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Abstract
We show, in Hilbert space setting, that any two convex proper lower semicontinuous
functions bounded from below, for which the norm of their minimal subgradients
coincide, they coincide up to a constant. Moreover, under classic boundary conditions,
we provide the same results when the functions are continuous and defined over an
open convex domain. These results show that for convex functions bounded from
below, the slopes provide sufficient first-order information to determine the function
up to a constant, giving a positive answer to the conjecture posed in Boulmezaoud et
al. (SIAM J Optim 28(3):2049–2066, 2018) .
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1 Introduction

In 1966, Rockafellar [27] showed a fundamental result of determination of convex
functions in terms of their subdifferentials: Every two convex proper lower semicon-
tinuous functions ϕ1 and ϕ2 defined over a Banach space X with values in R∪ {+∞}
satisfying that

∂ϕ1(x) = ∂ϕ2(x), ∀x ∈ X , (1)

are in fact equal up to a constant. This problem was first solved by Moreau [24] in
the Hilbert space setting and finally extended to Banach spaces by Rockafellar, one
year after. Since then, many authors have work in the problem of determination of
convex and nonconvex functions, trying to weaken or adapt condition (1) (see, e.g.,
[5,8,13–16,22,26,29–31] and the references therein). Nowadays, in the convex setting,
we know a more general result: Every two maximal monotone operators A and B over
a Hilbert space H satisfying that

A(x)◦ = B(x)◦, ∀x ∈ H,

must coincide (see, e.g., [11]), where A(x)◦ is the element of minimal norm of the set
A(x).

Recently, Boulmezaoud et al. [10] obtained a very surprising improvement of the
result above, in the case of convex twice continuously differentiable functions: They
showed that if two convex functions ϕ1, ϕ2 ∈ C2(H) satisfy that

(a) ‖∇ϕ1(x)‖ = ‖∇ϕ2(x)‖ for all x ∈ H, and
(b) infx∈H ‖∇ϕ1(x)‖ = 0,

then they must coincide up to a constant. Their proof is based on the study of a second
order dynamical system, for which the C2 condition is used. This is the very first result
in the literature that reveals that slope information determines, up to a constant, a
convex and bounded from below function.

Since hypothesis (b) holds whenever ϕ1 is bounded from below, they asked in the
same article if the result could be extended for ϕ1, ϕ2 ∈ C1(H), assuming (a) and both
functions to be bounded from below. Furthermore, they also conjectured the result for
nonsmooth convex functions bounded from below [10, Conjecture 3.13] providing a
proof for the one-dimensional case.

Up to our knowledge, the proof of the conjecture above for C1 convex functions
was provided originally by J.-B. Baillon, but it was never published. His strategy (that
we rediscover while working in this problem), was to study the solution of the steepest
descent dynamical system for the function Φ = ϕ1 + ϕ2, and then observe that the
difference function ϕ1 − ϕ2 must be constant along the trajectories of that dynamical
system.

In this work, we address Boulmezaoud–Cieutat–Daniilidis conjecture [10, Con-
jecture 3.13] under the same setting of Moreau–Rockafellar seminal result, that is,
the case when ϕ1 and ϕ2 are convex proper lower semicontinuous and bounded from
below, but not necessarily differentiable. Furthermore, we consider the case when the
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hypotheses over the functions are only verified in an open convex domain Ω . In this
case, hypothesis (a) is replaced by

‖∂ϕ1(x)◦‖ = ‖∂ϕ2(x)◦‖, ∀x ∈ Ω,

since the element of minimal norm that determines the trajectories of steepest descent
dynamics. As we will comment latter, in this setting, the technique used by Baillon
cannot be directly applied.

The reader can note that the relation between the norm of the gradient ‖∇ϕ(x)‖ for
a continuously differentiable function and the size of the subgradient of minimal norm
‖∂ϕ(x)◦‖ for general convex functions is quite deep: In fact, both notions coincide
with what is known as the strong slope of ϕ at x , usually denoted by |∇ϕ|(x). The
strong slope can be interpreted as the fastest instantaneous rate of decrease and it
recently has been used to study steepest descent systems in metric spaces (see, e.g.,
[2,17–20,23,28] and the references therein). Moreover, it has strong links with the
theory of error bounds and metric regularity (see, e.g., [4]). For a nice survey on
recent developments on slope descent methods and tame optimization we refer the
reader to [21].

Our main results (Corollary 3.1 and Theorem 4.1) can be interpreted as follows:
for two convex proper lower semicontinuous functions bounded from below, if they
have the same slope, then they must coincide up to a constant. In comparison with
Moreau–Rockafellar condition (1), we may say that knowing the subdifferential of a
convex function is more first-order information than what we really need in order to
know the function. Thus, to completely determine a convex function (up to a constant)
it is enough to know its strong slope. Our approach is based on dynamical systems,
following the original ideas of [10] and J.-B. Baillon.

The article is organized as follows: In Sect. 2, we provide some preliminary notions
of convex analysis and steepest descent dynamics with convex potentials.We also pro-
vide, for the sake of completeness, the simple proof of J.-B. Baillon in the continuously
differentiable case. In Sect. 3we show a comparison principle for convex functions and
we prove Boulmezaoud–Cieutat–Daniilidis conjecture in the general case. In Sect. 4,
we provide the same determination result for convex continuous functions over an
open convex domain, under Dirichlet-type boundary conditions, which is not a direct
consequence of the results presented above.

2 Preliminaries and problem formulation

In the rest of the article, wewill assume that the reader has a basic knowledge of convex
analysis and we will use the standard notation of this field, following [3,7,9,25]. In
this section, we summarize the elements that we will use the most. For further details,
we refer the reader to the aforementioned books.

From now on,H will denote a real Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖. Through Riesz representation theorem, we identify the dual of H with H. For
notational convenience, we denote R∞ = R ∪ {+∞} and R = R ∪ {−∞,+∞}. For
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a (generalized) sequence (uλ) in H and u ∈ H, we write uλ → u to denote strong
convergence and uλ ⇀ u to denote the weak convergence.

For a nonempty convex closed set C ofHwe denote by dC : H → R+ the distance
function to C , and by proj(· ; C) : H → H its metric projection mapping. We write
δC : H → R∞ to denote the indicator function of C in the sense of convex analysis,
that is,

δC (x) =
{
0 if x ∈ C

+∞ otherwise.

For a function f : H → R∞ and a set-valued map S : H⇒H, we denote

dom f = {x ∈ H : f (x) ∈ R} and dom S = {x ∈ H : S(x) �= ∅}

as the domains of f and S, respectively. We write idH to denote the identity operator
onH.

We denote by Γ0(H) the set of all convex lower semicontinuous proper functions
fromH with values in R∞. For f ∈ Γ0(H), its Legendre–Fenchel conjugate function
f ∗ : H → R∞ is given by

f ∗(x∗) = sup
v∈H

{〈x∗, v〉 − f (v)}.

