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Abstract
General circulation models (GCMs) allow the analysis of potential changes in the climate system under different emis-
sions scenarios. However, their spatial resolution is too coarse to produce useful climate information for impact/adaptation 
assessments. This is especially relevant for regions with complex orography and coastlines, such as in Chile. Downscaling 
techniques attempt to reduce the gap between global and regional/local scales; for instance, statistical downscaling methods 
establish empirical relationships between large-scale predictors and local predictands. Here, statistical downscaling was 
employed to generate climate change projections of daily maximum/minimum temperatures and precipitation in more than 
400 locations in Chile using the analog method, which identifies the most similar or analog day based on similarities of large-
scale patterns from a pool of historical records. A cross-validation framework was applied using different sets of potential 
predictors from the NCEP/NCAR reanalysis following the perfect prognosis approach. The best-performing set was used to 
downscale six different CMIP5 GCMs (forced by three representative concentration pathways, RCPs). As a result, minimum 
and maximum temperatures are projected to increase in the entire Chilean territory throughout all seasons. Specifically, 
the minimum (maximum) temperature is projected to increase by more than 2 °C (6 °C) under the RCP8.5 scenario in the 
austral winter by the end of the twenty-first century. Precipitation changes exhibit a larger spatial variability. By the end of 
the twenty-first century, a winter precipitation decrease exceeding 40% is projected under RCP8.5 in the central-southern 
zone, while an increase of over 60% is projected in the northern Andes.
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1 Introduction

Many studies have demonstrated that climate change affects 
the development of countries and impacts the environment 
irreversibly. One consequence of climate change is the 
modification of the statistical distribution of atmospheric 
patterns (Sanabria et al. 2009). This could largely affect the 
world’s population, as increasing temperatures and precipita-
tion fluctuations might have an effect on water availability 
and crop production in the future (Kang et al. 2009). Thus, 
knowledge of the current and projected future global climate 
conditions is fundamental for the determination of vulner-
abilities and the development of climate change adaptation 
strategies (Magaña et al. 2000).

General circulation models (GCMs) are the most reliable 
tools to assess climate evolution under different anthropo-
genic forcings such as greenhouse gas emissions, and thus 
provide an estimation of possible future climates based on 
socio-economic and demographic factors corresponding to 
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different emissions scenarios (Cabré 2011). GCMs are based 
on physical principles that numerically describe the climate 
system and can reproduce the observed characteristics of 
the current climate and past climate changes (Solomon et al. 
2007). However, the low spatial resolution of these global 
models (i.e., 150–300 km) limits their direct use in regional 
or local impact models, which require higher resolution 
(Amador and Alfaro 2009).

Statistical downscaling (SD) and dynamical downscal-
ing (DD) are two commonly used approaches to bridge the 
gap between coarse GCMs and local impacts (Amador and 
Alfaro 2009). DD is often performed through regional cli-
mate models (RCMs), which solve the governing equations 
of the atmosphere in a limited spatial domain, subject to 
initial conditions from GCMs (or reanalysis), on a higher 
resolution than the driving GCMs (e.g., 12–50 km). They 
are computationally expensive and include certain param-
eterizations to represent the processes occurring at a higher 
resolution than the grid space (Amador and Alfaro 2009). 
SD techniques establish empirical relationships between 
predictors (large-scale variables) and predictands (local 
variables; Zorita and von Storch 1999; Amador and Alfaro 
2009; Gutiérrez et al. 2013), featuring the advantages of low 
computation requirements and providing information with 
the same spatial resolution as the observational input data, 
that is, as high-resolution grids or local points (Ruiz 2007). 
However, statistical downscaling assumes that the empiri-
cal relationships deduced for the present climate are valid 
for the future climate (stationarity assumption), requires 
sufficiently long and high-quality observational series, and 
provides results only for variables of which one has observed 
data (Gaertner et al. 2012). Moreover, the set of predictors 
that best explains the objective variable need to be optimized 
for each predictand, location, season, etc. (Casanueva et al. 
2016). SD could be classified by technique (Wilby and Wig-
ley 1997) into regression method, weather type approaches 
and stochastic weather generators, and also by approach 
(Rummukainen 1997) into Perfect prognosis (PP) and Model 
Output Statistics (MOS). Regression models and weather 
type approaches establish a relationship between observed 
large-scale predictors and observed local-scale predictands 
(Maraun et al. 2010). The perfect prognosis approach is the 
application of this relationship to predictors from GCM in 
a weather forecasting context (Maraun et al. 2010). MOS 
contrary to PP calibrates the statistical relationship between 
predictor and predictand by using simulated predictors and 
observed predictand (Maraun et al. 2010).

Climate change projections over Chile can provide essen-
tial information for the establishment of mitigation and 
adaptation policies. In particular, high-resolution projections 
enable the assessment of possible risks and vulnerabilities 
related to specific impacts, such as ecosystems (Walther 
et al. 2002), productive sectors (Jones and Thornton 2003) 

and vegetation coverage (Breshears et al. 2005). Chile is 
a very diverse country from an orographic and physical 
standpoint. Latitude, altitude, and the influence of the Pacific 
Ocean and continentality are among the major climate driv-
ers in the region, as along with the influence of the Ama-
zon in the northern zone, westerly winds in the southern 
zone, and the Humboldt current system, which is driven 
by the South Pacific Subtropical high-pressure cell (Sarri-
colea 2017a; Gutiérrez et al. 2016). Thus, the application of 
downscaling methods is particularly challenging in Chile 
due to its large regional spatio-temporal variabilities, which 
are evident not only regarding temperature and precipitation 
but also for region-specific climate impacts.

Downscaling techniques have been applied in Chile for 
the determination of future climate based on the scenarios 
of the Fourth Assessment Report of the Intergovernmental 
Panel on Climate Change (Solomon et al. 2007) through 
the application of (1) DD for the entire territory (Fuenza-
lida 2007; Garreaud 2011; Santibañez 2014) and (2) SD for 
specific regions (Souvignet et al. 2010; Fiebig-Wittmaack 
et al. 2012). Souvignet et al. (2010) used multiple linear 
regression with the SDSM (Statistical DownScaling Model) 
software for the HadCM3 model and A2a and B2a emis-
sions scenarios, considering different predictors for each 
meteorological station in the Upper-Elqui watershed in 
Coquimbo. Fiebig-Wittmaack et al. (2012) employed a sto-
chastic weather generator in the Elqui river basin based on 
the CGCM3 model for SRES A2 and B2 scenarios (Long 
Ashton Research Station Weather Generator). To our knowl-
edge, SD has been used to produce climate change projec-
tions at local or basin levels only, whereas country-level 
applications have not been attempted. Given the need for 
high-resolution projections to establish a baseline for sub-
sequent impact-oriented studies, this study aimed to develop 
climate change projections of minimum/maximum tempera-
ture and precipitation in Chile based on statistical downscal-
ing under a perfect prognosis approach of different GCMs 
under RCP2.6, RCP4.5, and RCP8.5 emissions scenarios.

