CrI3
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We report on the magnon spectrum of Kitaev-Heisenberg magnets and extract the parameters to model a
two-dimensional CrI3. Our minimal spin Hamiltonian includes a contribution stemming from a Heisenberg,
isotropic exchange, and a contribution arising from a Kitaev interaction, anisotropic and frustrated exchange.
Our calculations reveal a gap that opens at the K and K ′ points and the topological nature of the magnons which
lead to the thermal Hall effect. Furthermore, we calculate the magnon spectrum of nanoribbons illustrating the
corresponding edge states.
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I. INTRODUCTION

The graphene revolution led the way into the world of
two-dimensional materials [1], with properties that baffled the
usual behavior found in their three-dimensional counterparts.
The path was followed with enthusiasm by early practition-
ers and has fruitfully rewarded them with a plethora of 2D
materials and van der Waals heterostructures [2] with ground-
breaking properties. The list of discoveries grows steadily
and includes a variety of semiconductors [3], superconductors
[4,5], and ferroelectrics [6]. Spintronic devices [7] are also
intensively targeted [8] as one of the most promising appli-
cations. In 2017, new forms of 2D materials were reported to
display ferromagnetism, a state of matter elusive in the two-
dimensional realm until then [9,10]. In particular, a van der
Waals material, single-layer CrI3, was reported to display fer-
romagnetism [9] under 45 K. To overcome 2D thermal fluctu-
ations that would otherwise render its magnetization unstable
[11], CrI3 relies heavily upon several forms of anisotropy [12].

In this work, we report on the collective behavior of the
magnetic degrees of freedom of two dimensional magnets
such as CrI3 in the form of magnons. Magnons are quantized
low-energy excitations of the magnetization field [13]. Their
control and manipulation might lead to novel applications in
the field of magnon spintronics [14,15]. As we detail below,
these excitations in CrI3 seem to defy the standard wisdom
in magnetism and display unusual behavior with potential
applications in several areas such as quantum computing and
spintronics.

The reason for these unusual properties is that CrI3, as re-
cently proposed [16,17], is described by a Kitaev’s interaction.
Since the material is essentially composed of an honeycomb
lattice of edge sharing octahedra, it is natural to expect simi-
larities with layered Na2IrO3 and a-RuCl3 well known for its
behavior dominated by a Kitaev Hamiltonian [18]. This inter-
action is an anisotropic form of frustrated exchange that, when
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acting alone, unleashes a formidable gallery of topologically
protected magnetic excitations, such as anyons and Majorana
excitations [19,20]. Like other systems that have been pro-
posed as implementation of topological magnonics [21–24],
the current proposal offers a way into controllable excitations
with great potential in the context of magnonic devices.

II. MODEL

The magnetic degrees of freedom in the CrI3 ferromag-
net can be modeled using the Heisenberg-Kitaev model.
Chromium sites form a magnetic honeycomb lattice, with
magnetic moment S = 3/2. The Hamiltonian consists in the
usual isotropic Heisenberg exchange, plus an anisotropic
contribution that comes from Kitaev model. The magnetic
Hamiltonian takes the form

H = −
∑
〈i, j〉

(
JSi · S j + KSγ

i Sγ

j

) −
∑

i

A
(
Sz

i

)2
. (1)

Here the first summation runs over nearest neighbors, and
we define Sγ

i ≡ Si · γ̂ , as the component of the magnetic
moment in the γ̂ direction. These directions depend on the
link, so γ̂ should be understood in (1) as an abbreviation of
γ̂ i j . J and K are the Heisenberg and Kitaev exchange con-
stants, respectively. We also include an easy-axis anisotropy of
magnitude A.