It is known that f ∗ ∈ Γ0(H) and that for every (x, x∗) ∈ H×H, theLegendre–Fenchel
inequality holds, that is

〈x∗, x〉 ≤ f (x) + f ∗(x∗).

For x ∈ H, the subdifferential of f at x is given by

∂ f (x) = {x∗ ∈ H : f (x) + 〈x∗, y − x〉 ≤ f (y),∀y ∈ H}.

Recall that for f ∈ Γ0(H), the set-valued map ∂ f : H⇒H is a maximal monotone
operator (see [25] for the definition), dom ∂ f is dense in dom f , and that ∂ f can be
characterized by the Legendre–Fenchel extremal condition, that is

x∗ ∈ ∂ f (x) ⇐⇒ 〈x∗, x〉 = f (x) + f ∗(x∗).

For a convex, lower semicontinuous and proper function Φ : H → R∞ and any
point x ∈ dom ∂Φ, we denote by ∂Φ(x)◦ the element of ∂Φ(x) of minimal norm, that
is,

∂Φ(x)◦ := proj (0; ∂Φ(x)) ,

where proj(x; K ) denotes the metric projection of x onto the closed convex set K . For
λ > 0, the λ-Moreau–Yosida regularization of Φ is the function Φλ : H → R given
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by

Φλ(x) := inf
y∈H

{
Φ(y) + 1

2λ
‖x − y‖2

}
.

The above infimum is attained at a unique point, Jλx . The Lipschitz mapping Jλ :
H → H is called the resolvent of ∂Φ of index λ.

It is known that Φλ is a continuously differentiable convex function, and its deriva-
tive is given by

∇Φλ(x) = 1

λ
(x − Jλx).

The operator Aλ = λ−1(idH −Jλ) is known as the Yosida approximation of the mono-
tone operator A := ∂Φ. One of the properties of the operator Aλ that will be used in
the article is that

‖Aλx‖ ≤ ‖∂Φ(x)◦‖, ∀x ∈ dom ∂Φ. (2)

For more properties on Yosida approximations, and the detailed definitions of the
operators Jλ and Aλ, we refer the reader to [3].

The following theorem surveys the main known properties of the subgradient flow
dynamical system for convex potentials, that we will use.

Theorem 2.1 ([3, Theorem 17.2.2 and Proposition 17.2.8]) Let Φ : H → R∞ be a
convex, lower semicontinuous, and proper function. Suppose that Φ is bounded from
below, that is, infH Φ > −∞. Then, for any u0 ∈ domΦ there exists a unique (strong)
global solution u : [0,+∞[→ H of the Cauchy problem

{
u̇(t) ∈ −∂Φ(u(t)), ∀t ≥ 0

u(0) = u0.

Moreover, the following properties hold:

(S.i) u(t) ∈ dom ∂Φ for all t > 0.
(S.ii) u̇ ∈ L2([0,+∞[,H) ∩ L∞([0,+∞[,H). In particular, u is Lipschitz contin-

uous on [0,+∞[.
(S.iii) For each t ≥ 0, u has a right derivative and

d+u

dt
(t) = −∂Φ(u(t))◦.

(S.iv) The map t �→
∥∥∥∥d+u

dt
(t)

∥∥∥∥ is nonincreasing and

lim
t→+∞

∥∥∥∥d+u

dt
(t)

∥∥∥∥ = 0.
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(S.v) The map t �→ Φ(u(t)) is nonincreasing, absolutely continuous on each
bounded interval of [0, T ], and

d

dt
Φ(u(t)) = −‖u̇(t)‖2, a.e. t > 0.

(S.vi) The limit limt→+∞ Φ(u(t)) exists and coincides with infH Φ.
(S.vii) If argminΦ �= ∅, then there exists u∞ ∈ argminΦ such that u(t)⇀ u∞.

To finish this introductory part and for the sake of completeness, we present the
rediscovered proof of Boulmezaoud, Cieutat and Daniilidis’s conjecture in the every-
where differentiable case when the infimum of the function ϕ1 is attained.

Theorem 2.2 Let ϕ1, ϕ2 : H → R be two convex continuous functions everywhere
Gâteaux differentiable, such that

(i) ‖∇ϕ1(x)‖ = ‖∇ϕ2(x)‖, for all x ∈ H.
(ii) ϕ1 attains its minimum, that is, argmin ϕ1 �= ∅.

Then, there exists a ∈ R such that ϕ1 = ϕ2 + a.

Proof Since S := argmin ϕ1 �= ∅, hypothesis (i) entails that argmin ϕ2 = S. Now,
consider the convex functional Φ = ϕ1 + ϕ2 and fix u0 ∈ H. It is not hard to realize
that inf Φ = inf ϕ1 + inf ϕ2 and that argminΦ coincides with S as well.

Let u : [0,+∞[→ H be the unique global solution of

{
u̇(t) = −∇Φ(u(t)),

u(0) = u0.

Then, by Theorem 2.1.(S.vii), there exists u∞ ∈ S such that u(t)⇀ u∞. By lower
semicontinuity of ϕ1, upper semicontinuity of −ϕ2 and Theorem 2.1.(S.vi) we can
write

ϕ1(u∞) ≤ lim inf ϕ1(u(t))

≤ lim supϕ1(u(t))

≤ limΦ(u(t)) + lim sup−ϕ2(u(t))

≤ inf Φ − inf ϕ2 = ϕ1(u∞).

Thus, ϕ1(u(t)) → inf ϕ1. By symmetry, ϕ2(u(t)) → inf ϕ2 as well. Now, let us define
Ψ : [0,+∞[→ R given by

Ψ (t) = ϕ1(u(t)) − ϕ2(u(t)).

Clearly, Ψ is absolutely continuous and for almost all t > 0 we can write

d

dt
Ψ (t) = 〈∇ϕ1(u(t)) − ∇ϕ2(u(t)), u̇(t)〉

123



Determination of convex functions via subgradients of minimal norm

= 〈∇ϕ1(u(t)) − ∇ϕ2(u(t)),−(∇ϕ1(u(t)) + ∇ϕ2(u(t)))〉
= ‖∇ϕ2(u(t))‖2 − ‖∇ϕ1(u(t))‖2 = 0.

Thus, Ψ is a constant function, and so

ϕ1(u0) − ϕ2(u0) = Ψ (0) = lim
t→+∞ Ψ (t) = inf ϕ1 − inf ϕ2.

