
Research Article
Parallelizing Comprehensive Learning Particle Swarm
Optimization by Open Computing Language on an Integrated
Graphical Processing Unit

Xiang Yu ,1 Yu Qiao,2 Qingpeng Li,3 Gang Xu,4 Chuanxiong Kang,1 Claudio Estevez,5

Chengzhi Deng ,1 and Shengqian Wang1

1Provincial Key Laboratory for Water Information Cooperative Sensing and Intelligent Processing,
Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China
2School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
3State Grid Nanchang Electric Power Supply Company, Nanchang, Jiangxi 330069, China
4Department of Mathematics, Nanchang University, Nanchang, Jiangxi 330031, China
5Department of Electrical Engineering, University of Chile, Santiago 8370451, Chile

Correspondence should be addressed to Xiang Yu; xiang.yu@nit.edu.cn

Received 22 April 2020; Revised 27 June 2020; Accepted 7 July 2020; Published 31 July 2020

Academic Editor: Eric Campos

Copyright © 2020 Xiang Yu et al. $is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Comprehensive learning particle swarm optimization (CLPSO) is a powerful metaheuristic for global optimization. $is paper
studies parallelizing CLPSO by open computing language (OpenCL) on the integrated Intel HD Graphics 520 (IHDG520)
graphical processing unit (GPU) with a low clock rate.We implement a coarse-grained all-GPUmodel that maps each particle to a
separate work item. Two enhancement strategies, namely, generating and transferring random numbers from the central
processor to the GPU as well as reducing the number of instructions in the kernel, are proposed to shorten the model’s execution
time. $is paper further investigates parallelizing deterministic optimization for implicit stochastic optimization of China’s
Xiaowan Reservoir. $e deterministic optimization is performed on an ensemble of 62 years’ historical inflow records with
monthly time steps, is solved by CLPSO, and is parallelized by a coarse-grained multipopulation model extended from the all-
GPU model. $e multipopulation model involves a large number of work items. Because of the capacity limit for a buffer
transferring data from the central processor to the GPU and the size of the global memory region, the random number generation
strategy is modified by generating a small number of random numbers that can be flexibly exploited by the large number of work
items. Experiments conducted on various benchmark functions and the case study demonstrate that our proposed all-GPU and
multipopulation parallelization models are appropriate; and the multipopulation model achieves the consumption of significantly
less execution time than the corresponding sequential model.

1. Introduction

A graphical processing unit (GPU) is a processor specially
designed to rapidly manipulate the creation of images in a
frame buffer intended for output to a display device. By
providing functionalities such as texture mapping, render-
ing, shading, anti-aliasing, color space, and video decoding, a
GPU is an indispensable aid to a central processing unit
(CPU) to manage and boost the performance of graphics. A
CPU consists of only a few processing elements optimized

for sequential processing, whereas a GPU consists of a large
number of compute units, with each compute unit in turn
containingmany processing elements, thereby constituting a
massively parallel architecture for handling multiple com-
puting tasks simultaneously. People have recently studied
leveraging the massively parallel architectures of GPUs for
accelerating nongraphical general-purpose computing in a
wide range of areas [1–14]. GPU-based parallel computing is
implemented by a host program and kernel(s). $e host
program runs on the CPU and can launch a kernel on a

Hindawi
Complexity
Volume 2020, Article ID 6589658, 17 pages
https://doi.org/10.1155/2020/6589658

mailto:xiang.yu@nit.edu.cn
https://orcid.org/0000-0001-5591-3526
https://orcid.org/0000-0003-1605-7100
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6589658


connected GPU. A kernel is a function executed in parallel
on the processing elements within the GPU. $e parallel
threads of the kernel can be organized into groups, with each
group of concurrent threads executed on the same compute
unit. Data are transferred between the CPU and the GPU.

Metaheuristics are naturally suitable to be parallelized on
GPUs. A metaheuristic is essentially a set of nature-inspired
intelligent search strategies and is promising for single-
objective global optimization [15]. A metaheuristic usually
finds the optimum using a population of individuals, with
each individual representing a candidate solution. All the
individuals are initialized randomly and evolve iteratively
and randomly in the search space to gradually locate the
optimum. Each individual is thus associated with a fitness
indicating the individual’s search performance. $e final
solution obtained is the individual that exhibits the best
fitness among the population when the evolution ends.
Compared with traditional optimization methods such as
linear programming, nonlinear programming, dynamic
programming, and optimal control, metaheuristics do not
require the objective and constraints of the optimization
problem to be continuous, differentiable, linear, or convex.
In addition, metaheuristics can be directly linked with
simulation models without requiring simplifying any as-
sumption in the models. According to Tan and Ding [16],
GPU-based parallelization implementations of metaheuristics
are classified into four categories, namely, naive model,
multiphase model, all-GPU model, and multipopulation
model. $e naive model offloads fitness calculation onto the
GPU side. $e naive model can be coarse-grained or fine-
grained. For the coarse-grained naive model, the fitness of
each individual is calculated by a separate thread. If the fitness
is an aggregation of a number of partial calculations that can
be run in parallel, then the fined-grained naive model can be
used to further accelerate fitness calculation. Besides fitness
calculation, the multiphase model also parallelizes other
phases of a metaheuristic to leverage the GPU’s computing
power. Multiple kernels are used to parallelize different
phases, and different kernels can take different parallelization
granularities to best fit the corresponding tasks. $e multi-
phase model might incur the overhead of frequent kernel
launching. $e all-GPU model combines multiple kernels
into one kernel. Instead of relying on a single population,
multiple populations are employed in the multipopulation
model, with each population evolving separately with dif-
ferent thread(s).

Particle swarm optimization (PSO) is a class of meta-
heuristics simulating the food-searching behavior of a bird
flock [17, 18]. In PSO, population is termed as swarm, and an
individual is termed as the particle. All the particles “fly” in
the search space. Each particle is accordingly additionally
associated with a position and velocity. Each particle updates
the flight trajectory iteratively and randomly and tries to
gradually move towards the optimum. Many PSO variants
have been proposed in the literature since 1995 [17, 18], and
some variants have been parallelized on GPUs. Open
computing language (OpenCL) [19] and compute unified
device architecture (CUDA) [20] are two commonly used
industry standards that facilitate parallel computing on

GPUs. Based on the C/C++ programming language,
OpenCL and CUDA both provide a series of runtime ap-
plication programming interfaces (APIs). OpenCL enables
programming across heterogeneous types of processors
including not only GPU but also digital signal processor, and
field programming gate array, whereas CUDA only supports
NVIDIA proprietary GPUs. Global PSO (GPSO) is the
earliest PSO variant [17]. In GPSO, the flight of each particle
is guided by the particle’s historical best search experience
(i.e., personal best position) and also the historical best
search experience out of the entire swarm (i.e., global best
position). GPSO was parallelized on GPUs by CUDA fol-
lowing the multiphase model in [21], the all-GPU model in
[1–3, 22], and the multipopulation model in [4, 5]. GPSO is
liable to get stuck in premature convergence, and local PSO
(LPSO) [23] is an improved variant based on GPSO. A static
topology is constructed in LPSO. For a particle, its neigh-
borhood contains itself and the particles that it directly
connects to in the topology. Instead of referring to the global
best position, the historical best search experience of the
neighborhood (i.e., local best position) is used for updating
particle’s velocity. An all-GPU parallelization implementa-
tion of LPSO by CUDAwas proposed in [6]. In contrast with
LPSO, standard PSO (SPSO) [24] maintains a dynamic
topology. An all-GPU parallelization model of SPSO
implemented by CUDA and that by OpenCL were, re-
spectively, introduced in [25, 26]. Comprehensive learning
PSO (CLPSO) [27–29] differs from GPSO, LPSO, and SPSO
in that CLPSO encourages each particle to learn from dif-
ferent exemplars on different dimensions during the flight
trajectory update, whereas GPSO, LPSO, and PSO enforce
the same pair of personal best position and global/local best
position for updating particle’s velocity on all the dimen-
sions. CLPSO is good at preserving the particles’ diversity
and exhibits excellent optimization performance. Papadakis
and Bakrtzis [7] investigated developing an all-GPU model
of CLPSO by OpenCL. Kilic et al. [8], Ouyang et al. [9],
Souza et al. [10], Sharma et al. [11, 12], and Rabinovich [30]
studied parallelizing other PSO variants on GPUs.

In this paper, we study parallelizing CLPSO on a plat-
form with the Intel Core i7-6500U CPU, the third-gener-
ation double data rate (DDR3) main memory, and the Intel
HDGraphics 520 (IHDG520) GPU by OpenCL. IHDG520 is
an integrated GPU; it can be found in various ultralow-
voltage mobile CPUs and is suited for laptop (particularly,
ultrabook) computers. $e IHDG520 GPU lacks dedicated
graphics memory and has to access the main memory. $e
sequentialization implementation of CLPSO was evaluated
with a swarm of 40 particles in [27–29]. We propose a
coarse-grained all-GPU model with the kernel being con-
currently executed by 40 threads. Two enhancement strat-
egies, i.e., generating and transferring random numbers
from the CPU to the IHDG520 GPU as well as reducing the
number of instructions in the kernel, are introduced into the
model for the purpose of shortening the execution time. We
further investigate parallelizing deterministic optimization
for implicit stochastic optimization (ISO) of China’s Xiao-
wan Reservoir. $e deterministic optimization is performed
on an ensemble of 62 years’ historical inflow records with

2 Complexity



monthly time steps and is solved by CLPSO. $e deter-
ministic optimization is parallelized by a coarse-grained
multipopulation model extended from the all-GPU model,
using each swarm of particles to address the optimal op-
eration in a separate year. $e multipopulation model in-
volves a large number of threads. Because of the limit on data
transfer capacity between the CPU and the IHDG520 GPU,
we modify the random number generation strategy by just
generating a small number of random numbers that can be
flexibly exploited by the large number of threads without
hurting randomness.

