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Abstract
Representation formulas for faces and support functions of the values of maximal
monotone operators are established in two cases: either the operators are defined on
reflexive and locally uniformly convex real Banach spaces with locally uniformly con-
vex duals, or their domains have nonempty interiors on real Banach spaces. Faces and
support functions are characterized by the limit values of the minimal-norm selec-
tions of maximal monotone operators in the first case while in the second case they
are represented by the limit values of any selection of maximal monotone operators.
These obtained formulas are applied to study the structure of maximal monotone oper-
ators: the local unique determination from their minimal-norm selections, the local
and global decompositions, and the unique determination on dense subsets of their
domains.
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1 Introduction

Faces and support functions are important tools in representation and analysis of closed
convex sets (see [1, Chapter V]). For a closed convex set, a face is the set of points on
the given set which maximizes some (nonzero) linear form while the support function
is the signed distance from the origin point to the supporting planes of that set. The
face associated with a given direction can be defined via the value of the support
function at this direction [2, Definition 3.1.3, p. 220]. Recently, this notion has been
defined and studied for the values of maximal monotone operators in [2, Sect. 3]. In
this paper, the authors provided some characterizations for the boundary and faces of
the values of maximal monotones operators in Hilbert spaces. Their work is motivated
by the applications of these characterizations to the stability issues of semi-infinite
linear programming problems.

Motivated by the study of the structure of maximal monotone operators, our paper
will investigate the faces and support functions for the values of maximal monotone
operators in real Banach spaces. We aim to establish some representation formulas for
the faces and support functions in two cases regarding the reflexivity and local uniform
convexity of the given spaces and theirs duals, and the nonemptiness of the interiors
of the domains of maximal monotone operators. For the first case, we will extend
the characterizations of faces associated with directions in [2, Theorem 3.2] from
Hilbert spaces to reflexive and locally uniformly convex ones with locally uniformly
convex duals. In comparisonwith previouswork, where the authors used the properties
of solutions of differential inclusions governed by maximal monotone operators, the
proof here is new, simpler and more directed since we only use some basic properties
of the Yosida approximation of maximal monotone operators. We formulate in the
context of reflexive and locally uniformly convex spaces since our proof strongly
depends on the single valuedness the duality mapping and its inverse, and the strong
convergence of the trajectories generated by Yosida approximation. The obtained
characterizations and the graphical density of points of subdifferentiability of convex
functions allow us to get the representation formulas for support functions in reflexive
and locally uniformly convex spaces with locally uniformly convex duals. For the
second case, we will work with maximal monotone operators whose domains have
nonempty interiors in real Banach spaces. Under this assumption, we could refine the
formulas obtained in the first case. We show that the faces and support functions can
be represented by the limit values of any selection of maximal monotone operators.

Characterizations for faces and support functions allow us to investigate the struc-
ture of maximal monotone operators. On reflexive and locally uniformly convex
spaces with locally uniformly convex duals, we show the local unique determina-
tion of maximal monotone operators from their minimal-norm selections, and their
local decompositions when their minimal-norm selections are locally bounded. On
real Banach spaces, we get some global decompositions of maximal monotone oper-
ators when their domains have nonempty interiors. The global decompositions allow
us to prove the unique determination of maximal monotone operators on dense subset
of their domains.

The rest of this paper is structured as follows. In Sect. 2, we recall some basic nota-
tions of geometry of reflexive real Banach spaces and monotone operator theory. We
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also collect preliminary results in this section for the reader’s convenience. In Sect. 3,
representation formulas for faces and support functions are established in reflexive and
locally uniformly convex spaces with locally uniformly convex duals. These formulas
help us to show the local unique determination and to get the local decomposition
of a maximal monotone operator provided that its minimal-norm selection is locally
bounded. In Sect. 4, we will work with maximal monotone operators whose domains
have nonempty interiors in real Banach spaces. Under our assumptions, we could
refine the formulas for faces and support functions obtained in Sect. 3. The refined
formulas allow us to find some global decompositions of maximal monotone operators
and to show their unique determination on dense subsets of their domains.

2 Basic Definitions and Preliminaries

Let X be a real Banach space with norm ‖ · ‖ and X∗ be its continuous dual. The value
of a functional x∗ ∈ X∗ at x ∈ X is denoted by 〈x∗, x〉. The open unit balls on X
and X∗ are denoted, respectively, by B and B

∗. For x ∈ X and r > 0, the open ball
centered at x with radius r is denoted by B(x; r). We use the symbol lim or → to

indicate the strong convergence in X , ⇀ for the weak convergence in X and
∗
⇀ for

the weak star convergence in X∗. Denote on X the set-valued mapping J : X ⇒ X∗

J (x) := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X .

The mapping J is called the duality mapping of the space X . The inverse mapping
J−1 : X∗ ⇒ X defined by J−1(x∗) := {x ∈ X : x∗ ∈ J (x)} also satisfies

J−1(x∗) = {x ∈ X : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}.

If X is reflexive, i.e., X = X∗∗ then J−1 is the duality mapping of X∗.
Let us recall some geometric properties of real Banach spaces.

Definition 2.1 Let X be a real Banach space.

(i) X is called uniformly convex if and only if, given ε > 0, there exists δ(ε) > 0,
such that

‖x + y‖
2

≤ 1 − δ(ε) whenever ‖x − y‖ ≥ ε, and ‖x‖ = ‖y‖ = 1;

(ii) X is called locally uniformly convex if and only if, given ε > 0 and x ∈ X with
‖x‖ = 1, there exists δ(ε, x) > 0, such that

‖x + y‖
2

≤ 1 − δ(ε, x) whenever ‖x − y‖ ≥ ε, and ‖y‖ = 1;

(iii) X is called strictly convex if and only if for any two distinct vectors with ‖x‖ = 1
and ‖y‖ = 1 we have ‖x + y‖ < 2.
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It is clear from the definitions that uniform convexity implies local uniform convex-
ity, and local uniform convexity implies strict convexity. The continuity of a duality
mapping is closely related to geometric properties of real Banach spaces.