Since, u0 ∈ H is arbitrary, the conclusion follows by setting a = inf ϕ1 − inf ϕ2. ��

3 Comparison principle and determination whenÄ = H
Let ϕ1, ϕ2 : H → R∞ two convex proper lower semicontinuous functionals and let
Ω be a nonempty open convex subset of H. For an arbitrary x0 ∈ Ω ∩ dom ∂ϕ1, we
consider the following system:

{
ẋ(t) ∈ −∂ϕ1(x(t)),

x(0) = x0.
(3)

We consider the following two hypotheses:

(H.1) ‖∂ϕ1(x)◦‖ ≥ ‖∂ϕ2(x)◦‖, for all x ∈ Ω .
(H.2) infΩ ϕ1 > −∞.

Let x1 : [0,+∞[→ H be the unique solution of system (3). Theorem 2.1 and
hypothesis (H.2) ensure that ϕ1 is nonincreasing along x1 and ϕ1(x1) converges to
the infimum of ϕ1. However, one first obstruction to compare ϕ1 and ϕ2 is that, when
following x1, we cannot guarantee that ϕ2 is nonincreasing along this trajectory. The
next lemma shows that if the trajectory x1 never meets bdΩ , hypothesis (H.1) forces
ϕ2(x1) to converge to the infimum of ϕ2.

Lemma 3.1 Let Ω ⊆ H be a nonempty open convex set, and let ϕ1, ϕ2 : H → R∞
be two convex proper lower semicontinuous functions verifying hypotheses (H.1) and
(H.2). For x0 ∈ Ω ∩ dom ∂ϕ1, let x1 : [0,+∞[→ H be the unique solution of
system (3). If the trajectory x1(·) remains entirely in Ω , then infΩ ϕ2 = infH ϕ2 and
ϕ2(x1(t)) −→ infH ϕ2 (which may be −∞).

Proof Let v ∈ Ω ∩ dom ϕ2. By convexity and the fact that Ω ∩ dom ∂ϕ1 = Ω ∩
dom ∂ϕ2, for any t ∈ [0,+∞[ we can write

ϕ2(x1(t)) + 〈∂ϕ2(x1(t))
◦, v − x1(t)〉 ≤ ϕ2(v).

By hypothesis (H.1) and Theorem 2.1.(S.iv), we know that ∂ϕ2(x1(t))◦ con-
verges strongly to 0, and therefore 〈∂ϕ2(x1(t))◦, v〉 → 0. Let us prove that
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〈∂ϕ2(x1(t))◦, x1(t)〉 also converges to 0. Indeed, fix ε > 0 and, applying Theo-
rem 2.1.(S.ii), let tε > 0 large enough such that

+∞∫
tε

‖ẋ1(s)‖2ds ≤ ε.

Then, for t ≥ tε we can write

∣∣〈∂ϕ2(x1(t))
◦, x1(t)〉

∣∣ ≤ ∣∣〈∂ϕ2(x1(t))
◦, x1(tε)〉

∣∣
+ ∣∣〈∂ϕ2(x1(t))

◦, x1(t) − x1(tε)〉
∣∣

= ∣∣〈∂ϕ2(x1(t))
◦, x1(tε)〉

∣∣ +
∣∣∣∣∣∣

t∫
tε

〈∂ϕ2(x1(t))
◦, ẋ1(s)〉ds

∣∣∣∣∣∣
≤ ∣∣〈∂ϕ2(x1(t))

◦, x1(tε)〉
∣∣ +

t∫
tε

‖∂ϕ2(x1(t))
◦‖‖ẋ1(s)‖ds

≤ ∣∣〈∂ϕ2(x1(t))
◦, x1(tε)〉

∣∣ +
t∫

tε

‖ẋ1(s)‖2ds,

where the last inequality follows by noting that

‖∂ϕ2(x1(t))
◦‖ ≤ ‖∂ϕ1(x1(t))

◦‖
=

∥∥∥∥d+x1
dt

(t)

∥∥∥∥ ≤
∥∥∥∥d+x1

dt
(s)

∥∥∥∥ = ‖ẋ1(s)‖, for a.e. s ≤ t .

Then, we get that

∣∣〈∂ϕ2(x1(t))
◦, x1(t)〉

∣∣ ≤ ∣∣〈∂ϕ2(x1(t))
◦, x1(tε)〉

∣∣ + ε
t→+∞−−−−→ ε.

Since ε > 0 was arbitrary, we deduce that

lim sup
∣∣〈∂ϕ2(x1(t))

◦, x1(t)〉
∣∣ = 0,

proving the desired convergence. Then, for all v ∈ dom ϕ2 one has that

inf
Ω

ϕ2 ≤ lim inf ϕ2(x1(t))

≤ lim supϕ2(x1(t))

≤ lim sup(ϕ2(v) + 〈∂ϕ2(x1(t))
◦, x1(t) − v〉) = ϕ2(v).
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By taking infimum in v over dom ϕ2, we conclude that infΩ ϕ2 = infH ϕ2, that
lim ϕ2(x1(t)) exists in R (could be −∞), and that it coincides with infH ϕ2, finishing
the proof. ��

The following theorem allows us to compare two convex functions when the min-
imal norm of their respective subgradients are comparable. As in classic theory of
viscosity solutions [6], this is the cornerstone to provide the uniqueness result we
search. Here, we consider two types of boundary conditions, that we called Dirichlet
and Neumann conditions. While the name of the first one is self-explained, the second
one received its name due to its relation with normal derivatives in the continuously
differentiable setting (see Remark 3.1).

Theorem 3.1 (Comparison principle) Let Ω ⊆ H be a nonempty open convex set, and
let ϕ1, ϕ2 : H → R∞ be two convex proper lower semicontinuous functions satisfying
hypotheses (H.1) and (H.2).

Assume also that one of the following boundary conditions hold:

(C.1) (Dirichlet condition) There exists c ∈ R such that ϕ1(x) ≥ ϕ2(x) + c, for all
x ∈ bdΩ .

(C.2) (Neumann condition) For all x ∈ bdΩ , the following inequality holds:
‖∂(ϕ1 + δΩ)(x)◦‖ ≥ ‖∂(ϕ2 + δΩ)(x)◦‖.

Then, there exists a ∈ R such that ϕ1 ≥ ϕ2 + a in Ω . Moreover,

– if (C.1) holds, then we can set a = min
{
c, infΩ ϕ1 − infΩ ϕ2

}
; and

– if (C.2) holds, then we can set a = infΩ ϕ1 − infΩ ϕ2.

Proof Assume first condition (C.1). Let x0 ∈ D := Ω∩dom ∂ϕ1. Clearly, (H.1) yields
that x0 ∈ dom ∂ϕ2 as well. Let us consider then the subgradient flow problem (3) with
initial condition x0, and let x1 : [0,+∞[→ H be its solution, given by Theorem 2.1.
Define the function Ψ : [0,+∞[→ R given by

Ψ (t) := ϕ1(x1(t)) − ϕ2(x1(t)).

and consider the exit time

τ := inf{t ≥ 0 : x1(t) ∈ bdΩ}.

