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Abstract
To study concepts that are coded in language, researchers often collect lists of conceptual properties produced by human 
subjects. From these data, different measures can be computed. In particular, inter-concept similarity is an important vari-
able used in experimental studies. Among possible similarity measures, the cosine of conceptual property frequency vectors 
seems to be a de facto standard. However, there is a lack of comparative studies that test the merit of different similarity 
measures when computed from property frequency data. The current work compares four different similarity measures 
(cosine, correlation, Euclidean and Chebyshev) and five different types of data structures. To that end, we compared the 
informational content (i.e., entropy) delivered by each of those 4 × 5 = 20 combinations, and used a clustering procedure as 
a concrete example of how informational content affects statistical analyses. Our results lead us to conclude that similarity 
measures computed from lower-dimensional data fare better than those calculated from higher-dimensional data, and suggest 
that researchers should be more aware of data sparseness and dimensionality, and their consequences for statistical analyses.
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Introduction

Though concept similarity can be computed by other means 
(e.g., pairwise similarity ratings), a frequent procedure is to 
compute concept similarity from concept descriptions. This 

approach has been widely applied when studying concepts 
coded in language (e.g., the properties barks, has four legs, 
and wags its tail, describe the concept DOG). In the property 
approach (a.k.a. featural approach) to concept similarity, 
concepts are described by sets of properties, and similarity 
between concepts is a function of their properties’ distribu-
tions (e.g., Shepard and Arabie 1979; Tversky 1977; Tversky 
and Hemenway 1984).

The procedure generally used to obtain property-based 
descriptions is the Property Listing Task (PLT, a.k.a. Fea-
ture Listing Task; e.g., Cree and McRae 2003; Hampton 
1979; McRae et al. 2005; Rosch et al. 1976). This is a 
widely used task across psychology (e.g., in cognitive 
psychology, social psychology, cognitive neuroscience, 
neuropsychology, consumer psychology), in which sub-
jects are asked to produce properties typically associated 
with a given concept, and their responses are coded into 
property types (i.e., responses with only superficial differ-
ences across subjects are coded as a single property). In 
Conceptual Property Norms (CPNs), the PLT is used to 
obtain descriptions for a large number of concepts (e.g., 
Devereux et al. 2014; Kremer and Baroni 2011; Lenci 
et al. 2013; McRae et al. 2005; Montefinese et al. 2013, 
2015; Vivas et al. 2017). These norms can be represented 
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as rectangular matrices containing different concepts with 
their respective properties’ frequency distributions.

Researchers use CPN data in at least two different ways. 
First, CPNs may be used as a source of normed stimuli and 
of control variables for experiments (McRae et al. 1999; 
Bruffaerts et al. 2019). Second, CPNs provide information 
about the underlying semantic structure of a representative 
individual (e.g., showing that, on average, DOG and CAT 
are conceptually more similar to each other than either is 
to CUP), thus allowing researchers to test theories about 
the nature of concepts and conceptual content (e.g., Cree 
and McRae 2003; Rosch and Mervis 1975; Vigliocco et al. 
2004; Wu and Barsalou 2009).

On those cases where researchers are interested in sim-
ilarity between concepts, a specific similarity measure 
needs to be computed. Note here that similarity is inti-
mately related to semantic distance (i.e., distance may be 
viewed as a measure of dissimilarity). In what follows, 
because our arguments apply to both similarities and dis-
tances, when we refer to distances, the reader should bear 
in mind that the same ideas could be discussed in terms of 
similarity (and vice versa).

Because cosine similarity is currently in wide use 
(e.g., Hutchison et al. 2008; Mandera et al. 2015; Recchia 
and Jones 2009; Simmons and Estes 2006), in particular 
when reporting results from large scale studies about con-
cept meaning like the aforementioned CPN studies (e.g., 
Devereux et al. 2014; Kremer and Baroni 2011; Lenci 
et al. 2013; McRae et al. 2005; Montefinese et al. 2013, 
2015; Vivas et al. 2017), cosine similarity features promi-
nently in our analyses. In CPN studies, cosine similarity 
is typically computed from high-dimensionality property 
frequency vectors (as will become clear shortly).

Because other distance measures are possible, in the 
current work we compare different measures computed 
from matrices like those obtained in CPN studies. More 
specifically, we compare the relative merit of cosine, cor-
relation, Euclidean and Chebyshev distances. Because 
those measures may all be computed from different types 
of vectors (as will become clear shortly), we use a variety 
of vectors to further our findings’ generalizability. Impor-
tantly, we use high- and low-dimensionality vectors, and 
analyze the effect of dimensionality on the informational 
content (i.e., entropy, which we will formally introduce 
and define later on) of those data. Furthermore, we sub-
mit our different distance measures to clustering analysis 
and gauge their relative performances. Because clustering 
algorithms separate data into intuitively similar groups 
based on some distance measure, they are frequently 
used to analyze semantic meaning of concepts in cogni-
tive research (e.g., Maki and Buchanan 2008; Verbeemen 
et al. 2007). For all our analyses, we resorted to the Cen-
tre for Speech, Language and the Brain concept property 

norms (from here and on, the CSLB norms; Devereux 
et al. 2014).