The paper is organized as follows. Material and methods 
are described in Sect. 2 and results are presented in Sect. 3. 
Section 4 includes a discussion of the results and Sect. 5 
summarizes the main conclusions.

2  Materials and methods

2.1  Study area and datasets

2.1.1  Study area and Chilean climate

This study was carried out in continental Chile, which is 
approximately located between latitudes 17° S and 56° S 
and features a meridional axis of 70° W (Fig. 1a; Gaete et al. 
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2006). The Chilean territory is divided into 16 administra-
tive regions (Fig. 1b).

In Chile, longitudinal temperature variations are more 
pronounced than latitudinal ones because of the marine 
front. In contrast, precipitation regimes are subject to larger 
latitudinal variations; even on the same parallel, altitude 
strongly modulates annual precipitation (Sarricolea et al. 
2017a; Uribe et al. 2012).

Temperatures become gradually cooler from north to 
south (Uribe et al. 2012). The region between 17° S and 
26° S (i.e., from the Arica y Parinacota to the Antofagasta 
administrative regions) corresponds to a cold desert climate 
with dry summer, where the temperature frequently exceeds 
35 °C. The dryness of these regions is always limited to the 
plains; however, a cloudy coastal desert climate is observed 
towards the coast between 17° S and 27° S (i.e., from Arica 
y Parinacota to the Atacama region). Moreover, a dry-winter 
tundra climate can be observed over 3,000 above the sea 
level (MASL) in the Andes, with mean annual temperature 
of 2 °C and cumulative precipitations of up to 100 mm/year 
occurring mostly in summer. The region between 26° S and 
32° S (i.e., the Antofagasta to Coquimbo administrative 

regions) experiences cold semi-arid climate with dry sum-
mers and oceanic influence towards the coast, where tem-
peratures vary from 9 to 20 °C and the mean precipitation 
is 130 mm/year. A cold semi-arid climate with dry summer 
is observed in the valleys and the mountains are character-
ized by a tundra climate with dry summers. The regions 
between 32° S and 40° S (i.e., the Coquimbo to Araucanía 
administrative regions) experience Mediterranean climate. 
There, the climate conditions range from annual mean tem-
perature of 15 °C and a 150–200 mm/annual accumulated 
precipitation in the Valparaíso region to up to 23 °C in the 
hottest month in the La Araucanía region, which experiences 
precipitation of 1000–2500 mm/year. Between 40° S and 44° 
S (i.e., the Araucanía to Los Ríos regions) the classification 
corresponds to a marine west coast climate (warm and dry 
summer, with, a mean annual temperature of 12 °C and mean 
annual precipitation of 2000 mm). The regions between 44° 
S and 56° S (i.e., the Los Ríos to Magallanes regions) expe-
rience tundra climate, with average temperatures below 0 °C 
and a mean annual precipitation of 3500 mm in the Magal-
lanes region (Sarricolea et al. 2017a; Inzunza 2019).

Fig. 1  a Reference map of the study area. b Study area and its admin-
istrative regions. c–e Spatial distribution of meteorological stations 
for c precipitation (blue dots), d maximum temperature (red dots), 

and e minimum temperature (green dots) used as predictands in the 
downscaling process. Four exemplary stations used for further valida-
tions are depicted by red stars
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Historical temperature trends in central Chile (i.e., from 
Coquimbo to Ñuble) between 1979 and 2005 showed a 
decrease of − 0.15 °C per decade in the coastal areas, while 
slight temperature increases were observed in the central val-
ley; this contrasts with the almost 0.25 °C/decade increases 
in the mountain range (Garreaud 2011). A slight cooling 
predominates south of the Biobío region (Garreaud 2011). 
Seasonal trends between 1979 and 2015 indicated warming 
in valley and in the Andes region in autumn, particularly for 
regarding mean and maximum temperatures, whereas the 
coastal region exhibited cooling temperature trends at all 
seasons (Burger et al. 2018).

Precipitation between the Maule region and Los Lagos 
decreased by 100 mm/decade in Valdivia according to Gar-
reaud (2011). Sarricolea et al. (2017b) did not find signif-
icant changes between 1972 and 2013 in the coastal and 
intermediate depression, whereas precipitation decreases 
were identified in the pre-mountain range and highlands, 
except in Parinacota in the Arica highlands.

2.1.2  Predictands

Daily precipitation and minimum/maximum temperatures for 
the period of 1980–2015 were compiled from data provided 
by Dirección General de Aguas (https ://www.dga.cl/Pagin 
as/defau lt.aspx), Dirección Meteorológica de Chile (https ://
www.meteo chile .cl/Porta lDMC-web/index .xhtml ), Centro de 
Estudios Avanzados en Zonas Áridas (https ://www.ceaza .cl), 
Red Agrometeorológica del Instituto de Investigaciones Agro-
pecuarias de Chile (https ://www.agrom et.inia.cl), and Explo-
rador Climático Centro de Ciencias del Clima y la Resiliencia 
(https ://www.explo rador .cr2.cl).

Stations with at least 15 out of the total of 35 years of his-
torical records were used. Outliers were processed based on 
a modification of De Luque (2011) method considering only 
wet days for precipitation (San Martín et al. 2017). Values 
below the 25th percentile minus three times the interquar-
tile range and above the 75th percentile plus three times 
the interquartile range were considered temperature outliers 
 ([P25 – 3*(P75 – P25),  P75 + 3*(P75 – P25)]). The same criteria 
were applied to precipitation, albeit changing the reference 
percentiles and considering only the wet-day distributions 

 ([P1 – 3*(P90 – P1),  P90 + 3*(P90 – P1)]). Outliers were indi-
cated as missing data and stations that recorded data over 
less than 50% of the 35 year period were eliminated.