We are considering nearest neighbors in a honeycomb
lattice, so we have three kinds of links on each unit cell.
Figure 1 shows the links and the respective γ̂a directions. Note
that each γ̂a points normal to the Cr2I2 plaquette that contains
the link l̂a. The explicit form of γ̂a vectors in the basis xyz is

γ̂1 =
(

0,
−√

2√
3

,
1√
3

)
, (2a)

γ̂2 =
(

1√
2
,

1√
6
,

1√
3

)
, (2b)

γ̂3 = γ̂1 × γ̂2. (2c)
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FIG. 1. (a) Top view of CrI3 monolayer. The atoms in the unit
cell are highlighted in color: big purple spheres represent chromium
sites and small green spheres represent iodine sites. Lattices vectors
a1 = a0(

√
3

2 , 1
2 , 0) and a2 = a0(

√
3

2 , − 1
2 , 0) were drawn with red ar-

rows, a0 is the lattice constant. (b) First Brillouin zone, with the spe-
cial symmetry points �, K, and K′.(c) A view of the CrI3 monolayer
in perspective, with the plaquettes Cr2I2 colored according to their
normal vectors γ̂1, γ̂2, and γ̂3. Three plaquettes in the unit cell are
highlighted, and normal vectors form an orthonormal basis.

Where it is important that {γ̂a} vectors form an orthonormal
basis oriented as shown in Fig. 1. The orientation of this triad
and the presence of the additional anisotropy make this model
different from the one described in Refs. [25,26].

Both, the Heisenberg and Kitaev contributions to the over-
all exchange interaction, that can be put together using a
single exchange matrix Ji j in the form −∑

〈i, j〉 Si · Ji j · S j .
The matrix Ji j can take, depending on the link, one of three
different forms J1, J2 or J3. The matrix Ja takes the form:
Ja = J1 + Kγa ⊗ γ .

a It is important to note that Ja remains
invariant under the transformation γ̂a → −γ̂a.

A. Magnons

We are interested in obtaining, from Hamiltonian (1), the
Hamiltonian for magnons. This can be done by means of the
Holstein-Primakoff transformation [27]:

S(x)
iμ =

√
S

2
(ψ†

iμ + ψiμ), (3a)

S(y)
iμ = i

√
S

2
(ψ†

iμ − ψiμ), (3b)

S(z)
iμ = S − ψ

†
iμψiμ, (3c)

where μ ∈ {A, B} indexes the two lattices conforming the
bipartite honeycomb array of Cr atoms.

When the transformation is replaced in the Hamilto-
nian and reduced to quadratic terms, we obtain a Hamilto-
nian in terms of �k = (ψAk, ψBk, ψ

†
A−k, ψ

†
B−k )t , in the form

H = 1
2

∑
k �k

†Hk�k, where

Hk =

⎛
⎜⎝

ε αk 0 βk

α∗
k ε β−k 0

0 β∗
−k ε αk

β∗
k 0 α∗

k ε

⎞
⎟⎠. (4)

In the above expression, we have defined the variables

ε = S(3J + K + 2A), (5a)

αk =
∑

a

αaeik·δa , (5b)

βk =
∑

a

βaeik·δa , (5c)

where δa are vectors expressed in terms of lattice vectors
as: δ1 = 0, δ2 = a1, and δ3 = a2, and we have defined the
following quantities:

αa = −S
(
J xx

a + J yy
a

)/
2, (6a)

βa = −S
(
J xx

a − J yy
a

)/
2 − iSJ xy

a . (6b)

B. Eigenenergies and eigenstates

The eigenenergies and eigenstates of Hamiltonian (4) can
be directly obtained by means of a Bogoliubov transformation
[28]. Defining the constants ε0 = S(3J + K ), K = KS/ε0 and
A = 2AS/ε0, the eigenvalues are found to be

ε2
±(k) = ε2

0

9

(
f (k) ±

√
g(k)

)
, (7)

where the functions f = f0 + fA + fK and g = g0 + gA +
gK are defined in Appendix A, separating the contributions of
the Kitaev and Anisotropy terms, in such a way fA,K and gA,K
are zero when the anisotropy or Kitaev terms are neglected.