Proposition 2.1 (see [3, Proposition 2.7.31]) If X is a real reflexive Banach space
with locally uniformly convex dual X∗, then the duality mapping J : X ⇒ X∗ is
single-valued and continuous with respect to strong topologies on X and X∗.

The effective domain dom f of an extended real-valued function
f :X → R:=R∪{+∞} is the set of points x ∈ X where f (x) ∈ R. The function
f is proper if dom f = ∅. It is lower semicontinuous if

f (x) ≤ lim inf
y→x

f (y), ∀x ∈ X .

The epigraph of f is defined by

epi f := {(x, r) : x ∈ dom f , r ≥ f (x)}.

Suppose now that f is a lower semicontinuous convex function, i.e., epi f is convex
and closed in X ×R. A functional x∗ ∈ X∗ is said to be a subgradient of f at x ∈ X ,
if f (x) is finite and

f (y) − f (x) ≥ 〈x∗, y − x〉, ∀y ∈ X .

The collection of all subgradients of f at x is called the subdifferential of f at x , that
is,

∂ f (x) := {x∗ ∈ X∗ : f (y) − f (x) ≥ 〈x∗, y − x〉, ∀y ∈ X}.

If f (x) = +∞ we denote ∂ f (x) = ∅. The function f is said to be subdifferentiable
at x if ∂ f (x) = ∅. Clearly, ∂ f (x) is a weak star closed convex in X∗. The following
result represents the graphical density of points of subdifferentiability of f (see [4]
and [5]).

Proposition 2.2 Let f be a proper lower semicontinuous convex function from X into
R. Then for any x̄ ∈ dom f and any ε > 0 there exists x ∈ X such that ∂ f (x) = ∅
and

‖x − x̄‖ + | f (x) − f (x̄)| < ε.

Given a nonempty set S ⊂ X , conv S is the convex hull of S, int S is the interior of
S, S is the closure of S and bd(S) is the boundary of S with respect to strong topology
on X . Suppose now that S is nonempty closed and convex. For every x ∈ S, the
tangent cone and the normal cone of S at x (see [6, Section 2.2.4] or [7, Section 4.2])
are defined respectively as

T (x; S) :=
⋃

t>0

t−1(S − x), N (x; S) := {x∗ ∈ X∗ : sup
y∈S

〈x∗, y − x〉 ≤ 0}. (1)
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The tangent cone can be expressed in terms of sequences [7, Proposition 4.2.1] as

T (x; S) = {v ∈ X : ∃ sequences tn ↓ 0, vn → v with x + tnvn ∈ S for all n ∈ N} .

(2)
By the bipolar theorem [6, Proposition 2.40], we have the following dual relationships

T (x; S) = {v ∈ X : sup
x∗∈N (x;S)

〈x∗, v〉 ≤ 0},

N (x; S) = {x∗ ∈ X∗ : sup
v∈T (x;S)

〈x∗, v〉 ≤ 0}.

The function IS : X → R defined by

IS(x) :=
{
0, if x ∈ S,

+∞, otherwise,
(3)

is called the indicator function of S and its Fenchel conjugate function σS : X∗ → R,

σS(x
∗) := sup{〈x∗, s〉 : s ∈ S}, ∀x∗ ∈ X∗, (4)

is called the support function of S (see [8, p. 79]).
Similarly, for a nonempty closed and convex set K ⊂ X∗ and x∗ ∈ K , we define

the normal cone N (x∗; K ) ⊂ X∗∗ and the tangent cone T (x∗; K ) ⊂ X∗ of K at x∗
as (1). The indicator function IK : X∗ → R and the support function σK : X → R

are also defined similarly as (3) and (4) respectively. Observe that, σK is weakly star
lower semicontinuous and convex.

For the set-valued operator A : X ⇒ X∗, the domain of A is D(A):={x∈X :Ax =∅}
and G(A) := {(x, x∗) ∈ X × X∗ : x∗ ∈ Ax} is the graph of A. Recall that A ismono-
tone, iff for all (x, x∗), (y, y∗) ∈ G(A), one has 〈x∗ − y∗, x − y〉 ≥ 0, and maximally
monotone iff A is monotone and A has no proper monotone extension (in the sense
of graph inclusion). The duality mapping, the subdifferential of a lower semicontinu-
ous proper convex function, the normal cone to a closed convex set are examples of
maximal monotone operators (see [9, Theorem A]). The maximal monotone operator
A has closed convex values and is demiclosed [10, Proposition 2.1], i.e., A satisfies

[
x∗
n ∈ Axn(∀n ∈ N), x∗

n → x∗, xn⇀x
] �⇒ [

x∗ ∈ Ax
]
,[

x∗
n ∈ Axn(∀n ∈ N), x∗

n⇀x∗, xn → x
] �⇒ [

x∗ ∈ Ax
]
.

If int D(A) = ∅ then int D(A) = int D(A) (see [11, Theorem 27.1 and
Theorem 27.3]) and A is locally bounded at every x ∈ int D(A) (see [12, The-
orem 2.28] or [13, Theorem 1]), i.e., there exist r > 0 and M > 0 such that
x + rB ⊂ D(A) and

sup
y∗∈Ay

‖y∗‖ ≤ M, ∀y ∈ x + rB.
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Conversely, if x ∈ D(A) and A is locally bounded at x , then x ∈ int D(A) (see
[14, Theorem 1.14] or [8, Theorem 3.11.15]). Moreover, if (xi , x∗

i )i∈I is a net

in G(A) such that xi → x and x∗
i

∗
⇀x∗ then (xi , x∗

i )i∈I is eventually bounded
(see [15, Theorem 4.1]), i.e., there exists i0 ∈ I and M > 0 such that

‖xi‖ + ‖x∗
i ‖ ≤ M, ∀i �I i0.