To foreshadow, our findings suggest that CPN research-
ers should be aware that their data’s informational content 
(i.e., entropy) depends on a trade-off between their matrices’ 
dimensionality and sparsity (i.e., high dimensionality comes 
at the expense of increased sparseness), and that informa-
tional content will impact the statistical usefulness of any 
distance or similarity measure that they prefer to compute. 
As noted by an anonymous reviewer, although we frame this 
work on CPN research, the conclusions may also apply more 
generally to other areas that use similar data (e.g., Latent 
Semantic Analysis, LSA; Landauer and Dumais 1997).

Computing concepts’ distance

Data structure

As already mentioned, our data come from the CSLB norms 
(Devereux et al. 2014). In that study, semantic properties 
were collected for 638 concepts, thus leading to a 638 by 
5542 unique properties matrix, with the properties’ produc-
tion frequencies in the matrix cells. More formally, data were 
arranged in a concept by property rectangular M matrix of 
size NC × NP, where NC = 638 and NP = 5542. Values in the 
cells of that matrix reflected the frequency in which property 
Pa was mentioned for concept Ci by subjects in the sample 
(for similar data structures, see Cree and McRae 2003; De 
Deyne et al. 2008; McRae et al. 2005). In such a matrix, the 
i-th concept Ci is represented by a frequency vector, where 
M(i,j) represents the number of subjects that use the j-th 
property to describe the i-th concept (see Fig. 1 panel a). 
For example, M(3667) = 2 corresponds to the third concept 
(ALLIGATOR) in the CSLB norms, where the conceptual 
property number 667 (“does live in swamps”), was men-
tioned by 2 subjects.

From an M matrix such as described above, research-
ers can compute a similarity or distance matrix for further 
analysis. Several methods exist to perform these computa-
tions from the original M matrix obtained from the PLT. As 
discussed above, an often used measure is the cosine of the 
M matrix, where concepts are treated as vectors based on 
their property production frequencies, and the cosine theta 
for each pair of vectors is used to build an NC × NC similar-
ity matrix.

Consider, however, that other alternatives are possible. 
If frequencies are not of interest, original data in the M 
matrix could be binarized to produce a B matrix with a 
value of 1 if a property belongs to a concept, and a value 
of 0 if it does not (e.g., Brusco 2004; see Fig. 1 panel b). 
Because in a B matrix only property identity is of inter-
est, the i-th concept Ci can be characterized by a set of 
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properties defined by Ci = {Pj: Mij > 0 and 1 ≤ j ≤ NP}, i.e., 
we use Ci to stand for a concept label, which defines a set 
of properties {Pa, Pb, …, Pg} that describe its meaning. 
For instance, C3 = {P24, P34, …, P667, …, P5216} implies 
that the third concept, ALLIGATOR, is represented by 
the properties 24, 34, …, 667, …, 5216; where, as noted 

above, conceptual property 667 corresponds to “does live 
in swamps.”

Relatedly, if a researcher believes that shared properties 
play a central role in concept similarity (e.g., as in Tversky’s 
1977 Contrast Model), yet other matrices are possible. Two 
concepts may be similar to the extent that they share their 

Fig. 1   Different matrices from which similarities and distances may be computed
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describing properties. An U matrix (see Fig. 1 panel c) is an 
NC × NC, square matrix with the number of concepts’ prop-
erty intersections in its cells (i.e., values for #(Ci∩Cj)). Simi-
larly, a J matrix is an NC × NC, square matrix where intersec-
tions in the cells (i.e., the #(Ci∩Cj) values) are normalized 
relative to the total number of properties involved in each 
comparison (i.e., #(Ci∪Cj)). This measure is called Jaccard 
similarity (Jaccard 1901), and is closely related to Tversky’s 
(1977) Contrast Model (see Eq. (1) and Fig. 1 panel d).

Distance measures

As already mentioned in the "Introduction" section, simi-
larity is intimately related to semantic distance. In what 
follows, some of the mathematical expressions we use are 
easier to express and understand in terms of distances rather 
than similarities. Hence, to be consistent, we will use dis-
tances for all our measures. Note that, strictly speaking, not 
all distances we compute satisfy the mathematical conditions 
to be metric distances (e.g., triangle inequality). However, 
this is not relevant for characterizing our measures’ distribu-
tions, nor for the clustering analyses we report. As discussed 
by Harary et al. (1965), clustering may be used with non-
metric distances.

A popular strategy being currently used to measure con-
ceptual distance from data structured in M matrices, is to 
consider each property as a dimension (i.e., an NP-dimen-
sional space) and each concept Ci as a vector. Then, distance 
can be thought of as one minus the cosine of those vectors, 
see Eq. (2) (conversely, similarity is just the cosine of the 
vectors). Thus, two concepts are maximally distant if the 
frequency ratio of their corresponding properties is totally 
different (i.e., 1 − cos Θ = 0). Equation (2) shows this dis-
tance measure, which potentially ranges from 2 (opposite 
direction vectors) to 0 (identical direction vectors), with 1 
indicating orthogonal vectors. Note that in frequency data 
(M matrices) there are no negative vectors, so 1 − cos Θ in 
fact ranges from 0 to 1.