After applying the above described criteria, a total of 427 
stations distributed across the country were used for precipi-
tation, 129 for minimum temperature, and 131 for maximum 
temperature assessment (Fig. 1c–e). The different number of 
stations was due to variations in the number of stations with 
more than 18 years (i.e., approximately 50% of the 35 years 
of available daily data) of historical data.

2.1.3  Predictors and preprocessing

Standard atmospheric variables at different height levels 
were considered as potential predictors for statistical down-
scaling. In particular, we considered predictor variables used 
in similar downscaling studies, such as that of Gutiérrez et al 
(2014) in Perú. Daily data for these variables (Table 1) were 
retrieved from NCEP/NCAR Reanalysis 1 (Kalnay et al. 
1996) for the period 1980–2015. The predictor domain 
extended from 57.5° S to 15° S and from 92.5° W to 65° W.

Single GCMs can adequately simulate current climate, 
but they may not be as reliable in projecting future climate. 
It is recommended to use more than one GCM, in order to 
obtain more accurate results (Cabré 2011) and fully sam-
ple different uncertainty sources (Knutti et al. 2010). For 
these reasons, fifty models from CMIP5 (5th Climate Model 
Intercomparison Project, Taylor et al. 2012) were firstly 
considered for this study (more details are given in Online 
Resource 1) and a subset of 6 GCMs (CMCC-CM, CMCC-
CMS, CNRM-CM5, MPI-ESM-MR, MPI-ESM-LR and 
NorESM1-M; Table 2) was selected based on the data avail-
ability of the chosen predictor variables (see Sect. 3.1) for 
the entire study area, for the historical and RCP scenarios. 
Some models presented orographic-driven missing data for 
some predictor variables at low elevation levels over parts 
of the region of study. Therefore, they were not included in 
the analysis.

Data for the historical scenario were available for all 
six models; CMCC-CM and CMCC-CMS had data for 
RCP4.5 and RCP8.5, and the remaining four models 
had data for the three RCP scenarios (RCP2.6, RCP4.5, 

Table 1  Predictor variables 
used from the NCEP/NCAR 
reanalysis 1 and CMIP5 
GCMs for the historical and 
the RCP2.6, RCP4.5, RCP8.5 
scenarios

Kalnay et al. (1996)

Code Name Levels (hPa) Abbreviations Time Unit

Tas Air surface temperature Surface Tas Daily mean K
T Temperature 500, 700, 850 T500, T700, T850 Daily mean K
Q Specific humidity 300, 700, 850 Q300, Q700, Q850 Daily mean kg  kg−1

Z Geopotential height 250, 500, 850 Z250, Z500, Z850 Daily mean M
U U-wind component 250 U250 Daily mean ms−1

V V-wind component 250 V250 Daily mean ms−1

https://www.dga.cl/Paginas/default.aspx
https://www.dga.cl/Paginas/default.aspx
https://www.meteochile.cl/PortalDMC-web/index.xhtml
https://www.meteochile.cl/PortalDMC-web/index.xhtml
https://www.ceaza.cl
https://www.agromet.inia.cl
https://www.explorador.cr2.cl
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and RCP8.5). These data were accessible via the Earth 
System Grid Federation (ESGF, https ://esgf.llnl.gov/) 
and were retrieved for the historical and the available 
scenarios (Stocker 2014) in May 2018. The historical 
scenario extended from 1986 to 2005, and three periods 
(2016–2035, 2046–2065, and 2081–2100) were used for 
the RCPs, which was consistent with the periods selected 
in the IPCC Fifth Assessment Report (Stocker 2014). 
The original spatial resolution of predictor variables 
(2.5° × 2.5° in the reanalysis and model-dependent for 
the GCMs, see Table 2) was regridded onto a common 
regular 2° × 2° grid using the nearest neighbor method to 
ensure grid compatibility (San Martín et al. 2017).

Since the statistical downscaling method is trained 
using reanalysis data and applied to GCM data, NCEP 
was additionally used to correct systematic biases in the 
GCMs and to make both datasets comparable. Correc-
tions were applied individually to each predictor variable 
by removing the bias in the mean annual cycle (monthly 
means) and adding the reanalysis counterparts (White and 
Toumi 2013; San Martín et al. 2017).

Several predictor sets were conformed based on those 
defined by Gutiérrez et al (2013, 2014) and, addition-
ally, considering the correlation between each potential 
predictor variable and predictand (Maraun et al. 2010). 
Table 3 summarizes the predictor sets used for minimum/
maximum temperature (P1–9) and precipitation (P10–18). 
Principal component analysis is often used to reduce the 
high dimensionality of the predictor fields (308 grid 
boxes, for 1–8 variables). In this work, principal compo-
nents were derived from each predictor set and the num-
ber of principal components explaining 95% of the total 
variance were used as predictors (Maraun et al. 2010; 
Casanueva et al. 2013; Gutiérrez et al. 2013).

2.2  Statistical downscaling method

Figure 2 shows the scheme of the methodology used in the 
present work. Statistical downscaling was firstly applied 
testing several predictor configurations for each predictand 
(Table 3) under the perfect prognosis approach. Under this 
approach, the statistical method was trained between pre-
dictand and predictor (represented by quasi-observations 
from reanalysis) using daily data, since day-to-day corre-
spondence between predictor and predictand is required 
(Maraun et al. 2010; San Martín et al. 2017). The obtained 
relationships were later applied to the output of selected 
GCM scenarios to generate projections on a local scale 

Table 2  Details of the 6 GCM models on the Climate Model Intercomparison Project Phase 5 (CMIP5) project selected for statistical downscal-
ing

Taylor et al. (2012)

No. GCM model Institution Spatial resolution 
(latitude × longi-
tude)

Historical RCP

2.6 4.5 8.5

1 CMCC-CM Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 0.7484° × 0.75° x x x
2 CMCC-CMS Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 1.85° × 1.875° x x x
3 CNRM-CM5 Centre National de Recherches Météorologiques, Centre Européen de 

Recherche et de Formation Avancée en Calcul Scientifique, France
1.4008° × 1.40625° x x x x

4 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.8653° × 1.875° x x x x
5 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.8653° × 1.876° x x x x
6 NorESM1-M Bjerknes Centre for Climate Research, Norwegian Meteorological Insti-

tute, Norway
1.8947° × 2.5° x x x x

Table 3  Predictor variables for temperature (P1–P9) and precipitation 
(P10–P18)