When X is reflexive, D(A) is nearly convex (see [16, Corollary 3.4]), i.e., D(A) is
convex. Moreover, if X∗ is strictly convex then for every x ∈ D(A), since Ax is
nonempty closed and convex, there exists a unique point x∗

min ∈ Ax such that

‖x∗
min‖ = min{‖x∗‖ : x∗ ∈ Ax}

(see [17, Exercise 3.32]). Therefore, the single-valued operator

A◦ : D(A) ⊂ X → X∗, A◦x := x∗
min

is well-defined; it is called the minimal-norm selection of A. Let us end this section
by recalling some results related to the Yosida approximation of a maximal monotone
operator (see [10, Proposition 2.2] and [18, Problems 2.161–2.164]).

Proposition 2.3 Let X be a real reflexive Banach space such that both X and X∗ are
strictly convex and let A : X ⇒ X∗ be a maximal monotone operator. For every x ∈ X
and λ > 0, there exists a unique xλ ∈ X such that

0 ∈ J (xλ − x) + λAxλ.

If x ∈ D(A) then xλ → x and λ−1 J (x − xλ)⇀A◦x as λ → 0. Moreover, if X∗ is
locally uniformly convex, then λ−1 J (x − xλ) → A◦x as λ → 0 for every x ∈ D(A).

3 Representation Formulas in Reflexive Locally Uniformly Convex
Spaces

In this section, we will establish representation formulas for faces and supports func-
tions in reflexive locally uniformly convex spaceswith locally uniformly convex duals.
First, we recall the notion of the face associated with direction of the values of a max-
imal monotone operator.

Definition 3.1 Let X be a real Banach space and A : X ⇒ X∗ be amaximal monotone
operator. For x ∈ X and v ∈ X , we define the set

A(x; v) :=
{

{x∗ ∈ Ax : 〈x∗, v〉 = σAx (v)}, if x ∈ D(A),

∅, otherwise.

If x ∈ D(A) and v = 0, the set A(x; v) is called the face associated with direction v

of the value Ax .
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Remark 3.1 By the definition of the support function, x∗ ∈ A(x; v) if and only if
v ∈ N (x∗; Ax), i.e., x∗ ∈ Ax and

〈y∗ − x∗, v〉 ≤ 0, ∀y∗ ∈ Ax .

If Ax is singleton then A(x; v) = Ax for all v ∈ X , identifying a singleton with
its element. For any v ∈ X \ {0}, any element of A(x; v) is a support point of Ax
(and so an element of bd(Ax)), being supported by the functional ϕv ∈ X∗∗ with
ϕv(x∗) := 〈x∗, v〉. Consequently,

⋃

v∈X\{0}
A(x; v) is the set of support points of Ax

when X is reflexive. Moreover, A(x; v) is the subdifferential of the convex function
σAx at v (see [6, Proposition 2.121]) and so it is convex and weakly star closed.

We give two examples of faces associated with directions of values of maximal
monotone operators.

Example 3.1 – Let X = R and A = ∂| · |. Then, A is a maximal monotone operator
and

Ax =
⎧
⎨

⎩

{−1} if x < 0,
[ − 1, 1] if x = 0,
{1} if x > 0,

A(0; v) =
⎧
⎨

⎩

{1} if v > 0,
[ − 1, 1] if v = 0,
{−1} if v < 0.

Clearly, for x = 0, Ax is singleton, and so A(x; v) = Ax for all v ∈ R.
– Let X be a real Banach space andB a closed unit ball in X . We consider a maximal
monotone operator A = ∂ I

B
(·) = N (·;B) from X to X∗. Clearly, if ‖x‖ < 1 then

A(x; v) = Ax = {0} and if ‖x‖ > 1 then A(x; v) = ∅. Moreover, for ‖x‖ = 1,
we have Ax = R+ J (x) and

σAx (v) < ∞ ⇔ σAx (v) = 0 ⇔ σJ (x)(v) ≤ 0,

where J is the duality mapping on X . Therefore,

A(x; v) =

⎧
⎪⎨

⎪⎩

R+S if σJ (x)(v) = 0,

{0} if σJ (x)(v) < 0,

∅ if σJ (x)(v) > 0,

where S := {ξ ∈ X∗ : ξ ∈ J (x), 〈ξ, v〉 = 0}.
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Definition 3.2 Let X be a real Banach space and A : X ⇒ X∗ be amaximal monotone
operator. For every x ∈ D(A) and v ∈ X we define the following sets

Lim sup
w→v,t↓0

A(x + tw) :=
{
x∗ ∈ X∗ |∃ sequences wn → v, tn ↓ 0 and x∗

n → x∗

with x∗
n ∈ A(x + tnwn) for all n ∈ N

}
,

w − Lim sup
w→v,t↓0

A(x + tw) :=
{
x∗ ∈ X∗ |∃ sequences wn → v, tn ↓ 0 and x∗

n⇀x∗

with x∗
n ∈ A(x + tnwn) for all n ∈ N

}
.

Remark 3.2 Observe that we have the following inclusions

Lim sup
w→v,t↓0

A(x + tw) ⊂ w − Lim sup
w→v,t↓0

A(x + tw) ⊂ A(x; v). (5)

The first inclusion follows fromDefinition 3.2while the second one is proved similarly
as in the proof of [2, Theorem 3.2]. On reflexive and locally uniformly convex spaces
with locally uniformly convex duals we have the equalities in (5).

Theorem 3.1 Let X be a real reflexive Banach space such that both X and X∗ are
locally uniformly convex. Let A : X ⇒ X∗ be a maximal monotone operator. For
every x ∈ D(A) and v ∈ X \ {0} we have

A(x; v) = Lim sup
w→v,t↓0

A(x + tw) = w − Lim sup
w→v,t↓0

A(x + tw). (6)

Proof From (5), to get (6) it suffices to check

A(x; v) ⊂ Limsup
w→v,t↓0

A(x + tw). (7)

Suppose that x∗ ∈ A(x; v). Since X and X∗ are reflexive and locally uniformly convex,
by Proposition 2.1, both J and J−1 are single-valued and continuous with respect to
strong topologies on X and X∗, respectively. Consider the operator B : X ⇒ X∗
given by

By := Ay − J (v) − x∗, ∀y ∈ X .