Clearly τ > 0 and, since x1 is Lipschitz-continuous with some constant L > 0 by
Theorem 2.1.(S.ii), we know that almost every t ∈ [0, τ [,

‖∂ϕ2(x1(t))
◦‖ ≤ ‖∂ϕ1(x1(t))

◦‖ = ‖ẋ1(t)‖ ≤ L.

Then, by [3, Proposition 17.2.5] we know that t �→ ϕ2(x1(t)) is absolutely continuous
on [0, τ [, and so is Ψ . Therefore, for almost all t ∈ [0, τ [ we can write

d

dt
Ψ (t) = 〈∂ϕ1(x1(t))

◦, ẋ1(t)〉 − 〈∂ϕ2(x1(t))
◦, ẋ1(t)〉
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≤ −‖∂ϕ1(x1(t))
◦‖2 + ‖∂ϕ2(x1(t))

◦‖‖∂ϕ1(x1(t))
◦‖ ≤ 0,

which yields that Ψ is nonincreasing on [0, τ [. Now, on the one hand, if τ < +∞,
then x1(τ ) ∈ bdΩ and

ϕ1(x0) − ϕ2(x0) = Ψ (0) ≥ Ψ (τ) = ϕ1(x1(τ )) − ϕ2(x1(τ )) ≥ c.

On the other hand, if τ = +∞, we can apply Theorem 2.1.(S.v) and Lemma 3.1 to
write

ϕ1(x0) − ϕ2(x0) ≥ Ψ (t)
t→+∞−−−−→ inf

Ω

ϕ1 − inf
Ω

ϕ2 =: b.

Noting that ϕ1(x0) − ϕ2(x0) < +∞, hypothesis (H.2) ensures that infΩ ϕ2 > −∞
and so b ∈ R. Then, defining a = min{b, c}, we conclude that

ϕ1(x) ≥ ϕ2(x) + a, ∀x ∈ Ω ∩ dom ∂ϕ1.

Consider now x ∈ Ω ∩dom ϕ1. By Brønsted–Rockafellar theorem applied to ϕ1+δΩ

(see, e.g., [12, Theorem 2]), we have that there exist a sequence (xn) in D converging
to x such that ϕ1(xn) → ϕ1(x). Then, by lower semicontinuity of ϕ2,

ϕ2(x) + a ≤ lim inf(ϕ2(xn) + a) ≤ lim inf ϕ1(xn) = ϕ1(x).

The conclusion follows.
To finish, if we assume condition (C.2), we can replace ϕi by ϕ̃i = ϕi +δΩ , i = 1, 2

and apply the above development directly to these functions over the whole spaceH,
where condition (C.1) is trivially satisfied. This can be done due to the fact that Ω has
nonempty interior and therefore, the sum rule of subdifferentials hold, that is,

∂ϕ̃i (x) = ∂ϕi (x) + ∂δΩ(x), ∀x ∈ H, i = 1, 2.

Then, condition (C.2) yields that ϕ̃1 and ϕ̃2 verify hypothesis (H.1) over H. Since in
this case the exit time τ defined above will always be +∞, we can set a = infΩ ϕ1 −
infΩ ϕ2. The proof is now finished. ��
Observe that, under Dirichlet boundary condition (C.1), the constant a =
min{c, infΩ ϕ1−infΩ ϕ2} cannot be improvedwithout extra hypotheses. For example:

1. On the one hand, if we consider Ω =]0,+∞[, ϕ1(x) = exp(−x) and ϕ2(x) = 0,
then in this case we can choose c = 1 and we have that infΩ ϕ1 − infΩ ϕ2 = 0.
Here, it is clear thatϕ1 ≥ ϕ2+0. Thus, the infimumdifference is the active constant.
See Fig. 1, left figure.

2. On the other hand, if we considerΩ =]−1,+∞[, ϕ1(x) = x −1 and ϕ2(x) = |x |,
then in this case we can choose c = −3 and infΩ ϕ1 − infΩ ϕ2 = −2. Here, it is
clear that ϕ1 ≥ ϕ2 − 3. Thus, the boundary constant is the active one. See Fig. 1,
right figure.
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Fig. 1 Left: a = inf
Ω

ϕ1 − inf
Ω

ϕ2. Right: a = c

From the proof of Theorem 3.1, if bdΩ = ∅, then infH ϕ2 > −∞ and the constant
a ∈ R can be set as a = infH ϕ1−infH ϕ2. Thus, we get the following direct corollary:

Corollary 3.1 Let ϕ1, ϕ2 : H → R∞ be two convex proper lower semicontinuous
functions satisfying that:

(i) ‖∂ϕ1(x)◦‖ = ‖∂ϕ2(x)◦‖, for all x ∈ H.
(ii) infH ϕ1 > −∞.

Then, there exists a ∈ R such that ϕ1 = ϕ2 + a.

Also, the reader can appreciate (following the same argument in the end of the
proof of Theorem 3.1) that the Neumann condition (C.2) allows to omit the set Ω as a
constraint, by considering directly ϕ1 + δΩ and ϕ2 + δΩ . Therefore, we also can write
the following corollary:

Corollary 3.2 Let Ω ⊆ H be a nonempty open convex set, and let ϕ1, ϕ2 : H → R∞
be two convex proper lower semicontinuous functions satisfying that:

(i) ‖∂ϕ1(x)◦‖ = ‖∂ϕ2(x)◦‖, for all x ∈ Ω .
(ii) infΩ ϕ1 > −∞.

Assume also that the Neumann boundary condition holds, that is,

‖∂(ϕ1 + δΩ)(x)◦‖ = ‖∂(ϕ2 + δΩ)(x)◦‖, for all x ∈ bdΩ.

Then, there exists a ∈ R such that ϕ1 = ϕ2 + a in Ω .

Remark 3.1 Observe that when the functions ϕ1, ϕ2 are continuously differentiable,
we have that

∂(ϕi + δΩ)(x) = ∇ϕi (x) + NΩ(x), ∀x ∈ bdΩ and i = 1, 2,

where NΩ(x) stands for the normal cone ofΩ at x . Then, if we choose a normal vector
ξ ∈ NΩ(x), we will have, provided hypothesis (H.1) and continuity of the gradients,
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that

‖∇ϕ1(x) + ξ‖2 = ‖∇ϕ1(x)‖2 + 2〈∇ϕ1(x), ξ 〉 + ‖ξ‖2
≥ ‖∇ϕ2(x)‖2 + 2〈∇ϕ1(x), ξ 〉 + ‖ξ‖2.

Then, it is easy to verify that the classic Neumann condition of normal derivatives,
that is,

〈∇ϕ1(x), ξ 〉 ≥ 〈∇ϕ2(x), ξ 〉, ∀x ∈ bdΩ,∀ξ ∈ NΩ(x),

entails condition (C.2). This is why we refer to Neumann conditions in Theorem 3.1
and in Corollary 3.2.

