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ABSTRACT
A quasi-equilibrium problem is an equilibrium problemwhere
the constraint set does depend on the reference point. It gen-
eralizes important problems such as quasi-variational inequal-
ities and generalized Nash equilibrium problems. We study
the existence of equilibria on unbounded sets under a coer-
civeness condition. We discuss the relation of our results with
others from the literature.
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1. Introduction

Given a bifunction f : R
n × R

n → R and a constraint set C ⊂ R
n, the standard

equilibriumproblem, (EP) for short, as introduced byBlumandOettli [1], consists
of finding a point x0 ∈ C such that

f (x0, y) ≥ 0 for all y ∈ C. (1)

We consider next the quasi-equilibrium problem, (QEP) for short, which is an
equilibrium problem but where the constraint set depends on the currently anal-
ysed point. More precisely, given a bifunction f : R

n × R
n → R and a set-valued

mapK : C ⇒ C, whereC is a non-empty subset ofRn, theQEP consists of finding

x0 ∈ C such that x0 ∈ K(x0), and f (x0, y) ≥ 0 for all y ∈ K(x0). (2)

By QEP(f ,K), we denote the solution set of problem (2).
Quasi-equilibrium problems have captured the attention of many researchers

recently, since these problems summarize in a unified manner several particu-
lar classes of problems such as quasi-variational inequalities, generalized Nash
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equilibrium problems, among others (see e.g. [2,3]). In particular, the difficult
analysis of the existence of solutions can be carried out in the general setting of
QEP and then, one can directly deduce the corresponding results for particular
classes of problems.

In the case of a bounded (compact) setC, the first results in this setting require
the continuity of the constraint set-valued map K, see [2,4]. The lower semi-
continuity of K is relaxed in [5], while a version relaxing instead of the upper
semi-continuity ofK is provided in [6]. Ideas of the later reference were next used
in [7,8] in order to generalize the famous Ky Fan minimax inequality. It is also
worth recalling that [8] deals with a non-compact set C, though the constraint
maps have compact values.

In the case of unbounded (hence, non-compact) sets, classical existence results
for EP usually involve a coerciveness condition, see [9–11]. The QEP case with
unbounded constraint sets was first studied in [12–14] under somewhat restric-
tive continuity conditions on themapK. Indeed, in [13,14], the continuity of both
the bifunction and the constraints map were assumed, while in [12] the lower
semi-continuity of K is used together with the upper semi-continuity of f.

Our aim in this work is to provide some general existence results forQEPon an
unbounded constraint set, under a coerciveness-like condition [15]. In Section 2,
we give the basic and classical notions on generalized convexity, generalized
monotonicity, continuity for set-valued maps, among others, that are used in the
sequel. The main result is given in Section 3, providing the existence result of
quasi-equilibria under possibly unbounded constraint sets. Finally, in Section 4,
we consider applications to quasi-variational inequality and generalized Nash
equilibrium problems.

2. Preliminaries and basic results

Let S be a subset of R
n. The convex hull, the closure and the interior of S are

denoted by co(S), S and int(S), respectively. We denote the open and the closed
balls in R

n with centre 0 and radius ε > 0 by Bε and Bε, respectively.
We recall some classical definitions of generalized convexity. A real-valued

function h : R
n → R is said to be

• convex if, for any x, y ∈ R
n and t ∈ [0, 1], we have

h(tx + (1 − t)y) ≤ th(x) + (1 − t)h(y);

• quasi-convex if, for any x, y ∈ R
n and t ∈ [0, 1], we have

h(tx + (1 − t)y) ≤ max{h(x), h(y)};
• semi-strictly quasi-convex at levelα ∈ R if, for any x, y ∈ R

n such that h(x) ≤ α

and h(y) < α, the following holds:

h(tx + (1 − t)y) < α for all t ∈]0, 1[.
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• semi-strictly quasi-convex if it is semi-strictly quasi-convex at every level
α ∈ R.

The definition above of semi-strictly quasi-convexity is equivalent to the usual
one; that is, h is quasi-convex and, for any x, y ∈ R

n such that h(x) �= h(y), the
following holds:

h(tx + (1 − t)y) < max{h(x), h(y)} for all t ∈]0, 1[.
It is clear that every convex function is semi-strictly quasi-convex. A relevant and
useful characterization of quasi-convexity is that a function is quasi-convex if and
only if its sub-level sets are convex. A reference for quasi-convex functions and
quasi-convex optimization is [16].