A reservoir is a hydraulic structure that impounds water
and uses water to serve various purposes such as hydropower
generation, flood control, navigation, sediment control, and
water provisioning for agricultural, domestic, and industrial
demands. A reservoir system consists of one or more cas-
caded reservoirs constructed within the same river basin.
$e optimal operation of a reservoir system is to schedule
outflows of the reservoir (s) over a series of consecutive time
steps in order to optimize a specific objective, trying to fulfill
the multipurpose development of the system. $e optimal
operation of a reservoir system is complex because the
optimization problem has to take into account inflow im-
precision and uncertainties, the dynamic multistage nature
of decision-making, and different physical and operational
constraints [31–36]. $e optimal operation of a reservoir
system is either deterministic or stochastic. Deterministic
optimization assumes that inflows into the reservoirs (s)
over all the time steps are available. However, in practice,
only limited inflow forecasting information can be obtained.
Alternatives to avoid perfect inflow knowledge during the
entire planning horizon include ISO and explicit stochastic
optimization (ESO) [35, 37]. ISO is also referred to as Monte
Carlo optimization. ISO optimizes over a long continuous
series of historically recorded or synthetically generated
inflows, or many shorter equally likely sequences. Accord-
ingly, stochasticity of the inflows is implicitly addressed, and
deterministic optimization can be applied on the ensemble
of inflows. Operation rules for the outflows of each reservoir
over all the time steps conditioned on information, e.g., the
reservoir’s present storage volume (or forebay elevation),
previous inflows, and limited forecasted inflows, are then
abstracted from the deterministic optimization results using
a fitting method, e.g., rule curve [38–42], linear regression
[43–48], artificial neural network [49–52], neuro-fuzzy in-
ference system [53, 54], decision tree [50, 55], genetic
programming [56], and support vector regression [57].
Compared with ISO, ESO directly operates on probabilis-
tically described inflows [58–62]. $e deterministic opti-
mization is usually nonlinear, nonconvex, and
nondifferentiable [63–66] and has been extensively
addressed by metaheuristics recently [67].

Integrated GPUs are prevalent nowadays and can be
found in both laptop (e.g., the IHDG520 GPU and the Intel
HD Graphics 620 GPU) and desktop computers (e.g., the
Intel HDGraphics 530 GPU).$e clock rates of the Intel HD
Graphics 520, 620, and 530 GPUs are all rather low, being
0.3GHz, 0.3GHz, and 0.35GHz, respectively. $e Intel HD
Graphics 620 and 530 GPUs also lack dedicated graphics

memory. $e Intel integrated GPUs feature significantly
different architectures from NVIDIA and AMD GPUs
studied in the existing literature body, e.g., the NVIDIA
GPUs studied in [1–4, 6–10, 12, 21, 22, 25, 26, 30] and the
AMD GPUs studied in [13, 14, 68, 69] have much higher
clock rates and have dedicated graphics memories. Many
NVIDIA and AMDGPUs are quite larger in size and require
higher power supply. $e motherboard and the power
supply of a brand desktop computer often differ consider-
ably from those of a self-assembled desktop computer and
may not support adding an NVIDIA or AMD GPU. As a
result, this paper experimenting on the IHDG520 GPU is of
critical practical meaning. In addition, to the best of our
knowledge, this paper is the first pioneering work investi-
gating parallelizing the deterministic optimization for the
ISO of a reservoir system on a GPU.

$e rest of this paper is organized as follows. $e
working procedure of CLPSO, the knowledge about
OpenCL, and the characteristics of the IHDG520 GPU are
detailed in Section 2. Section 3 introduces the case study of
the Xiaowan Reservoir and formulates the deterministic
optimization for the ISO of the Xiaowan Reservoir. Section 4
presents our proposed coarse-grained all-GPU and multi-
population models of CLSPO implemented by OpenCL.$e
performance of the models is evaluated in Section 5. Section
6 concludes this paper.

2. Background

2.1. Comprehensive Learning Particle Swarm Optimization.
Let the search space be D-dimensional, and there are N
particles in the swarm. Each particle, denoted as i (i� 1, 2,
. . ., N), is associated with velocity Vi � Vi, 1, Vi, 2, . . ., Vi, D
and a position Pi � Pi, 1, Pi, 2, . . ., Pi, D. In each iteration (or
generation), Vi and Pi are updated on each dimension d
(d� 1, 2, . . ., D) as follows:

Vi,d � wVi,d + 1.5δi,d Ei,d − Pi,d􏼐 􏼑, (1)

Pi,d � Pi,d + Vi,d, (2)

where w is the inertia weight; δi,d is a random number
uniformly distributed in [0, 1]; and Ei � Ei, 1, Ei, 2, . . ., Ei, D is
the exemplar that guides the update of i’s flight trajectory.

$e dimensional velocity Vi,d is clamped to a positive
value Vd, i.e.,

Vi,d �

Vd, if Vi,d >Vd,

−Vd, else if Vi,d < − Vd,

Vi,d, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Let Pd and Pd, respectively, be the lower bound and the
upper bound of the search space on each dimension d,
Vd � 0.2(Pd − Pd ). At the beginning of the run of CLPSO,
Vi,d is initialized as a random value uniformly distributed in
[−Vd, Vd], and the dimensional position Pi,d is initialized as
a random value uniformly distributed in [Pd , Pd].

$e weight w linearly decreases from 0.9 to 0.4 in each
generation k according to the following equation:

Complexity 3



w � 0.9 − 0.5
k

K
, (4)

where K is the predefined number of generations.
CLPSO maintains a personal best position Bi �Bi, 1, Bi, 2,

. . ., Bi, D for each particle i. Initially, Bi � Pi. Let f be the
fitness function. In each generation, if i’s fitness value f (Pi) is
better than i’s personal best fitness value f (Bi), then Bi � Pi;
otherwise, Bi does not change. $e dimensional exemplar Ei,d
can be Bi, d or Bj, d with j≠ i, and the choice depends on i’s
learning probability Li. To be specific, the value of Li is

Li � 0.05 + 0.45
exp(10(i − 1/N − 1)) − 1

exp(10) − 1
. (5)

On each dimension d, a random number uniformly
distributed in [0, 1] is generated. If the generated number is
no less than Li, Ei, d �Bi, d; otherwise, Ei, d �Bj, d. To de-
termine j, two different particles excluding i are randomly
selected, and j is the particle with a better personal best
fitness value. If Ei �Bi on all the dimensions, CLPSO ran-
domly chooses one dimension d and one particle j with j≠ i
to force Ei, d �Bj, d. $e exemplar Ei is not updated unless f
(Bi) ceases improving for a refreshing gap of 7 generations.
In each generation, f (Pi) is evaluated only if Pi is feasible,
i.e., Pi,d is within [Pd , Pd] on each dimension d. As Ei is
always feasible, infeasible Pi will eventually be drawn back to
the search space. AfterK generations, CLPSO determines the
global best position G�G1, G2, . . ., GD that exhibits the best
fitness value among all the personal best positions. f (G) is
the swarm’s global best fitness value. $e step-by-step
flowchart of CLPSO is depicted in Figure 1. If N is large
enough, the chances of selecting two same particles and j� i
at Step 3 are very small; hence, the procedure to determine j
can be simplified and just slightly affect the performance of
CLPSO by just randomly selecting two particles when the
generated random number is greater than Li and randomly
selecting a particle when Ei �Bi on all the dimensions.

2.2. Open Computing Language. As can be seen from Fig-
ure 2, OpenCL views the hardware platform as a collection of
heterogeneous compute devices attached to and managed by
a CPU. A compute device can be a GPU or some other type
of processor. OpenCL implements parallel computing with a
host program and kernels. $e host program runs on the
CPU and can launch a kernel on a compute device. $e
parallel threads of a kernel are termed as work items. $e
work items can be organized into a number of independent
so-called work groups, and only the work items executed on
the same compute unit can be included in one work group.
Each work item is identified by a unique global ID.$e index
space of the global IDs is one, two, or three-dimensional,
with each attribute starting at zero. Each work item can also
be identified by the group ID of the work group and the local
ID of the work item relative to the work group.

$e host program creates a context. A context specifies
kernel (s) to be executed on one or more compute devices.
Besides kernel, a context also manages objects such as
command queue, memory, and program. A command queue

holds commands (or operations) that will be executed on a
compute device. Commands placed into a command queue
can be classified into three categories, i.e., kernel manage-
ment, memory management, and synchronization. Values
for the input parameters of a kernel are transferred between
the CPU and a compute device. OpenCL represents generic
data by a buffer and supports creating a buffer only for a one-
dimensional array.$ememory space of a compute device is
divided into four regions, i.e., global memory, constant
memory, local memory, and private memory. $e global
memory permits read/write access to all the work items in all
the work groups. Being writable by the CPU but not the
compute device, the constant memory remains constant
during the execution of a kernel. A local memory is just
shared by all the work items in one specific work group. Each
work item has a private memory, invisible by any other work
item. Memory region qualifiers, “__global,” “__constant,”
“__local,” and “__private,” can be applied on an input pa-
rameter of a kernel to, respectively, restrict that the pa-
rameter is to be stored in the global memory region, the
constant memory region, the local memory region, or the
private memory region. An input parameter with no
memory region qualifier is stored in the private memory
region by default. An input parameter with the data
transferred by a buffer can only be stored in the global
memory region. All the variables and constants additionally
declared inside the kernel are stored in the private memory
region. OpenCL is able to synchronize all the work items in
the same work group, but cannot synchronize work items
across different work groups. A program consists of one or
more kernels.

2.3. Intel HD Graphics 520 Graphical Processing Unit.
IHDG520 is an integrated GPU, i.e., it is embedded on the
same die as the CPU. Integrated GPUs lead to less heat
output and less power usage; thus, they have been widely
taken in laptop (particularly, ultrabook) computers. $e
IHDG520 GPU has 24 compute units clocked at 0.3GHz.
Each compute unit is composed of 256 processing elements.
$e IHDG520 GPU has to share the main memory with the
CPU. For the IHDG520 GPU, the size of the constant
memory region and that of the local memory region are both
zero; in other words, only the global memory region and the
private memory region located in the main memory can be
used. $e size of the global memory region is 1.3GB. $e
maximum size of a buffer created in the global memory
region is 511MB. $e IHDG520 GPU uses on-chip registers
to store kernel instructions. $e IHDG520 GPU supports
single-precision floating point calculation, but does not
support double-precision floating point calculation.