4 Determination under Dirichlet boundary condition

In this section, we will show that the conclusion of Corollary 3.2 also holds under
Dirichlet boundary conditions. However, in order to prove it, the comparison principle
shown in Theorem 3.1 is not enough,mainly because it doesn’t allow us to differentiate
between the cases when trajectories remain in Ω and when they reach bdΩ .

Here, we will go back to the idea of using the sum and the difference of both
functions, mentioned in Sect. 1 for the smooth case. The main obstruction to directly
apply the technique is that in the nonsmooth case one cannot guarantee that ∂(ϕ1 +
ϕ2)(x)◦ coincide with ∂ϕ1(x)◦ + ∂ϕ2(x)◦. Therefore, an adaptation is needed.

A first natural idea is to consider the Moreau–Yosida regularization of the involved
functionals, to obtain approximate smooth versions of the problem, and then apply
known convergence results. However, this is not possible since the norms of the gra-
dients of the regularized approximations of ϕ1 and ϕ2 are not comparable between
them, nor comparable with the gradient of the approximations of the sum ϕ1 + ϕ2.

Here, we propose a new method consisting on partially regularize the sum, by
regularizing only one of the functions. Formally, let Ω ⊆ H be a nonempty open
convex set, and let ϕ1, ϕ2 : H → R∞ be two convex proper lower semicontinuous
functions. We will study the behavior of

Φ := ϕ1 + ϕ2 + δΩ and Φλ := ϕ1,λ + ϕ2 + δΩ,

where, for λ > 0, ϕ1,λ is the λ-Moreau–Yosida approximation of ϕ1 + δΩ , that is

ϕ1,λ(x) = inf
y∈H

{
(ϕ1 + δΩ)(y) + 1

2λ
‖x − y‖2

}
. (4)
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Let u0 ∈ dom ∂Φ. We consider u : [0,+∞[→ H and uλ : [0,+∞[→ H to be
the global solutions of the systems

{
u̇(t) ∈ −∂Φ(u(t)), a.e. t ≥ 0

u(0) = u0,

and{
u̇λ(t) ∈ −∂Φλ(uλ(t)), a.e. t ≥ 0

uλ(0) = u0,

(5)

respectively. A priori, there is no guarantee that the solutions of the second system of
(5) converge to the solution of the first one.

The following lemma establishes that, under some uniform boundedness condition,
the desired convergences hold in the spirit of classic Moreau–Yosida approximations.
It is mainly based on [3, Proposition 17.2.6] and its proof is an adaptation of the classic
proofs of [3, Theorem 17.2.2 and Proposition 17.2.6].

Lemma 4.1 Let Ω ⊆ H be a nonempty open convex set, and let ϕ1, ϕ2 : H → R∞
be two convex proper lower semicontinuous functions such that the mappings x �→
‖∂ϕ1(x)◦‖ and x �→ ‖∂ϕ2(x)◦‖ are uniformly bounded in Ω . Then,

1. uλ → u uniformly in every interval [0, T ].
2. u̇λ → u̇ strongly in L2([0, T ],H).
3. Φλ(uλ(t)) → Φ(u(t)) uniformly in every interval [0, T ].
4. ϕ1,λ(uλ(t)) → ϕ1(u(t)) and ϕ2(uλ(t)) → ϕ2(u(t)) uniformly in every interval

[0, T ].
Proof Without loss of generality, let us assume that ϕ1 = ϕ1 + δΩ and ϕ2 = ϕ2 + δΩ .
First, fix T > 0 and let M1, M2 > 0 be the global upper bounds on ‖∂ϕ1(x)◦‖ and
‖∂ϕ2(x)◦‖, respectively.

Let us show that (uλ)λ>0 is a Cauchy net in C([0, T ],H) with the uniform norm.
Fix λ,μ > 0 and define h : [0, T ] → [0,+∞[ by

h(t) := 1

2
‖uλ(t) − uμ(t)‖2.

Then, we can write

ḣ(t) = 〈uλ(t) − uμ(t), u̇λ(t) − u̇μ(t)〉
= 〈uλ(t) − uμ(t),−ξλ(t) + ξμ(t)〉

+ 〈uλ(t) − uμ(t),−∇ϕ1,λ(uλ(t)) + ∇ϕ1,μ(uμ(t))〉,

where ξλ(t) ∈ ∂ϕ2(uλ(t)) is such that ξλ(t) + ∇ϕ1,λ(uλ(t)) = ∂Φλ(uλ(t))◦, and
ξμ(t) ∈ ∂ϕ2(uμ(t)) is such that ξμ(t)+∇ϕ1,μ(uμ(t)) = ∂Φμ(uμ(t))◦. The existence
of the elements ξλ(t) and ξμ(t) is given by the continuity of ϕ1,λ and ϕ1,μ, which
entail the qualification conditions of the sum rule of convex subdifferentials (see, e.g.,
[9, Theorem 4.1.19]).
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By monotonicity of ∂ϕ2, we get that

〈uλ(t) − uμ(t),−ξλ(t) + ξμ(t)〉 ≤ 0,

and so,

ḣ(t) ≤ 〈uλ(t) − uμ(t),−∇ϕ1,λ(uλ(t)) + ∇ϕ1,μ(uμ(t))〉.

From now on, we will omit the variable t to simplify notation. Recalling that uλ =
Jλuλ + λAλuλ and uμ = Jμuμ + μAμuμ, the above inequality allows us to write

ḣ + 〈Jλuλ + λAλuλ − Jμuμ − μAμuμ, Aλuλ − Aμuμ〉 ≤ 0.

Since Aλuλ ∈ ∂ϕ1(Jλuλ) and Aμuμ ∈ ∂ϕ1(Jμuμ), we get that 〈Jλuλ− Jμuμ, Aλuλ−
Aμuμ〉 is nonnegative, which entails

ḣ + 〈λAλuλ − μAμuμ, Aλuλ − Aμuμ〉 ≤ 0.

Noting that 〈Aλuλ, Aμuμ〉 ≤ 1
2 (‖Aλuλ‖2 + ‖Aμuμ‖2), it is not hard to prove that

〈λAλuλ − μAμuμ, Aλuλ − Aμuμ〉 ≥ −μ‖Aλuλ‖2 − λ‖Aμuμ‖2,

and recalling that ‖Aλuλ‖ ≤ ‖∂ϕ1(uλ)
◦‖ and ‖Aμuμ‖ ≤ ‖∂ϕ1(uμ)◦‖, we conclude

that

ḣ ≤ +μ‖Aλuλ‖2 + λ‖Aμuμ‖2 ≤ (λ + μ)M2
1 .