A related distance measure that we will include in our 
analyses is the vector correlation measure in Eq. (3) (see 
Dry and Storms 2009). This measure corresponds to one 
minus the statistical correlation between two random vari-
ables, potentially ranging from 0 to 2.
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To their advantage, these measures are easy to compute 
and make few theoretical commitments. Note here that 
cosine and correlation distances can be also computed from 
B, U and J matrices, the difference being that, in the two 
latter cases spaces are NC-dimensional (i.e., they typically 
have a lower dimensionality, given that the common case is 
that NC ≪ NP). This issue of dimensionality will be important 
in our discussions further ahead.

Because, by using the cosine one appeals to a spatial 
view of semantic structure, other spatially based computa-
tions could also be used to express distance. Two popular 
measures used are Euclidian and Chebyshev distances. In the 
current work, we will use them to allow greater generality 
in our discussions.

In an N-dimensional space, two concepts’ distances can 
be expressed as their Euclidean distance in the correspond-
ing space. For two concepts Ci and Cj that have Np attributes, 
the Euclidean distance is the square root of the sum of the 
squared difference in the respective Np attributes, as Eq. (4) 
shows:

Because high dimensionality, as typically found in M 
matrices, can be problematic (as will be discussed shortly), 
we also computed Chebyshev distances. Chebyshev distance 
handles multidimensionality by using only the dimension in 
which two concepts are maximally different. Formally, the 
Chebyshev distance is:

The interrelated problems of dimensionality 
and sparseness

The overall message we convey in this section is that 
the nature or quality of the data one uses will limit the 
analyses one can carry out. In our analyses, data quality 
is measured by the informational content found in those 
data’s distributions. Furthermore, the informational con-
tent cannot increase indefinitely simply by increasing the 
number of variables being measured (i.e., this is the issue 
of dimensionality). Aside from the intrinsic problems of 
dimensionality that are discussed next, in the case of co-
occurrence matrices, high dimensionality leads to sparse 
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data. As we will discuss in the current section, though 
high-dimensional data seems to be intuitively more 
informative, there is a trade-off between dimensionality 
and sparseness, such that an upper limit to informational 
content exists. In vectors with many parameters, the likely 
case is that increasing the number of parameters does not 
necessarily increase their informational content.

Bellman (1961) noted that high dimensionality creates 
a problem for measurement, which he called “the curse 
of dimensionality.” The main difficulty arising from high 
dimensionality is that distances between data points tend 
to become uniform as dimensionality increases. This has 
been shown by Beyer et al. (1999) and can be expressed 
more formally in the following equation:

where D = a measure’s dimensionality, MaxDist = the maxi-
mum distance between two points, and MinDist = the mini-
mum distance between two points. Note that Eq. (6) implies 
that distances between any two points in high-dimensional 
spaces will be practically the same, which means that dis-
tributions of distances computed from high-dimensionality 
data will exhibit low variability, and this is likely to be 
problematic for many statistical analysis techniques, as we 
will explain later on. In particular, Steinbach et al. (2004) 
argued that dimensionality is theoretically problematic for 
clustering.

A related problem is that matrices with many dimen-
sions tend also to be sparse matrices (i.e., matrices with 
many empty cells), which makes them relatively unin-
formative. Particularly for CPN/PLT data, as many more 
concepts and properties are considered, the less likely it 
will be that any two concepts share those properties (i.e., 
increased sparseness). Note that this problem will only 
become worse as more concepts are considered for the 
analysis. Though it is intuitive that increasing the num-
ber of dimensions should increase informational content, 
dimensionality comes at the price of sparsity. In other 
words, there is a trade-off between dimensionality and 
sparsity regarding how informative data can be (Sahlgren 
2006).

Because statistical analysis methods need data which con-
vey information, sparse and non-variable data will gener-
ally be inappropriate for statistical analysis. Take for exam-
ple regression analysis. If many data points are near each 
other (i.e., exhibit low variability), the degrees of freedom 
of the regression term will be low, making the data matrix 
almost singular. In turn, that will render unstable and dif-
ficult to interpret regression coefficients (Kleinbaum et al. 
1988). Note that the issue at stake here is not what informa-
tional content implies for the nature of similarity itself, but 
instead what it implies regarding the statistical properties 

(6)lim
D→∞

MaxDist −MinDist

MinDist
= 0

of variables computed with the goal of learning something 
about similarity.

Characterizing informational content 
and the sparsity to dimensionality relation 
in CPN data

For the present work, note that cosine and correlation meas-
ures calculated from property production frequencies (the M 
matrix, see Fig. 1 panel a) are based on high-dimensional 
data (NP = 5542 dimensions). Our binarized measure, com-
puted from the B matrix (see Fig. 1 panel b) has the same 
dimensionality. In contrast, our U and J matrices (Fig. 1 
panels c and d) are relatively low-dimensional data (in our 
data, 638 dimensions).