3. Case Study and Deterministic Optimization
Problems’ Formulation

3.1. Case Study. $e Xiaowan Reservoir located on Lancang
River is taken as the case for study. Lancang River is the
upper stream of Mekong River in China. Mekong River is a
cross-border river in Southeast Asia. Originating from the

4 Complexity



Qinghai-Tibet Plateau, Mekong River runs through 6
countries, i.e., China, Myanmar, Laos, $ailand, Cambodia,
and Vietnam, sequentially. Mekong River is the world’s 12th

longest river, with a length of 4350 km. $e length of
Lancang River is 2139 km, draining an area of 0.16 million
km2 over the provinces including Qinghai, Tibet, and
Yunnan.$e Xiaowan Reservoir is constructed at the west of
Yunnan and on the middle reach of Lancang River, with a
longitude of 100°05′28″ and a latitude of 24°42′18″. Figure 3
shows the Lancang River basin in Yunnan and the Xiaowan
Reservoir. $e Xiaowan Reservoir is mainly used for hy-
dropower generation and also serves flood control, irriga-
tion, sediment control, and navigation. For the Xiaowan
Reservoir, the installed power generation capacity is
4200MW, the normal forebay elevation is 1240m, the dead
forebay elevation is 1166m, the flood control forebay ele-
vation is 1236m, and the total storage volume is 14,914
millionm3. $e Xiaowan Reservoir is affected by a monsoon
climate, and the inflows feature seasonal variations. $e
flood season is from June to September. $e guaranteed
hydropower generation per year is 190·108 kWh. Historical
inflow records for the Xiaowan Reservoir from the year 1953
to 2014 are available.

3.2. Deterministic Optimization Problems’ Formulation.
$e deterministic optimization problems for the ISO of the
Xiaowan Reservoir are formulated with a yearly planning
horizon of 12 monthly time steps and an ensemble of M

years. Assuming that, for each year m (m� 1, 2, . . ., M), the
inflow Im, t into the reservoir in eachmonth t (t� 1, 2, . . ., 12)
of year m is already known, the deterministic optimization
problem related to year m tries to determine the power
discharge rateQm, t and the spillage rate Sm, t in each month t
of year m for the objective of maximizing the total hydro-
power generation over the yearly planning horizon of year
m; Im, t, Qm, t, and Sm, t are all measured by the unit of m3/s,
and the following equation gives the objective:

max􏽘
12

t�1
24Um,tXm,t, (6)

. . .

Compute device

Compute unit

Processing element

CPU

Figure 2: View of the hardware platform by OpenCL.

Step 1: for each particle i (i = 1, 2, ..., N), randomly initialize i’s dimensional velocity Vi,d according to
the maxmimum dimensional velocity and dimensional position Pi,d according to the dimensional search

space on each dimension d (d = 1, 2, ..., D); calculate i’s fitness value f (Pi); and set i’s dimensional personal
best position Bi,d = Pi,d on each dimension d, personal best fitness value f (Bi) = f (Pi), stagnation number

Ri = 0, and learning probability Li according to equation (5).

For-loop with the generation
counter k = 1, 2, ..., K

Step 2: update the inertia weight w according to equation (4).

Step 5: determine the global best position G and the global best fitness value f (G).

Step 4: for each particle i, if Pi,d is within the dimensional search space on each
dimension d, calculate f (Pi); moreover, if f (Pi) is better than f (Bi), set Bi,d = Pi,d on each

dimension d and f (Bi) = f (Pi); otherwise update Ri = Ri + 1.

Step 3: for each particle i, if Gi % 7 = 0, update Gi = 0 and reassign i’s dimensional
exemplar Ei,d on each dimension d; moreover, if Ei = Bi on all the dimensions,

randomly choose one dimension for i to learn from some other particle; update Vi,d 
according to Equation (1), clamp Vi,d according to Equation (3), and update

Pi,d according to Equation (2) on each dimension d.

Figure 1: Flowchart of CLPSO.

Complexity 5



where Um, t is the power output in month t of year m and is
measured by the unit of kW and Xm, t is the number of days
in month t of year m.

Um, t is calculated by

Um,t �
3600Qm,t

Cm,t

, (7)

where Cm, t is the water conversion rate in month t of yearm
and is measured by the unit of m3/kWh. Cm, t is affected by
the water head Hm, t in month t of year m. Hm, t is the

difference of the forebay elevation Ym, t and the tailrace
elevation Zm, t in month t of year m, i.e.,

Hm,t � Ym,t − Zm,t. (8)

LetAm, t be the storage volume at the beginning of month
t of year m. Ym, t is a function of the average storage volume
(Am,t + Am,t+1)/2 in month t of year m. Zm,t is a function of
the outflow rate Om,t in month t of year m, and
Om,t � Qm,t + Sm,t.

Lancang River Basin

Reservoir
River

River basin

0 25 50 100 150 200
km

N

W

S

E

29°N

28°N

27°N

26°N

25°N

24°N

23°N

22°N

21°N

99°E 100°E 101°E 102°E 103°E 104°E

Figure 3: Lancang River basin in Yunnan and the Xiaowan Reservoir.

6 Complexity



Qm,t cannot surpass the power discharge rate upper
bound Qm,t in month t of year m. As a result, Qm,t takes a
smaller value of Om,t and Qm,t, as expressed in the following
equation:

Qm,t � min Om,t, Qm,t􏽮 􏽯. (9)

Qm,t is a function of Hm, t.
Let 􏽥A be the initial/final storage volume bound. $e

initial storage volume Am,1 is known, and Am,1 � 􏽥A. $e
storage volume at the end of each month is calculated based
on water balance, i.e.,
Am,t+1 � Am,t + 86400 Im,t − Om,t􏼐 􏼑Xm,t, t � 1, 2, . . . , 12.

(10)

$e problem is associated with the following constraints:
Ot ≤Om,t ≤Ot, t � 1, 2, . . . , 12, (11)

At+1 ≤Am,t+1 ≤At+1, t � 1, 2, . . . , 11, (12)

Am,13 � 􏽥A, (13)

where Ot and Ot are, respectively, the lower and upper
bounds of the outflow rate in each month t and At+1 and
At+1 are, respectively, the lower and upper bounds of the
storage volume at the end of each month t.

$e deterministic optimization needs to solve M
problems, with one problem for each year m separately.
Monthly operation rules can be abstracted from the de-
terministic optimization results of all the M problems.

4. Parallelizing Comprehensive Learning
Particle Swarm Optimization

4.1. Basic Coarse-Grained All-GPU Model. A basic paralle-
lization scheme is presented here and works as the basis of
our proposed enhancement strategies. $e basic paralleli-
zation scheme follows the all-GPU model and implements a
single kernel. CLPSO needs to generate random numbers
uniformly distributed in [0, 1] at Steps 1 and 3. An OpenCL
program is composed of both the host part and the kernel
part. OpenCL provides no built-in primitive for generating
any kind of random number in the kernel part. We write an
auxiliary inline function that the kernel function can invoke
for generating a random unsigned integer number based on
the multiplicative linear congruential (MLC) principle [70],
i.e.,

ϕ � (1103515245ϕ + 12345)%2147483647, (14)

where ϕ is a random unsigned integer number and works as
the seed for generating the next random unsigned integer
number. A random float number δ uniformly distributed in
[0, 1] is obtained by

δ �
1.0ϕ

2147483647.0
. (15)

When the inline function is called, the function code gets
directly inserted at the point of each function call, thereby
shortening the function call overhead.

$e all-GPU model is coarse-grained, with each particle
mapped to a separate work item in a one-dimensional index
space. Each work item is identified by the global ID. N, D,
Vi,d, Pi,d, Ei, d, Pd , Pd, Vd, w, Bi, d, Li, f (Pi), f (Bi), Gd, f (G),
and ϕi are input parameters of the kernel function, while k
and K are additionally declared as variables/constants inside
the kernel function. ϕi is the seed for each particle/work item
i to generate a random unsigned integer number. Buffers are
created for and the memory region qualifier “__global” is
applied on Vi,d, Pi,d, Ei, d, Pd , Pd, Vd, w, Bi, d, Li, f (Pi), f (Bi),
Gd, f (G), and ϕi; hence, they are stored in the global memory
region. N, D, k, and K are stored in the private memory
region.$e detailed working procedures of the host part and
the kernel part are illustrated in Figure 4. $e CPU first
needs to initialize numerical values for some input pa-
rameters including N, D, Pd , Pd, Vd, and ϕi. $e numerical
values are then transferred from the CPU to the IHDG520
GPU before the kernel function executes. $e work items
execute concurrently, and each work item is just responsible
for performing the operations related to the corresponding
particle at Steps 1, 3, and 4. Only one prespecified work item
executes Steps 2 and 5. When the kernel function finishes
execution, Gd and f (G) are transferred back to the CPU.

4.2. Enhancement Strategies. Two enhancement strategies,
namely, generating and transferring random numbers from
the CPU as well as reducing the number of instructions in
the kernel, are employed to accommodate the characteristics
of the IHDG520 GPU and the OpenCL APIs for the purpose
of significantly shortening the execution time of the basic
coarse-grained all-GPU model.