Let K : X ⇒ Y be a set-valued map with X and Y topological spaces. The map
K is called:

• closed if its graph is a closed subset of X × Y ,
• lower semi-continuous (lsc, for short) at x0, if for each open set V satisfying

K(x0) ∩ V �= ∅ there exists a neighbourhoodU of x0 such that K(x) ∩ V �= ∅
for all x ∈ U,

• upper semi-continuous (usc, for short) at x0, if for each open set V ⊃ K(x0)
there exists a neighbourhood U of x0 such that K(x) ⊂ V for all x ∈ U,

• lsc (usc), if it is lsc (usc) at every point of X,
• continuous, if it is lsc and usc.

The usual definition of lower semi-continuity of a set-valued map using
sequences/nets is equivalent to the one given here using open sets (see, for
instance, [17, Proposition 2.5.6]).

We present now some basic results on the lower semi-continuity of certain
operations on set-valued maps.

Lemma 2.1: Let X, Y be topological spaces, T : X ⇒ Y a set-valued map, and V
an open subset of Y. If T is lsc at x0 ∈ X, then the set-valued map TV : X ⇒ Y
defined by

TV(x) := T(x) ∩ V (3)

is also lsc at x0.

Proof: This is an immediate consequence of [18, Lemma 2.2.5]. �

Lemma 2.2: Let X, Y and T be as in Lemma 2.1. Assume that T is lsc at x0 ∈ X,
and let a set-valued map S : X ⇒ Y be such that S(x0) ⊂ T(x0) and

T(x) ⊂ S(x) ∀ x ∈ X.

Then, S is lsc at x0.
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Proof: Let V be an open subset of Y such that S(x0) ∩ V �= ∅. Clearly, T(x0) ∩
V �= ∅, and we deduce that T(x0) ∩ V �= ∅. Thus, by the lower semi-continuity
of T there exists a neighbourhood U of x0 such that ∅ �= T(x) ∩ V ⊂ S(x) ∩ V ,
for all x ∈ U. �

Lemma 2.3: Let X and T be as in Lemma 2.1, Y a topological vector space, and V
an open convex subset of Y. Let x0 ∈ X such that T(x0) ∩ V �= ∅. If T is lsc at x0
and T(x0) is convex, then the set-valued map TV , defined similarly as in (3), is lsc
at x0.

Proof: The set-valuedmapTV , which is lsc at x0 by Lemma 2.1, satisfiesTV(x) ⊂
TV(x) for all x ∈ X and, due to [19, Proposition 1.1 of §2] the following holds:

TV(x0) ⊂ T(x0) ∩ V = TV(x0).

Thus, TV is lsc at x0 thanks to Lemma 2.2. �

Remark 2.4: Lemma 2.3 is a slight refinement of [20, Lemma 1], since we do
not need T to have closed values, nor TV to have values with non-empty interior.
Note that the last requirement excludes, for instance, single-valued maps.

The following lemma can be easily proved (see [21, Lemma 2.3]).

Lemma 2.5: Let X, Y and T be as in Lemma 2.1, A a closed subset of X, and S :
A ⇒ Y a set-valued map. We define the set-valued map M : X ⇒ Y as

M(x) :=
{
T(x) if x ∈ X \ A,
S(x) if x ∈ A.

If S, T are lsc and S(x) ⊂ T(x), for all x ∈ A, then M is lsc.

The following result is [22, Theorem 5.9(c)].

Lemma 2.6: If T : R
n ⇒ R

m is lsc at x0 ∈ R
n, then so is the set-valued map

co(T) : R
n ⇒ R

m defined as

co(T)(x) := co(T(x)).

The following is a consequence of Himmelberg’s fixed point and Michael’s
selection theorems. Recall that for a set-valued map T : C ⊂ R

n ⇒ C, Fix(T) is
the set of fixed points of T; that is, x ∈ C with x ∈ T(x).

Proposition 2.7 ([8, Corollary 1]): Given a non-empty, convex and closed
subset C of R

n, if T : C ⇒ C is lsc with non-empty and convex values and T(C)

is bounded, then Fix(T) �= ∅.
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Given a set-valued map T : X ⇒ Y , between sets X, Y, the fibre of T at y ∈ Y
is the set

T−1(y) := {x ∈ X : y ∈ T(x)}.

The following result is a particular case of [23, Theorem 5] (see, also
[5, Theorem 4 of §5]).

Proposition 2.8: Let C ⊂ R
n be a compact, convex and non-empty set, and let

S,T : C ⇒ C be set-valued maps such that

(1) S is usc with convex, compact and non-empty values,
(2) T is convex-valued with open fibres and Fix(T) = ∅,
(3) the set V := {x ∈ C : S(x) ∩ T(x) �= ∅} is open in C.