Because, as we discuss in the  "The interrelated problems 
of dimensionality and sparseness" section, high-dimension-
ality poses problems for statistical analyses, a possible solu-
tion is to perform some form of dimensionality reduction 
(see, e.g., Latent Semantic Analysis, LSA; Landauer and 
Dumais 1997). Thus, to handle that problem we submit-
ted our CSLB M matrix to Principal Components Analysis 
(PCA). Note that this is a transformation that researchers 
could easily perform on CPN data, which is why we deemed 
interesting to examine its effects. Using PCA with varimax 
rotation and extracting those dimensions with eigenval-
ues ≥ 1.0, we obtained 364 dimensions (down from 5542). 
The rotated dimensions explained 94% of the original data 
variance. Note that the relatively small number of extracted 
dimensions compared with the original number of dimen-
sions, and the large proportion of explained variance, attests 
to the M matrix’s sparsity.

Given that we had five different data matrices from which 
to compute distances and four different distance computation 
methods, we were able to characterize the distributions pro-
duced by each of the twenty combinations (5 data matrices 
times 4 distances). Figure 2 shows these distributions.

Visual inspection of the distributions in Fig. 2, allows 
some clear conclusions. First, it is rather obvious that dis-
tances computed from high-dimensional data exhibit, in 
general, highly skewed and low variability distributions. It 
is also obvious that distances calculated from low-dimen-
sional data show more uniform distributions. Per our discus-
sion above, the distributions in Fig. 2 imply that distances 
obtained from low-dimensional data have more informa-
tional content than those computed from high-dimensional 
data. As a way of quantifying this, we calculated each dis-
tribution’s entropy (shown on top of each graph in Fig. 2). 
Higher entropy values indicate that a distribution conveys 
more informational content (i.e., that it exhibits more poten-
tially useful variability). Entropy is given by Eq. (7):
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where pk is the probability associated to each of the m dis-
tances. As Eq. (7) shows, entropy is based on the probability 
of each possible value, instead of the value itself. Then, to 

(7)H =

m∑

k=1

pk logm

(
1

pk

) make a fair comparison among all cases, each distribution 
was estimated using 100 possible values (the same number 
of bins for the histograms), i.e., m = 100 in Eq. (7).

Note that entropy values in Fig. 2 tell the same story as 
the visual inspection of the corresponding distributions 
shows. For all computed distances, there is a deleterious 
effect of dimensionality, such that the highest entropies (i.e., 

Fig. 2   Histograms showing distributions of four different distance measures applied to five different data matrices and their corresponding entro-
pies. The X-axis represents distances computed from the respective data matrices
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best distributions) are found for U and J matrices, followed 
by the PCA matrix, and then the high-dimensional M and 
B matrices. Notably, though PCA increases informational 
content, it does not achieve the informational content of U 
and J matrices. The only exception to this trend is Cheby-
shev distance, where PCA data exhibits a higher entropy 
than U and J data.

Additionally, the reader may notice that entropy values 
for cosine and correlation distances in Fig. 2 are quite simi-
lar. This occurs because correlation and cosine distances 
are in fact closely related. If means are computed and sub-
tracted from each cell (i.e., thus leaving no empty cells), and 
if cosine distances are computed from the new matrix, the 
resulting cosines are in fact the correlation values computed 
from Eq. (3). As an anonymous reviewer noted, this may 
be considered a way of removing sparseness. However, this 
achieves only a nominal removal of sparseness (i.e., there are 
no more zero frequency cells). It is easy to see that the new 
nonzero values add no information. The slight differences in 
entropy values that the reader may note in Fig. 2 are only due 
to details in the algorithm that does the computations, and 
for all intents and purposes entropy values should be con-
sidered to be the same for cosine and correlation matrices.

Regarding the relation between sparsity and dimensional-
ity, Fig. 3 illustrates their relation in our data. To generate 
this graph, we started by graphing dimensions exhibiting 
the lowest sparsity (lowest percentage of zeros), and then 
continued including dimensions with higher sparsity. Note 
that the increase in sparsity as the number of dimensions 
grows, is larger for the M and B data, than for U and J. Also, 
note that sparsity is always proportionally much smaller for 
U and J data than for M and B data.

Finally, given that Principal Component Analysis 
reduces dimensionality so that all extracted dimensions 
explain some variance of the data, the PCA matrix does 

not have zeros and thus, its sparsity is always zero (i.e., 
there are no zero values in their cells). However, as we 
discuss next, this does not automatically guarantee its 
informational content.

To further elucidate the effect of dimensionality on our 
data’s entropy values (i.e., informational content), Fig. 4 
graphs that relationship for the four distances considered in 
this work across the five matrices, considering the first 500 
dimensions (i.e., to have a fair comparison, and note also 
that PCA has only 364 dimensions). To produce each of 
the graphs, we used a similar strategy used to build Fig. 3. 
We iteratively computed entropy, progressively including 
dimensions starting with those exhibiting the lowest sparsity 
(i.e., lowest percentage of zeros) and moving toward those 
with higher sparsity. In the particular case of PCA, given 
that there are no zeros in cells, we kept the order defined by 
PCA’s output (i.e., descending order based on the percent-
age of variance explained by each dimension). As shown 
in Fig. 4, as the number of dimensions increases, entropy 
tends to increase and then levels out or decreases. Graphs 
in Fig. 4 clearly show the trade-off between dimensionality 
and sparsity.