OpenCL provides no built-in primitive for generating
any type of random number. In the basic coarse-grained all-
GPU model, an auxiliary inline function is written to assist
the kernel function generating random numbers based on
the MLC principle. $e MLC principle generates a random
unsigned integer number based on an unsigned integer
input, and a random float number uniformly distributed in
[0, 1] can be obtained by dividing the random unsigned
integer number timed with 1.0 over 2147483647.0. Most
GPUs including the IHDG520 GPU are not good at dealing
with the integer multiplication and modulation operations
as well as the float division operation involved in the MLC
random number generation process and need many clock
cycles to execute such costly operations. In addition, the
IHDG520 GPU is slow at execution because its clock rate is
just 0.3GHz. Step 1 of CLPSO randomly initializes each
particle i’s dimensional velocity Vi,d and position Pi,d on
each dimension d and requires 2ND random numbers. At
Step 3, a random number is compared with each particle i’s
learning probability Li on each dimension d, two particles
are randomly selected for determining the dimensional
exemplar Ei, d if the number is greater than Li, and a di-
mension is randomly selected to learn from a particle that is
also randomly selected when Ei equals to the personal best
position Bi on all the dimensions; thus, maximally, 3
((K− 1)/7+ 1) ND+ 2 ((K− 1)/7+ 1) N random numbers are
needed. Step 4 updates each particle i’s dimensional velocity

Complexity 7



Vi,d with a random coefficient on each dimension d, and uses
KND random numbers. It would be very time-consuming to
generate all the 2ND+ 3 ((K− 1)/7+ 1)ND+ 2 ((K− 1)/7+ 1)
N+KND random numbers on the IHDG520 GPU.$e CPU
is clocked at 2.5GHz, and the host part of the parallelization
program can invoke some highly efficient C/C++ library
function to generate a random number uniformly distrib-
uted in [0, 1]. $erefore, we can generate all the random
numbers on the CPU and transfer all the random numbers
from the CPU to the IHDG520 GPU before the kernel
function begins execution.

With respect to the basic coarse-grained all-GPU model,
Vi,d, Pi,d, Ei, d, Bi, d, Li, f (Pi), and f (Bi) are input parameters
of the kernel function. OpenCL supports creating a buffer
only for a one-dimensional array. Buffers representing one-
dimensional arrays with ND elements are created for Vi,d,
Pi,d, Ei, d, and Bi, d, and buffers representing one-dimensional
arrays withD elements are created for Li, f (Pi), and f (Bi). All
the work items are indexed in a one-dimensional space, and
the global IDs of the work items range from 0 to N− 1, with
each work item standing for a separate particle. $e kernel
function thus accesses Vi,d, Pi,d, Ei, d, and Bi, d by the index
iN+ d from the corresponding one-dimensional array and
accesses Li, f (Pi), and f (Bi) by the index i from the cor-
responding one-dimensional array, with i also being the
global ID of the work item. Bi, d and f (Bi) are shared
among the particles for exemplar redetermination at Step
3 of CLPSO, while Vi,d, Pi,d, Ei, d, Li, and f (Pi) are not
shared by the particles. We can alternatively declare each
particle’s dimensional velocities, positions, and exemplars

as one-dimensional arrays with D elements and also each
particle’s learning probability and fitness value as vari-
ables inside the kernel function, thereby reducing the
number of addressing instructions. $ere are a number of
if-clause conditional statements in the kernel function of
the basic coarse-grained all-GPU model. Most GPUs
including the IHDG520 GPU are also slow at performing
conditional operations. Some if-clause conditional state-
ments in the kernel function can actually be replaced by
OpenCL built-in primitives. To be specific, clamping the
dimensional velocity Vi,d based on the maximum dimen-
sional velocity Vd can be done by the primitive clamp (Vi,d,
−Vd, Vd), and judging whether the dimensional position Pi,d

is feasible can be implemented as step (Pi,d, Pd ) + step (Pd,
Pi,d) through using the step primitive. $e step primitive
returns 0 if the right input parameter is less than the left
input parameter, and 1, otherwise. $e use of the OpenCL
built-in primitives to replace some if-clause conditional
statements therefore helps to shorten the time consumed on
conditional operations.

4.3.Coarse-GrainedMultipopulationModel. Like in [66], the
storage volume constraints as expressed in equations (12)
and (13) are repaired as follows.

First, for each year m, reversely starting from t� 12 and
ending at 1, sequentially calculate the new lower bound
Am,t+1 and upper bound Am,t+1 for the storage volume at the
end of month t according to equations (16) and (17),
respectively:

CPU host

Initialize necessary parameters

Create a context

Create a command queue

Create buffers and enqueue commands
to write some of the buffers

Build an executable program, create a kernel
declared in the program, set input parameters

of the kernel, and enqueue a command to
execute the kernel

Block until all the enqueued commands in the
command queue are issued to the GPU and

have completed

Read the global best position and the global
best fitness value from the GPU

Release the kernel, the program, the buffers,
the command queue, and the context

Work item #0 Work item #i Work item #N – 1

GPU kernel

Step 1

For k = 1
to K

Let only one work item
perform Step 2

Let only one work item
perform Step 5

Step 3

Step 4

… …

Figure 4: Basic coarse-grained all-GPU model.

8 Complexity



Am,t+1 �

􏽥A, if t � 12,

max Am,t+2 −86400 Im,t − Om,t􏼐 􏼑Xm,t, At+1􏼚 􏼛, else,

⎧⎪⎨

⎪⎩
(16)

Am,t+1 �
􏽥A, if t � 12,

min Am,t+2 − 86400 Im,t − Om,t􏼐 􏼑Xm,t, At+1􏽮 􏽯, else.
⎧⎨

⎩ (17)

Second, incrementally starting from t� 1 and ending at 12,
sequentially calculate Δm, twhich is the deviation of the storage
volume at the end of month t according to equation (18),
modify Om,t according to equation (19), and update Am,t+1 if
Δm,t≠ 0. Note that Om,t is kept feasible in equation (19).

Δm,t �

Am,t+1 − Am,t+1, if Am,t+1 < Am,t+1,

Am,t+1 − Am,t+1, else if Am,t+1 >Am,t+1,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

Om,t �

Ot, if
Om,t + Δm,t

86400Xm,t􏼐 􏼑
< Ot,

Ot, else if
Om,t + Δm,t

86400Xm,t􏼐 􏼑
>Ot,

Om,t + Δm,t, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Let Θ(Am,t+1) be the violation of the constraint for the
storage volume at the end of month t.Θ(Am,t+1) is calculated
according to the following equation:

Θ Am,t+1􏼐 􏼑 �

1 −
Am,t+1

􏽥A
, if t � 12 andAm,t+1 < 􏽥A,

Am,t+1
􏽥A

− 1, else if t � 12 andAm,t+1 > 􏽥A,

1 −
Am,t+1

At+1
, else if t< 12 andAm,t+1 < At+1 ,

Am,t+1

At+1
− 1, else if t< 12 andAm,t+1 >At+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

$e original constrained problem is converted to an
unconstrained problem by optimizing the following ob-
jective that incorporates the violations:

max􏽘
12

t�1
24Um,tXm,t − λ􏽘

12

t�1
Θ Am,t+1􏼐 􏼑, (21)

where λ is the penalty factor and is a large positive number.
$e term 􏽐

12
t�124Um,tXm,t is the benefit, and the term

λ􏽐
12
t�1Θ(Am,t+1) is the violation cost.
$e unconstrained problem is solved by CLPSO. Each

particle’s position is a 12-dimensional vector representing
the outflow rates over the yearly planning horizon. $e

power discharge and spillage rates in eachmonth can be easily
determined from the outflow rate in the corresponding
month. $e deterministic optimization for ISO on the en-
semble of M years is parallelized by a coarse-grained mul-
tipopulation model extended from the all-GPU model. $e
kernel part of the multipopulation model is illustrated in
Figure 5.Mwork groups are used to concurrently tackle theM
optimal operation problems, with each work group consisting
of N work items and solving the optimal operation problem
related to a different year following the all-GPU model. Each
work group determines the global best position, global best
fitness, global best benefit, and global best violation cost for
the corresponding optimal operation problem.$e global best
benefit is the benefit of the global best position, and the global
best violation cost is the violation cost of the global best
position. $e global best position, global best fitness, global
best benefit, and global best violation cost results of all the
work groups are transferred back from the GPU to the CPU
when the kernel function finishes execution. By summing the
global best benefit results and global best violation cost results,
respectively, the CPU is able to obtain the total best benefit
and the total best violation cost for the deterministic opti-
mization. $e summation can only be done by the host part
on the CPU because OpenCL does not support synchronizing
different work groups.

A serious challenge arises and needs to be addressed for the
multipopulation model. $e maximum size of a buffer created
in the global memory region of the IHDG520GPU is limited to
be 511MB, and the size of the global memory region is 1.3GB.
$e multipopulation model needs maximally M (2ND+3
((K− 1)/7+ 1) ND+2 ((K− 1)/7+1) N+KND) random
numbers uniformly distributed in [0, 1]. Suppose N� 40,
D� 12, K� 10000, and M� 62, as a single-precision float
number occupies 4 bytes, storing about 432 million random
numbers requires a memory space of around 1.6GB, exceeding
the 511MB limit for a buffer and the 1.3GB size of the global
memory region. We propose to create a buffer representing a
one-dimensional array of 2ND+3 ((K− 1)/7+1) ND+2
((K− 1)/7+ 1) N+KND+M− 1 random numbers. Each work
item is identified by the group ID m and the local ID i si-
multaneously, with m ranging from 0 to M− 1 and i ranging
from 0 to N− 1 in a one-dimensional index space. Each work
item with the group ID m and the local ID i can access 2D+3
((K− 1)/7+ 1)D+2 ((K− 1)/7+1)+KD random numbers
starting at the index (2D+3 ((K− 1)/7+ 1) D+2 ((K− 1)/
7+ 1)+KD) i+m from the one-dimensional array stored in the
buffer.$ismodified randomnumber generation strategy aims
to generate a small number of random numbers that can be
flexibly used by the large number of work items without
negatively impacting randomness.

Complexity 9



5. Experimental Studies

5.1. Experimental Setup. In [27–29], the sequentialization
implementation of CLPSO with a swarm of 40 particles was
evaluated on various 30-dimensional benchmark global
optimization functions for 25 runs. Four experimental issues
are investigated in this paper: (1) how is the parallelization
performance of the basic coarse-grained all-GPU model on
all the benchmark functions? (2) how do the two en-
hancement strategies improve the parallelization perfor-
mance of the basic all-GPU model on all the benchmark
functions? (3) how is the parallelization performance of the
multipopulationmodel extended from the all-GPUmodel on
the case study of the deterministic optimization for the ISO of
the Xiaowan Reservoir? and (4) would it be better to develop
multiple kernels for parallelizing different phases of CLPSO?