Clearly, B ismaximalmonotone and D(B) = D(A).Wefirst show that B◦x = −J (v).
Indeed, since x∗ ∈ A(x; v) we have x∗ ∈ Ax and so

−J (v) = x∗ − J (v) − x∗ ∈ Ax − J (v) − x∗ = Bx .
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Moreover, for every y∗ ∈ Ax we have 〈x∗ − y∗, v〉 ≥ 0 and

‖ − J (v)‖ = ‖v‖−1〈J (v), v〉
≤ ‖v‖−1〈J (v) + x∗ − y∗, v〉
≤ ‖v‖−1‖y∗ − J (v) − x∗‖‖v‖
= ‖y∗ − J (v) − x∗‖.

Applying Proposition 2.3 for the maximal monotone operator B and x ∈ D(B), we
can construct a sequence {xn} ⊂ X such that

0 ∈ J (xn − x) + 1

n
Bxn, (8)

lim
n→∞ xn = x, and lim

n→∞[nJ (x − xn)] = −J (v). (9)

Consider the sequence {wn} ⊂ X given by wn := n(xn − x) for every n ∈ N. Then,
by (8) and (9), we have

−J (wn) + J (v) + x∗ ∈ Bxn + J (v) + x∗ = Axn = A(x + (1/n)wn),

lim
n→∞ wn = lim

n→∞[J−1 J (n(xn − x))] = J−1[J (v)] = v,

lim
n→∞[−J (wn) + J (v) + x∗] = x∗.

It follows that x∗ ∈ Limsup
w→v,t↓0

A(x + tw) and so (7) holds. ��

Remark 3.3 – Theorem 3.1 generalizes [2, Theorem 3.2] from Hilbert spaces to
reflexive locally uniformly convexBanach spaces having locally uniformly convex
duals. Our proof is based on the properties of Yosida approximation of maximal
monotone operators and it is simpler than the proof of [2, Theorem 3.2] where
the authors used the properties of solutions of differential inclusions governed by
maximal monotone operators.

– We formulate in the context of reflexive locally uniformly convex spaces since
our proof strongly depends on the single valuedness, the strong continuity of the
dualitymapping and its inverse, and the pointwise strong convergence of theYosida
approximation of a maximal monotone operator stated in Proposition 2.3.

The formulas in (6) allow us to characterize the boundaries of the values ofmaximal
monotone operators, by means only of the values at nearby points, which are close
enough to the reference point but distinct of it (see [2, Theorem 3.1] in Hilbert setting).

Corollary 3.1 Let X be a real reflexive Banach space such that both X and X∗ are
locally uniformly convex. Let A : X ⇒ X∗ be a maximal monotone operator. Then,
for every x ∈ D(A), we have

bd(Ax) = Lim sup
y→x,y =x

Ay :=
{
x∗ ∈ X∗ |∃ sequences yn → x and y∗

n → x∗with

yn = x and y∗
n ∈ Ayn for all n ∈ N

}
. (10)
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Proof Let x ∈ D(A). Observe that bd(Ax) can be represented by as

bd(Ax) =
⎛

⎝
⋃

v =0

A(x; v)

⎞

⎠. (11)

Indeed, as observed in Remark 3.1, since X is reflexive,
⋃

v =0 A(x; v) is the set of
support points of Ax . Therefore, (11) is an immediate consequence of Bishop−Phelps
theorem [19, Theorem 1].

Now we use (6) and (11) to get (10). We have,

bd(Ax) =
⎛

⎝
⋃

v =0

Limsup
w→v,t↓0

A(x + tw)

⎞

⎠ ⊂ Lim sup
y→x,y =x

Ay = Lim sup
y→x,y =x

Ay.

Suppose that x∗ ∈ Lim sup
y→x,y =x

Ay. Then, there exist sequences {xn} ⊂ X and {x∗
n } ⊂ X∗

such that xn → x, x∗
n → x∗ and xn = x, x∗

n ∈ Axn for every n ∈ N. By the maximal
monotonicity of A, we have x∗ ∈ Ax . We will show that x∗ ∈ bd(Ax). Suppose on the
contrary that x∗ ∈ int(Ax). Then, for sufficiently large n, we have x∗

n ∈ int(Ax) ⊂ Ax
and by the monotonicity of A, we have

x∗
n ∈ A(x; xn − x) with xn − x = 0 (12)

By (11), for sufficiently largen, (12) implies that x∗
n ∈ bd(Ax)which is a contradiction.

��
Now, we use Theorem 3.1 to obtain a representation for the support function of the

values of A via its minimal-norm selection A◦.

Lemma 3.1 Let X be a real reflexive Banach space such that both X and X∗ are locally
uniformly convex. Let A : X ⇒ X∗ be a maximal monotone operator, x ∈ D(A) and
v ∈ X \ {0} be such that w − Lim sup

w→v,t↓0
A(x + tw) = ∅. Then,

w − Limsup
w→v,t↓0

x+tw∈D(A)

A◦(x + tw) :=
{
x∗ ∈ X∗ |∃ sequences wn → v, tn ↓ 0 such that

x + tnwn ∈ D(A)for all n ∈ N and A◦(x + tnwn)⇀x∗} (13)

is a nonempty subset of w − Lim sup
w→v,t↓0

A(x + tw).