We plot the energy spectrum, across the first Brillouin zone
in Fig. 2. The vanishing energy Goldstone mode at the � point
is lifted to �� by the inclusion of the anisotropy term, A.
We can see clearly that in the case of absence of the Kitaev
contribution the spectrum is degenerate at the K and K′ points.
This degeneracy is lifted by the inclusion of the Kitaev term,
leading to the opening of a gap of magnitude �K.

In the vicinity of the � point, the low-energy band
behaves as

ε−(k) = 2AS + ε0a2
0

(
2 + 2A − K2

24(1 + A)

)
|k|2

and we identify the usual structure ε = �� + ρ�k2, where
�� = 2AS and ρ� = ε0a2

0( 2+2A−K2

24(1+A) ). �� correspond to the
minimal energy necessary to create a magnon. It turns out
to be a fundamental quantity and can be accessed experi-
mentally. It lies between 1 and 9 meV [29] while ab initio
calculations locate it in the range of 1 meV [30]. ρ� is the
effective low-energy spin stiffness. It is an estimate of how
hard it is to introduce a smooth texture in the magnetization
field.

The behavior of the top band at � point is

ε+(k) = 2ε0 + �� − ρ ′
�|k|2,

which shows that the bandwidth, defined as the energy differ-
ence ε+ − ε− at � point, is given by 2ε0 = 2S(3J + K ).
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FIG. 2. Energy spectrum of magnons within the first Brillouin
zone. The blue line corresponds to the case J = 0.53 meV, A =
0.44 meV, and K = 0. It can be see that there is no gap at the K
point. There is a gap at the 
 point that arises from the anisotropy
contribution [12]. On the other hand, the inclusion of the Kitaev
interaction, K = 2J displayed in the red line, displays a gap opening
at the K point revealing a nontrivial topology. The circles next to
each bands correspond to the associated Chern numbers. These are
calculated according to [21]. The K-point gap is calculated as a
function of the Kitaev interaction strength in the inset.

The effective Hamiltonian in the vicinity of K and K′ is
given by

HK(′) (q) =
(

Tq U(′)

U(′)† Tq

)
, (8)

where

Tq = ε0

(
1 + A iκ

−iκ∗ 1 + A

)

and U is written with the aid of the spin-1/2 ladder operator
as U = Kσ−. The matrix U′ at the other valley corresponds
to U′ = U†. Here we have defined q = k − K(′) and κ =
a0(qx + iqy)/(2

√
3), with a0 being the lattice constant. In the

definition of U, we have dropped linear terms in q under the
assumption of the small Kitaev parameter. Energies around K
and K′ take the form

ε±(q) = EK ± �K

2
± ρ±

K |q|2

with EK = ε0
2 (1 + A +

√
(1 + A)2 − K2) and �K = ε0(1 +

A −
√

(1 + A)2 − K2). All those features are in agreement
with Ref. [30], which can be used to adjust our parameters.
We find J ∼ 0.53 meV, K ∼ 4.07 meV, and A ∼ 0.44 meV,
in same range as Ref. [16].

C. Chern numbers

The band structure found by this method reveals a non-
trivial topological structure, which is present both in the full
model (4) and even in the minimal model of equation (8).
This is in agreement with the results of Ref. [26] for a similar
geometrical construction. The Chern numbers of the bands,

calculated according to Ref. [21], are displayed in next to each
band. The Chern number of the jth energy band is given by

Cj = i
εμν

2π

∫
BZ

d2kTr
[
(1 − Pj )

(
∂kμ

Pj
)(

∂kν
Pj

)]
. (9)

The integrand of the Chern number is called the Berry cur-
vature, �

j
k, and Pj are the projection operators, which are

defined as

Pj = Tk
 jσ3T †
k σ3, (10)

where we have that Tk is the transformation matrix obtained
by Colpa’s algorithm [28], σ3 is the paraunitary matrix, and

 j is a (2N, 2N ) matrix where every element is 0 except for
the jth diagonal component, where it has a value of 1.