Then there exists x ∈ Fix(S) such that S(x) ∩ T(x) = ∅.

We recall now some notions of generalized monotonicity that will be used in
the sequel. A bifunction f : R

n × R
n → R is said:

• to be pseudo-monotone on a subset C of R
n if the following implication holds,

for all x, y ∈ C,

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0;

• to be properly quasi-monotone on a convex subset C of R
n if, for all m ≥ 1,

x1, . . . , xm ∈ C and x ∈ co{x1, . . . , xm}, we have

min
i=1,...,m

f (xi, x) ≤ 0;

• to have the upper sign property on a convex subset C ofRn if, for all x0, x1 ∈ C,
the following implication holds (see [24]):

(
f (xt , x0) ≤ 0, ∀ t ∈ ]0, 1[

) ⇒ f (x0, x1) ≥ 0, (4)

where xt := tx1 + (1 − t)x0.

The above notions, namely the first two, are inspired from similar proper-
ties for set-valued maps (see [25]), but they are not comparable in general (see
the examples in [9]). However, in [8], the authors showed that the upper sign
property of f is equivalent to the pseudo-monotonicity of −f under suitable
assumptions.
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3. Main results

In this section, given a bifunction f : R
n × R

n → R, a non-empty subsetC ofRn,
and a set-valuedmapK : C ⇒ C, we consider the following standard hypothesis:

(H)

{
C is closed and convex,
K has non-empty convex values.

We introduce below a coercivity-like condition, which has been used in [15,
Theorem 3.7] and recently in [26]. First coercivity conditions for (EP) problems
on unbounded constraint sets were given in [1]. We also refer to [27] for the
so-called Karamardian condition, which is frequently used in the study of com-
plementarity and variational inequality problems. For a detailed study of these
conditions and many others, we refer to [28] (and references therein). See, also,
[29], for conditions involving the position of the recession cones of the constraint
set and appropriate sub-levels of the bifunction f.

Definition 3.1: We say that f and K satisfy the uniform coercivity condition
(UCC, for short) at ρ > 0 if:

(1) K(x) ∩ Bρ �= ∅, for all x ∈ C ∩ Bρ ,
(2) for each x ∈ Fix(K) with ‖x‖ = ρ, there exists y ∈ K(x) such that ‖y‖ < ρ

and f (x, y) ≤ 0.

Remark 3.2: If Fix(K) is countable and part (1) of UCC is satisfied at some
ρ > 0, then there exists ρ′ > ρ such that the full statement of UCC is satisfied at
ρ′ (see [26, Theorem 4]).

Given ρ > 0, we define the set-valued map Kρ : C ∩ Bρ ⇒ C ∩ Bρ as

Kρ(x) := K(x) ∩ Bρ . (5)

The following proposition, which is an extension of [10, Lemma 2.2], provides
conditions under which we have QEP(f ,Kρ) ⊂ QEP(f ,K) for an appropriate
ρ > 0.

Proposition 3.3: We assume that f and K satisfy (H) and UCC at some ρ > 0.
If x0 ∈ Fix(Kρ) is such that f (x0, x0) ≤ 0, f (x0, ·) is semi-strictly quasi-convex at
level 0, and

f (x0, y) ≥ 0 for all y ∈ K(x0) ∩ Bρ ,

then x0 ∈ QEP(f ,K).



OPTIMIZATION 7

Proof: If x0 /∈ QEP(f ,K), then there would exists y0 ∈ K(x0) such that
f (x0, y0) < 0. Since f (x0, x0) ≤ 0, by the semi-strictly quasi-convexity of f (x0, ·)
at level 0 we have that

f (x0, yt) < 0 for all t ∈ ]0, 1[,

where yt := (1 − t)x0 + ty0. If ‖x0‖ < ρ, then for t close enough to 0, we would
have that yt ∈ K(x0) ∩ Bρ and f (x0, yt) < 0, which is a contradiction with our
assumption. Otherwise, if ‖x0‖ = ρ, then by UCC there exists y1 ∈ K(x0) ∩ Bρ

such that f (x0, y1) ≤ 0. Then, by proceeding as above we find an element zt :=
(1 − t)y1 + ty0, for small t ∈ ]0, 1[, which yields the contradiction f (x0, zt) < 0.