Proof Since A◦ is a selection of A, for every x ∈ D(A) and v ∈ X \ {0}, we have

w − Limsup
w→v,t↓0

x+tw∈D(A)

A◦(x + tw) ⊂ w − Lim sup
w→v,t↓0

A(x + tw).
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Suppose that w − Lim sup
w→v,t↓0

A(x + tw) = ∅ for some x ∈ X and v ∈ X \ {0}. Then,
there exist x∗ ∈ X∗ and sequences tn ↓ 0, wn → v, x∗

n⇀x∗ with x∗
n ∈ A(x + tnwn)

for every n ∈ N. It follows that x + tnwn ∈ D(A) for every n ∈ N and {x∗
n } is bounded

in X∗. Since ‖A◦(x + tnwn)‖ ≤ ‖x∗
n‖ , {A◦(x + tnwn)} is also bounded in X∗. By the

reflexivity of X∗, the sequence {A◦(x + tnwn)} has a subsequence converging weakly
to some x̄∗ ∈ w − Limsup

w→v,t↓0
x+tw∈D(A)

A◦(x + tw). ��

The next example shows that the inclusion w − Limsup
w→v,t↓0

x+tw∈D(A)

A◦(x + tw) ⊂

w − Lim sup
w→v,t↓0

A(x + tw) may be strict.

Example 3.2 Let X be a real Hilbert space and A = N (·;B). Let x0, v0 ∈ X be such
that

‖x0‖ = ‖v0‖ = 1 and 〈x0, v0〉 = 0.

Clearly, w − Limsup
w→v0,t↓0

x0+tw∈D(A)

A◦(x0 + tw) = {0} (since A◦x = 0 for all x ∈ B) while

w − Lim sup
w→v0,t↓0

A(x0 + tw) = A(x0; v0) = Ax0 = R+x0

since 〈v0, x∗〉 = 0 for all x∗ ∈ Ax0.

Theorem 3.2 Let X be a real reflexive Banach space such that both X and X∗ are
locally uniformly convex. Let A : X ⇒ X∗ be a maximal monotone operator. For
every x ∈ D(A) and v ∈ X \ {0}, we have

σAx (v) =

⎧
⎪⎨

⎪⎩

lim inf
w→v,t↓0

x+tw∈D(A)

〈A◦(x + tw),w〉, if v ∈ T (x; D(A)),

+∞, otherwise.

(14)

Proof By the reflexivity of X , D(A) is convex. Let x ∈ D(A) and v ∈ X \ {0}. If
v /∈ T (x; D(A)) then there exists x∗ ∈ N (x; D(A)) such that 〈x∗, v〉 > 0. Then,
for every y∗ ∈ Ax and t > 0, we have y∗ + t x∗ ∈ Ax + N (x; D(A)) = Ax by
the maximal monotonicity of A. It follows that σAx (v) ≥ 〈y∗, v〉 + t〈x∗, v〉. Taking
t → +∞ in the latter inequality, we get σAx (v) = +∞.

Suppose now that v ∈ T (x; D(A)). It follows from (2) that there exist sequences
wn → v, tn ↓ 0 with x + tnwn ∈ D(A) for all n ∈ N. Let {tn} and {wn} be any such
sequences. Then, we have

σAx (wn) ≤ 〈A◦(x + tnwn), wn〉. (15)
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Indeed, by the monotonicity of A, for every x∗ ∈ Ax , we have

〈A◦(x + tnwn) − x∗, wn〉 = t−1
n 〈A◦(x + tnwn) − x∗, x + tnwn − x〉 ≥ 0.

Hence, 〈A◦(x + tnwn), wn〉 ≥ 〈x∗, wn〉 for every x∗ ∈ Ax and so (15) holds. Taking
n → ∞ in (15), by the lower semicontinuity of σAx , we get

σAx (v) ≤ lim inf
n→∞ 〈A◦(x + tnwn), wn〉.

Hence,
σAx (v) ≤ lim inf

w→v,t↓0
x+tw∈D(A)

〈A◦(x + tw),w〉. (16)

Nowwe establish the reverse inequality when σAx (v) < +∞. To do this, we only need
to point out the existence of the sequences tn ↓ 0, wn → v with x + tnwn ∈ D(A)

for every n ∈ N such that

〈A◦(x + tnwn), wn〉 → σAx (v). (17)

Applying Proposition 2.2 for the proper lower semicontinuous convex function σAx

and v ∈ dom σAx , we can find a sequence {vn} ⊂ X such that
vn→v, σAx (vn)→σAx (v) and A(x; vn) = ∂σAx (vn) = ∅. By Theorem 3.1 and
Lemma 3.1, we have w − Limsup

w→v,t↓0
x+tw∈D(A)

A◦(x + tw) = ∅. Hence, for every n ∈ N,

there exists sequences tnm ↓ 0, wn
m → vn as m → ∞ with x + tnmwn

m ∈ D(A) for
everym ∈ N such that 〈A◦(x+tnmwn

m), wn
m〉 → σAx (vn) asm → ∞. For every n ∈ N,

choosing m such that

tnm ≤ 1

n
, ‖wn

m − vn‖ ≤ 1

n
,
∣∣〈A◦(x + tnmwn

m), wn
m〉 − σAx (vn)

∣∣ ≤ 1

n

and setting tn := tnm, wn := wn
m . Then, tn ↓ 0, wn → v with x + tnwn ∈ D(A) for

every n ∈ N and 〈A◦(x + tnwn), wn〉 → σAx (v). Hence, we have the equality in (16).
��

Remark 3.4 It follows from (14) that (x, x∗) ∈ G(A) if and only if x ∈ D(A) and the
following inequality

〈x∗ − A◦y, x − y〉 ≥ 0 (18)

holds for all y ∈ D(A) ∩ U , where U is some neighborhood of x . Indeed, by Theo-
rem 3.2, if v ∈ T (x; D(A)) then

σAx (v) = lim inf
w→v,t↓0

x+tw∈D(A)

〈A◦(x + tw),w〉

≥ lim inf
w→v,t↓0

x+tw∈D(A)

〈x∗, w〉

= 〈x∗, v〉.
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Therefore, σAx (v) ≥ 〈x∗, v〉 for all v ∈ X and so (x, x∗) ∈ G(A) by the classical
separation theorem.

The formula (14) helps us to establish a local reconstruction of amaximalmonotone
operator from its minimal-norm selection.