For the 1st and 2nd issues, a sequentialization model of
CLPSO and 3 coarse-grained all-GPU models as listed in
Table 1 are implemented and compared. $e sequentiali-
zation model involves a swarm of 40 particles. In all the 3 all-
GPUmodels, 40 work items are used to concurrently execute
the kernel on the IHDG520 GPU. Each particle/work item
loops for 5000 generations. Eight 30-dimensional bench-
mark functions which were also used in [27–29] are eval-
uated. Table 2 gives the name, description, global optimum
P∗, corresponding function value f (P∗), and search space of
each function. f1, f2, and f3 are unimodal, and all the other
functions are multimodal. f7 and f8 are rotated.

Regarding the 3rd issue, the multi population model is
compared with the sequentialization model. $e deterministic
optimization for the ISO of the Xiaowan Reservoir is per-
formed on the historical monthly inflow data recorded during
the period of 62 years from1953 to 2014.$e optimal operation
related to each year is solved by CLPSO with a swarm of 40

particles in the sequentialization model. $e multipopulation
model takes advantage of 62 work groups to concurrently
tackle the 62 optimal operation problems. Each work group
solves the optimal operation with respect to a separate year, is
composed of 40 work items, and follows the final coarse-
grained all-GPU model. Each work item iterates for 10,000
generations.$emultipopulation model employs the modified
random generation strategy. $e initial/final storage volume
bound is 145.57 108m3, corresponding to the normal forebay
elevation as 1240m. $e penalty factor is 368∗108.

Concerning the 4th issue, we need to understand the
overhead of kernel launching. $e execution time of a
parallelization model is the time gap between the initiali-
zation of parameters and the release of OpenCL objects and
is the addition of CPU-side execution time and GPU-side
execution time. $e GPU-side execution time is the time
spent on blocking until all the enqueued commands in the
command queue are issued to the GPU and have completed.
$e CPU-side execution time can be divided into 6 seg-
ments: segment 1 is the time initializing the numerical values
for some input parameters; segment 2 is the time creating a
context, a command queue, and buffers, as well as
enqueueing commands to write some of the buffers; segment
3 is the time building an executable program; segment 4 is
the time creating a kernel declared in the program, setting
input parameters of the kernel and enqueueing a command
to execute the kernel; segment 5 is the time reading the
results from the GPU and releasing the kernel; and segment
6 is the time releasing the other objects.

5.2. Experimental Results and Discussion. All the sequenti-
alization and parallelization models are executed for 25 runs
on all the benchmark functions and the case study. $e

GPU kernel

Work group #0 Work group #m

Work item #0 Work item #i

Step 1

For k = 1
to K

Let only one work item
perform Step 2

Let only one work item
perform Step 5

Step 3

Step 4

Work group #M – 1

Work item #N – 1

…

… …

…

Figure 5: Coarse-grained multipopulation model.

10 Complexity



Table 3: Statistical execution time and global best fitness results of the sequentializationmodel and the coarse-grained all-GPUmodels on all
the benchmark functions.

Benchmark
function Model

Execution time (ms) Global best fitness value

Mean Standard
deviation Maximum Minimum Mean Standard

deviation Maximum Minimum

f1

Sequentialization 167.24 7.17 172.00 156.00 0 0 0 0
Basic 5823.84 16.12 5866.00 5803.00 0 0 0 0

Intermediate 574.08 10.93 608.00 561.00 0 0 0 0
Final 450.58 11.29 483.00 436.00 0 0 0 0

f2

Sequentialization 192.84 7.70 203.00 187.00 0 0 0 0
Basic 5881.24 12.77 5912.00 5865.00 0 0 0 0

Intermediate 638.32 13.38 671.00 624.00 0 0 0 0
Final 506.72 11.94 531.00 483.00 0 0 0 0

f3

Sequentialization 164.72 7.90 172.00 156.00 5.41E− 3 1.34E− 3 6.70E− 3 3.18E− 3
Basic 6148.96 28.44 6194.00 6084.00 6.47E− 3 2.04E− 3 9.29E− 3 2.04E− 3

Intermediate 571.64 11.71 593.00 561.00 5.95E− 3 1.36E− 3 8.76E− 3 3.37E− 3
Final 451.76 7.05 468.00 437.00 5.12E− 3 1.71E− 3 9.14E− 3 1.93E− 3

f4

Sequentialization 161.64 7.68 172.00 156.00 32.54 14.89 54.60 21.19
Basic 6007.28 14.83 6037.00 5975.00 36.61 18.11 82.75 10.87

Intermediate 596.96 10.09 609.00 577.00 35.76 19.33 74.10 9.75
Final 454.28 8.18 468.00 437.00 33.62 20.24 84.01 10.90

f5

Sequentialization 254.60 7.47 266.00 249.00 3.00E− 6 3.00E− 6 8.00E− 6 0
Basic 5982.96 15.74 6022.00 5959.00 1.08E− 4 1.12E− 4 4.60E− 4 1.30E− 5

Intermediate 621.52 7.42 640.00 608.00 6.60E− 5 4.80E− 5 1.87E− 4 6.00E− 6
Final 487.36 10.36 515.00 468.00 8.00E− 6 1.10E− 5 5.30E− 5 1.00E− 6

f6

Sequentialization 310.12 5.20 312.00 296.00 1.10E− 5 2.00E− 6 1.50E− 5 8.00E− 6
Basic 5997.92 15.76 6038.00 5974.00 1.60E− 5 2.00E− 6 1.90E− 5 1.10E− 5

Intermediate 646.68 11.11 671.00 624.00 1.50E− 5 1.00E− 6 1.50E− 5 1.10E− 5
Final 514.16 10.62 531.00 499.00 1.20E− 5 2.00E− 6 1.50E− 5 8.00E− 6

f7

Sequentialization 492.32 7.87 500.00 483.00 1289.46 181.45 1496.70 874.44
Basic 3059.44 31.37 3105.00 2995.00 1279.78 153.06 1586.59 962.10

Intermediate 746.92 10.50 765.00 733.00 1307.11 122.96 1601.35 1119.69
Final 714.48 10.99 733.00 702.00 1309.49 158.23 1560.73 1042.22

f8

Sequentialization 531.04 7.16 546.00 514.00 26.56 4.24 36.60 18.25
Basic 6571.36 15.69 6599.00 6552.00 27.93 3.19 34.43 22.45

Intermediate 934.08 14.53 967.00 920.00 28.76 4.60 38.60 20.65
Final 594.68 12.17 624.00 577.00 28.43 3.50 33.49 21.56

Table 1: Coarse-grained all-GPU models of CLPSO.

Model Description
Basic Parallelize CLPSO without employing any enhancement strategy
Intermediate $e basic model with the enhancement strategy generating and transferring random numbers from the CPU
Final $e intermediate model with the enhancement strategy reducing the number of instructions in the kernel

Table 2: Benchmark global optimization functions.

Function Description Global
optimum P∗

f
(P∗) Search space

f1 Sphere, f1(P) � 􏽐
D
d�1 P2

d 0{ }D 0 −100, 100{ }D

f2 Schwefel’s P2.22, f2(P) � 􏽐
D
d�1 |Pd| + 􏽑

D
d�1 |Pd| 0{ }D 0 −10, 10{ }D

f3 Noise, f3(P) � 􏽐
D
d�1 dP4

d + random [0, 1) 0{ }D 0 −1.28, 1.28{ }D

f4 Rosenbrock’s, f4(P) � 􏽐
D−1
d�1 (100(Pd+1 − P2

d) + (Pd − 1)2))2 1{ }D 0 −10, 10{ }D

f5 Rastrigin’s, f5(P) � 􏽐
D
d�1(P2

d − 10 cos(2πPd) + 10) 0{ }D 0 −5.12, 5.12{ }D

f6 Ackley’s, f6(P) � −20 exp(−0.2
�����������

(􏽐
D
d�1 P2

d)/D
􏽱

) − exp((􏽐
D
d�1(cos 2 πPd))/D) + 20 + e 0{ }D 0 −32, 32{ }D

f7
Rotated Schwefel’s, f7(σ) � 418.9828D − 􏽐

D
d�1 ζd, where

ζd �
σd sin(

���
|σd|

􏽰
), |σd|≤ 500,

0, otherwise,􏼨 , σd � ψd + 420.96
420.96{ }D 0 −500, 500{ }D

f8 Rotated Rastrigin’s, f8(σ) � f5(σ), where σ � ΩP 0{ }D 0 −5.12, 5.12{ }D

Complexity 11



speedup of a parallelization model as compared with the
sequentialization model is the value calculated as the mean
execution time of the parallelizationmodel divided by that of
the sequentialization model. Table 3 gives the statistical (i.e.,
mean, standard deviation, maximum, and minimum) exe-
cution time and global best fitness value results of the
sequentialization model and the intermediate, basic, and
final all-GPU models on all the functions. To determine
whether the solutions obtained by the sequentialization
model are statistically different from those obtained by the
final all-GPU model, two-tailed t-tests with the assumption
of equal variances and the significance level 0.05 are carried
out, and the t-test results are listed in Table 4. Table 5 lists the
statistical execution time, total best benefit, and total best
violation cost results of the sequentialization model and the
multipopulation model on the case study. $e two-tailed t-
test and speedup results from the comparison of the
sequentialization model and the multipopulation model on
the case study are listed in Table 6. For the Xiaowan Res-
ervoir, year 1954 is a typical wet year with natural inflow
1528m3/s in average, 1976 is a typical normal year with
natural inflow 1186m3/s in average, and 2011 is a typical dry
year with natural inflow 974m3/s in average. $e monthly
natural inflow records as well as outflow rate, forebay ele-
vation, and power output results determined from the
median run by the multipopulation model for 1954, 1976,
and 2011 are, respectively, shown in Figures 6–9. Table 7
gives the mean CPU-side execution time results of the final
all-GPU model on some benchmark functions and the
multipopulation model on the case study.