�

Theorem 3.4: We assume that f and K satisfy (H) and UCC at some large ρ > 0,
K is lsc, Fix(K) is closed, and f (x, ·) is semi-strictly quasi-convex at level 0, for every
x ∈ Fix(K). If f is properly quasi-monotone, has the upper sign property on C, and
the set-valued map G : Fix(K) ⇒ C defined as

G(x) := {y ∈ K(x) ∩ Bρ : f (y, x) > 0}
is lsc, then QEP(f ,K) is non-empty.

Proof: We may assume that ρ is sufficiently large so that Cρ := C ∩ Bρ �= ∅.
Then, by UCC,

K(x) ∩ Bρ �= ∅ for all x ∈ Cρ ,

and so the map Kρ defined in (5) has non-empty and convex values. Moreover,
due to Lemma 2.3, the relation above also ensures that Kρ is lsc. Next, we define
the set-valued mapM : Cρ ⇒ Cρ by

M(x) :=
{
Kρ(x), x ∈ Cρ \ Fix(Kρ),
co(G(x)), x ∈ Fix(Kρ),

which is lsc due to Lemmas 2.5 and 2.6. The map M does not have any fixed
point. In fact, every fixed point x of M is also a fixed point of Kρ , and hence a
fixed point of co(G); that is, x ∈ co{xi, i = 1, . . . , k} for some xi ∈ G(x). Hence,
mini=1···k f (xi, x) > 0 and this contradicts the proper quasi-monotonicity of f.

Now, since the lsc map M has convex values and M(Cρ) ⊂ Bρ , by Propo-
sition 2.7 there exists x0 ∈ Cρ such that M(x0) = ∅. Thus, x0 ∈ Fix(Kρ) and
G(x0) = ∅. To show that x0 ∈ QEP(f ,Kρ), we suppose by contradiction that
f (x0, y) < 0 for some y ∈ Kρ(x0). Then, the upper sign property yields some
t ∈ ]0, 1[ such that

f (ty + (1 − t)x0, x0) > 0;

that is, ty + (1 − t)x0 ∈ G(x0), a contradiction. Finally, since f (x0, x0) ≤ 0 by the
proper quasi-monotonicity of f, by Proposition 3.3 we infer that x0 ∈ QEP(f ,K).

�
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Since UCC holds at a sufficiently large ρ when C is compact, we obtain the
following result.

Corollary 3.5: Let C be a non-empty, compact and convex subset of R
n and

assume that f is properly quasi-monotone, semi-strictly quasi-convex at level 0 in
the second argument, and has the upper sign property. If the set

{y ∈ C : f (x, y) ≤ 0}
is closed, for each x ∈ C, then problem (1) has a solution.

Proof: First, the constant set-valued map K(x) := C, x ∈ C, is obviously lsc
and has convex and non-empty values. Also, we have that Fix(K) = C, which
is obviously closed. Then condition UCC trivially holds, as well as hypothesis
(H). According to Theorem 3.4, it suffices to show that the map G, defined in
Theorem 3.4, is lsc. Indeed, by the current assumption, for each y ∈ C, the fibre

G−1(y) = {x ∈ C : f (y, x) > 0}
is open, and this easily implies the lower semi-continuity of G. �

Corollary 3.5 is given in [10, Proposition 2.1], where instead of the upper sign
property of f, the authors assume the quasi-convexity in the second argument of
f together with the condition

f (x, x) = 0 ∀ x ∈ C,

as well as the upper sign continuity (see [10]) of f ; that is,

inf
t∈]0,1[

f (tx + (1 − t)y, y) ≥ 0 ⇒ f (x, y) ≥ 0 ∀ x, y ∈ C.

It is known that the last three conditions ensure the upper sign property of f (see
[30, Lemma 3]).

Remark 3.6: It is worth recalling that, instead of the semi-strict quasi-convexity
at level 0 of the bifunction f in Corollary 3.5, [10, Proposition 2.1] uses the so-
called sign preserving property; that is, for all x, y, z ∈ C,

(f (x, y) = 0 ∧ f (x, z) < 0) ⇒ f (x, ty + (1 − t)z) < 0 for all t ∈]0, 1[ .
We observe that, under the quasi-convexity of the functions f (x, ·), x ∈ C, both
the sign preserving property and the semi-strict quasi-convexity at level 0 are
equivalent.

Corollary 3.7 ([4, Theorem 4.5]): Let f : R
n × R

n → R be a bifunction, C be a
convex, compact and non-empty subset ofRn, and K : C ⇒ C be a set-valued map.
Suppose that the following properties hold:
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(1) K is closed and lsc with convex values, and int(K(x)) �= ∅, for all x ∈ C;
(2) f is properly quasi-monotone;
(3) f is semi-strictly quasi-convex and lsc with respect to its second argument;
(4) for all x, y ∈ R

n and all sequence (yk)k ⊂ R
n converging to y, the following

implication holds:

lim inf
k→+∞

f (yk, x) ≤ 0 ⇒ f (y, x) ≤ 0;

(5) f has the upper sign property.