By integrating ḣ, we conclude that

‖uλ − uμ‖∞ ≤ √
λ + μM1

√
T ,

which proves that (uλ) is a Cauchy net. This yields that uλ → v ∈ C([0, T ],H)

uniformly. Since (∇ϕ1,λ(uλ)) is uniformly bounded above by M1 we have that

‖ξλ + ∇ϕ1,λ(uλ)‖ = ‖Φλ(uλ)
◦‖ = inf{‖ζ + ∇ϕ1,λ(uλ)‖ : ζ ∈ ∂ϕ2(uλ)}

≤ ‖∂ϕ2(uλ)
◦‖ + M1 ≤ M1 + M2.

Thus, for all t ∈ [0, T ],

‖ξλ‖ ≤ ‖ξλ + ∇ϕ1,λ(uλ)‖ + ‖∇ϕ1,λ(uλ)‖ ≤ 2M1 + M2,

and so (ξλ) is also uniformly bounded. We get then that v is absolutely continuous in
[0, T ] and u̇λ ⇀ v̇ ∈ L2([0, T ],H). Indeed, it is clear that any sequence (u̇λn ) with
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λn → 0 has a weakly convergent subsequence (u̇λnk
), and then by a mild application

of Lebesgue Dominated Convergence theorem, we get that

∫ t

0
lim

k
u̇λnk

(s)ds = v(t) − v(0), ∀t ∈ [0, T ],

proving that v is absolutely continuous and u̇λnk
⇀ v̇. The convergence of the original

net (u̇λ) follows by noting that any sequence (u̇λn )with λn → 0 has v̇ as cluster point.
Moreover, by similar arguments, we get that

ξλ ⇀ ξ ∈ L2([0, T ],H) and ∇ϕ1,λ(uλ)⇀ η ∈ L2([0, T ],H),

with −v̇ = ξ + η. Finally, since ‖Jλuλ(t) − uλ(t)‖ ≤ λ‖Aλuλ(t)‖ for all t ∈ [0, T ],
we conclude that Jλuλ → v uniformly as well.

Let us prove now that v = u. Recall that for every λ > 0, u̇λ = −ξλ − ∇ϕ1,λ(uλ),
where ξλ ∈ ∂ϕ2(uλ) and ∇ϕ1,λ(uλ) ∈ ∂ϕ1(Jλuλ). Then, we get that

ϕ1(Jλuλ) + ϕ∗
1 (∇ϕ1,λ(uλ)) − 〈Jλuλ,∇ϕ1,λ(uλ)〉 = 0,

ϕ2(uλ) + ϕ∗
2 (ξλ) − 〈uλ, ξλ〉 = 0.

Thus, by integrating and then taking inferior limit, we get that

T∫
0

ϕ1(v) + ϕ∗
1 (η) − 〈v, η〉 ≤ 0,

T∫
0

ϕ2(v) + ϕ∗
2 (ξ) − 〈v, ξ 〉 ≤ 0.

Noting that (see, e.g., [9, Proposition 4.4.1, Lemma 4.4.15])

Φ∗(−v̇) ≤ inf{ϕ∗
1 (a) + ϕ∗

2 (b) : a + b = −v̇} ≤ ϕ∗
1 (η) + ϕ∗

2 (ξ),

we can add the latter inequalities to get that

T∫
0

Φ(v(t)) + Φ∗(−v̇(t)) − 〈v(t), v̇(t)〉dt ≤ 0.

Since the above integrand is always nonnegative due to the Legendre–Fenchel inequal-
ity, we conclude that

Φ(v(t)) + Φ∗(−v̇(t)) − 〈v(t), v̇(t)〉 = 0, for almost all t ∈ [0, T ],
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which yields that v : [0, T ] → H is a solution in [0, T ] of the first dynamical system
in (5), entailing by uniqueness of solutions that v = u

∣∣[0,T ].
Now, let us prove that u̇λ converges strongly to u̇. First, since uλ is the solution of

the second system in (5), we know that

T∫
0

‖u̇λ(t)‖2dt + Φλ(uλ(T )) − Φλ(u0) = 0.

Since the map v �→ ∫ T
0 ‖v(t)‖2dt is lower semicontinuous in L2([0, T ],H), the weak

convergence of (u̇λ) to u̇ yields that

T∫
0

‖u̇(t)‖2dt ≤ lim inf
λ

T∫
0

‖u̇λ(t)‖2dt .

Also, since ϕ1,λ(u0) → ϕ1(u0), we get that

Φ(u0) = lim
λ

Φλ(u0).

Finally, noting that Φλ(uλ(T )) ≥ ϕ1(Jλuλ(T )) + ϕ2(uλ(T )), the convergences
uλ(T ) → u(T ) and Jλuλ(T ) → u(T ) yield that

Φ(u(T )) = ϕ1(u(T )) + ϕ2(u(T ))

≤ lim inf
λ

ϕ1(Jλuλ(T )) + lim inf
λ

ϕ2(uλ) ≤ lim inf
λ

Φλ(uλ(T )).

Finally, since u is the solution of the first system in (5), we have

T∫
0

‖u̇(t)‖2dt + Φ(u(T )) − Φ(u0) = 0.

We conclude then, by applying [3, Lemma 17.2.1], that

T∫
0

‖u̇λ(t)‖2dt →
T∫

0

‖u̇(t)‖2dt and Φλ(uλ(T )) → Φ(u(T )).

The weak convergence u̇λ ⇀ u̇ and the convergence of the norms imply that (u̇λ)

converges strongly to u̇ in L2([0, T ],H). Finally, since

∣∣∣∣ d

dt
Φλ(uλ(t))

∣∣∣∣ = ‖u̇λ(t)‖2

≤ ‖∇ϕ1,λ(uλ(t)) + ∂ϕ2(uλ(t))
◦‖2 ≤ (M1 + M2)

2, a.e. t ∈ [0, T ],
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we get that ‖Φλ(uλ)‖∞ ≤ (M1 + M2)
2T . By Arzelà–Ascoli Theorem in the space

C([0, T ],R), we conclude that

Φλ(uλ) → Φ(u), uniformly in [0, T ].

Now, due to the upper semicontinuity of −ϕ1, for every t ∈ [0, T ] we have that

ϕ2(u(t)) ≤ lim inf
λ

ϕ2(uλ(t))

≤ lim sup
λ

(Φλ(uλ(t)) − ϕ1,λ(uλ(t)))

≤ lim sup
λ

(Φλ(uλ(t)) − ϕ1(Jλuλ(t)))

≤ lim
λ

Φλ(uλ(t)) + lim sup
λ

−ϕ1(Jλuλ(t))

≤ Φ(u(t)) − ϕ1(u(t)) = ϕ2(u(t)).