An analysis of Fig. 4 reveals interesting patterns. First, 
irrespective of the distance being computed (i.e., cosine, 
correlation, Euclidean), U and J matrices show higher 
entropy values, while M and B matrices show the lowest. 
The only exception is when computing distances from low 
dimensionality PCA vectors. However, distances computed 
on the PCA matrix lead to a large reduction in entropy as 
dimensions increase further, particularly for cosine and cor-
relation distances. Second, for Chebyshev distance, entropy 
noticeably remains higher for PCA than for U and J matri-
ces. Given that for PCA all dimensions have some infor-
mational content, and that Chebyshev distance uses only 
the dimension in which two concepts are maximally differ-
ent, the informational content conveyed by dimensions in 
PCA remains relatively high for the first dimensions (i.e., 
most of the informational content is conveyed in the first 
dimensions).

In conclusion, all our comparisons show that distances 
computed from M matrix data (property frequency vectors) 
tend to be high-dimensional and sparse, something which 
decreases their informational content. Reducing dimensions 
through PCA improves their behavior, but not as much as 
might be presumed. In contrast, distances computed from U 
and J matrices (Nc × Nc matrices that disregard frequency 
information) produce noticeably better distributions (higher 
informational content, i.e., entropy). Summarizing, our anal-
yses clearly show that sparseness increases with dimension-
ality (Fig. 3), such that beyond certain cut-off point entropy 
drops-off (Fig. 4), which makes matrices less useful from a 
statistical point of view, as visually illustrated by distribu-
tions and entropy values in Fig. 2.

Fig. 3   Sparsity (% of zeros in corresponding distance matrix) com-
puted for different number of dimensions (up to 500, and 364 for 
PCA)
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Clustering

Given that clustering algorithms (Johnson 1967; Shepard 
and Arabie 1979) separate data into intuitively similar 
groups based on some similarity or distance measure, they 
can be used to analyze similarity data obtained through the 
PLT. Across psychology, clustering is often used to uncover 
the similarity structure underlying a set of concepts (e.g., 
Maki and Buchanan 2008; Verbeemen et al. 2007). Thus, we 
resorted to clustering analysis to show a concrete example 
of how distance measures computed from high- and low-
dimensional data affect the quality of the corresponding 
solutions.

Clustering algorithms can be roughly classified into 
hard or soft clustering. Hard clustering creates a partition 
of the data, where each data point can belong to only one 
cluster. Some common hard algorithms are hierarchical 

and K-means clustering (Johnson 1967; MacQueen 1967). 
In contrast, soft clustering allows data points to belong to 
more than one cluster. Some common soft algorithms are 
additive and fuzzy clustering (Dunn 1973; Shepard and Ara-
bie 1979). However, given that results from soft clustering 
algorithms are notoriously hard to interpret (see Wilderjans 
et al. 2011), our analyses focus on Agglomerative Hierarchi-
cal Clustering (AHC).

Clustering solutions’ quantitative analysis

As a way to judge the goodness of clustering when using 
the AHC algorithm, results were compared by using the 
Silhouette Coefficient (SC) and the Cophenetic Correla-
tion coefficient (CC). As will become clear next, the SC is 
related to the goal of obtaining high within-group and low 
between-group similarity. The CC provides an estimate of 

Fig. 4   Entropy versus dimensionality for four distances computed across B, M, U, J and PCA matrices
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how much variance in the similarity data is accounted for 
by distances in the clustering solution. A good similarity or 
distance measure should reflect on these two indices.

The SC of a concept varies between − 1 and 1, and 
measures the goodness of each concept with respect to the 
assigned cluster. If the distance of a concept with respect 
to the other concepts of the same cluster is smaller than the 
distance with respect to other clusters, then its SC value is 
greater than 0. Otherwise, SC is less than 0 and implies that 
the concept could as well belong to another cluster. Note that 
a cluster consisting of a single element has an SC value of 1, 
adding an important bias to the average SC. For that reason, 
we omitted single element clusters when computing SC.

The CC measures the correlation between the distance 
among concepts based on the dendrogram and the actual 
distance used in the hierarchical clustering process. Given 
a dendrogram and two concepts, the distance between them 
corresponds to the height of the dendrogram where these 
two concepts are joined. As with other correlation measures, 
the CC varies between − 1 and 1, where a high value implies 
a better representation of the original distances between the 
concepts, leading to a better clustering of the data.

Several methods have been proposed to compute dis-
tances between clusters (see Kuiper and Fisher 1975). In 
the current work, we use complete and average linkages. In 
complete linkage (CL), the distance between two clusters 
is determined by the largest distance among all concepts 
belonging to those clusters. This method generates spheri-
cal clusters, and is robust to noisy points (Aggarwal 2015). 
In average linkage (AL), the distance between two clusters 
is determined by the average distance between all pairs of 
concepts, where each pair is made up of one concept from 
each group (Aggarwal 2015).