Then QEP(f ,K) is non-empty.

Proof: SinceC is compact, the set-valuedmapG in Theorem3.4 can be described
byG(x) = {y ∈ K(x) : f (y, x) > 0} for every x ∈ Fix(K). We can prove the lower
semi-continuity ofG following the same steps of the proof of [8, Corollary 7], and
thus the conclusion follows by applying Theorem 3.4. �

Now, we present another existence result without generalized monotonicity.

Theorem 3.8: We assume that f and K satisfy (H) and UCC at some large
ρ > 0, K is lsc, Fix(K) is closed, and f (x, ·) is semi-strictly quasi-convex at level
0 for every x ∈ Fix(K). If f (x, x) = 0, for all x ∈ Fix(K), and the set-valued map
R : Fix(K) ⇒ C defined as

R(x) := {y ∈ K(x) : f (x, y) < 0}
is lsc, then QEP(f ,K) is non-empty.

Proof: We consider Rρ : Fix(Kρ) ⇒ C defined as Rρ(x) := R(x) ∩ Bρ , which
is lsc (Lemma 2.1) with convex values. Thus, the set-valued map M : C ⇒ C
defined as

M(x) :=
{
Kρ(x) x ∈ C \ Fix(Kρ),
Rρ(x) x ∈ Fix(Kρ)

is lsc with convex values. IfM is non-empty valued, then by Proposition 2.7 there
exists x0 ∈ M(x0); that is x0 ∈ Fix(Kρ) and x0 ∈ Rρ(x0), and this implies the con-
tradiction f (x0, x0) < 0. Hence, there exists x0 ∈ C such that M(x0) = ∅. Thus,
x0 ∈ Fix(Kρ) and Rρ(x0) = ∅, i.e.

f (x0, y) ≥ 0 for all y ∈ K(x0) ∩ Bρ .

The last inequality can be extended to Kρ(x0), we deduce that x0 ∈ QEP(f ,Kρ).
Finally, we conclude by applying Proposition 3.3. �

The previous result has some similarities with [26, Theorem 3]. However,
Theorem 3.8 does not require the upper semi-continuity of the bifunction.
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The following simple example shows that Theorem 3.8 is independent of
[26, Theorem 3].

Example 3.9: Let f : R × R → R be the bifunction defined as

f (x, y) :=

⎧⎪⎨
⎪⎩
0, x = 1/2,
−2, x = 0 ∨ x = 1,
−1, otherwise.

It is clear that f is semi-strictly quasi-convex in its second argument and is not
upper semi-continuous in its first one. Consider the set C = [0, 1] and the con-
stant set-valued map K(x) := C, x ∈ C. Thus, the set-valued map R : C ⇒ C,
defined in Theorem 3.8, is

R(x) =
{
[0, 1], x �= 1/2,
∅, x = 1/2,

which is lsc. Since C is compact, we have that UCC holds at a sufficiently large ρ.
Hence, by Theorem 3.8, the problem (1) admits at least one solution.

The next theorem can be considered a non-compact version of [5, Theorem 5
of §5], in the finite-dimensional setting.

Theorem 3.10: Let C be a convex, closed and non-empty subset of Rn, K : C ⇒ C
be a set-valued map and f : R

n × R
n → R be a bifunction. Assume that f and K

satisfy UCC at sufficiently large ρ > 0, and the following properties hold:

(1) K is closed with convex and non-empty values,
(2) f (·, y) is usc, for all y ∈ C,
(3) f (x, ·) is quasi-convex, for all x ∈ C,
(4) the set D = {x ∈ C ∩ Bρ : infy∈K(x)∩Bρ

f (x, y) < 0} is open in C ∩ Bρ ,
(5) f (x, x) = 0 for all x ∈ C,
(6) for each x ∈ Fix(K), f (x, ·) is semi-strictly quasi-convex at level 0.

Then QEP(f ,K) is non-empty.

Proof: Consider the setCρ := C ∩ Bρ and the set-valuedmapsKρ ,T : Cρ ⇒ Cρ

defined as

Kρ(x) := K(x) ∩ Bρ and T(x) := {y ∈ Kρ(x) : f (x, y) < 0}.