Corollary 3.2 Let X be a real reflexive Banach space such that both X and X∗
are locally uniformly convex. Let A1 and A2 be maximal monotone operators
from X to X∗. If there exist x0 ∈ D(A1) ∩ D(A2) and r > 0 such that
D(A1)∩B(x0; r)=D(A2)∩B(x0; r) and A◦

1 = A◦
2 on D(A1)∩B(x0; r) then A1 = A2

on D(A1) ∩ B(x0; r). In particular, if D(A1) = D(A2) and A◦
1 = A◦

2 then A1 = A2.

Proof Let x0∈D(A1)∩D(A2) and r>0be such thatD(A1)∩B(x0; r)=D(A2)∩B(x0; r)
and A◦

1=A◦
2 on D(A1)∩B(x0; r). Let x ∈ D(A1) ∩ B(x0; r). By Theorem 3.2 and

our assumptions, we obtain σA1x = σA2x . Hence, we have

A1x = A1(x; 0) = ∂σA1x (0)

= ∂σA2x (0) = A2(x; 0) = A2x .

��

The next corollary presents a local decomposition of maximal monotone operator
provided that its minimal-norm selection is locally bounded. As a consequence, if
the minimal-norm selection of a maximal monotone operator is bounded with some
modulus around some interior point of the domain then thewhole values of themaximal
monotone operator are also bounded with the same modulus around that point.

Corollary 3.3 Let X be a real reflexive Banach space such that both X and X∗ are
locally uniformly convex. Let A be a maximal monotone operator from X to X∗ and
x ∈ D(A). Suppose that there exist r > 0 and ρ > 0 such that

‖A◦y‖ ≤ ρ, ∀y ∈ B(x; r) ∩ D(A). (19)

Then, for every y ∈ B(x; r) ∩ D(A), we have

Ay ⊂ N (y; D(A)) + ρB∗. (20)

In particular, if B(x; r) ⊂ D(A) then Ay ⊂ ρB∗ for every y ∈ B(x; r).

Proof Let y ∈ B(x; r) ∩ D(A) and y∗ ∈ Ay. We first show that

〈y∗, z − y〉 ≤ ρ‖z − y‖, ∀z ∈ D(A). (21)
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Indeed, for every z ∈ D(A) \ {y}, z − y ∈ T (y; D(A)) \ {0}, and by Theorem 3.2 and
(19)

〈y∗, z − y〉 ≤ σAy(z − y)

= lim inf
w→z−y,t↓0
y+tw∈D(A)

〈A◦(y + tw),w〉

≤ lim inf
w→z−y,t↓0
y+tw∈D(A)

‖A◦(y + tw)‖‖w‖

≤ ρ‖z − y‖.

Hence, (21) holds and so y∗ ∈ N (y; D(A)) + ρB∗. Therefore, (20) is satisfied.
If B(x; r) ⊂ D(A) then N (y; D(A)) = {0} for every y ∈ B(x; r). By (20) we

have Ay ⊂ ρB∗ for all y in this set. ��

4 Representation Formulas in Reflexive Spaces

In this section, we will work with maximal monotone operators having their domains
with nonempty interiors in real Banach spaces. Under these assumptions, we could
refine the formulas obtained in the previous section. First, we make a relationship of
the faces and the limit values of any selection of maximal monotone operators.

Lemma 4.1 Let X be a real Banach space and A : X ⇒ X∗ be a maximal monotone
operator such that int(D(A)) = ∅. Let D be a dense subset of D(A) and Ã be any
selection of A. For every x ∈ D(A) and v ∈ int(D(A) − x), the following set

w∗ − Limsup
w→v,t↓0
x+tw∈D

Ã(x + tw) :=
{
x∗ ∈ X∗ |∃ a net (wi , ti )i∈I → (v, 0+) such that

x + tiwi ∈ D for all i ∈ I and Ã(x + tiwi )
∗
⇀x∗} (22)

is a nonempty subset of A(x; v).

Proof Let x ∈ D(A) and v ∈ int(D(A) − x). We first show that the set in (22) is
nonempty. Since x + v ∈ int(D(A)), A is locally bounded around x + v, i.e., there
exist r , M > 0 such that Ay = ∅ and Ay ⊂ MB

∗ for all y ∈ x +v +4rB. According
to [15, Lemma 4.1], there exists K > 0 such that

∅ = Az ⊂ KB
∗, ∀z ∈ (x, x + v + 2rB], (23)

where

(x, x + v + 2rB] := {λx + (1 − λ)z : λ ∈ [0, 1[, z ∈ x + v + 2rB}.
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Pick the sequences {tn} ⊂]0, 1[ and {wn} ⊂ X converging to 0 and v, respectively.
Since wn → v and

x + tnwn = (1 − tn)x + tn(x + wn) ∈ (x, x + wn),

wecan assume that x+tnwn ∈ (x, x+v+rB] for everyn∈N. By (23), x+tnxn ∈ D(A).
Since D is dense in D(A), one has (x + tnwn + (tn/n)B) ∩ D = ∅. Hence, we can
find νn ∈ (1/n)B such that x + tn(wn + νn) ∈ D. Without loss of generality, we can
assume that wn + νn ∈ v + 2rB. Again, by (23), we have wn + νn → v as n → +∞
and

Ã(x + tn(wn + νn)) ∈ A(x + tn(wn + νn)) ⊂ KB
∗, ∀n ∈ N.

By the Banach–Alaoglu theorem, we can find a subnet {ξi }i∈I of { Ã(x+ tn(wn +νn))}
such that ξi

∗
⇀ξ ∈ X∗. Moreover, the corresponding nets {wi }i∈I , {ti }i∈I , {νi }i∈I are

subnets of {wn}, {tn}, {νn}, respectively, and satisfy ξi = Ã(x + ti (wi + νi )) for all
i ∈ I . Since x + tn(wn + νn) ∈ D for every n ∈ N and wn + νn → v, tn ↓ 0, we
have x + ti (wi + νi ) ∈ D for every i ∈ I and wi + νi → v, ti ↓ 0. This yields that
ξ ∈ w∗ − Limsup

w→v,t↓0
x+tw∈D

Ã(x + tw).