Given that we used four distance measures (cosine, corre-
lation, Euclidean, Chebyshev) computed from five different 
data matrices (M, B, U, J and PCA), and that we used two 
different methods to compute distances between clusters (CL 
and AL), in principle, we could compare clustering solu-
tions from all those forty possible combinations. However, 
to reduce those combinations to a more manageable number, 
we decided to use the four distance measures (cosine, cor-
relation, Euclidean, Chebyshev), with the data matrix that 
renders the overall highest entropy (U). We also included 
PCA because of its relevance for discussing the issue of 
dimensionality and the M matrix, because it corresponds 
to the raw CPN data. Those 3 (matrices) × 4 (distances)  × 
2 (CL or AL) = 24 combinations allowed us comparing 
the effect of high and low-dimensional data on clustering 
performance.

Accordingly, Fig. 5 shows the Silhouette Coefficient (SC) 
for our 24 combinations. As can be seen, low-dimensional 
data (U and PCA matrices) obtain better clustering solu-
tions than high-dimensional data (M matrix). In particular, 
U data consistently fares better than the other two, except for 
Chebyshev distance and average linkage, where PCA data 
renders a higher SC. Comparing Fig. 5 with the correspond-
ing entropies displayed in Fig. 2, we can see that both results 
are consistent.

Generally, a higher-entropy distance measure renders a 
higher-SC clustering solution. And consequently, a lower-
dimensional distance measure renders a higher-SC solution 
than a higher-dimensional measure.

Table 1 presents the Cophenetic Coefficient (CC) for the 
same 24 combinations, and shows the same results as before. 
The U data matrix exhibits higher CC than the other two 
data matrices, except for PCA with Chebyshev distance and 

Fig. 5   Silhouette Coefficient (SC) for four different distance measures, three different data matrices (M, U and PCA), and average (AL) and 
complete linkage (CL)
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AL. In that case, U’s CC (0.86) is smaller than PCA’s CC 
(0.89), which agrees with PCA’s higher entropy relative to 
U (respectively, 3.97 and 3.29).

In conclusion, the quantitative analysis of the clustering 
solutions show that distances calculated from low-dimen-
sional data produce better clusters (in terms of SC and CC) 
than distances computed from high-dimensional data. Over-
all, distances obtained from the U data matrix fare better 
than the other alternatives.

Clustering solutions’ qualitative analysis

To complement the quantitative analysis, here we present a 
brief examination of those concepts that belong to each clus-
ter for some of the 24 combinations included in the "Clus-
tering solutions’ quantitative analysis" section. To keep this 
section within a reasonable size, rather than providing and 
exhaustive list, Table 2 presents the number of concepts per 
cluster and an intuitive name for each.

To compute the clustering solutions  presented in Table 2, 
we used AHC with complete linkage, as a way of avoiding 
clusters with only one concept. Additionally, we requested 
18 clusters. The SC in Fig. 5 shows that we obtain a maxi-
mum SC when using approximately between 5 and 18 
clusters. We decided to use the upper limit (18 clusters) to 
avoid obtaining large clusters with many concepts, some-
thing which was likely to make their interpretation difficult. 
The clustering solutions  displayed in Table 2 were selected 
based on the CC  shown in Table 1. We included the cluster-
ing solutions corresponding to all the distances calculated 
from the U matrix that had the highest CC for complete 
linkage. To compare those solutions to other ones, we also 
used the M and PCA data with Cosine and Correlation dis-
tances, because they exhibited a higher CC than Euclidean 
and Chebyshev distances.

Though qualitative interpretations of clustering solu-
tions are highly dependent on theoretical assumptions (e.g., 
if clusters are expected to reveal a linguistic superordinate 
organization or perceptual-based groupings), we believe that 
discussion of our solutions’ qualitative structure is useful. 
It would be surprising that different solutions produce the 
same qualitative information, regardless of their quantitative 
goodness of clustering. With this caveat in mind, several 

things are noteworthy regarding Table 2. First, there seems 
to be a greater tendency for distances computed from the M 
matrix (frequency vectors) to produce unnatural clusters, 
relative to clusters generated from distances obtained from 
the U matrix. In typical clusters, it is possible to naturally 
capture them with some higher level abstraction (e.g., super-
ordinates like mammals, furniture, vehicles, fruits, food). 
This may not be possible with other less natural clusters. 
Consider the difference between the “Liquids” cluster for 
correlation distance computed from the U matrix and the 
“Drinkables” cluster for cosine distance computed from the 
U matrix. The “Liquids” cluster includes drinkable liquids 
such as cider and coffee, but also non-drinkable liquids such 
as glue, nail-polish and perfume. There is no superordinate 
category that naturally captures all these subordinates. In 
contrast, the “Drinkables” cluster includes only liquids that 
can also be drunk, such as beer, coffee, gin, lemonade and 
milk. Intuitively, this is a much more natural cluster.

Other examples may help clarifying what we mean by 
cluster naturalness. Consider the “Flying things” cluster for 
cosine distance with M matrix, which includes otherwise 
dissimilar things such as "aeroplane", "hummingbird" and 
"moth", and the "Dangerous things" cluster for correlation 
distance with M matrix, which includes otherwise dissim-
ilar things such as "cigar", "poison", "revolver" and "rat-
tlesnake". This issue of cluster unnaturalness seems to be 
reduced with PCA, given that difficult to interpret clusters 
are less when using the PCA matrix. Some unnatural clus-
ters are also found for the U matrix, though less frequently.