$e original sequentialization implementation of
CLPSO proposed in [27–29] also uses 40 particles that iterate
for 5000 generations and was also evaluated on the 30-di-
mensional Sphere, Schewefel’s P2.22, Noise, Rosenbrock’s,
Rastrigin’s, Ackley’s, rotated Schwefel’s, and rotated Ras-
trigin’s functions for 25 runs. Our sequentialization model
described in Table 3 differs from the original sequentiali-
zation implementation in that the inequality conditions
enforced on determining the dimensional exemplar are
relaxed to facilitate generating and transferring random
numbers from the CPU. $e statistical global best fitness
results of our sequentialization model as given in Table 3 are
similar with those of the original sequentialization imple-
mentation found in [27–29], verifying that the relaxation of
the inequality conditions causes little negative impact on the
final solution’s quality when the number of particles is large
enough. $e sequentialization model and the basic, inter-
mediate, and final all-GPU models all use single-precision
float numbers and directly report 0 for sufficiently small float
numbers, e.g., the statistical global best fitness results of all
the models are all 0 on functions f1 and f2 in Table 3.

As can be seen from Table 3, the statistical global best
fitness results of the basic, intermediate, and final all-GPU
models are the same as those of the sequentialization model
on f1 and f2 and similar with those of the sequentialization
model on the other functions. $e t-test results reported in
Table 4 indicate that the global best fitness results of the final
model are statistically indifferent on f3 to f8 as the t-test
results are greater than the significance level 0.05. A t-test

cannot proceed when the two pairs of data samples are all 0;
hence, the t-test results on f1 and f2 are blank. Functions f1 to
f3 are unimodal, and f4 to f8 are multimodal. $e statistical
global best fitness results given in Table 3 show that the
sequentialization model and all the all-GPU models of
CLPSO can find the global optimum on f1 and f2 in all the
runs, can find the global optimum on f5 in some runs and a
near-optimum in the other runs, can find a near-optimum
on f3 and f6 in all the runs, and can only find a local optimum
on f5, f7, and f8 in all the runs.

For the sequentialization model, a significant part of the
execution time is spent on fitness calculation. Functions f5
and f6 include cosine operations. Compared with f5, f6 ad-
ditionally needs to calculate exponential values. f7 and f8 are
rotated functions and multiply the original decision vector
by an orthogonal matrix. f8 is a rotated variant of f5. $ere
are sine operations in f7.$erefore, the evaluation of f7 and f8
is most time-consuming followed by f5 and f6, and f1 to f4 are
least time-consuming.$e analysis is clearly validated by the
statistical execution time results of the sequentialization
model given in Table 3.

In Table 3, the basic, intermediate, and final all-GPU
models exhibit similar statistical global best fitness results
on all the functions. Owing to the ways adopting the
enhancement strategies, the statistical execution time
results of the 3 all-GPU models are quite different, par-
ticularly the basic model and the intermediate model. $e
mean execution time results of the basic model are around
6000ms on f1, f2, f3, f4, f5, f6, and f8 and around 3000ms on
f7. $e mean execution time results of the intermediate all-
GPU model are around 600ms on f1 to f6, around 700ms
on f7, and around 900ms on f8, far less than those of the
basic model. $e dramatic execution time difference be-
tween the basic model and the intermediate model on the
same function is attributed to random number genera-
tion. $e basic model generates random numbers in the
kernel function based on the MLC principle. Performing
the integer multiplication and modulo as well as float
division operations involved in the MLC random number
generation process on the IHDG520 GPU is very time-
consuming. In contrast, the intermediate model generates
random numbers on the high clock rate CPU efficiently
and transfers the random numbers from the CPU to the
GPU. $e basic model takes less time on f7 than on the
other functions because the landscape of f7 is highly
mountainous; each particle is likely to fly to a position that
leads to a better personal best fitness value during the
trajectory update, and the model thus goes through much
less times of exemplar redetermination and invokes much
less times of random number generation. $e mean ex-
ecution time results of the final model are around 100ms
less than those of the intermediate model on f1 to f6,

Table 4: Two-tailed t-test results from the comparison of the
sequentialization model and the final all-GPU model on all the
benchmark functions.

Benchmark function f1 f2 f3 f4 f5 f6 f7 f8
Two-tailed t-test — — 0.40 0.11 0.08 0.20 0.37 0.89

12 Complexity



around 30ms less on f7, and around 300ms less on f8,
verifying that the strategy reducing the number of in-
structions in the kernel benefits shortening the execution
time. With respect to f8, multiplication of the dimensional

Table 5: Statistical execution time, total best benefit, and total best violation cost results of the sequentialization model and the coarse-
grained multipopulation model on the case study.

Model
Execution time (ms) Total best benefit (108 kWh) Total best violation cost

Mean Standard
deviation Maximum Minimum Mean Standard

deviation Maximum Minimum Mean Standard
deviation Maximum Minimum

Sequentialization 16,090.00 25.39 16,177.00 16,053.00 14,550.50 0.42 14,550.80 14,548.85 0 0 0 0
Multipopulation 1165.60 9.52 1185.00 1139.00 14,550.42 0.23 14,550.72 14,550.04 0 0 0 0

Table 6: Two-tailed t-test and speedup results from the comparison
of the sequentialization model and the multipopulation model on
the case study.
Two-tailed t-test 0.38
Speedup 13.80

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Month

1954
1976
2011

N
at

ur
al

 in
flo

w
 (m

3 /s
)

Figure 6: Natural inflow records of the three typical years.

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

3000

Month

1954
1976
2011

O
ut

flo
w

 ra
te

 (m
3 /s

)

Figure 7: Outflow rate results of the three typical years.

1 2 3 4 5 6 7 8 9 10 11 12
1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

Fo
re

ba
y 

el
ev

at
io

n 
(m

)

Month

1954
1976
2011

Figure 8: Forebay elevation results of the three typical years.

1 2 3 4 5 6 7 8 9 10 11 12
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

1954
1976
2011

Month

Po
w

er
 o

ut
pu

t (
10

3 kW
)

Figure 9: Power output results of the three typical years.

Complexity 13



position Pi,d by the orthogonal matrix is actually a two-layer
nested for-loop; as a result, shortening of the execution time is
much more on f8 than on the other functions. Particles are
likely to be infeasible when the work items concurrently
optimize the highly mountainous function f7; hence, short-
ening of the execution time is not that noticeable on f7. $e
mean execution time results of the final model however are
still more than those of the sequentialization model on all the
functions; this is because a considerable amount of time (in
the scale of hundreds of ms) must be spent on creating/re-
leasing OpenCL objects (e.g., context, command queue,
buffer, program, and kernel) and transferring buffers between
the CPU and the GPU, as verified by the mean CPU-side
execution time results given in Table 7. It can be seen from
Table 3 that the standard deviation execution time results of
the sequentialization model and all the all-GPU models are
relatively small as compared with the corresponding mean
execution time results, meaning that the execution time re-
sults of each model do not vary much in each run.

$e deterministic optimization for the ISO of the
Xiaowan Reservoir is multimodal, as reflected from the
statistical total best benefit results of the sequentialization
model listed in Table 5. $e standard deviation total best
benefit of the sequentialization model is 0.42 108 kWh. $e
statistical total best benefit results of the multipopulation
model are similar with those of the sequentialization model.
$e t-test results given in Table 6 indicate that the total best
benefit results of the two models are statistically indifferent.
Accordingly, the modified random generation strategy does
not hurt randomness. $e mean total best benefit of the
sequentialization model and that of the multipopulation
model are around 14,550 108 kWh; hence, in average, the
optimized hydropower generation is about 235 108 kWh per
year, much more than the guaranteed hydropower gener-
ation 190 108 kWh per year, validating the powerful global
optimization capability of CLPSO. $e solutions are feasible
as the statistical total best violation cost results of the 2
models are all 0. $e sequentialization model is very time-
consuming, and its mean execution time is 16,090.00ms. As
we can see from Tables 5 and 6, the mean execution time of
the multipopulation model is 1165.60ms which is signifi-
cantly less than that of the sequentialization model, and the
speedup is 13.80. $e significant speedup is achieved by
parallelizing the 62 optimal operation problems and par-
allelizing the 40 particles for each optimal operation
problem.$e 2 models are robust in terms of execution time
results in all the runs as the standard deviation execution
time results are small.

It can be observed from Figure 6 that the natural inflows
are large in the flood season from June to September for all
the 3 typical years. $e natural inflows of year 1954 are
considerably more than those of 1976 in July, August,
September, and October, and those of 1976 are noticeably
more than those of 2011 in June, July, September, and
October. As Figures 7–9 show, the Xiaowan Reservoir needs
to release much more outflows in April, May, June, July,
September, October, and November of 1954 than in the
corresponding months of 1976, leading to much lower
forebay elevations in April, May, June, July and August, less
power outputs in March, June, and July, and more power
outputs in April, October, November, and December. $e
outflow rates and power outputs of 1976 are more than those
of 2011 in April, May, June, September, October, November,
and December.

As we can see from Table 7, the mean segment 1 time,
segment 2 time, segment 4 time, segment 5 time, and
segment 6 time results of the final all-GPUmodel are similar
on functions f1, f3, and f7, with the mean segment 1 time
results more than, the mean segment 2 time results less than,
and the mean segment 4, 5, and 6 time results similar to the
mean segment 1 time result, the mean segment 2 time result,
and the mean segment 4, 5, and 6 time results of the
multipopulation model on the case study, respectively. $e
segment 1 time is mainly the time generating the random
numbers and is thus affected by the number of random
numbers. $e segment 2 time increases with the number of
buffers created. $e mean segment 3 time results of the final
all-GPU model on f1 and f3 are similar and are much less
than those of the final all-GPU model on f7 and the mul-
tipopulation model on the case study, indicating that the
more difficult fitness evaluation of a particle, the more time
building the program. Steps 1, 3, and 4 of CLPSO involve
operations related to each work item, while Steps 2 and 5 are
executed by just one prespecified work item. Steps 2, 3, and 4
constitute a for-loop. When multiple kernels are used for
parallelizing different phases of CLPSO, intermediate results
must be transferred back from a kernel, and if the kernel is
not the last kernel, then the intermediate results need to be
transferred to the next kernel. Steps 2, 3, and 4 cannot be
implemented as multiple kernels as the for-loop causes the
overhead of frequently enqueueing commands to write some
buffers, enqueueing commands to execute the kernels, and
reading results from the kernels. $e overhead can be much
large with respect to many generations. Steps 1 and 5 also do
not benefit from being split as multiple kernels because all
the work items are occupied at Step 1, and for the

Table 7: Mean CPU-side execution time results of the final all-GPU model on some benchmark functions and the multipopulation model
on the case study.