Next, we show that w∗ − Limsup
w→v,t↓0
x+tw∈D

Ã(x + tw) ⊂ A(x; v). Let

x∗ ∈ w∗ − Limsup
w→v,t↓0
x+tw∈D

Ã(x + tw). Then, we can find nets wi → v, ti ↓ 0 such that

x + tiwi ∈ D for all i ∈ I and Ã(x + tiwi )
∗
⇀x∗. Since A is maximal monotone and

int(D(A)) = ∅, by [15, Theorem 4.1], the net { Ã(x+ tiwi )}i∈I is eventually bounded,
and by [15, Corollary 4.1], x∗ ∈ Ax . It follows from the monotonicity of A, for every
ξ ∈ Ax , we have

〈 Ã(x + tiwi ) − ξ,wi 〉 = 1

ti
〈 Ã(x + tiwi ) − ξ, x + tiwi − x〉 ≥ 0.

Therefore, by taking the limit along the net, we get

〈x∗ − ξ, v〉 ≥ 0, ∀ξ ∈ Ax,

which shows that x∗ ∈ A(x; v). ��

Second, we use Lemma 4.1 to improve the representation formula (14) in Theo-
rem 3.2.

Theorem 4.1 Let X be Banach space and A : X ⇒ X∗ be a maximal monotone
operator such that int(D(A)) = ∅. Let D be a dense subset of D(A) and Ã be any
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selection of A. For every x ∈ D(A) and v ∈ X \ {0},

σAx (v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈ξ, v〉, if v ∈ int
(
T (x; D(A))

)
,

lim inf
w→v,t↓0
x+tw∈D

〈 Ã(x + tw),w〉, if v ∈ bd
(
T (x; D(A))

)
,

+∞, otherwise,

(24)

where ξ is any vector in the set w∗ − Limsup
w→v,t↓0
x+tw∈D

Ã(x + tw).

Proof Since D(A) has nonempty interior, D(A) is convex and int(D(A)) = int(D(A))

(see [11, Theorem 27.1 and Theorem 27.3]). Let x ∈ D(A) and v ∈ X \ {0}. We
consider three cases of v.
Case 1. v /∈ T (x; D(A))

Repeating the first part of the Proof of Theorem 3.2, we get σAx (v) = +∞.

Case 2. v ∈ int
(
T (x; D(A))

)

By [7, Proposition 4.2.3], the interior of the tangent cone can be expressed as

int
(
T (x; D(A))

)
=

⋃

h>0

(
int(D(A)) − x

h

)
=

⋃

h>0

(
int(D(A)) − x

h

)

=
⋃

h>0

int(D(A) − x)

h
.

Hence, there exists h > 0 such that hv ∈ int(D(A) − x). Applying Lemma 4.1, the
following sets are nonempty and

w∗ − Limsup
w→v,t↓0
x+tw∈D

Ã(x + tw) = w∗ − Limsup
w→hv,t↓0
x+tw∈D

Ã(x + tw) ⊂ A(x; hv) = A(x; v).

Then, for every ξ ∈ w∗ − Limsup
w→v,t↓0
x+tw∈D

Ã(x + tw), we have σAx (v) = 〈ξ, v〉.

Case 3. v ∈ bd
(
T (x; D(A))

)

Since A is monotone, for every w ∈ X and t > 0 such that x + tw ∈ D ⊂ D(A),
we have

〈x∗, w〉 ≤ 〈 Ã(x + tw),w〉, ∀x∗ ∈ Ax .

This yields that
σAx (v) ≤ liminf

w→v,t↓0
x+tw∈D

〈 Ã(x + tw),w〉. (25)
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Pick v0 ∈ int
(
T (x; D(A))

)
. From Case 2., we have σAx (v0) < +∞. Consider the

sequence {vn} given by

vn := 1

n
v0 + n − 1

n
v, ∀n ∈ N.

On one hand, since σAx is convex, we have

σAx (vn) ≤ 1

n
σAx (v0) + n − 1

n
σAx (v).

Taking the superior limit both sides of the above inequality, we get

lim sup
n→∞

σAx (vn) ≤ σAx (v).

Then, the lower semicontinuity of σAx implies that

lim
n→∞ σAx (vn) = σAx (v). (26)

On the other hand, the convexity of T (x; D(A)) implies that vn ∈ int
(
T (x; D(A))

)

for all n ∈ N.
Fix n ∈ N. Since vn ∈ int

(
T (x; D(A))

)
, as in the proof of Case 2., we have

∅ = w∗ − Limsup
w→vn ,t↓0
x+tw∈D

Ã(x + tw) ⊂ A(x; vn).

Then, there exist nets wi → vn, ti ↓ 0 such that x + tiwi ∈ D for all i ∈ I and

Ã(x + tiwi )
∗
⇀x∗ ∈ A(x; vn). Since A is maximal monotone and int(D(A)) = ∅,

by [15, Theorem 4.1], the net { Ã(x + tiwi )}i∈I is eventually bounded. It follows that
there exist tn ∈ {ti }i∈I , wn ∈ {wi }i∈I such that

tn ≤ 1

n
, ‖wn − vn‖ ≤ 1

n
, x + tnwn ∈ D

and

|σAx (vn) − 〈 Ã(x + tnwn), wn〉| = |〈x∗, vn〉 − 〈 Ã(x + tnwn), wn〉| ≤ 1

n
.

Therefore, we can choose sequences tn ↓ 0, wn → v and, by (26), such that

lim
n→∞〈 Ã(x + tnwn), wn〉 = σAx (v).
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Combining this and (25), we get

σAx (v) = lim inf
w→v,t↓0
x+tw∈D

〈 Ã(x + tw),w〉.

��

Remark 4.1 Clearly, by Theorem 4.1, for x ∈ D(A) and v ∈ int
(
T (x; D(A))

)
, we

have σAx (v) = 〈ξ, v〉 whenever ξ ∈ w∗ − Limsup
w→v,t↓0
x+tw∈D

Ã(x + tw).