Predictor Predictor variables

P1 Tas

P2 T850

P3 T700

P4 T500

P5 Tas, T700, T850

P6 Tas, T700, T850, Q700

P7 Tas, T700, T850, Q700, Q850

P8 Tas, T700, T850, Z250, Z500

P9 Tas, T700, T850, Q850, Z250, Z500

P10 Tas, Z500, Z850

P11 Tas, Q700, Z500, Z850

P12 T850, Q700, Z500, Z850

P13 Tas, Q700, Z500, Z850, U250, V250

P14 Q300, Q700, Z250, Z500, Z850

P15 Q300, Q700, Z250, Z500, Z850, U250, V250

P16 Tas, Q300, Q700, Z250, Z500, Z850, U250, V250

P17 Q700, Z850

P18 Q700, Z850, U250

https://esgf.llnl.gov/
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(Gutiérrez et al. 2013). The method was trained with reanal-
ysis data and observations from the period 1980–2015 and 
tested using the 1986–2005 period as the historical scenario 
and three future periods for the future scenarios; each period 
consisted for 20 years for convenient comparison. The statis-
tical downscaling method used in this work was the analog 
method (Zorita and von Storch 1999), which consisted of 
identifying the atmospheric state of the day to be estimated 
(described by the predictors) and detecting the most similar 
situation (in terms of a distance metric, i.e., the Euclidean 
distance in this case) in a pool of historical records from 
reanalysis data. The predicted value was the corresponding 
value for the predictand (observations) on the analog day 
(Maraun et al. 2010).

Statistical downscaling and data transformations were 
performed with the “downscaleR” and “transformeR” R 
statistical computing packages included in the climate4R 
bundle (Cofiño et al. 2018; Bedia et al. 2019; Iturbide et al. 
2019).

2.3  Cross‑validation procedure

The k-fold cross-validation methodology (Gutiérrez et al. 
2013; San Martín et al. 2017) was applied to employ inde-
pendent data for the calibration/training and testing/vali-
dation of the statistical method for the period 1980–2015, 
exclusively using predictors from the reanalysis. This 

method consisted in dividing the data set into k subsets or 
folds. Each time, one of the k subsets was used for testing 
and the other k-1 subsets were put together to train the sta-
tistical downscaling method. The process was then repeated 
k times. Herein, k = 6 was chosen, each one conformed by 
6 year (36 years in total). The results of the downscaled 
series for the six folds were merged into one series that was 
validated against observations. Specifically, predictions at 
each point or meteorological station were validated using 
three validation metrics for annual and seasonal series, 
namely the mean bias (difference between modeled and 
observed data, as an error measure), temporal correlation 
(Spearman and Pearson), and the Kolmogorov–Smirnov 
(K–S) test (San Martín et al. 2017).

Biases for precipitation and temperature (minimum 
and maximum) were obtained to estimate the mean error 
between the downscaled and observed data for all seasons 
(DJF, MAM, JJA, SON) and the annual series (San Mar-
tín et al. 2017). Temporal day-to-day correlation between 
downscaled and observational data was calculated using 
the Pearson correlation for temperature and the Spear-
man correlation for precipitation. For precipitation, the 
correlation coefficient was obtained from the 10-day 
aggregated series to avoid the spurious effects of serial 
autocorrelation on results (San Martín et al. 2017). The 
K–S test was used to measure the degree of dissimilar-
ity between distributions (10-day aggregated series for 

Fig. 2  Methodology of the present study
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precipitation). Evaluation results based on these metrics 
were considered to select the best predictor set (Figs. 3, 
4, 5, 6).

2.4  Validation of historical simulations

The downscaled projections in the historical scenario 
were validated against observations for the common 
period 1986–2005 to test the ability of the analog method 

Fig. 3  Mean bias (in absolute value) and temporal correlation of the 
downscaled predictions calibrated using the different predictor com-
binations from the reanalysis. a Each box represents the spatially 
averaged score, for each season and annual series (in rows) and the 

three predictands (in columns). b Each box represents the spatially 
averaged score, for each administrative region calculated from the 
annual time series (in rows) and the three predictands (in columns). 
Darker colors indicate better performance
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to downscale the GCMs (Camargo-Bravo and García-
Cueto 2012; Ferrelli et al. 2016). Four meteorological sta-
tions representing different climatic zones of Chile, were 
selected for illustrative purposes, namely Sierra Gorda 

(in the north of the country, Antofagasta region), Quinta 
Normal (in the central zone of the country, Metropolitana 
region), Pichoy Valdivia Ad. (in the south of the country, 
Los Ríos region), and Villa Maihuales (in the austral zone 
of the Aysén region). Those stations are marked with stars 
in Fig. 1.

Fig. 4  Spatial distribution of the mean bias of the predictions for 
1980–2015 using the selected predictor set (P8 for temperature and 
P11 for precipitation) for a minimum and b maximum temperature 
and c precipitation, for each season (DJF, MAM, JJA, SON) and 
annual series (year)

Fig. 5  Same as Fig. 4, but for mean temporal correlation
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2.5  Climate change signal

Climate change signals (CCSs) were calculated as the dif-
ference between the projected scenario and the historical 

scenario for each variable (precipitation, minimum 
temperature, and maximum temperature), season, RCP 
(RCP2.6, RCP4.5, and RCP8.5), and period (2016–2035, 

Fig. 6  Same as Fig. 4, but for 
 log10(p value) of K–S test
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2046–2065, 2081–2100). The signal for precipitation was 
calculated in a relative form as Eq. 1 (Garreaud, 2011).

Calculation of CCS for precipitation:

3  Results

3.1  Evaluation of the downscaling method 
and predictor selection

Nine predictor sets were defined for maximum and minimum 
temperature and precipitation (Table 3). The analog method 
was trained with the different predictors and cross-validated 
(see Sect. 2.3) in order to select the best-performing predic-
tor set. Biases in the seasonal and annual means, as well 
as temporal correlation and p values of the K–S test of the 
seasonal and annual series were obtained for all predictors. 
The spatially averaged scores of the evaluation metrics are 
summarized in Fig. 3 for the sake of conciseness. The spatial 
distribution of the validation metrics for the best-performing 
predictor is shown in Figs. 4, 5 and 6.