Clearly, gph(Kρ) = gph(K) ∩ (Cρ × Cρ) and D = {x ∈ Cρ : T(x) ∩ Kρ(x) �=
∅}. Condition UCC at ρ and assumption (1) imply that Kρ is usc with convex,
compact and non-empty values. Assumption (3) implies that T is convex-valued
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while assumption (2) implies that T has open fibres. Since f vanishes on the diag-
onal onC × C, we deduce that Fix(T) = ∅. Hence, by Proposition 2.8 there exists
x ∈ Fix(Kρ) such thatKρ(x) ∩ T(x) = ∅, whichmeans that x ∈ QEP(f ,Kρ). The
conclusion follows by applying Proposition 3.3. �

Our Theorem 3.10 has some similarities with [12, Theorem 3], but the set of
assumptions in both results differ in two important aspects. Firstly, in [12] it was
assumed that f is 0-diagonally convex on the second variable, while in our case we
assume that f is quasi-convex in its second argument and that f vanishes on the
diagonal of C × C. Examples in [31] show that these assumptions are not com-
parable in general. Secondly, there is a difference on the coerciveness conditions.
In [12], the authors considered a quite restrictive coerciveness condition, which
in particular implies that in a non-empty set, the images of K are compact.

The following corollary is related to [13, Theorem 3], where a slightly less gen-
eral kind of ‘quasi-equilibrium problem’ was considered. Our condition 3 in the
corollary is a consequence of this restriction.

Corollary 3.11: Let C be a compact, convex and non-empty subset of R
n, K,KC :

C ⇒ R
n be set-valued maps such that KC(x) = K(x) ∩ C, and f : C × C → R be

a bifunction. If the following assumptions hold:

(1) KC is continuous with convex, compact and non-empty values,
(2) f is continuous and f (x, ·) is convex, for all x ∈ C,
(3) f (x, x) = 0, for all x ∈ C,
(4) for each x ∈ Fix(KC), there exists y ∈ KC(x) such that f (x, y) ≤ 0 and ]y, z] ∩

KC(x) �= ∅, for all z ∈ K(x) \ KC(x),

then QEP(f ,K) is non-empty.

Proof: The set QEP(f ,KC) is non-empty, due to Theorem 3.10. Indeed, UCC
as well as conditions (1)–(3) in Theorem 3.10 are obviously satisfied. To check
condition (4) of Theorem 3.10 we first observe that the set D defined there is
now given as, by choosing a sufficiently large number ρ > 0 such that C ⊂ Bρ ,

D =
{
x ∈ C : inf

y∈KC(x)
f (x, y) < 0

}
.

To verify thatD is open in C we take a sequence (xn)n ⊂ C \ D that converges to
some x ∈ C. Next, for each y ∈ K(x) ∩ C, the continuity assumption on KC gives
rise to some sequence (yn)n ⊂ C converging to y and such that yn ∈ K(xn) for all
n. Hence, f (xn, yn) ≥ 0, for all n, and the continuity of f yields f (x, y) ≥ 0. Since y
is arbitrary in K(x) ∩ C, we deduce that infy∈KC(x) f (x, y) ≥ 0; that is, x ∈ C \ D,
and the set D is open in C.

Finally, the conclusion of the corollary follows since assumption (4) implies
that QEP(f ,KC) ⊂ QEP(f ,K). �
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4. Applications

In this section, we consider applications on the study of existence of solutions for
two well-known problems: (i) the quasi-variational inequality problem, and (ii)
the generalized Nash equilibrium problem.

4.1. Quasi-variational inequality problem

Given a subset C of R
n and set-valued maps T : R

n ⇒ R
n and K : C ⇒ C, the

set QVI(T,K) denotes the solution set of the quasi-variational inequality problem
associated to T and K,

{x ∈ C : x ∈ K(x) and exists x∗ ∈ T(x) such that 〈x∗, y − x〉 ≥ 0, ∀ y ∈ K(x)}.

We say thatT andK satisfy the uniform coerciveness condition at ρ if the following
two conditions hold:

(1) K(x) ∩ Bρ �= ∅, for all x ∈ C ∩ Bρ ,
(2) for each x ∈ Fix(K) such that ‖x‖ = ρ there exists y ∈ K(x) with ‖y‖ < ρ

such that
〈
x∗, y − x

〉 ≤ 0 for every x∗ ∈ T(x).

Now, we consider the bifunction fT : R
n × R

n → R ∪ {−∞,+∞} defined as

fT(x, y) := sup
x∗∈T(x)

〈x∗, y − x〉. (6)

Lemma 4.1: Given any ρ > 0, T and K satisfy the uniform coerciveness condition
at ρ if and only if fT and K satisfies the UCC at ρ. Moreover, if T has non-empty
and compact values, then QEP(fT ,K) = QVI(T,K).