Thus, ϕ2(uλ(t)) → ϕ2(u(t)), and therefore, ϕ1,λ(uλ(t)) → ϕ1(u(t)). Furthermore,
bothmappings ϕ1,λ(uλ) and ϕ2(uλ) are absolutely continuous (by, e.g., [3, Proposition
17.2.5]) and∣∣∣∣ d

dt
ϕ1,λ(uλ(t))

∣∣∣∣ ≤ ‖∇ϕ1,λ(uλ(t))‖‖u̇λ‖ ≤ M1(M1 + M2), a.e. t ∈ [0, T ],∣∣∣∣ d

dt
ϕ2(uλ(t))

∣∣∣∣ ≤ ‖∂ϕ2(uλ(t))
◦‖‖u̇λ‖ ≤ M2(M1 + M2), a.e. t ∈ [0, T ].

We deduce again by Arzelà–Ascoli Theorem in C([0, T ],R), that ϕ1,λ(uλ) converges
uniformly to ϕ1(u) in [0, T ] and ϕ2(uλ) converges uniformly to ϕ2(u) in [0, T ]. The
proof is now finished. ��

While uniform boundedness is usually a too strong hypothesis, the following basic
lemma will help us to localize this property. We include the proof for the sake of
completeness.

Lemma 4.2 Let Ω ⊆ H be a nonempty open convex set, f : Ω → R be a convex
continuous function, and let u : [a, b] ⊂ R → H (with a < b) be a continuous
trajectory such that u([a, b]) ⊂ Ω . Then, there exist two open convex sets U and V ,
and ε > 0 small enough such that

1. u([a, b]) ⊂ V ⊂ U ⊂ Ω;
2. u([a, b]) + εB ⊂ V ; and
3. f is Lipschitz-continuous on U.

Proof Let K = co(u([a, b])). Let us first show that K ⊂ Ω . Since u([a, b]) is
compact, there exists a finite sequence (xi )

p
i=1 ⊆ u([a, b]) and η > 0 small enough

such that

u([a, b]) ⊆
p⋃

i=1

xi + ηB ⊆ Ω.
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Then, since Ω is convex

co

( p⋃
i=1

xi + ηB

)
= co({xi }p

i=1) + ηB ⊆ Ω,

and so, since co({xi }p
i=1)+ηB is closed, we deduce that co(u[a, b]) ⊂ Ω , as claimed.

Now, we claim that there exists γ > 0 and κ > 0 such that f is κ-Lipschitz on
K + γB ⊆ Ω .

Since K is compact (see, e.g., [1, Theorem 5.35]), by using a finite cover argument,
we can find L > 0 such that f is L-Lipschitz (locally) at every point x ∈ K . Further-
more, since K is convex, we get that f is L-Lipschitz over K . This yields that there
exists γ > 0 small enough such that f is κ-Lipschitz on K + γB with κ = L + 1.

Indeed, if this is not the case, then there exist two sequences (yk) and (zk) such that

– yk, zk ∈ K + 1
kB; and

– | f (yk) − f (zk)| > (L + 1)‖yk − zk‖.
By studying the convergence of the sequence (proj(yk, K ))k and the sequence

(proj(zk, K ))k , it is not hard to realize that, up to subsequences, there exist y, z ∈ K
such that yk → y and zk → z. Then, on the one hand, if y �= z, we would have

(L + 1)‖y − z‖ ≤ | f (y) − f (z)| ≤ L‖y − z‖,

which is a contradiction. On the other hand, if y = z, there exists a neighborhood O
of y such that f is L-Lipschitz on O . Then, for k ∈ N large enough, we will get that
yk, zk ∈ O and so

(L + 1)‖yk − zk‖ ≤ | f (yk) − f (zk)| ≤ L‖yk − zk‖,

which is also a contradiction. The claim is then proved.
The proof is finished by taking U = int(K + γB), V = int(K + γ

2B) and ε = γ
3 .��

Theorem 4.1 Let Ω ⊆ H be a nonempty open convex set, and let ϕ1, ϕ2 : H → R∞ be
two convex proper lower semicontinuous functions satisfying the following conditions:

(i) ϕ1 is finite in Ω .
(ii) ‖∂ϕ1(x)◦‖ = ‖∂ϕ2(x)◦‖, for all x ∈ Ω .

(iii) infΩ ϕ1 > −∞.

Assume also that the Dirichlet border condition holds, that is, there exists c ∈ R

such that ϕ1(x) = ϕ2(x)+c, for all x ∈ bdΩ (Dirichlet condition). Then, there exists
a ∈ R such that ϕ1 = ϕ2 + a in Ω .

Proof Without loss of generality, assume that bdΩ ∩ dom ϕ1 �= ∅, otherwise, the
result becomes just an application of Corollary 3.1.

Since ϕ1 is finite in Ω , convexity and lower semicontinuity yield that ϕ1 is con-
tinuous in Ω and that Ω ⊆ dom ∂ϕ1. Hypothesis (ii) entails that the same properties
(finiteness and continuity in Ω) hold for ϕ2 as well.
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Applying twice Theorem 3.1, there exist two constants a1, a2 ∈ R such that

ϕ2(x) + a1 ≤ ϕ1(x) ≤ ϕ2(x) + a2, ∀x ∈ Ω.

Let us define

a1 := sup
{
a ∈ R : a ≤ ϕ1(x) − ϕ2(x), ∀x ∈ Ω

}
,

a2 := inf
{
a ∈ R : a ≥ ϕ1(x) − ϕ2(x), ∀x ∈ Ω

}
.

By following the proof of Theorem 3.1, we know that

min{c, inf
Ω

ϕ1 − inf
Ω

ϕ2} ≤ a1 ≤ a2 ≤ max{c, inf
Ω

ϕ1 − inf
Ω

ϕ2}

We will show that c = infΩ ϕ1 − infΩ ϕ2. Proceeding by contradiction, suppose that
this is not true and consider first that infΩ ϕ1 − infΩ ϕ2 < c.

Take u0 ∈ dom ϕ1 ∩ bdΩ and let x1 : [0,+∞[→ H and u : [0,+∞[→ H be the
global solutions of{

ẋ1(t) ∈ −∂ϕ1(x1(t)), a.e. t ≥ 0

x1(0) = u0,
and

{
u̇(t) ∈ −∂Φ(u(t)), a.e. t ≥ 0

u(0) = u0,

respectively. Since for all x ∈ bdΩ we can write

inf
Ω

ϕ1 < c + inf
Ω

ϕ2 ≤ ϕ1(x),

we know that there must exist a time t0, such that the trajectory x1 remains in Ω from
t0 onwards, that is x1(]t0,+∞[) ⊂ Ω . This yields that we can apply Lemma 3.1 to
conclude that

ϕ2(x1(t)) → inf
Ω

ϕ2,

and so Φ(x1(t)) → infΩ ϕ1 + infΩ ϕ2. This proves that

inf
Ω

Φ = inf
Ω

ϕ1 + inf
Ω

ϕ2 < 2 inf
Ω

ϕ2 + c ≤ inf
bdΩ

Φ.