It is also important to note that the value of the Chern
numbers does not revert its sign when K passes from a pos-
itive value to a negative one. Therefore an interface between
samples with different signs of K would not host topological
states as there is no change in the Chern number between the
regions. This is because a chirality is already fixed when we
chose the z as the quantization axis. To change the sign of the
Chern number, we must change and revert the quantization
axis. From this fact, we expect magnetic domain walls on CrI3

to act effectively as topologically protected waveguides.
The starting Hamiltonian (1) displays complete time rever-

sal symmetry. It is only after its spontaneous breaking that we
can expect a non time reversal symmetry (TRS) Hamiltonian
for the spin wave branch of excitations. It can be shown that
performing TRS is equivalent to change the quantization axis
from z to −z.

Replacing the Holstein-Primakoff transformation around
the reversed axis leads to the complex conjugation of the
coefficients of Eq. (4), followed by a k → −k transformation.
The Hamiltonian (4) would be invariant under TRS if the
coefficient βa is real. When Kitaev’s parameter K is turned
on, we obtain J xy

a �= 0. This makes βa complex, so TRS
is broken in our Hamiltonian. It is important to emphasize
that the TRS breaking takes place through an anomalous
A-B nearest-neighbor coupling in contrast to the normal A-A
next-nearest-neighbor proposed by Refs. [22,31,32].

III. THERMAL HALL EFFECT

The magnon Hall effect corresponds to a transverse
magnon-based heat current in response to a thermal gradient.
First discovered in the ferromagnetic insulator Lu2V2O7 [33],
its explanation is understood in terms of magnon Berry’s
phases [34–38]. The intrinsic contribution associated with
the transverse thermal conductivity is written in terms of the
Berry curvature as follows [36]:

κxy = − k2
BT

(2π )2h̄

∑
n

∫
BZ

d2k c2(ρn)�n
k, (11)

with ρn = nB(εn(k)), nB being the Bose distribution function,
and

c2(x) = (1 + x) ln2

(
1 + x

x

)
− ln2 x − 2Li2(−x), (12)

where Lis(x) is the polylogarithm of order s and argument x.
In Fig. 3, we show the result for different values of K . We note
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FIG. 3. Thermal Hall conductivity κxy vs temperature T . It can
be seen that the conductivity changes of sign at different tempera-
tures for different values of K . We highlight that for K = 4.07 meV,
the thermal conductivity changes of sign for T = 7.50 K, which is
highlighted by the grey dotted line.

that, for K = 0, there is no intrinsic contribution to magnon
Hall effect. On the other hand, K �= 0 leads to a nonvanishing
contribution. We highlight the change in sign that the thermal
Hall conductivity undergoes that has already been reported to
occur in other materials [39,40]. Due to the monotonically
decreasing behavior of c2, the lower band will dominate the
sign of the conductivity. At low temperatures, the function
c2 is relevant only in the vicinity of the � point, while at
higher temperatures it acquires a contribution from the K’s
points, where the Berry curvature has the opposite sign, thus
explaining the change of sign in the conductivity.

IV. NANORIBBONS

We now proceed to study the edge states in nanorib-
bons. This issue has been addressed extensively for
magnon topological insulators based, for example, upon
the Dzyalonshinskii-Moriya interaction in skyrmion crystals
[23] and kagome lattices [41]. Recently it has been pro-
posed to use edge states to implement topological magnon
amplification [42].

We will study numerically the zigzag and armchair
nanoribbons. For this, we must note that because only one
direction is finite, the basis used to describe the material must
change so that it includes the m distinguishable sites that form
the nanoribbon. This can be captured in a general way by
rewriting the original Hamiltonian as

H = −1

2

∑
ii′ j j′

Sα
i jJ

j j′αβ

Ri−Ri′
Sαβ

i′ j′ − 1

2

∑
i j

A j
(
Sz

i j

)2
, (13)

where the indices i, i′ ∈ {1, 2, . . . N} represent every unit cell,
while the indices j, j′ ∈ {1, 2, . . . m} correspond to every site
inside each unit cell. Performing Holstein-Primakoff’s trans-
formation up to second order and Bloch’s theorem on Hamil-
tonian (13), it is straightforward to prove that the magnonic