Biases are smaller (absolute values between 0 and 0.3) 
for predictors conformed by more than one predictor varia-
ble, for minimum and maximum temperature (Fig. 3a). For 
precipitation, all predictors present similar performance 
in terms of biases (Fig. 3a). Better correlation results are 
found in austral autumn (MAM) and the annual series, for 
the three predictands (Fig. 3a). Minimum temperature pre-
sents better performance (mean biases between 0 and 0.3 
and high correlations), between Atacama and Bío-Bío and 
between Los Ríos and Magallanes y la Antártica Chilena 
(values between 0.6 and 0.8, Fig. 3b). Maximum tempera-
ture presents worse results for the Maule region (mean bias 
between 0.6 and 0.9 °C) and Arica and Parinacota (tempo-
ral correlation between 0.4 and 0.6). Precipitation shows 
better results in the northern zone in terms of bias and in 
the southern zone in terms of spatial correlation (Fig. 3b).

The best performing predictor for temperature is P8, 
which consists of Tas, T700, T850, Z250 and Z500, with the 
smallest spatially averaged bias in all seasons for minimum 
temperature (0–0.3 °C in absolute value, Fig. 3a, upper left 
panel) and in austral summer (DJF) and spring (SON), for 
maximum temperature 0–0.3 °C (Fig. 3a, upper middle 
panel). With respect to temporal correlation good perfor-
mance is obtained in autumn for minimum and maximum 
temperature and in spring for maximum temperature, with 
values lying between 0.4 and 0.6. (Fig. 3a, lower left and 
middle panels).

(1)
projected − historical

historical
× 100

More precisely, the spatial distribution of biases in mini-
mum temperature shows values of up to − 0.4 °C in summer 
(DJF) and 0.4–0.8 °C in autumn and winter (JJA) between 
the Coquimbo and Los Lagos regions (Fig. 4a). Maximum 
temperature presents better results in summer and spring 
(biases of 0–0.4 °C across the whole country) than in win-
ter and autumn [biases of − 0.4 to − 0.8 °C between the 
Coquimbo and Los Lagos regions (Fig. 4b)]. Temporal cor-
relation results for minimum temperature were better in the 
central zone between the regions of Coquimbo and Bío Bío 
with values over 0.4, and for maximum temperature with 
values over 0.6 between the same regions (Fig. 5a, b). The 
spatial distribution of K–S test presents good results with 
several exceptions in some locations between the Maule and 
Ñuble regions (Fig. 6a).

The best predictor for precipitation, P11, consists of Tas, 
Q700, Z500 and Z850, and shows good results in terms of mean 
bias and temporal correlation in the spatially averaged scores 
(Fig. 3a, right panel). Biases in seasonal (or annual) mean 
precipitation amount to less than 0.3 mm (in absolute value) 
in summer, autumn, spring and the annual series (Fig. 3a, 
upper right panel). The best correlation is also obtained for 
P11, with spatially-averaged values of 0.4–0.6 observed in 
autumn and winter (Fig. 3a, lower right panel).

According to the spatial distribution of the bias, the 
largest values are found in winter between the Valparaíso 
and Los Ríos regions, ranging between − 1.2 and − 1.6 mm 
(Fig. 4c, JJA). The spatial distribution of correlation shows 
values of 0.6–1 between the Valparaíso and Los Ríos 
regions throughout the year (Fig. 5c). The best results of 
the K–S test are found in winter and spring between the 
Arica y Parinacota and Valparaíso regions and in summer 
and autumn between the Arica y Parinacota and Bío-Bío 
regions (Fig. 6c).

3.2  Validation of historical projections

The historical scenario of six GCMs (CMCC-CM, CMCC-
CMS, CNRM-CM5, MPI-ESM-MR, MPI-ESM-LR, and 
NorESM1-M) are downscaled using the best-performing 
predictor set (Sect. 3.1). Results are compared with obser-
vations for the common period 1986–2005 in order to check 
the ability of the analog method to downscale GCM predic-
tors. Results for four meteorological stations, namely “Sierra 
Gorda,” “Quinta Normal Santiago,” “Pichoy Valdivia Ad.,” 
and “Villa Maihuales,” are shown for illustrative purposes 
(Figs. 7, 8). More details on the spatial distribution of the 
annual bias between the historical scenario and the observed 
data can be found in Online Resource 2.

Overall good performance of the mean annual cycle is 
found for the four stations representing a variety of different 
climates. Results for minimum temperature in Sierra Gorda 
reveal that the historical projections agree approximately 
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with the observed data, except for an overestimation of 1 °C 
in April, June and July for all GCMs (Fig. 7a). For the Quinta 
Normal Santiago station, results for the historical projection 
are rather similar to their observed counterparts, with a larg-
est difference of 1 °C in July for all GCMs (Fig. 7b). In the 

case of Pichoy Valdivia Ad., biases in monthly means remain 
below 1 °C (Fig. 7c). In Villa Maihuales, the historical pro-
jections underestimate temperature in January, February and 
October, with the largest differences of approximately 1 °C 
in February, particularly for MPI-ESM-MR (Fig. 7d).

Fig. 7  Mean annual cycle of 
the projections of the historical 
scenario and the observations 
(period 1986–2005) for mini-
mum temperature (a–d) and 
maximum temperature (e–h) 
at four exemplary locations, 
Sierra Gorda, Quinta Normal 
Santiago, Pichoy Valdivia Ad. 
and Villa Maihuales
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Results for maximum temperature are very similar to 
those for minimum temperature. In Sierra Gorda and Quinta 
Normal Santiago, the historical projections overestimate 
maximum temperature in March, April, May, June and 
July (Fig. 7e, f). An overestimation (less than 1.5 and 2 °C, 
respectively) of maximum temperature is found in Pichoy 
Valdivia Ad. and Villa Maihuales in June and July (Fig. 7g, 
h).

Historical projections for monthly accumulated precipi-
tation in Sierra Gorda provide good representation of the 
observed data (note the different precipitation range among 
stations on the Y-axis in Fig. 8a). In Quinta Normal San-
tiago, all models underestimate precipitation between March 
and August and overestimate from September to November 
(Fig. 8b). The most remarkable feature in Pichoy Valdivia 
Ad. is the underestimation in June, which is the wettest 
month, by all GCMs (Fig. 8c). The largest discrepancies 
between historical projections and observed data are found 
in Villa Maihuales, which is the place receiving the high-
est precipitation amount out of the four locations (Fig. 8d). 

The overall annual cycle is fairly well represented, with less 
precipitation in February and maximum values in JJA.