Finally, we employ Theorem 4.1 and [15, Proposition 5.1] to get the global
decompositions for maximal monotone operators. Our proof follows the technique of

[15, Theorem 5.2]. From now, we denote S
w∗

is the closure with respect to weak star
topology on X∗ of a subset S ⊂ X∗.

Corollary 4.1 Let X be a real Banach space and A : X ⇒ X∗ be a maximal monotone
operator such that int(D(A)) = ∅. Let D be a dense subset of D(A) and Ã be any
selection of A. Then, for every x ∈ X,

Ax = conv

⎧
⎪⎨

⎪⎩

⋃

v∈int(D(A))−x

w∗ − lim sup
w→v,t↓0
x+tw∈D

Ã(x + tw)

⎫
⎪⎬

⎪⎭

w∗

+ N (x; D(A)) (27)

= conv

⎧
⎨

⎩w∗ − Limsup
y
D→x

Ãy

⎫
⎬

⎭

w∗

+ N (x; D(A)), (28)

where

w∗ − Limsup
y
D→x

Ãy :=
{
x∗ ∈ X∗| ∃ a net yi → x such that yi ∈ D for all i ∈ I and Ãyi

∗
⇀x∗} .

Proof Let x ∈ X . Since A is maximal and int(D(A)) = ∅, by [15, Corollary 4.1],
w∗ − Limsup

y
D→x

Ãy ⊂ Ax . Therefore,
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conv

⎧
⎪⎨

⎪⎩

⋃

v∈int(D(A))−x

w∗ − lim sup
w→v,t↓0
x+tw∈D

Ã(x + tw)

⎫
⎪⎬

⎪⎭

w∗

+ N (x; D(A))

⊂ conv

⎧
⎨

⎩w∗ − Limsup
y

D−→x

Ãy

⎫
⎬

⎭

w∗

+ N (x; D(A))

⊂ Ax + N (x; D(A)) = Ax .

Since both sides of the latter inclusions are empty sets if x /∈ D(A), to show the
reverse, it suffices to consider x ∈ D(A). Let

K := conv

⎧
⎪⎨

⎪⎩

⋃

v∈int(D(A))−x

w∗ − lim sup
w→v,t↓0
x+tw∈D

Ã(x + tw)

⎫
⎪⎬

⎪⎭

w∗

.

Observe that, for every v ∈ int(T (x; D(A)), we have

σAx (v) ≤ σK (v). (29)

Indeed, byTheorem4.1, (29) holds for all v ∈ int(D(A)−x).Moreover, by the formula
for the interior of tangent cone, int(T (x; D(A)) = R

∗+ int(D(A) − x). Hence, (29) is
satisfied for all v ∈ int(T (x; D(A)). According to [15, Proposition 5.1], we get

Ax ⊂ K + N (x; D(A))
w∗

.

To finish our proof for the theorem, one has to prove that

K + N (x; D(A))
w∗

⊂ K + N (x; D(A)).

The latter inclusion is proved by applying the same argument as in the proof of
[15, Theorem 5.2]. ��
Remark 4.2 – The formula (28) has a similar form to the representation formula

in [15, Theorem 5.2]. The first term on the right hand-side of the representation
in [15, Theorem 5.2] is the closed convex hull of the limit values of the given
maximal monotone operator on a dense subset of its domain while the first term
on the right hand-side of (28) is only represented by the closed convex hull of
the limit values of any selection of that maximal monotone operator. One of the
usefulness of this representation is to allow us to prove the unique determination of
maximal monotone operators on dense subsets of their domains and characterize
the Lipschitz continuity of a convex function.
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– If X is reflexive, the nets defined in w∗ − Limsup
w→v,t↓0
x+tw∈D

Ã(x + tw) in Lemma 4.1,

Theorem 4.1 and Corollary 4.1 can be replaced by sequences, and the weak star
limits can be also replaced by theweak ones.Moreover, we can change the closures
with respect to weak star topology in (27) and (28) into the closures with respect
to strong (or weak) topology on X∗.

Corollary 4.2 Let X be a real Banach space and A, B : X ⇒ X∗ be two maximal
monotone operators such that int(D(A)) = int(D(B)) = ∅. If there exists a dense
subset D of D(A) such that

Ax ∩ Bx = ∅ ∀x ∈ D, (30)

then A = B.

Proof Since int(D(A)) = int(D(B)), we have

D(A) = int(D(A)) = int(D(B)) = D(B).

From (30), we can find selections Ã of A and B̃ of B such that Ã = B̃ on D. Applying
Corollary 4.1, for every x ∈ X , we have

Ax = conv

⎧
⎨

⎩w∗ − Limsup
y
D→x

Ãy

⎫
⎬

⎭

w∗

+ N (x; D(A))

= conv

⎧
⎨

⎩w∗ − Limsup
y
D→x

B̃ y

⎫
⎬

⎭

w∗

+ N (x; D(B))

= Bx .

��
We end this section by the following example.

Example 4.1 Let X be a real Banach space and f : X → R a lower semicontinuous
convex function. Suppose that there exist a dense subset D of X and � ≥ 0 such that

∂ f (x) ∩ �B∗ = ∅, ∀x ∈ D.

Then, f is �−Lipschitz continuous on X , i.e.,

| f (x) − f (y)| ≤ �‖x − y‖, ∀x, y ∈ X .

Indeed, under our assumptions, it follows from (28) that

∂ f (x) ⊂ �B∗, ∀x ∈ X ,

which implies that f is �−Lipschitz continuous on X .
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5 Conclusions

We have provided representation formulas for faces and support functions for the
values of maximal monotone operators in real Banach spaces. The obtained represen-
tation formulas help us to prove the local unique determination of amaximalmonotone
operator from its minimal-norm selection or on a dense subset of its domain. Some
local and global decompositions for maximal monotone operators are also established.
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