FIG. 4. Magnonic energy bands with N = 10 unit cells zigzag
nanoribbon. (Left) Situation with K = 0. We can see a clear resem-
blance with those of graphene nanoribbons [43]. The otherwise flat
bands in the mid-gap area are distorted due to the on-site energy
discrepancy at the edge. The plots below represent the magnitude
of the probabilities (grey circles with increasing radius for larger
probabilities) for the states with E = 3.25 meV. There is no lo-
calization in this case. (Right) Situation with K = 4.07 meV. The
bulk bands preserve their basic shape but the band-width is ampli-
fied. The degeneracy of the mid-gap bands, highlighted with red,
toward the edge of the Brillouin zone gets lifted. The lower panels
describe the probability density of the states with E = 8.53 meV.
We can see clear evidence of the localization of these states at the
geometrical edges of the ribbons.

Hamiltonian in k space is given by

H = − S

4

∑
k j j′

[



j j′+
k a†

k jak j′ + 

j j′−
k a†

k ja
†
−k j′

− J j j′zz
0 (a†

k jak j + a†
k j′ak j′ ) + H.c.

]
+

∑
k j

(
SAj + μBgBz

j

)
a†

k jak j , (14)

where



j j′±
k = J j j′xx

k ∓ iJ j j′xy
k + iJ j j′yx

k ± J j j′yy
k , (15a)

J j j′μν

k =
∑

ii′
J j j′μν

Ri−Ri′
e−ik·(Ri−Ri′ ). (15b)

The obtained Hamiltonian can be easily adjusted to a
particular nanoribbon by taking into account the geometrical
properties of the lattice when building the exchange coupling
J j j′μν

Ri−Ri′
, procedure that is detailed in Appendix B. With this,

we built the Hamiltonian for the zigzag and armchair cases
and diagonalized them with Colpa’s algorithm [28], obtaining
the results shown Figs. 4 and 5.

Despite the striking similarities between the magnon
Hamiltonian in absence of the Kitaev term and the usual tight-
binding model for graphene [43], there is a subtle difference
that becomes relevant in the case of edges, vacancies and sim-
ilar defects. The diagonal contributions arise from exchange
and are, therefore, dependent of the number of neighbors of
each site. In this way, the local energy of the sites at the edge
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FIG. 5. Dispersion relation and states corresponding to the
marked energies. (Left) Situation with K = 0. As with Fig. 4, there
is a resemblance with graphene, where two of the top bands lower
their energies due to the on-site energy discrepancy at the edge. The
plots below represent the magnitude of the probabilities for the two
possible states with E = 3.23 meV. The probability is proportional
to the radii of the circles. (Right) Situation with K = 4.07 meV.
Bands preserve their basic structure and the two central bands are
separated. The light-blue colored area is the gap of the bulk, which
shows which band should have a topological behavior. The lower
plots represent the probability of the states with E = 8.63 meV.
There is a clear localization at both edges of the ribbon.

is different from the ones in the bulk. As a result of the shift
of the onsite energies at the edged, the flat band typically
expected for zigzag ribbons [43] is now absent (see left panel
of Fig. 4, where the ungapped dispersion in absence of the
Kitaev term is displayed. More interestingly, when the Kitaev
term is turned on, as in the right panel of Fig. 4, the bulk
system acquired a gap which is bridged by the states marked
in red. As shown in the lower panel, these states are localized
around the sample’s edges and are chiral.