3.3  Climate change projections

3.3.1  Minimum temperature

For all GCMs, the near-future (2016–2035) CCS of mini-
mum temperature features an increment of up to 2 °C in aus-
tral summer (DJF) and winter (JJA) under RCP8.5 (Fig. 9a, 
b). For the mid-future (2046–2065) in summer, projections 
present an increment of 2–4 °C toward the Andes in Arica y 
Parinacota and Tarapacá regions (17° S–21° S), an increase 
of 0–2 °C in Antofagasta and Maule regions (24° S–35° S) 
and from Los Lagos to Magallanes (44° S–56° S) (Fig. 9c). 
All GCMs showed some decreases up to 2 °C from Maule 
to Los Ríos regions (35° S–43° S) (Fig. 9c). In winter, incre-
ments of minimum temperature are projected to amount to 
0–2 °C mostly in the central and southern zones (near 30° 
S–32° S), whereas CMCC-CM and MPI-ESM-MR show 

Fig. 8  Same as Fig. 7, but for monthly accumulated precipitation
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increments of up to 6 °C in certain locations in the central 
zone toward the Andes (Fig. 9d).

For the long-term future (2081–2100), the increment in 
austral winter is remarkably larger than in summer (Fig. 9e, 
f). In winter, CMCC-CM, CMCC-CMS, MPI-ESM-LR, and 
MPI-ESM-MR models show increases of 6–8 °C between 
Arica y Parinacota and Maule regions (17° S–35° S), while 
CNRM-CM5 and NorESM1-M show increments of 2–6 °C 
in the same regions (Fig. 9f). In summer, decreases in the 
minimum temperature of 0–2 °C between the Coquimbo and 

Los Ríos regions (30° S–44° S) are projected by all con-
sidered GCMs, with slightly smaller changes presented by 
NorESM1-M (Fig. 9e).

Results for RCP2.6 are included in the Supplementary 
Material (Online Resource 3). Note that larger differences 
among scenarios arise for the far-future period mainly.

In terms of the annual cycle, the increase of minimum 
temperature by the end of the twenty-first century is appar-
ent in the four exemplary locations in June, July and August 
under the three RCP scenarios, increasing with the level of 

Fig. 9  Climate change signal of minimum temperature under RCP8.5 scenario for (a) 2016–2035, (b) 2046–2065 and (c) 2081–2100 periods 
(rows), for austral summer (DJF) and winter (JJA)
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warming (Fig. 10). However, in Quinta Normal Santiago and 
Pichoy Valdivia (Fig. 10b, c), RCP8.5 projections depict a 
decrease for January and February. In general, more robust 

projections among models are obtained in February, August, 
September, and October, while higher uncertainties arise in 
June (Fig. 10).

Fig. 10  Mean annual cycle of minimum (a–d) and maximum (e–h) 
temperature for the observed (1986–2005) and projected (2081–
2100) data. Thick lines represent the multi-model ensemble median 
for three RCPs in different colors. Whiskers represent the full range 

of models. Results are depicted for 4 representative locations Sierra 
Gorda, Quinta Normal Santiago, Pichoy Valdivia Ad and Villa 
Maihuales
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3.3.2  Maximum temperature

The climate change signal of maximum temperature under 
RCP8.5 for the near future (2016–2035) presents incre-
ments of up to 2 °C (Fig. 11a, b), similarly to minimum 
temperature (Sect. 3.3.1). Some localized increments (up to 
4 °C) are found in La Araucanía region in DJF (37° S–40° S; 
NorESM1-M), and between Coquimbo and El Maule regions 
in JJA (30° S–35° S; MPI-ESM-MR).

For mid-future (2046–2065) CCSs are overall slightly 
larger than for minimum temperature in both seasons 

(Fig. 11c, d). In summer, projections show an increment of 
2–4 °C in Arica y Parinacota and Tarapacá regions toward 
the Andes (17° S–21° S) and rises of 0–2 °C for the rest 
of the regions, except for MPI-ESM-MR and NorESM1-M, 
which presents increases of 4–6 °C between Biobío and La 
Araucanía regions (37° S–40° S). In winter, most GCMs 
project an increase of 4–6 °C in the central zone (30° S–37° 
S), but CNRM-CM5 and NorESM1-M project increments 
of up to 4 °C.

Changes are markedly larger than the minimum tempera-
ture for the long-term future (2081–2100, Fig. 11e, f). In 

Fig. 11  Same as Fig. 9, but for maximum temperature
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summer, an increase of up to 2 °C from the Atacama to the 
Coquimbo regions (25° S–30° S) is projected. In the north of 
the country, toward the Andes, all considered GCMs indicate 
a maximum temperature increment of 2–6 °C in summer 
and 6–8 °C in winter for almost all territory (Fig. 11f). The 
reader is referred to Online Resource 4 for the correspond-
ing RCP2.6 results. Overall, changes under RCP2.6 remain 
below ± 2 ºC throughout the twenty-first century.

Unlike minimum temperature, the maximum temperature 
might increase throughout the year for the three RCPs in 
the selected locations (Fig. 10). Similar to minimum tem-
peratures, larger changes are found in winter (JJA) than in 
summer (DJF). Consequently, larger model uncertainty is 
also found in June.

3.3.3  Precipitation

Climate change projections for mean precipitation present 
larger spatial variability and less robust results among mod-
els than the temperature counterparts (Fig. 12). For the near 
future, the largest changes can be found in the central part, 
between the Atacama and Biobío regions (25° S–38° S), and 
in the northern zone to the Andes area specifically in Arica 
y Parinacota, Tarapacá and Antofagasta regions (17° S–25° 
S) in DJF (> 40% with CNRM-CM5, MPI-ESM-LR, MPI-
ESM-MR and NorESM1-M) and in the northern zone (17° 
S–25° S) in JJA (> 60% with CMCC-SM, MPI-ESM-LR 
and MPI-ESM-MR). In the rest of the country, CCS reaches 
levels of 20% (Fig. 12a, d).

The GCMs project larger decreases in the mid-future 
(2046–2065) than in near-future and stronger differences in 
summer than in winter. In summer, decreases of 60–100% 
are found between Atacama and Biobío (25° S–38° S) while 
in winter these differences are seen in the north between the 
Arica y Parinacota and Coquimbo regions (17° S–30° S, 
Fig. 12c, d). Changes in CNRM-CM5 shows the opposite 
sign with differences of over 40% in winter (Arica y Parina-
cota to Atacama in the Andes).