As Table 2 illustrates, distances computed from the M 
matrix seem to produce clusters that are harder to intuitively 
understand (the ND clusters in Table 2), even to a greater 
extent than the unnatural clusters mentioned above, for 
which some grouping principle still transpires. Inevitably, 
intuitiveness is a subjective judgment. However, we believe 
anyone would be challenged if trying to find the underly-
ing principle that clusters together the following concepts: 
"dice", "harmonica", "sledge", "swing" and "umbrella" 
which are part of cluster 5 for correlation distance computed 
from the PCA matrix.

Finally, it is worth noting that as our quantitative analyses 
showed, Chebyshev distance produced poor results for our 
CPN data. Chebyshev distance computed from the U matrix 

Table 1   Cophenetic Coefficients 
(CC) for different similarity 
measures

Higher values imply more similarity variance explained. Frequency = M Matrix; #(Ci∩Cj) = U matrix; 
PCA = PCA matrix

Complete linkage Average linkage

Cosine Correlation Euclidean Chebyshev Cosine Correlation Euclidean Chebyshev

M 0.62 0.62 0.42 0.47 0.84 0.84 0.61 0.64
U 0.78 0.87 0.77 0.79 0.88 0.91 0.80 0.86
PCA 0.68 0.68 0.37 0.68 0.81 0.80 0.70 0.89



Cognitive Processing	

1 3

produced more single concept clusters (see Table 2), and 
also a substantially larger “other” cluster than the competing 
solutions, showing that clustering based on Chebyshev dis-
tance is noticeably worse than its counterparts. Incidentally, 
given that entropy for the Chebyshev distances computed 
from the B matrix is zero, we also submitted those distances 
to clustering, requesting 18 clusters (the same procedure 
used in creating Table 2). As expected, the clustering solu-
tion simply listed one cluster of 621 concepts (the first 621 
concepts in alphabetical order, given that this was the order 

of the concepts in the distance matrix), and 17 other clusters 
of one concept each. Those 17 concepts corresponded to the 
last 17 concepts in alphabetical order. Hence, that solution 
makes no substantive sense and explains no variance in the 
data (in fact the statistical package was not able to calculate 
the CC).

In summary, our quantitative and qualitative analyses for 
our clustering solutions suggest that computing distances 
from the U matrix tends to avoid unnatural clusters, lead-
ing to better clusters that are easier to interpret. In contrast, 

Table 2   Clustering solutions for different distance measures computed from different data matrices

Each cell shows: an intuitive descriptor of the cluster and the number of concepts that belong to the cluster. * = unnatural clusters. ND = no sen-
sible descriptor was found for the cluster. The “other” cluster corresponds to a large cluster with no sensible descriptor. Concepts belonging to 
each cluster can be found at https​://osf.io/ezy3h​/

Cluster Correl. U Cosine U Euclidean U Chebysh. U Correl. PCA Cosine PCA Correl. M Cosine M