Model Benchmark function/case study
Mean CPU-side execution time (ms)

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Total

Final all-GPU
f1 134.16 18.96 171.24 0.60 0.60 2.96 328.52
f3 132.84 18.16 167.16 0.64 0.60 2.56 321.96
f7 133.40 18.55 277.16 0.60 0.58 2.79 433.08

Multipopulation Case study 108.52 21.24 301.40 0.64 0.55 2.62 434.97

14 Complexity



multipopulation model, each work group has one work item
occupied at Step 5. An alternative is to implement 3 kernels,
respectively, corresponding to Step 1, the for-loop, and Step
5. $e alternative incurs a small overhead of enqueueing
commands to write some buffers, creating kernels, setting
input parameters of the kernels, enqueueing commands to
execute the kernels, reading results from the kernels, and
releasing the kernels. Accordingly, our proposed final all-
GPU model and multipopulation model for parallelizing
CLPSO are appropriate.

6. Conclusions

In this paper, we have studied parallelizing CLPSO by
OpenCL on the integrated IHDG520 GPU. We have firstly
proposed a basic coarse-grained all-GPU model, with one
kernel written and each work item representing a separate
particle. As the IHDG520 GPU features a low clock rate and
the CPU has a high clock rate, two strategies, i.e., generating
and transferring random numbers from the CPU to the GPU
as well as reducing the number of instructions in the kernel,
have been adopted to shorten the basic model’s execution
time. To facilitate parallelization implementation of CLPSO,
the inequality conditions used when determining a di-
mensional exemplar are relaxed.We have also studied a real-
world case parallelizing the deterministic optimization for
the ISO of the Xiaowan Reservoir. $e deterministic opti-
mization has been solved by CLPSO on 62 years’ monthly
natural inflow records and has been parallelized by a
multipopulation model using a large number of work items
extended from the all-GPU model. Owing to the size limits
for a buffer transferring data from the CPU to the GPU and
for storing the data in the global memory region, the random
number generation strategy has been further modified by
generating a small number of random numbers that can be
flexibly exploited by the large number of work items without
harming randomness. Experiments have been conducted on
various unimodal/multimodal 30-dimensional benchmark
global optimization functions and the case study. $e ex-
perimental results demonstrate that (1) the relaxation of the
inequality conditions causes little negative impact on the
final solution’s quality; (2) the two enhancement strategies
help improve the basic model’s efficiency; (3) the modified
random number generation strategy is suitable for the case
of a large number of work items; and (4) the multi pop-
ulation model is able to achieve the consumption of sig-
nificantly less execution time than the corresponding
sequentialization model. In the future, we will investigate
adapting and applying the proposed models for parallelizing
more advanced metaheuristics [29, 71–74] and solving more
real-world large-scale problems.

Data Availability

$e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

$e authors declare that they have no conflicts of interest.

Acknowledgments

$is work was financially supported by the National Natural
Science Foundation of China Projects (61703199, 61866023,
and 61865012), the Shaanxi Province Natural Science
Foundation Basic Research Project (2020JM-278), and the
Central Universities Fundamental Research Foundation
Project (GK202003006).

References

[1] V. Roberge and M. Tarbouchi, “Parallel particle swarm op-
timization on graphical processing unit for pose estimation,”
WSEAS Transactions on Computers, vol. 11, no. 6, pp. 170–
179, 2012.

[2] V. Roberge and M. Tarbouchi, “Efficient parallel particle
swarm optimizers on GPU for real-time harmonic minimi-
zation in multilevel inverters,” in Proceedings of the Annual
Conference on IEEE Industrial Electronics Society, IEEE,
Montreal, Canada, October 2012.

[3] J. Platos, V. Snasel, T. Jezowicz et al., “A PSO-based document
classification algorithm accelerated by the CUDA platform,”
in Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, IEEE, Seoul, South Korea,
October 2012.

[4] J. Zhao, W. Wang, W. Pedrycz, and X. Tian, “Online pa-
rameter optimization-based prediction for converter gas
system by parallel strategies,” IEEE Transactions on Control
Systems Technology, vol. 20, no. 3, pp. 835–845, 2012.

[5] M. S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, and
D. Pescini, “Estimating reaction constants in stochastic bio-
logical systems with a multi-swarm PSO running on GPUs,”
in Proceedings of the Annual Conference Companion on Ge-
netic and Evolutionary Computation, July 2012.

[6] J. Reguera-Salgado and J. Mart́ın-Herrero, “High perfor-
mance GCP-based particle swarm optimization of orthor-
ectification of airborne pushbroom imagery,” in Proceedings
of the IEEE International Geoscience and Remote Sensing
Symposium, IEEE, Munich, Germany, July 2012.

[7] S. E. Papadakis and A. G. Bakrtzis, “A GPU accelerated PSOwith
application to Economic Dispatch problem,” in Proceedings of
theInternational Conference on Intelligent System Application to
Power Systems, IEEE, Hersonissos, Greece, September 2011.

[8] O. Kilic, E. El-Araby, Q. Nguyen, and V. Dang, “Bio-inspired
optimization for electromagnetic structure design using full-
wave techniques on GPUs,” International Journal of Nu-
merical Modelling: Electronic Networks, Devices and Fields,
vol. 26, no. 6, pp. 649–669, 2013.

[9] A. Ouyang, Z. Tang, X. Zhou, Y. Xu, G. Pan, and K. Li,
“Parallel hybrid PSO with CUDA for lD heat conduction
equation,” Computers & Fluids, vol. 110, pp. 198–210, 2015.

[10] D. L. Souza, O. N. Teixeira, D. C. Monteiro et al., “A new
cooperative evolutionary multi-swarm optimizer algorithm
based on CUDA architecture applied to engineering opti-
mization,” in Combinations of Intelligent Methods and Appli-
cations, pp. 95–115, Springer, Berlin, Germany, 2013.

[11] B. Sharma, R. K. $ulasiram, and P. $ulasiraman, “Portfolio
management using particle swarm optimization on GPU,” in
Proceedings of the IEEE International Symposium on Parallel
and Distributed Processing with Applications, IEEE, Leganes,
Spain, July 2012.

[12] B. Sharma, R. K. $ulasiram, and P. $ulasiraman, “Nor-
malized particle swarm optimization for complex chooser

Complexity 15



option pricing on graphics processing unit,” Ke Journal of
Supercomputing, vol. 66, no. 1, pp. 170–192, 2013.

[13] D. Tristram, D. Hughes, and K. Bradshaw, “Accelerating a
hydrological uncertainty ensemble model using graphics
processing units (GPUs),” Computers & Geosciences, vol. 62,
pp. 178–186, 2014.

[14] M. Abdelaziz, “GPU-opencl accelerated probabilistic power
flow analysis using monte-carlo simulation,” Electric Power
Systems Research, vol. 147, pp. 70–72, 2017.

[15] I. Boussäıd, J. Lepagnot, and P. Siarry, “A survey on opti-
mization metaheuristics,” Information Sciences, vol. 237,
pp. 82–117, 2013.

[16] Y. Tan and K. Ding, “A survey on GPU-based implementation
of swarm intelligence algorithms,” IEEE Transactions on
Cybernetics, vol. 46, no. 9, pp. 2028–2041, 2016.

[17] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, IEEE, November 1995, pp. 1942–1948, Perth,
Australia.

[18] Y.-D. Zhang, S.-H. Wang, and G.-L. Ji, “A comprehensive
survey on particle swarm optimization algorithm and its
applications,” Mathematical Problems in Engineering,
vol. 2015, Article ID 931256, 38 pages, 2015.

[19] Khronos Group, “OpenCL overview,” 2019, https://www.
khronos.org/opencl/.

[20] Nvidia Corporation, “CUDA toolkit,” 2019, https://developer.
nvidia.com/cuda-toolkit.

[21] Y. Hung and W. Wang, “Accelerating parallel particle swarm
optimization via GPU,” Optimization Methods and Software,
vol. 27, no. 1, pp. 33–51, 2012.

[22] M. P. Wachowiak and A. E. L. Foster, “GPU-based asyn-
chronous global optimization with particle swarm,” Journal of
Physics: Conference Series, vol. 385, 2012.

[23] J. Kennedy and R. Mendes, “Population structure and particle
swarm performance,” in Proceedings of the IEEE Congress on
Evolutionary Computation, IEEE, Brisbane, Australia, June
2002.

[24] Particle Swarm Central, “Standard PSO 2006,” 2006, http://
www.particleswarm.info/Standard_PSO_2006.c.

[25] Y. Zhou and Y. Tan, “GPU-based parallel particle swarm
optimization,” in Proceedings of the IEEE Congress on Evo-
lutionary Computation, IEEE, Trondheim, Norway, May
2009.

[26] S. Cagnoni, A. Bacchini, and L. Mussi, “OpenCL imple-
mentation of particle swarm optimization: a comparison
between multi-core CPU and GPU performances,” in Pro-
ceedings of the European Conference on the Applications of
Evolutionary Computation, Springer, Málaga, Spain, April
2012.

[27] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,
“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[28] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal
learning particle swarm optimization,” IEEE Transactions on
Evolutionary Computation, vol. 15, no. 6, pp. 832–847, 2011.

[29] X. Yu and X. Zhang, “Enhanced comprehensive learning
particle swarm optimization,” Applied Mathematics and
Computation, vol. 242, pp. 265–276, 2014.

[30] M. Rabinovich, “Particle swarm optimization on a GPU,” in
Proceedings of the IEEE International Conference on Electro/
Information Technology, IEEE, Brookings, SD, USA, May
2012.