GCMs are consistent in the results for the long-term 
future period (2081–2100) for the northern and central 
zone (from Atacama to Los Ríos, 25° S–43° S) project-
ing decreases of 60–100% in summer and winter. In the 
Andes and Austral zone, accumulative precipitation will 
increase over 40% and 20%, respectively, in summer and 
winter (NorESM1-M projects decreases of precipitation in 
the Andes area in winter). However, there are some loca-
tions with a projected decrease in the austral zone in summer 
and in winter (Fig. 12e, f). The reader is referred to Online 
Resource 5 for the corresponding RCP2.6 results. For the 
far-future period under RCP2.6, changes in accumulated pre-
cipitation are projected to remain below ± 40% in the central 
region in winter, whereas large changes of more than 80% 
might occur in summer.

A reduction in monthly accumulated precipitation is pro-
jected in Quinta Normal Santiago, Pichoy Valdivia Ad. and 
Villa Maihuales throughout the year, regardless of the RCP 
(Fig. 13). In Quinta Normal Santiago and Pichoy Valdivia 
Ad., changes are larger with the increasing level of warm-
ing (i.e., from RCP2.6 to RCP8.5). Meanwhile, RCP-related 
uncertainty is smaller than differences among GCMs in Villa 
Maihuales. Large multi-model uncertainties are found for 
May and June.

4  Discussion

Predictor assessment and selection are highly relevant for 
statistical downscaling, as they are the basis for the gen-
eration of climate projections (Hewitson and Crane 1996; 
Cavazos and Hewitson 2005). Several metrics (namely sea-
sonal bias, correlation, and K–S test) allow for the evalua-
tion of the downscaling method’s performance for current 
climate predictions when different predictor combinations 
are used. Evaluation results are sensitive to the predictor set 
considered (Fig. 3). Moreover, bias and correlation between 
the predicted values and the corresponding predictand var-
ied both seasonally and geographically (Figs. 4, 5, 6). We 
acknowledge that considering different predictors for each 
region and season could bring better evaluation results. Such 
optimization is, however, not straightforward, since regional 
climates and seasons are projected to change in a warmer 
climate.

Still, the region that presented the largest biases in mini-
mum and maximum temperature (values of 0.4–0.8 and 
0.8–1.2, respectively) was the Mediterranean zone located 
between the Coquimbo and La Araucanía regions (Fig. 4a, 
b). However, this area exhibited a better temporal correlation 
(over 0.6 in minimum and maximum temperature; Fig. 5a, 
b). The same results were found for precipitation (Figs. 4c, 
5c).

Remaining biases in the evaluation exercise cannot be 
neglected in the interpretation of future changes. Results of 
precipitation seasonal bias (Predictor 11) in austral winter 
in the Valparaíso and Metropolitana regions (Fig. 4) and 
Quinta Normal Santiago (Fig. 8b) show an underestimation 
of winter precipitation. Therefore, climate projections of 
precipitation in that region should be taken with caution 
and might be underestimated, since model biases might 
be transferred to the results of downscaling applied to sce-
narios (Raäisaänen 2007). Likewise, when comparing the 
historical scenario against the observed data, projections 
for Sierra Gorda overestimate the minimum temperature 
in March–September (Fig. 7a) and maximum temperature 
in March-August (Fig. 7e). Thus, the results of projections 
under RCP scenarios should be interpreted considering 
such overestimations (Fig. 10a, e), and the CCS results for 
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minimum and maximum temperature in the northern zone, 
near the Sierra Gorda, might be overestimated (Figs. 9b, d, 
f, 11b, d, f).

Validation results of precipitation reveal high spatial and 
temporal variability (Fig. 8), which together with its non-
linear nature poses a challenge in the downscaling exercise 
(Maraun et al. 2010). Nonetheless, the models captured 
rather well the annual cycle of monthly accumulated pre-
cipitation. For Quinta Normal Santiago (central zone), the 
best-performing GCMs along the year are CMCC-CMS and 
CMCC-CM (Fig. 8b).

For 2081–2100 under the RCP8.5 scenario in the central 
zone, precipitation could decrease by 80% (Fig. 12f), reduc-
ing water availability and affecting its use for hydroelectric-
ity, mining, agribusiness and human consumption (MMA 
2015). Under global warming, the subtropical descent is 
predicted to expand towards the poles, which is referred to 
as the Hadley expansion (Johanson and Fu 2009; Zhou et al. 
2019). In turn, this expansion displaces the subtropical anti-
cyclone of the South Pacific towards the south, where greater 
atmospheric stability is achieved due to the storm repelling 
effect of the anticyclone (Johanson and Fu 2009). Another 

Fig. 12  Same as Fig. 9, but for accumulated precipitation
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mechanism responsible for the decrease in precipitation is 
associated with the physiological effect of the increasing 
atmospheric  CO2 on plant stomata. Under elevated  CO2 con-
centrations, the stomata open less widely, leading to reduce 
plant transpiration and evapotranspiration; hence, the trans-
fer of water vapor to the overlying atmosphere is reduced 
(Cao et al. 2012).

Minimum and maximum temperature, in the period 
2081–2100 under the RCP8.5 scenario in the central zone, 
are projected to increase at 5–6 and 7–8 °C, respectively 
(Figs. 9f, 11f), which might cause the zero isotherm to move 
higher. According to Cifuentes and Meza (2008), such dis-
placement can cause a reduction of the Andean area that 
stores snow and, thus, would affect water availability and 
decreases water flow. There is clear evidence of the relation-
ship between  CO2 and surface temperature, over the past 
millennium (Jouzel et al. 2007; Lüthi et al. 2008) and more 
recent enhanced warming (e.g. Stips et al. 2016). Changes 
in atmospheric  CO2 concentrations influence climate both 
directly through the radiative effect of  CO2 and indirectly 
through its physiological effects (as mentioned earlier). On 
one hand, greenhouse gases (including CO2) largely absorb 
the longwave radiation emitted from the earth’s surface 
(Cubasch et al. 2013). On the other hand, in response to an 
increase of  CO2 levels, a decrease in canopy transpiration 

reduces evaporation, triggering changes in atmospheric 
water vapor and clouds (such as decreasing in low cloudi-
ness; Cao et al. 2012) and affecting surface radiative fluxes 
(such as increasing shortwave radiation reaching the sur-
face), thus producing changes in temperature and the water 
cycle (Cao et al. 2010). The intensification or weakening of 
these mechanisms and responses depends on the concentra-
tion of greenhouse gases in the atmosphere, which is repre-
sented in the present work through three different emission 
scenarios (RCP2.6, RCP4.5 and RCP8.5). While the climate 
system is in a constant state of flux, attaining RCP2.6 will 
certainly present the smallest impacts for natural ecosystems 
and human activities.