1 Smoking 
related—3

Heart—1 Body parts—2 Coin—1 Means of 
Trans-
port.—8

Means of 
Trans-
port.—8

*Scents—3 *Scents—3

2 Prescription 
drugs—5

Certificate—1 Reptiles—6 Wetsuit—1 Marine Trans-
port.—9

Marine Trans-
port.—9

*Big 
things—5

*Red things—7

3 *Hard 
things—5

Buildings—2 Fish—8 Horse—1 *Dangerous 
things—11

*Long 
things—13

*Red 
things—7

*Glass-made 
things—8

4 ND—6 Prescription 
drugs—5

Means of 
Trans-
port.—10

Television—1 *Round 
things—14

ND—14 Body parts—8 Body parts—8

5 ND—8 *Scents—5 Drinka-
bles—19

Tent—1 ND—19 ND—18 *Long 
things—12

Drinkables—11

6 Printed—10 *Flat 
things—7

Animals—24 Eye—1 Musical instru-
ment—20

Musical instru-
ment—20

Printed—12 *Round 
things—11

7 *Things to rest 
on—11

Body parts—7 Flora—25 Large rep-
tiles—2

*Green 
things—28

ND—22 *Dangerous 
things—14

Printed—12

8 *Liquids—13 Body parts—9 ND—28 Marine mam-
mals—3

Flora—29 *Green 
things—28

ND—28 *Long 
things—12

9 Body 
parts—14

Printed—10 Food—31 ND—6 Means of 
Trans-
port.—29

Means of 
Trans-
port.—29

ND—32 *Dangerous 
things—14

10 Outdoor activi-
ties—17

Drinka-
bles—11

Animals—34 Body parts—7 ND—31 ND—31 Marine crea-
tures—33

Musical instru-
ment—21

11 Musical instru-
ment—24

Fish—24 Musical instru-
ment—36

Printed—7 Marine crea-
tures—32

Marine crea-
tures—32

ND—38 Marine crea-
tures—33

12 Flora—25 Musical instru-
ment—26

Insects & crus-
taceans—37

Fruits—7 Clothing—36 ND—33 Food—46 Food—35

13 Marine 
creatures & 
insects—30

Flora—26 Birds—37 Animals—8 Birds—37 Birds—37 Fruits & flow-
ers—48

Clothing—48

14 Clothing—45 ND—33 Means of 
Trans-
port.—39

Animals—9 ND—46 Clothing & 
flowers—51

Clothing—48 Fruits & flow-
ers—48

15 Means of 
Trans-
port.—50

Clothing—46 Clothing—39 Cars—9 ND—67 Animals & 
insects—68

*Flying 
things—49

Flying 
things—49

16 Food—86 Food—84 Fruits—49 Animals—10 Animals—68 Food—72 ND—57 ND—57
17 Animals & 

insects—122
Animals & 

insects—128
ND—58 ND—15 Food—72 *Metal 

things—74
Animals & 

insects—66
ND—115

18 Other—164 Other—213 Other—156 Other—549 Other—82 Other—79 Other—132 Other—146

https://osf.io/ezy3h/
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distances computed from the M matrix produce less tightly 
clustered solutions that tend to be less intuitively organized 
and are harder to interpret. In general, this section shows that 
entropy values could be used to predict different distance 
measures’ performance in clustering analyses. Presumably, 
entropy and the dimensionality/sparsity trade-off would also 
predict similarity data’s usefulness for other kinds of statisti-
cal analyses.

Discussion

In the current work, we examined the relative merits of 
different distances computed from data matrices obtained 
from CPNs. Due to its widespread use, we included a cosine 
measure, and contrasted it with other available measures 
(i.e., correlation, Euclidean and Chebyshev distances). 
Because, as we have argued, a measure’s dimensionality 
poses problems for statistical analyses, to compute our dis-
tance measures we used traditional high-dimensional prop-
erty frequency vectors from CPN studies. To illustrate their 
performance, we compared the traditional data with other 
lower-dimensionality data derived from the same frequency 
matrix. Lower dimensionality was achieved by computing 
two set-theoretic matrices that register shared properties 
rather than property frequencies, and also by applying PCA 
to the property frequency vectors data.

We performed two main analyses. First, we character-
ized distances’ probability distributions, and showed that 
distances computed from high-dimensionality data exhibit 
highly skewed distributions that are low in entropy relative 
to the same measures computed from lower-dimensionality 
data. Though our results are directly pertinent to CPN data 
in the form of property frequency vectors, they are also 
relevant for researchers who use high-dimensional data 
in general. Perhaps the most important result we show is 
that researchers need to consider their data’s informational 
content to guide their data processing. Researchers need to 
consider that the apparent advantages of high dimensionality 
come at the cost of losing informational content contained 
in variability and also of increasing sparseness. Also, our 
analyses suggest that dimensionality reduction techniques 
(i.e., in this particular case, PCA) tended to ameliorate these 
problems, but not as much as one would expect.

A second analysis we performed was submitting our 
different distance measures to the AHC algorithm. Clus-
tering was chosen as a way of illustrating the problems 
that dimensionality will create for statistical analyses. Our 
quantitative comparison of clustering efficiency showed 
that distances calculated from low-dimensional data pro-
duce better clusters than distances computed from high-
dimensional data. Overall, distances obtained from the U 

data matrix (our set-theoretic matrix that disregards prop-
erty frequencies) fare better than the other alternatives. 
Our qualitative evaluation of clustering solutions suggests 
that computing distances from the low-dimensionality 
U matrix tends to avoid unnatural clusters and leads to 
clusters that are easier to interpret. In contrast, distances 
computed from the high-dimensionality M matrix produce 
clustering solutions that are less natural (e.g., dangerous 
things clusters "rattlesnake" and "gun"; green things clus-
ters "cucumber" and "frog") and harder to interpret.

On closing, the current work provides an example of 
how dimensionality may impact results in cognitive stud-
ies. A more ambitious endeavor would be to empirically 
test the statistical effect of dimensionality on the ability of 
different measures to predict cognitive performance. We 
hypothesize that a variable’s entropy and dimensionality 
are important factors affecting its predictive power. Further 
work awaits to test this. Importantly, the current work sug-
gests that producers and consumers of high-dimensional 
data should concern themselves with the issue of entropy. 
There may be situations in which this is not a problem, 
but for those wanting to use their data for predicting psy-
chological dependent variables, a low entropy predictor 
is bound to be problematic. In the particular case of CPN 
studies, were similarity is frequently computed from prop-
erty frequency vectors (and, furthermore, where the cosine 
is used as the de facto similarity measure), we suggest 
that researchers should routinely report entropy values 
for similarity computations. Also, given that entropy val-
ues are relative to the number of bins used, we suggest 
that researchers should report that number, or even better, 
adopt a convention regarding the number of bins. Also, 
perhaps the current results could convince some research-
ers to use different procedures when computing distances 
and similarities from CPN data. Finally, note that many of 
these conclusions may apply not only to CPN research, but 
more generally to research areas that use high-dimensional 
data (e.g., Latent Semantic Analysis, LSA; Landauer and 
Dumais 1997), which is why we think that this work may 
be useful beyond our main CPN focus.
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