Thus, since Φ(u(t)) → inf Φ, we deduce that there must exist a time t̄ , such that the
trajectory u remains in Ω from t̄ onwards. Setting t̄ = sup{t ≥ 0 : u(t) ∈ bdΩ} and
replacing u0 by u(t̄) if necessary, we may assume that t̄ = 0, that is, we may assume
that u(]0,+∞[) ⊂ Ω .

Note that, by [3, Proposition 17.2.5], ϕ1(u) and ϕ2(u) are absolutely continuous.
Moreover, ϕ1(u(t)) → infΩ ϕ1 and ϕ2(u(t)) → infΩ ϕ2. Indeed, for the first limit
we can write

inf
Ω

ϕ1 ≤ lim inf
t

ϕ1(u(t))
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≤ lim sup
t

ϕ1(u(t))

= lim sup
t

(Φ(u(t)) − ϕ2(u(t))

≤ lim sup
t

Φ(u(t)) − inf
Ω

ϕ2

= inf
Ω

Φ − inf
Ω

ϕ2 = inf
Ω

ϕ1.

For the second limit, we can do the same by exchanging the roles of ϕ1 and ϕ2. Now,
let Ψ : [0,+∞[→ R be the function given by

Ψ (t) := ϕ1(u(t)) − ϕ2(u(t)).

By the previous development, we know that Ψ is absolutely continuous and

lim
t→+∞ Ψ (t) = inf

Ω

ϕ1 − inf
Ω

ϕ2.

Let us prove that Ψ is nondecreasing.
Fix δ > 0 and T > δ. Let V and U the neighborhoods given by Lemma 4.2

associated to the function ϕ1, the interval [δ, T ] and the curve u
∣∣[δ,T ]. Let ΦV =

ϕ1 + ϕ2 + δV , and let ΦV ,λ = ψλ + ϕ2 + δV where

ψλ(x) = inf
y∈H

{
(ϕ1 + δV )(y) + 1

2λ
‖x − y‖2

}
.

Let uV : [δ, T ] → H and uV ,λ : [δ, T ] → H be the solutions of

{
u̇V (t) ∈ −∂ΦV (uV (t)), a.e. t ∈ [δ, T ]
uV (δ) = u(δ),

and{
u̇V ,λ(t) ∈ −∂ΦV ,λ(uV ,λ(t)), a.e. t ∈ [δ, T ]
uV ,λ(δ) = u(δ),

(6)

respectively. Since ϕ1 is Lipschitz-continuous on U , the mapping x �→ ‖∂ϕ1(x)◦‖ is
uniformly bounded on V . Then, since for every x ∈ V

‖∂(ϕ1 + δV )(x)◦‖ ≤ ‖∂ϕ1(x)◦‖ and ‖∂(ϕ2 + δV )(x)◦‖ ≤ ‖∂ϕ2(x)◦‖ = ‖∂ϕ1(x)◦‖,

we can apply Lemma 4.1 to conclude that

– uV ,λ → uV uniformly in [δ, T ].
– ψλ(uV ,λ) → (ϕ1 + δV )(uV ) uniformly in [δ, T ].
– (ϕ2 + δV )(uV ,λ) → (ϕ2 + δV )(uV ) uniformly in [δ, T ].
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Let ε > 0 small enough such that uk([δ, T ]) + εB ⊂ V . Since uV ,λ → uV

uniformly in [δ, T ], there exists λ0 > 0 such that

∀λ > λ0, uV ,λ([δ, T ]) ⊆ uV ([δ, T ]) + εB ⊂ V .

Then, since ∂δV (v) = {0} for all v ∈ V , for each λ > λ0 and for almost all
t ∈ [δ, T ] there exists ξλ(t) ∈ ∂ϕ2(uV ,λ(t)) such that

u̇V ,λ(t) = −(∇ψλ(uV ,λ(t)) + ξλ(t)).

Let ΨV ,λ(t) : [δ, T ] → R be given by ΨV ,λ(t) = ψλ(uV ,λ(t)) − ϕ2(uV ,λ(t)). For
almost all t ∈ [δ, T ], we can write

d

dt
ΨV ,λ(t) = 〈∇ψλ(uV ,λ(t)) − ξλ(t),−(∇ψλ(uV ,λ(t)) + ξλ(t))〉

= ‖ξλ(t)‖2 − ‖(∇ψλ(uV ,λ(t))‖2
≥ ‖∂ϕ2(uV ,λ(t))

◦‖2 − ‖∂ϕ1(uV ,λ(t))
◦‖2 = 0.

Thus, ΨV ,λ is nondecreasing, which yields that ΨV ,λ(δ) ≤ ΨV ,λ(T ). It is not hard
to realize, thanks to the convergences established by Lemma 4.1 and by noting that
uV = u

∣∣[δ,T ], that

ΨV ,λ(δ)
λ−→ Ψ (δ) and ΨV ,λ(T )

λ−→ Ψ (T ).

This yields that

Ψ (δ) ≤ Ψ (T ).

Since 0 < δ < T were arbitrary, Ψ is nondecreasing, as we wanted to prove. Now,
we can write

c = Ψ (0) = lim
δ→0

Ψ (δ) ≤ lim
T →+∞ Ψ (T ) = inf

Ω

ϕ1 − inf
Ω

ϕ2,

which is a contradiction. We have shown then that

c ≤ inf
Ω

ϕ1 − inf
Ω

ϕ2.

Finally, if we assume that infΩ ϕ1− infΩ ϕ2 > c, we can replicate the same reasoning
by exchanging the roles of ϕ1 and ϕ2 to prove that infΩ ϕ2− infΩ ϕ1 ≤ −c. Therefore,
c = infΩ ϕ1 − infΩ ϕ2, which finishes the proof. ��

It would be interesting to know whether hypothesis (i) in Theorem 4.1 can be
dropped or not, even in finite dimension. The fact that the function ϕ1 is finite in Ω
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is used for two steeps: (1) to apply Lemma 4.1 in Ω and; (2) to apply the Dirichlet
boundary condition whenever a trajectory hits the boundary bdΩ .

If we drop the hypothesis of finiteness in Ω we will deal with new difficulties that
are not obvious to overcome. At least in finite dimensional spaces, Lemma 4.1 could
possibly still be applied in the relative interior of the new set Θ := Ω ∩ dom ϕ1.
However, the Dirichlet boundary condition that holds in bdΩ doesn’t necessarily
holds in the new boundary bdΘ , and therefore, we would have two kinds of boundary
points x ∈ bdΘ: Either x is also a boundary point of Ω and therefore it inherits the
Dirichlet boundary condition ϕ1(x) = ϕ2(x) + c; or x is an interior point of Ω (and
a boundary point of dom ϕ1), and thus it verifies the Neumann boundary condition
‖∂ϕ1(x)◦‖ = ‖∂ϕ2(x)◦‖. Up to now, we don’t know how to deal with this situation.
This problem remains open.
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