Proof: Direct from the definition of fT . �

As a direct consequence of Lemma 4.1 and Theorem 3.4, we obtain the
following existence result for quasi-variational inequality problems.

Theorem 4.2: Let C be a closed, convex and non-empty subset of R
n, and

T : R
n ⇒ R

n, K : C ⇒ C be set-valued maps. Assume that T and K satisfy the
uniform coerciveness condition at a sufficiently large ρ > 0, and that the following
conditions are satisfied:

(1) T has compact and non-empty values,
(2) T is properly quasi-monotone on C, i.e. for all x1, . . . , xm ∈ C and any

x ∈ co({x1, . . . , xm}), there exists i such that

〈x∗
i , x − xi〉 ≤ 0, for all x∗

i ∈ T(xi),
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(3) T is upper sign-continuous on C; that is, for all x, y ∈ C
(

∀t ∈]0, 1[, inf
x∗
t ∈T(xt)

〈x∗
t , y − x〉 ≥ 0

)
⇒ sup

x∗∈T(x)
〈x∗, y − x〉 ≥ 0,

where xt = tx + (1 − t)y,
(4) K is lsc with convex and non-empty values,
(5) the set Fix(K) is closed and the set-valued map G : Fix(K) ⇒ C defined as

G(x) :=
{
y ∈ K(x) ∩ Bρ : sup

x∗∈T(x)
〈x∗, y − x〉 > 0

}
(7)

is lsc.

Then, QVI(T,K) is non-empty.

Proof: Clearly, fT is properly quasi-monotone and has the upper sign prop-
erty. Therefore, the result follows from the fact QVI(T,K) = QEP(fT ,K) and
Theorem 3.4. �

Remark 4.3: A few remarks about Theorem 4.2:

(1) The previous result is not a consequence of [20, Theorem 1], because T here
is properly quasi-monotone (not pseudo-monotone) and the closedness of
K is relaxed to the closedness of Fix(K). Aussel and Sultana [20, Theorem 3]
proposes an existence result under quasi-monotonicity, which means that
for all (x, x∗) and (y, y∗) in the graph of T the following implication holds:

〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ 0.

Observe that in this case one needs more regularity assumptions on the
constraint map.

(2) Condition (5) in Theorem 4.2 holds, for instance, when the map K is
continuous and the set{

(x, y) ∈ C × C : sup
x∗∈T(x)

〈x∗, y − x〉 ≤ 0

}
(8)

is closed. Indeed, the closedness of K leads easily to the closedness of the set
Fix(K). To check that the set-valued map G defined in (7) is lsc, say at some
x ∈ Fix(K), we proceed by contradiction and assume that for some open
set V ⊂ R

n and a sequence (xn) ⊂ C converging to x we have that G(x) ∩
V �= ∅ and G(xn) ∩ V = ∅ for all n. Take y ∈ G(x) ∩ V ⊂ K(x) ∩ Bρ ∩ V .
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Since K is assumed continuous, we choose a sequence (yn)n ⊂ C such that
yn ∈ K(xn) ∩ Bρ ∩ V and yn → y. But G(xn) ∩ V = ∅, and so

sup
x∗∈T(xn)

〈x∗, yn − xn〉 ≤ 0.

Consequently, the closedness of the set defined in (8) ensures that

sup
x∗∈T(x)

〈x∗, y − x〉 ≤ 0,

which contradicts the fact that y ∈ G(x).

4.2. Generalized Nash equilibrium problem

A generalized Nash equilibrium problem (GNEP) consists of p players. Each
player ν controls the decision variable xν ∈ Cν , where Cν is a non-empty con-
vex and closed subset of R

nν . We denote by x = (x1, . . . , xp) ∈ ∏p
ν=1 Cν = C

the vector formed by all these decision variables and by x−ν , the strategy vec-
tor of all the players different from player ν. The set of all such vectors will
be denoted by C−ν . We sometimes write (xν , x−ν) instead of x in order to
emphasize the νth player’s variables within x. Note that this is still the vector
x = (x1, . . . , xν , . . . , xp), and the notation (xν , x−ν) does not mean that the block
components of x are reordered in such a way that xν becomes the first block.
Each player ν has an objective function θν : C → R that depends on all player’s
strategies. Each player’s strategy must belong to a set identified by the set-valued
map Kν : C−ν ⇒ Cν in the sense that the strategy space of player ν is Kν(x−ν),
which depends on the rival player’s strategies x−ν . Given the strategy x−ν , player
ν chooses a strategy xν such that it solves the following optimization problem:

min
xν

θν(xν , x−ν), subject to xν ∈ Kν(x−ν), (9)

for any given strategy vector x−ν of the rival players. The solution set of
problem (9) is denoted by Solν(x−ν). Thus, a generalized Nash equilibrium is a
vector x̂ such that x̂ν ∈ Solν(x̂−ν), for any ν.