The decreases of minimum temperature projected during 
the far future (2081–2100) between Coquimbo and Los Ríos 
Regions could be the result of an intensification of southern 
winds along the coast due to a southward expansion of the 
subtropical anticyclone’s influence zone of the south-east 
Pacific, a large-scale feature consistent with global warm-
ing (Garreaud 2011). Another physical phenomenon that 
explains this result is Humboldt Current behavior, which 
is a cold current that could intensify with climate change 
by cooling the surface waters near the coast of Chile. These 
colder waters will have a cooling effect (i.e., greater than that 
of the current) on the air masses entering from the ocean to 

Fig. 13  Same as Fig. 10, but for monthly accumulated precipitation
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the continent, neutralizing global warming in the coastal 
strip (Santibañez et al. 2008; Santibañez 2017).

In the present study, increases of over 6 °C in winter in 
the central and northern zone based on the RCP8.5 scenario 
for the far future (2081–2100) are projected. Previously, 
Garreud (2011) projected increases of 5 °C in the same area, 
under A2 scenario and for the future period of 2070–2100 
with respect to 1961–1990. Our study also shows increases 
of over 4 °C in the Altiplano region in winter, based on 
the RCP8.5 scenario for the end of the twenty-first century 
(2081–2100) and Fuenzalida (2007) obtained increases 
of 4–5 °C, based on the A2 scenario for the future period 
2071–2100 with respect to 1961–1990.

The CCS for precipitation under the RCP8.5 scenario for 
the near future (2016–2035) shows decreases in summer 
and increments in winter for the Altiplano region (Fig. 12a, 
b), increments in the northern zone and toward the Andes 
in the mid-future (2046–2065; Fig. 12c, d), and increments 
exceeding 60% in the Altiplano region in the far future 
(2081–2100) (Fig. 12e, f). Previously, Garreaud (2011) also 
projected increases in the Altiplano region but stressed that 
these results were not very robust.

Although the methods used are distinct and the emissions 
scenarios were different, we reached a certain qualitative 
agreement with these previous studies. Some discrepancies 
between this and others studies and even among the dif-
ferent models in this study could be related to predictors 
that include signs of climate change such as temperature or 
specific humidity (P8 and P11) which sensitively influence 
the results of the projections (Brands et al. 2012; Manza-
nas et al. 2015). Specifically, Ruiz (2007) reported that the 
effect of the internal variability of a climate system in a 
given study area could be an important source of uncertainty. 
Ruiz (2007) also indicated that even without modification of 
radiative forcing, climate presents variations that are largely 
attributable to nonlinear dynamics. Moreover, the differ-
ences between models are also a large source of uncertainty, 
as they respond differently to the different forcings (Stocker 
2014). According to the IPCC (Stocker 2014), the disper-
sion between the scenarios within the CMPI5 ensemble is 
the main source of uncertainty for the global temperature at 
the end of the twenty-first century. Additionally, the uncer-
tainty is associated with the capacity of the GCM to simulate 
future climates; in other words, even if the GCM adequately 
simulates the current climate, it may not be as reliable for 
future climate projections. To reduce this uncertainty, more 
than one GCM is generally used (Cabré 2011), which is why 
six GCMs were used in the present study. We acknowledge 
that the use of a limited number of models might not provide 
a representative sample of the entire uncertainty range; thus, 
a larger ensemble could help to determine whether the pro-
jected changes are significant in ligh of model uncertainty 
(e.g., analyzing signal-to-noise ratios). The next generation 

of global climate models could potentially improve the pre-
sent results. Moreover, the reanalysis dataset used to train 
the statistical downscaling method might also have some 
impacts on the projections (Brands et al. 2012; Manzanas 
et al. 2015).

5  Conclusions

In order to develop reliable climate change projections, 
large-scale predictors need to be extensively assessed (San 
Martín et al. 2017). Additionally, all the predictor variables 
which present a clear link with the predictand should be 
included, including signal-bearing predictors (Maraun et al. 
2010). A comprehensive evaluation should consist of met-
rics that account for different characteristics, e.g., temporal 
and distributional features (San Martín et al. 2017). In this 
work, we analyze correlation, bias, and K–S test results for 
all seasons and the annual series to facilitate the predictor 
selection. For Chile, the best predictor for minimum and 
maximum temperature was formed by Tas, T700, T850, Z250, 
and Z500; the best predictor for precipitation was formed by 
Tas, Q700, Z500, and Z850.

Here, six CMIP5 models were used to assess future cli-
mate, namely CMCC-CM, CMCC-CMS, CNRM-CM5, 
MPI-ESM-LR, MPI-ESM-MR, and NorESM1-M. The use 
of more than one GCM is highly recommended to increase 
different uncertainty sources and to analyze the robustness 
of the results (Knutti et al. 2010. Any conclusion based on a 
single GCM should be called into question. Moreover, one 
should keep in mind model bias in the historical scenario in 
different sub-areas and seasons of the study area.

Temperature increases (minimum and maximum) are 
projected under the three scenarios (RCP2.6, RCP4.5, and 
RCP 8.5) throughout the national territory. Under sce-
nario RCP8.5 for the period of 2081–2100, minimum and 
maximum temperature in winter might increase about 4–8 
and 6–8 °C, respectively. Under RCP8.5 for the period of 
2081–2100, precipitation is projected to decrease by over 
40% from the northern zone to the southern zone (between 
the regions of Antofagasta and Aysén) and might increase by 
60% in the Altiplano regions (between the regions of Arica 
y Parinacota and Antofagasta) as well as in the austral zone 
(Aysén and Magallanes regions).

This work presents state-of-the-art of climate projections 
for Chile and potential changes in precipitation and tem-
perature if different emissions scenarios are attained in the 
future. A warmer atmosphere can hold more water vapor, 
which in turn produces more intense precipitation, includ-
ing precipitation intensity icreases of 6–7% per degree of 
warming or even more for sub-hourly precipitation (Schroeer 
and Kirchengast 2018). Thus the present analysis of extreme 
events and their intensification related to the increases in 
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moisture due to warming (Trenberth 2011) provides an 
important baseline for future work.

Knowing how the climate might change could provide 
basic information for decision making in ecological, eco-
nomic, social and health areas. The results of the present 
work can be applied in the impact on ecosystems, agricul-
tural production and the risk of extinction of flora and fauna, 
and can also be used to reduce threats to food security and 
water resources.
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