V. CONCLUSIONS

In this paper, we have investigated the magnon spectrum of
Heisenberg-Kitaev magnets, such as CrI3. We have performed
a spin wave analysis, based upon a Holstein-Primakoff repre-
sentation around the out-of-plane preferred direction. We have
found that the Kitaev term propagates the time-reversal sym-
metry breaking into the magnon sector. This is done through
an anomalous nearest-neighbor contribution. That, in turn,
leads to topological effects such as a gap in the Dirac point
and edge states moving freely along domain walls and edges
of the system. We expect that these discoveries will provide a
handy tool for magnon based technologies. For example, the
topologically protected states propagating at its edges or along
domain walls can be used as an efficient method of magnon
communication. Additionally the topological states can dis-
play the thermal Hall effect as shown in Refs. [34,36–38].
By comparing our results with the all-electron calculations
of Ref. [30], we were able to provide early estimates of the
magnetic constants of CrI3.
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APPENDIX A: ANALYTICAL EXPRESSION
FOR THE EIGENVALUES

Magnetic degrees of freedom in a CrI3 monolayer can be
modeled using the following Hamiltonian:

H = −
∑
〈i, j〉

(
JSi · S j + KSγ

i Sγ
j

) −
∑

i

A
(
Sz

i

)2
. (A1)

To obtain the magnonic Hamiltonian, we perform
Holstein-Primakoff’s transformation by replacing S(x)

iμ =√
S
2 (ψ†

iμ + ψiμ), S(y)
iμ = i

√
S
2 (ψ†

iμ − ψiμ), and S(z)
iμ = S −

ψ
†
iμψiμ, where μ ∈ {A, B} indexes the two lattices conforming

the bipartite honeycomb array of Cr atoms. Then we define

�k =

⎛
⎜⎜⎜⎝

ψAk

ψBk

ψ
†
A−k

ψ
†
B−k

⎞
⎟⎟⎟⎠ (A2)

and keep terms up to quadratic order in �k. Hamiltonian can
be expressed as a quadratic form H = 1

2

∑
k �k

†Hk�k, where
we have that

Hk =

⎛
⎜⎝

ε αk 0 βk

α∗
k ε β−k 0

0 β∗
−k ε αk

β∗
k 0 α∗

k ε

⎞
⎟⎠. (A3)

In the above expression, we have defined ε = S(3J + K +
2A), αk = ∑

a αaeik·δa , and βk = ∑
a βaeik·δa , where we have

defined the following quantities: αa = −S(J xx
a + J yy

a )/2,
βa = −S(J xx

a − J yy
a )/2 − iSJ xy

a .
We perform a Bogoulivov transformation to the quadratic

form, to find the allowed energies. In terms of ε0 = S(3J +
K ), K = KS/ε0 and A = 2AS/ε0, the eigenvalues are found
to be

ε2
±(k) = ε2

0

9
( f (k) ±

√
g(k)), (A4)

with ε = 3JS + KS fixing the energy scale. Here we have
defined functions f (k) = f0(k) + fA(k) + fK(k) and g(k) =
g0(k) + gA(k) + gK(k), in such a way functions fA,K(k)
and gA,K(k) were zero when A,K = 0, respectively. The
functions f (k) are defined as follows:

f0(k) = 2

(
2 cos

(√
3kxa0

2

)
cos

(
kya0

2

)
+ cos(kya0) + 6

)
,

(A5)

fA(k) = 9A(2 + A), (A6)
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and

fK(k) = K2

(
2 cos

(√
3kxa0

2

)
cos

(
kya0

2

)
+ cos(kya0) − 3

)
. (A7)

While for functions g(k), we have

g0(k) = 36

(
4 cos

(√
3kxa0

2

)
cos

(
kya0

2

)
+ 2 cos(kya0) + 3

)
, (A8)

gA(k) = 36A(A + 2)

(
4 cos

(√
3kxa0

2

)
cos

(
kya0

2

)
+ 2 cos(kya0) + 3

)
, (A9)

and

gK(k) = 3

2
K2

[
2 cos(

√
3kxa0)(K2 + 2 − (

K2 − 4
)

cos(kya0))

− 2(K2 + 2)

(
8 cos

(√
3kxa0

2

)
sin2

(
kya0

2

)
cos

(
kya0

2

)
+ cos(kya0)

)
+ (K2 − 4)(3 − cos(2kya0))

]
. (A10)

In the above definitions, K is a dimensionless parameter
defined by

K = K

3J + K
(A11)

which is bounded between 0 < K < 1, when J, K > 0. In
this sense, K represents the relative strength of the Kitaev
constant. Similarly, A is defined as

A = 2A

3J + K
(A12)

and it represents the relative magnitude of the anisotropy
constant.