Associated to a GNEP, there is a bifunction f NI : R
n × R

n → R, defined by

f NI(x, y) :=
p∑

ν=1

{
θν(yν , x−ν) − θν(xν , x−ν)

}
,

which is calledNikaidô–Isoda function andwas introduced in [32]. Additionally,
we consider the set-valued map K : C ⇒ C defined as

K(x) :=
p∏

ν=1
Kν(x−ν).
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Lemma 4.4: A vector x̂ is a solution of the GNEP if and only if x̂ ∈ QEP(f NI ,K).

A GNEP satisfies the coerciveness condition at ρ > 0 if

(1) K(x) ∩ Bρ �= ∅, for all x ∈ C ∩ Bρ ;
(2) for each x ∈ Fix(K), such that ‖x‖ = ρ there exists y ∈ K(x) with ‖y‖ < ρ

such that θν(yν , x−ν) ≤ θν(x) for each ν.

If we consider in R
n the product norm given by the maximum of the norms

of all the R
nν , then the above condition is equivalent to the following one, for

each ν

(1) Kν(x−ν) ∩ BRnν ,ρ �= ∅, for all x ∈ C ∩ Bρ ;
(2) for each x ∈ Fix(Kρ), if ‖xν‖Rnν = ρ, then there exists yν ∈ K(x−ν) with

‖yν‖Rnν < ρ such that θν(yν , x−ν) ≤ θν(x).

Lemma 4.5: If the GNEP satisfies the coerciveness condition at ρ > 0, then the
pair f NI and K satisfies the UCC at ρ.

Proof: It is enough to see that if for each ν we have θν(yν , x−ν) ≤ θν(x), then

f NI(x, y) =
p∑

ν=1
θν(yν , x−ν) − θν(x) ≤ 0.

�

Thanks to Lemmas 4.4 and 4.5, we have the following result on the existence
of solutions of a GNEP, which is a direct consequence of Theorems 3.4 and 3.10.

Theorem 4.6: For any ν ∈ {1, 2, . . . , p}, let Cν be a non-empty, closed and convex
subset ofRnν , θν : R

n → R be a continuous function and Kν : C−ν ⇒ Cν be a set-
valuedmap. Assume that the GNEP satisfies the coerciveness condition at ρ, that for
each ν, θν is convex with respect to the xν variable, and at least one of the following
pair of Assumptions A1, A2 hold:

A1 (a) The set Fix(K) is closed.
(b) for each ν, the map Kν is lower semi-continuous with non-empty and

convex values.
A2 (a) For each ν, the map Kν is closed with convex and non-empty values .

(b) The set

N =
{
x ∈ C ∩ Bρ : inf

y∈K(x)∩Bρ

∑
ν

θν(yν , x−ν) <
∑
ν

θν(x)

}

is open in C ∩ Bρ .
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Then the GNEP admits a solution.

Proof: It is clear that f NI is continuous and convex in its second argument and the
map K is closed with convex and non-empty values. By Lemma 4.5, we have that
f NI andK satisfy theUCC at ρ. In caseA1,K is lsc and has convex and non-empty
values. Hence, the set-valued map R defined in the second case of Theorem 3.4
is also lsc and has convex values. So, the result follows from Theorem 3.4 and
Lemma 4.4.

Finally, in case A2, the map K is closed with convex and non-empty values.
Moreover, we have that

N =
{
x ∈ C ∩ Bρ : inf

y∈K(x)∩Bρ

f NI(x, y) < 0

}
.

Hence, the result follows from Theorem 3.10 and Lemma 4.4. �

The previous result is related to [20, Theorem 5]. However, we notice that in
Assumption A1 the constraint set-valued maps Kν are not necessarily closed,
while for A2 Kν are not necessarily lsc. Moreover, none of the cases assumes
any differentiability, and the images of the constraint maps Kν are allowed
to have an empty interior. Finally, their ‘coerciveness condition’ is somehow
weaker than ours. In fact, θν(yν , x−ν) ≤ θν(xν , x−ν) clearly implies their condi-
tion

〈∇xν θν(x), xν − yν
〉 ≥ 0, due to the convexity assumption, while the converse

implication is not true in general.
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