[31] S. Simonovic, “$e implicit stochastic model for reservoir
yield optimization,”Water Resources Research, vol. 23, no. 12,
pp. 2159–2165, 1987.

[32] W. W.-G. Yeh, “Reservoir management and operations
models: a state-of-the-art review,” Water Resources Research,
vol. 21, no. 12, pp. 1797–1818, 1985.

[33] J. D. C. Little, “$e use of storage water in a hydroelectric
system,” Journal of the Operations Research Society of
America, vol. 3, no. 2, pp. 187–197, 1955.

[34] R. A. Wurbs, “Reservoir-system simulation and optimization
models,” Journal of Water Resources Planning and Manage-
ment, vol. 119, no. 4, pp. 455–472, 1993.

[35] J. W. Labadie, “Optimal operation of multireservoir systems:
state-of-the-art review,” Journal of Water Resources Planning
and Management, vol. 130, no. 2, pp. 93–111, 2004.

[36] S.-M. Choong and A. El-Shafie, “State-of-the-art for model-
ling reservoir inflows and management optimization,” Water
Resources Management, vol. 29, no. 4, pp. 1267–1282, 2015.

[37] A. B. Celeste and M. Billib, “Evaluation of stochastic reservoir
operation optimization models,” Advances in Water Re-
sources, vol. 32, no. 9, pp. 1429–1443, 2009.

[38] F.-J. Chang, L. Chen, and L.-C. Chang, “Optimizing the
reservoir operating rule curves by genetic algorithms,” Hy-
drological Processes, vol. 19, no. 11, pp. 2277–2289, 2005.

[39] L. Chen, J. McPhee, and W. W.-G. Yeh, “A diversified
multiobjective GA for optimizing reservoir rule curves,”
Advances in Water Resources, vol. 30, no. 5, pp. 1082–1093,
2007.

[40] L. Le Ngo, H. Madsen, and D. Rosbjerg, “Simulation and
optimisation modelling approach for operation of the hoa
binh reservoir, Vietnam,” Journal of Hydrology, vol. 336,
no. 3-4, pp. 269–281, 2007.

[41] W. Suiadee and T. Tingsanchali, “A combined simulation-
genetic algorithm optimization model for optimal rule curves
of a reservoir: a case study of the nam oon irrigation project,
$ailand,” Hydrological Processes, vol. 21, no. 23,
pp. 3211–3225, 2007.

[42] J. R. Lund and I. Ferreira, “Operating rule optimization for
missouri river reservoir system,” Journal of Water Resources
Planning and Management, vol. 122, no. 4, pp. 287–295, 1996.

[43] G. K. Young, “Finding reservoir operating rules,” Journal of
the Hydraulics Division, vol. 93, no. 6, pp. 297–322, 1967.

[44] M. I. Hejazi, X. Cai, and B. L. Ruddell, “$e role of hydrologic
information in reservoir operation—learning from historical
releases,” Advances in Water Resources, vol. 31, no. 12,
pp. 1636–1650, 2008.

[45] Z. Yang, P. Liu, L. Cheng, H. Wang, B. Ming, and W. Gong,
“Deriving operating rules for a large-scale hydro-photovoltaic
power system using implicit stochastic optimization,” Journal
of Cleaner Production, vol. 195, pp. 562–572, 2018.

[46] M. Karamouz, M. H. Houck, and J. W. Delleur, “Optimization
and simulation of multiple reservoir systems,” Journal of
Water Resources Planning and Management, vol. 118, no. 1,
pp. 71–81, 1992.

[47] I. Nalbantis and D. Koutsoyiannis, “A parametric rule for
planning and management of multiple-reservoir systems,”
Water Resources Research, vol. 33, no. 9, pp. 2165–2177, 1997.

[48] P. Liu, S. Guo, X. Xu, and J. Chen, “Derivation of aggregation-
based joint operating rule curves for cascade hydropower
reservoirs,” Water Resources Management, vol. 25, no. 13,
pp. 3177–3200, 2011.

[49] A. Cancelliere, G. Giuliano, A. Ancarani, and G. Rossi, “A
neural networks approach for deriving irrigation reservoir

16 Complexity

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://www.particleswarm.info/Standard_PSO_2006.c
http://www.particleswarm.info/Standard_PSO_2006.c


operating rules,”Water Resources Management, vol. 16, no. 1,
pp. 71–88, 2002.

[50] A. R. S. Kumar, M. K. Goyal, C. S. P. Ojha, R. D. Singh,
P. K. Swamee, and R. K. Nema, “Application of ANN, fuzzy
logic and decision tree algorithms for the development of
reservoir operating rules,” Water Resources Management,
vol. 27, no. 3, pp. 911–925, 2013.

[51] V. Chandramouli and H. Raman, “Multireservoir modeling
with dynamic programming and neural networks,” Journal of
Water Resources Planning and Management, vol. 127, no. 2,
pp. 89–98, 2001.

[52] M. Sangiorgio and G. Guariso, “NN-based implicit stochastic
optimization of multi-reservoir systems management,” Wa-
ter, vol. 10, no. 3, p. 303, 2018.

[53] P. Chaves and T. Kojiri, “Deriving reservoir operational
strategies considering water quantity and quality objectives by
stochastic fuzzy neural networks,” Advances in Water Re-
sources, vol. 30, no. 5, pp. 1329–1341, 2007.

[54] S. J. Mousavi, K. Ponnambalam, and F. Karray, “Inferring
operating rules for reservoir operations using fuzzy regression
and ANFIS,” Fuzzy Sets and Systems, vol. 158, no. 10,
pp. 1064–1082, 2007.

[55] C.-C. Wei and N.-S. Hsu, “Derived operating rules for a
reservoir operation system: comparison of decision trees,
neural decision trees and fuzzy decision trees,” Water Re-
sources Research, vol. 44, no. 2, Article ID W02428, 2008.

[56] L. Li, P. Liu, D. E. Rheinheimer, C. Deng, and Y. Zhou,
“Identifying explicit formulation of operating rules for multi-
reservoir systems using genetic programming,” Water Re-
sources Management, vol. 28, no. 6, pp. 1545–1565, 2014.

[57] C.-M. Ji, T. Zhou, and H.-T. Huang, “Operating rules deri-
vation of jinsha reservoirs system with parameter calibrated
support vector regression,” Water Resources Management,
vol. 28, no. 9, pp. 2435–2451, 2014.

[58] A. B. Alaya, “Optimization of nebhana reservoir water allo-
cation by stochastic dynamic programming,”Water Resources
Management, vol. 17, no. 4, pp. 259–272, 2003.

[59] P. P. Mujumdar and B. Nirmala, “A bayesian stochastic
optimization model for a multi-reservoir hydropower sys-
tem,” Water Resources Management, vol. 21, no. 9,
pp. 1465–1485, 2007.

[60] V. Jothiprakash and G. Shanthi, “Comparison of policies
derived from stochastic dynamic programming and genetic
algorithm models,” Water Resources Management, vol. 23,
no. 8, pp. 1563–1580, 2009.

[61] R. Yun, V. P. Singh, and Z. Dong, “Long-term stochastic
reservoir operation using a noisy genetic algorithm,” Water
Resources Management, vol. 24, no. 12, pp. 3159–3172, 2010.

[62] D. Etkin, P. Kirshen, D. Watkins et al., “Stochastic pro-
gramming for improved multiuse reservoir operation in
Burkina Faso, west Africa,” Journal of Water Resources
Planning and Management, vol. 141, no. 3, Article ID
04014056, 2015.

[63] M. E. El-Hawary and G. S. Christensen, Optimal Economic
Operation of Electric Power Systems, Academic Press, Cam-
bridge, MA, USA, 1979.

[64] G. W. Tauxe, R. R. Inman, and D. M. Mades, “Multiple
objectives in reservoir operation,” Journal of the Water Re-
sources Planning and Management Division, vol. 106, no. 1,
pp. 225–238, 1980.

[65] C. Lyra and L. R. M. Ferreira, “A multiobjective approach to
the short-term scheduling of a hydroelectric power system,”
IEEE Transactions on Power Systems, vol. 10, no. 4,
pp. 1750–1755, 1995.

[66] X. Zhang, X. Yu, and H. Qin, “Optimal operation of multi-
reservoir hydropower systems using enhanced comprehensive
learning particle swarm optimization,” Journal of Hydro-
Environment Research, vol. 10, pp. 50–63, 2016.

[67] M. S. Hossain and A. El-Shafie, “Intelligent systems in op-
timizing reservoir operation policy: a review,” Water Re-
sources Management, vol. 27, no. 9, pp. 3387–3407, 2013.

[68] D. A. Augusto and H. J. C. Barbosa, “Accelerated parallel
genetic programming tree evaluation with opencl,” Journal of
Parallel and Distributed Computing, vol. 73, no. 1, pp. 86–100,
2013.

[69] A.-K. C. Ahamed and F. Magoules, “Conjugate gradient
method with graphics processing unit acceleration: Cuda vs
opencl,” Advances in Engineering Software, vol. 111, pp. 32–
42, 2017.

[70] S. K. Park and K. W. Miller, “Random number generators:
good ones are hard to find,” Communications of the ACM,
vol. 31, no. 10, pp. 1192–1201, 1988.

[71] M. Taherkhani and R. Safabakhsh, “A novel stability-based
adaptive inertia weight for particle swarm optimization,”
Applied Soft Computing, vol. 38, pp. 281–295, 2016.

[72] X. Xia, J. Liu, and Z. Hu, “An improved particle swarm
optimizer based on tabu detecting and local learning strategy
in a shrunk search space,” Applied Soft Computing, vol. 23,
pp. 76–90, 2014.

[73] H. Wang, W. Wang, X. Zhou et al., “Firefly algorithm with
neighborhood attraction,” Information Sciences, vol. 382-383,
pp. 374–387, 2017.

[74] H. Wang, X. Zhou, H. Sun et al., “Firefly algorithm with
adaptive control parameters,” Soft Computing, vol. 21, no. 17,
pp. 5091–5102, 2017.

Complexity 17