APPENDIX B: EDGE STATES IN CrI3 NANORIBBONS

Recalling from the main body, we want to build the Hamil-
tonian for the zigzag and armchair nanoribbons:

H = − S

4

∑
j j′k

[



j j′−
k a†

k ja
†
−k j′ + 
̄

j j′−
k a−k jak j′ + 


j j′+
k a†

k jak j′

+ 
̄
j j′+
k a−k ja

†
−k j′ − 2J j j′zz

0 (a†
k jak j + a†

k j′ak j′ )
]

+
∑

jk

(
SAj + μBgBz

j

)
a†

k jak j , (B1)

FIG. 6. Zigzag nanoribbon. The numbers beside the site corre-
spond to the indices j and j′ that are used in Hamiltonian (14).

where j, j′ ∈ {0, 2, . . . , m − 1} specify the site within the
unit cell, and the coefficients 


j j′±
k and 
̄

j j′±
k are given by

the fourier transform of the anisotropic exchange J j j′μν

k =∑
ii′ J

j j′μν

Ri−Ri′
e−ik·(Ri−Ri′ ) between sites j and j′:



j j′±
k = J j j′xx

k ∓ iJ j j′xy
k + iJ j j′yx

k ± J j j′yy
k , (B2a)


̄
j j′±
i−i′ = J j j′xx

k ± iJ j j′xy
k − iJ j j′yx

k ± J j j′yy
k . (B2b)

As mentioned in the main body, in order to diagonalize
Hamiltonian (B1) we must identify the shape of J j j′μν

k for
the zigzag and armchair nanoribbons. For the former, we will
consider that j and j′ are numbered as shown in Fig. 6. From
this figure, we can note that the lattice vector is b = (0, a0, 0).
This implies that the anisotropic exchange for the zigzag

FIG. 7. Armchair nanoribbon. The numbers beside the site cor-
respond to the indices j and j′ that are used in Hamiltonian (14).
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nanoribbon is given by

J j j′μν

k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J μν
1 δ j, j′+1 + J μν

2 eik·bδ j, j′−1 + J μν
3 δ j, j′−1 if j = 4n

J μν
1 δ j, j′−1 + J μν

2 e−ik·bδ j, j′+1 + J μν
3 δ j, j′+1 if j = 4n + 1

J μν
1 δ j, j′+1 + J μν

2 δ j, j′−1 + J μν
3 e−ik·bδ j, j′−1 if j = 4n + 2

J μν
1 δ j, j′−1 + J μν

2 δ j, j′+1 + J μν
3 eik·bδ j, j′+1 if j = 4n + 3

(B3)

with n ∈ Z.
In the case of the armchair nanoribbon, we will consider the unit cell of Fig. 7, where the lattice vector is given by b =

(0,
√

3a0, 0). With these considerations it is straightforward to obtain that the anisotropic exchange coupling reads

J j j′μν

k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J μν
1 eik·bδ j, j′−1 + J μν

2 δ j, j′+2 + J μν
3 δ j, j′−2 if j = 4n

J μν
1 e−ik·bδ j, j′+1 + J μν

2 δ j, j′−2 + J μν
3 δ j, j′+2 if j = 4n + 1

J μν
1 δ j, j′−1 + J μν

2 δ j, j′−2 + J μν
3 δ j, j′+2 if j = 4n + 2

J μν
1 δ j, j′+1 + J μν

2 δ j, j′+2 + J μν
3 δ j, j′−2 if j = 4n + 3

. (B4)
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